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Introduction
Imbalanced data set classification is a relatively new research line within the broader 
context of machine learning studies, which tries to learn from the skewed data dis-
tribution. A data set is imbalanced when the samples of one class consist of more 
instances than the rest of the classes in two-class and multi-class data sets [1]. Most of 
the standard machine learning algorithms show poor performance in this kind of data-
sets, because they tend to favor the majority class samples, resulting in poor predictive 
accuracy over the minority class [2]. Therefore, it becomes tough to learn the rare but 

Abstract 

Since canonical machine learning algorithms assume that the dataset has equal 
number of samples in each class, binary classification became a very challenging 
task to discriminate the minority class samples efficiently in imbalanced datasets. For 
this reason, researchers have been paid attention and have proposed many meth-
ods to deal with this problem, which can be broadly categorized into data level and 
algorithm level. Besides, multi-class imbalanced learning is much harder than binary 
one and is still an open problem. Boosting algorithms are a class of ensemble learn-
ing methods in machine learning that improves the performance of separate base 
learners by combining them into a composite whole. This paper’s aim is to review the 
most significant published boosting techniques on multi-class imbalanced datasets. 
A thorough empirical comparison is conducted to analyze the performance of binary 
and multi-class boosting algorithms on various multi-class imbalanced datasets. In 
addition, based on the obtained results for performance evaluation metrics and a 
recently proposed criteria for comparing metrics, the selected metrics are compared 
to determine a suitable performance metric for multi-class imbalanced datasets. The 
experimental studies show that the CatBoost and LogitBoost algorithms are superior to 
other boosting algorithms on multi-class imbalanced conventional and big datasets, 
respectively. Furthermore, the MMCC is a better evaluation metric than the MAUC and 
G-mean in multi-class imbalanced data domains.

Keywords: Boosting algorithms, Imbalanced data, Multi-class classification, Ensemble 
learning

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/.

SURVEY PAPER

Tanha et al. J Big Data            (2020) 7:70  
https://doi.org/10.1186/s40537‑020‑00349‑y

*Correspondence:   
tanha@tabrizu.ac.ir 
Faculty of Electrical 
and Computer Engineering, 
University of Tabriz, P.O. 
Box 51666-16471, Tabriz, Iran

http://orcid.org/0000-0002-0779-6027
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-020-00349-y&domain=pdf


Page 2 of 47Tanha et al. J Big Data            (2020) 7:70 

important instances. In fact, they assume equal misclassification cost for all samples for 
minimizing the overall error rate.

Learning from skew datasets becomes very important when many real-world classi-
fication problems are usually imbalanced, e.g. fault prediction [3], fraud detection [4], 
medical diagnosis [5], text classification [6], oil-spill detection in satellite images [7] and 
cultural modeling [8]. An equal misclassification cost associated to each of the classes in 
these datasets is not true. For example, in software fault prediction, if the defective mod-
ule is regarded as the positive class and non-defective module as negative, then missing a 
defect (false negative) is much expensive than the false-positive error in testing phase of 
software development process [9].

In recent years, several proposals have been made to deal with the class imbalance 
problem that can be broadly categorized into two groups: data level and algorithm 
level. Data level approaches rebalance the data distribution by resampling methods. 
These methods solve the problem by either increasing the minority class or decreasing 
the majority class observations. Many different sampling techniques such as random 
over-sampling, random under-sampling, synthetic minority over-sampling technique 
(SMOTE), direct oversampling, and other related methods have been proposed, each 
with their pros and cons [10]. The algorithm level approaches modify the machine learn-
ing algorithm in such way that it accommodates imbalance data. The modification can 
be considering different misclassification costs for each class, also known as cost-sen-
sitive methods, and minimizing the cost error instead of maximizing the accuracy rate 
[11]. The other modification is choosing a suitable inductive bias. For example, adjusting 
the probability estimate at the leaf when using a decision tree as a learner, or consid-
ering multiple minimum support for different classes in association rules. Many other 
approaches have been proposed in the learning algorithms aiming to reinforce them 
towards the minority class samples, such as ensemble approaches and deep-based algo-
rithms. However, the ensemble method is one of the most well-known approaches in 
this group which is our main focus in this study.

Ensemble classifiers also known as multiple classifier system, improve the perfor-
mance of learning method by combining a collection of base classifiers for the classi-
fication system. The output of each base classifier is collected and used to prepare the 
classification decision for new samples. Specifically, in boosting, a sequential aggregate 
of base classifier is constructed on weighted versions of the training data, focusing on 
misclassified samples at each stage of generating classifiers based on the sample weights 
that are changed according to the performance of the classifier [12].

The imbalanced dataset problems become more complicated in multi-class imbal-
anced classification tasks, in which there may be multiple minority and majority classes 
that cause skew data distribution. In this case, for example, a class may be a minority one 
when compared to some other classes, but a majority of the rest of them [13]. Therefore, 
many new challenges are imposed which do not exist in two-class cases. Fortunately, 
some strategies such as decomposition methods and introducing new loss functions 
have been proposed to deal with multi-class classification problem [14, 15].

The recent emergence of new technologies, such as internet of things (IoT), online 
social network (OSN), have eased the way to originate huge amount of data called as Big 
data which brings some difficulties for the extracting knowledge by learning algorithms 
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due to their specific features, i.e., volume, velocity, variety, and veracity [16, 17]. More-
over, the imbalanced data problem can be often found in this kind of datasets and by 
considering multi-class property, learning from multi-class imbalanced big datasets 
becomes a very challenging task that has not been explored well by the researches, 
although this kind of data frequently appears in real-world classification problems [18].

