
Sandbox security model for Hadoop file
system
Gousiya Begum1,4*  , S. Zahoor Ul Huq2 and A. P. Siva Kumar3

Introduction
Apache Hadoop has emerged as the widely used open source framework for Big Data
Processing. Big Data processing is used in healthcare, social media, banking, insurance,
good governance, stock markets, retail and supply chain, ecommerce, education and sci-
entific research etc. to gain deep insights of the data, their associations and make bet-
ter decisions [1]. Apache Hadoop addresses the two major challenges of Big Data viz.
storage and processing. Data is stored in Hadoop using HDFS and processing through
Map Reduce Programming. Apache Hadoop is a cluster of cooperative computers. The
anatomy of Hadoop cluster can be easily understood from the Fig. 1.

The number of Data nodes can vary from cluster to cluster but every Hadoop cluster
must contain Name node, Resource Manager and Secondary Name node. In Hadoop,
files are stored using HDFS.

Abstract 

Extensive usage of Internet based applications in day to day life has led to genera-
tion of huge amounts of data every minute. Apart from humans, data is generated by
machines like sensors, satellite, CCTV etc. This huge collection of heterogeneous data
is often referred as Big Data which can be processed to draw useful insights. Apache
Hadoop has emerged has widely used open source software framework for Big Data
Processing and it is a cluster of cooperative computers enabling distributed parallel
processing. Hadoop Distributed File System is used to store data blocks replicated and
spanned across different nodes. HDFS uses an AES based cryptographic techniques
at block level which is transparent and end to end in nature. However cryptography
provides security from unauthorized access to the data blocks, but a legitimate user
can still harm the data. One such example was execution of malicious map reduce jar
files by legitimate user which can harm the data in the HDFS. We developed a mecha-
nism where every map reduce jar will be tested by our sandbox security to ensure the
jar is not malicious and suspicious jar files are not allowed to process the data in the
HDFS. This feature is not present in the existing Apache Hadoop framework and our
work is made available in github for consideration and inclusion in the future versions
of Apache Hadoop.

Keywords:  HDFS, MapReduce, Fsimage, Hadoop, Kerberos

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

RESEARCH

Gousiya Begum et al. J Big Data (2020) 7:82
https://doi.org/10.1186/s40537-020-00356-z

*Correspondence:
gousiyabegum@gmail.com
1 Department of Computer
Science and Engineering,
Mahatma Gandhi Institute
of Technology, Gandipet,
Hyderabad, India
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-3859-8154
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-020-00356-z&domain=pdf

Page 2 of 10Gousiya Begum et al. J Big Data (2020) 7:82

Hadoop Distributed File System (HDFS)

In HDFS each file will be divided into blocks with default size of 128 MB each and
these blocks are scattered across different data nodes with a default replication factor of
three. Name node maintains the information about each file and their respective blocks
in FSimage file. Hence Name node is considered to be Single Point of Failure because
if Name node is down we cannot access any file blocks [2]. However Secondary Name
node is always available as an immediate alternative whenever Name node goes down.
Changes made in the data nodes are updated in FSimage using heartbeat messages from
data nodes to Name node sent every 3 sec through which Name node gets updated
immediately. HDFS architecture is described in Fig. 2.

Map Reduce programming model

Map Reduce is a Java based programming model facilitates distributed parallel pro-
cessing and it is based on the principle of data locality. As part of principle of data
locality, code is moved to the place where data blocks are available instead of moving
data to code which reduces huge amount of disk access and improves performance
to a great extent [3]. A Map Reduce job contains two programs called Mapper and
Reducer. Mapper is a class where the logic to process the file is written and when

Fig. 1  Typical Hadoop cluster

Namenode

Client

Metadata(Name, replicas, ….)
/home/foo/data, 3, ….Metadata ops

Client

Rack 1 Rack 2

Block Ops

Data nodes

Blocks

Read Data nodes

Replica�on

Write

Fig. 2  HDFS architecture

Page 3 of 10Gousiya Begum et al. J Big Data (2020) 7:82 	

map reduce job executes, mappers will run simultaneously on each block. The results
generated by the mappers are aggregated by the reducer. Execution of map reduce
jobs are monitored by the Resource manager called Yarn. Typical Yarn architecture is
described in Fig. 3.

A Map Reduce Job is deployed as a jar file and is submitted to the Job Tracker Dae-
mon present in the Namenode. Since Namenode is aware of the location of input file
blocks, Job tracker forwards the map reduce job to respective data nodes. The Task
Tracker Daemon present inside data nodes will invoke a Java Virtual Machine (JVM)
instance for every block of the input file and executes the code present in the mapper.
Any legitimate user can issue the command to run a map reduce job on the Hadoop
cluster to process any file and there is no mechanism of investigating the jar files for
presence of any malicious code which may harm the files stored inside HDFS. Such
map reduce jobs make the file system vulnerable to security attacks especially tamper
of data, stealing of data and collection of metadata etc. In the next section we will
present existing security features in Hadoop framework and also their limitations in
detail.

Security features in Hadoop and its limitations
Since Hadoop was developed for internal use of Nutch search engine of Yahoo, secu-
rity was not a major concern because of its limited use. However Hadoop framework
was found to be comprehensive solution to Big Data processing problem and it was
soon made open source under Apache License. Many new services were contributed
to Apache Hadoop framework after it became open source. The amount of security
features were very less in Hadoop 1.0 and security features incorporated in Hadoop
2.0 were also inadequate [4]. In this section we will present the existing security fea-
tures of Hadoop framework along with their limitations.

Client

Node Manager

Resource
Manager

Container App Mstr

Node Manager

Node Manager

Container

Container Container

App Mstr

Client

MapReduce Status
Job Submission

Node Status

Resource Request

Fig. 3  Yarn architecture

Page 4 of 10Gousiya Begum et al. J Big Data (2020) 7:82

Apache Knox

Many Hadoop services provide a graphical user interface able to run on certain port
numbers. Apache Knox facilitates a gateway application for communication between
REST API’s and Hadoop Services. Some of the services that Apache Knox can connect
to are Ambari, Hbase, Hive, Storm, Yarn, Oozie, WebHDFS etc. [5]. The purpose of
Apache Knox is to enforce policies related to authentication, authorization, auditing and
dispatching.

Apache Sentry

Apache Sentry is developed as an independent role base authorization service which can
be integrated with various components of Hadoop. Apache Sentry provides the ability
to enforce, control the privileges on data stored in HDFS for authenticated users only
[6]. The Apache Sentry server holds the metadata and the actual authorization rules are
defined in the respective client applications like Hive, Impala etc. Apache Sentry will
only validate whether a particular user is allowed to perform certain operation on the
data. For example if a user issues a Hive query to process Student table, Apache Sentry
will check whether the user has enough privileges to access Student table or not. How-
ever Apache Sentry does not check whether an issued query is harmful to HDFS or not.

Apache Ranger

Apache Ranger is a centralized web based application consisting of authorization, policy
administration, audit and reporting facilities. Authorized users can access the Apache
Ranger web console to manage the security policies. These security policies are deployed
as lightweight processes on Namenode [7].

Kerberos

Kerberos is implemented in Hadoop 1.0 and Hadoop 2.0. Kerberos is a conventional net-
work authentication protocol implemented to authenticate every map reduce job that is
issued by users. For every interaction with Namenode, the user and Namenode undergo
a mutual authentication based on Kerberos ticketing mechanism. Only after proper
authentication, the Namenode will check whether the given user is authorized to per-
form the operation which has been requested.

Limitations of existing security features in Apache Hadoop

1.	 Apache Knox acts only as gateway between Hadoop and other REST based applica-
tions. Performs only authentication.

2.	 Apache Sentry and Ranger are used for authorization purposes in different contexts
as discussed in “Apache Sentry” and “Apache Ranger”.

3.	 Kerberos is a conventional network authentication protocol integrate with Hadoop
for authentication.

4.	 Most of the programs that run on HDFS are in the form of Jar files. In Hadoop there
is no security mechanism in place to examine jar files for presence of any harmful
code which is a very serious security.

Page 5 of 10Gousiya Begum et al. J Big Data (2020) 7:82 	

5.	 Vulnerability: A legitimate user knowingly or unknowingly may execute a jar which
contain harmful code that can tamper the data in the HDFS.

6.	 Apart from malicious jars, there are many other vulnerabilities in Hadoop Frame-
work including distributed cache etc. [10].

More vulnerabilities in Apache Hadoop

Apache Hadoop Distribution contains basic services like HDFS, Map Reduce, PIG, HIVE
etc. More services can be added by the admin using add service option in the Hadoop
Admin console. However the services which are added to Hadoop can be vulnerable to
security attacks and in turn make entire cluster vulnerable. One such example is a ran-
som ware attack made on mongoDB service which was running on a Hadoop cluster.

Most of the Hadoop security is based on 3 A’s viz. authentication, authorization and
audit. Beyond this Hadoop is vulnerable to all other security attack. Any authenticated
user can run any jar file using Hadoop jar command. If the jar file contains any malicious
code then it can destroy the whole cluster.

Apache Hadoop is also prone to malware attacks which was proved by recent malware
attacks called DemonBot and XBash both of them were purposefully used for Distrib-
uted Denial of Service attacks (DDOS).

Most of the research carried out on Hadoop focused on authentication and crypto-
graphic solutions. A legitimate user can also harm the file system and in turn corrupt the
Hadoop cluster.

Method applied
Sandbox Security for Map Reduce jobs

There exists many security vulnerabilities in Hadoop Framework [8]. However the scope
of this paper is confined to handling of map reduce jar files that execute on HDFS. In
existing Hadoop framework, there is no mechanism in place to validate and ensure
whether a given jar file contains any harmful code or not. In this section we demonstrate
a security sandbox for map reduce jobs where malicious jar files are prevented from exe-
cution and accessing HDFS [9]. This is an improvement in security of HDFS where map
reduce jars are validated first and if the jar file is found to be suspicious, it is prevented
from execution, thus creating a sandbox for map reduce jobs. Implementation of sand-
box security is described in Fig. 4.

Step 1. The .java files can be extracted from jar files using following command depicted
in Figs. 5 and 6.

Step 2. In step 2 we need to define the characteristics based on which a jar is consid-
ered to malicious. If the jar is executed from any user account apart from root must have
some limited access to the file system. Generally a non root user will execute map reduce
jobs to process files present on the HDFS. In general a non root user may not be inter-
ested in metadata about the file which include location of file blocks, recent update time
stamp etc. A non root user must not attempt to run administrator commands using File
system API. Thus any such attempt is found in the mapper or reducer class then the jar
file is considered to be suspicious and prevented from execution.

Page 6 of 10Gousiya Begum et al. J Big Data (2020) 7:82

Step 3. In order to check whether the extracted java files are suspicious or not, the
extracted java files are read by a shell script which will check whether the map reduce
job was issued by user with root privileges or not and searches for the HDFS com-
mands which are already enumerated and considered not to be executed by a non
root user.

Step 4. If any jar file is found to be suspicious then it is not allowed to execute on the
file system. The pseudo code of the shell script is described in Fig. 7.

Step 5. Apache Spark has emerged as a lighting fast Big Data processing facility which
can be deployed to run on HDFS. The sandbox security model can be applied on Spark
program also to ensure prevention of inappropriate code from execution on HDFS.

Fig. 4  Flowchart to represent implementation of Sandbox security

Fig. 5  Command to extract .java files from Jar

Fig. 6  Java files extracted to E:\work1 folder

Page 7 of 10Gousiya Begum et al. J Big Data (2020) 7:82 	

Step 6. In Hadoop framework, only map reduce code will be executed on the file sys-
tem. No other application can directly access the file system and hence every applica-
tion/service deployed on Hadoop cluster will be converted into a map reduce job which
is executed on the file system. For example if a user writes a PIG script or HIVE query,
they will also be converted into map reduce jobs and processed. Even on PIG and HIVE
applications we can deploy our customized model to check for inappropriate access to
HDFS leading to tampering of data or metadata.

Results and discussion
The key finding is that the map reduce jar file may contain malicious code and Hadoop
jar command will not able to detect it and allows the user to execute the jar file on the
input file. There is no mechanism to check a jar file for presence of malicious code. In our
work we defined the characteristics by which a jar file can be considered to be malicious.
Any attempt to read metadata, change file permissions, attempt to run dfsadmin com-
mands etc. by non root user will be considered to suspicious and the jars containing such
code inside their mappers and reducers will be treated as malicious. We have developed
our own utility to extract the map reduce jar file using apache commons library. After
extracting the java file from jar, we used a shell script to read the java files and search for
the predefined, enumerated keywords and presence of any one word will make the java
code suspicious and the jar is treated as malicious. The enumerated keywords include
HDFS dfsadmin commands, fsck (to know information about file blocks),expunge, bal-
ancer etc. In existing Hadoop framework, a legitimate user can execute any map reduce
job using Hadoop jar command and the Job tracker daemon present inside Namenode
will forward the same to the respective data nodes where Task trackers will invoke a
new instance of JVM for every file block to execute the map reduce job in a distributed
parallel processing manner. Our work provides a sandboxing facility where unwanted or

–ne 0]]; then

echo “Not Root”

word= ‘fsck’| ‘dfsadmin’|’FileSystem’|’balancer’|’expunge’|’chgrp|’cacheadmin’|

‘getconf’|’safemode’

–r line; do

–o “$word”<<<”$line” | wc –l)

If[[$EUID

totalCount=0 counts=()

while X=read

count=$(grep

counts+-($count)

((totalCount+=count))

done<BDSmapper.java

exit 1

if [count>0] then
echo “suspicious jar file found”

fi
Fig. 7  Pseudo code —Shell Script to probe java files

Page 8 of 10Gousiya Begum et al. J Big Data (2020) 7:82

harmful jar files can be prevented from executing on the file system. The shell script can
be customized to filter jars based on requirement. This feature adds improvement to the
execution environment of Hadoop framework and can be considered for inclusion in the
future versions of Hadoop framework with suitable amendments.

Sno Nature of Jar submitted to sandbox Sandbox security outcome

1 Conventional word count jar Allowed to execute

2 Jar containing mapper which used fsck command to enquire
about file blocks

Not allowed to execute

3 Jar containing mapper which used expunge, name node
safe mode enter

Not allowed to execute

4 NlineInputDemo is a jar file to process .csv file Allowed to execute

In the Fig. 8, we have shown a map reduce job, the mapper code has shown clearly, we
have not used any code shown in shell script above i.e. we have not used any commands
to gather metadata related to file system nor we have written commands to delete file so
this jar file has been executed successfully.

In the Fig. 9, we have shown one more map reduce job but it will not be executed suc-
cessfully because we are using the commands shown in shell script. Hence the finding is
sandboxing technique is used to secure Hadoop framework.

Fig. 8  Map Reduce job1

Fig. 9  Map Reduce job2

Page 9 of 10Gousiya Begum et al. J Big Data (2020) 7:82 	

Conclusion
Sandboxing of map reduce jobs and other jar files will enhance the security of the HDFS
by not allowing harmful jars to execute. Our work advances the field of study pertaining
to Hadoop Security by addressing a problem which was not addressed in the previous
literature. Our work will be made available in github for reference. Our sandbox security
is customizable and can be enhanced to address more security vulnerabilities in Hadoop.
Sandbox security can be extended so that it can detect presence of vulnerabilities in any
new service that is added to Hadoop framework. However there are many other vul-
nerabilities exist in Hadoop framework. Hence there is scope for research in Hadoop
Security. Some of the security vulnerabilities include distributed cache [11], ability of
all users to access cluster home and retrieve metadata is also a vulnerability because all
users need not see the files created by others and get metadata about file system. More
number of other vulnerabilities do exist in Hadoop file system which can be explored
and continue research in addressing such vulnerabilities.

Abbreviations
CCTV: Closed Circuit Television; HDFS: Hadoop Distributed File System; API: Application Programming Interface.

Acknowledgements
I would like to thank my guides for supporting my work and for suggesting necessary corrections.

Authors’ contributions
GB: As part of my Ph.D. work, I am submitting the work I have done in the form of paper. SZUH: Supported me in compil-
ing the paper. APSK: Suggested necessary amendments and helped in revising the paper. All authors read and approved
the final manuscript.

Funding
No funding.

Availability of data and materials
If any one is interested in our work, we are ready to provide more details of the map reduce job which we have
executed and the data processing techniques applied. However the data is used in our work, is freely available in many
repositories.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Computer Science and Engineering, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad,
India. 2 Department of Computer Science and Engineering, GPREC, Kurnool, Andhra Pradesh, India. 3 Department
of Computer Science and Engineering, JNTUA​, Anantapuramu, Andhra Pradesh, India. 4 JNTU Anantapur, Anantapuramu,
Andhra Pradesh, India.

Received: 4 April 2020 Accepted: 3 September 2020

References
	1.	 Yao Y, Gao H, Wang J, Sheng B, Mi N. New scheduling algorithms for improving performance and resource utilization

in Hadoop YARN clusters. IEEE Transactions on Cloud Computing. 2019.
	2.	 Ge, Yi, et al., “File storage processing in HDFS”, U.S. Patent No. 10,210,173, 19 Feb 2019.
	3.	 Glushkova D, Jovanovic P, Abelló A. Mapreduce performance model for Hadoop 2. x. Information systems, vol 79.

New Jersey: Elsevier; 2019. pp. 32–43.
	4.	 Martis M, Pai NV, Pragathi RS, Rakshatha S, Dixit S. Comprehensive survey on Hadoop security. Emerging research in

computing, information, communication and applications, vol 906. Springer: Singapore. AISC-. 2019. pp. 227–236.
	5.	 Knox Gateway: REST API and Application Gateway for the Apache Hadoop Ecosystem. knox.apache.org. 2019.
	6.	 Bhatal GS, Singh A. Big data: Hadoop framework vulnerabilities, security issues and attacks. Array open access, vol

1–2. New Jersey: Elsevier; Article 100002.
	7.	 Awaysheh FM, Alazab M, Gupta M, Pena TF. Next-generation big data federation access control: a reference model.

Future generation computer systems. New Jersey: Elsevier; 2020. pp 1–16.

Page 10 of 10Gousiya Begum et al. J Big Data (2020) 7:82

	8.	 Nellutla R, Mohammed M. Survey: a comparative study of different security issues in big data”, emerging research
in data engineering systems and computer communications. Springer, Singapore, AISC-volume 1054; 2020, pp.
247–257.

	9.	 Langton, Asher J, et al. Configuring a sandbox environment for malware testing. U.S. Patent No. 10,380,337, 13 Aug
2019.

	10.	 Newberry E, Zhang B, on the power of in-network caching in the Hadoop distributed file system. Proceedings of the
6th ACM Conference on Information-Centric Networking; 2019. pp. 89–99.

	11.	 Ji Y, Fang H, Haichang Y, He J. FastDRC: fast and scalable genome compression based on distributed and parallel
processing, 19th International Conference on Algorithms and Architectures for Parallel Processing, Springer; 2019.
pp. 313–319.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Sandbox security model for Hadoop file system
	Abstract
	Introduction
	Hadoop Distributed File System (HDFS)
	Map Reduce programming model

	Security features in Hadoop and its limitations
	Apache Knox
	Apache Sentry
	Apache Ranger
	Kerberos
	Limitations of existing security features in Apache Hadoop
	More vulnerabilities in Apache Hadoop

	Method applied
	Sandbox Security for Map Reduce jobs

	Results and discussion
	Conclusion
	Acknowledgements
	References