Performance evaluation is another issue that should be addressed in this domain. It is 
obvious that for evaluating a classifier on imbalanced data, we require such metrics that 
could reflect its ability on predicting minority class(es) appropriately. Researchers have 
considered this issue by proposing some metrics for imbalanced data domain, such as 
area under the curve (AUC), Matthews correlation coefficient (MCC), G-mean, Kappa, 
and others that some of them have been successfully extended to multi-class problems 
[19, 20]. However, determining which one is more suitable for describing the perfor-
mance of the classifier, needs to be examined. In this regard, some researchers have pro-
posed frameworks for comparing evaluation metrics based on the empirical results [21, 
22].

To the best of our knowledge, this is the first work to compare boosting algorithms on 
various multi-class imbalanced datasets. Therefore, in this study, we examine the perfor-
mance of 14 most significant boosting algorithms on 19 multi-class imbalanced conven-
tional and big datasets and compare them with each other. A comprehensive statistical 
test suite is used in order to investigate which boosting algorithm performs better in 
terms of evaluation metrics. Subsequently, three most prevalent evaluation metrics used 
in the imbalanced data literature are compared to determine which metric is more suit-
able for the multi-class imbalanced data domain.

Based on the aforementioned descriptions, the contributions and objectives of this 
review study are:

1. To evaluate the performance of the most significant boosting classifiers on multi-
class imbalanced datasets with different imbalance ratio.

2. To determine which evaluation metric is more informative for showing the perfor-
mance of a learning algorithm in the context of multi-class imbalanced datasets.

3. To evaluate the performance of the most significant boosting algorithms on multi-
class imbalanced big datasets.

4. To analyze the computational time of the boosting algorithms.

The rest of this paper is structured as follows: "Handling imbalanced data problem" 
section reviews imbalanced data handling methods, followed by a summary on the state-
of-the-art boosting algorithms in "Boosting methods" section. The experimental results 
and discussions are presented in "Experimental study" section. Finally, the "Conclusion" 
section remarks the findings of this study.

Handling imbalanced data problem
In many real-world situations, the data distribution among classes of a dataset is not 
uniform, such that at least one class of data has fewer samples (minority class) than the 
other classes (majority classes). This poses a difficulty for standard machine learning 
algorithms as they will be biased towards majority classes. In this situation, they will 
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present high accuracy on majority classes and poor performance on minority class [23], 
while the minority class may possess more valuable knowledge. A multi-class problem 
can have different styles, including many minority and majority classes, one minority 
class and many minority classes or one majority class and many minority classes [24]. 
In this condition, a class can be considered as a majority one compared to other classes, 
but it is considered as a minority or well-balanced one for the rest of the classes [25]. 
Furthermore, the difficulty increases in the case of multi-class imbalanced datasets. For 
handling this unwanted circumstance, researchers have proposed some methods that 
can be classified into two major groups: data-level methods and algorithm-level meth-
ods. The details of these methods are explained in the following sub-sections.

Data‑level methods

Data-level methods balance data among classes by re-sampling approaches. These 
approaches are categorized into three major techniques: under-sampling, over-sam-
pling and hybrid-sampling. These techniques include many different forms of re-sam-
pling such as random under-sampling (samples of the majority classes are randomly 
removed from the dataset), directed under-sampling (the choice of samples to eliminate 
is informed), random over-sampling (generate new samples for minority classes ran-
domly), directed over-sampling (no new samples are created, but the choice of samples 
to replace is informed), and combinations of the above techniques [10]. However, the 
main drawbacks of these techniques are removing useful samples or introducing mean-
ingless new samples to the datasets.

Under-sampling methods remove samples from majority classes until the minority and 
majority classes become balanced. Therefore, the training process can be easily imple-
mented, and it improves the problem associated with run time and storage [26]. The 
most common under-sampling method is random under-sampling (RUS) that removes 
samples from majority classes randomly.

Over-sampling approaches create copies of existing samples or add more samples to 
the minority class [27]. They increase the training set size, thus consume extra time. The 
simplest method to increase the size of the minority class is random over-sampling. This 
method increases the number of minority class samples by randomly replicating, but it 
is prone to overfitting [28]. For solving these problems, Chawla proposed the Synthetic 
Minority Over-sampling technique (SMOTE), which creates synthetic samples from 
the minority class. The SMOTE samples are linear combinations of two similar samples 
from the minority class [29].

In the hybrid-sampling methods, more than one sampling technique is used together 
to remove the drawback of each sampling method [30].

For multi-class datasets, the sampling strategies should be adjusted the sampling pro-
cedures to consider individual properties of classes and their mutual relations. However, 
the class decomposition schemes are another most existing solution in order to handle 
multi-class data and alleviate the difficulties of this type of datasets [31]. The advantage 
of such approaches is simplifying the problems into multiple two-class problem. But, 
there are some disadvantages with these kind of approaches, including losing the bal-
anced performance on all classes and rejecting the global outlook on the multi-class 
problems. Despite the mentioned disadvantages, this direction can be considered as a 
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promising one. Two commonly used schemes for class decomposition are one-versus-all 
(OVA) and one-versus-one (OVO) schemes. In the OVA strategy, the data points of a 
class are considered with the data point of the other classes. In this case, for the K-class 
dataset, K classification problems are introduced. While in the OVO strategy, a binary 
classification problem is created between any two classes; therefore K(K−1)/2 classifica-
tion problems are introduced.

Algorithm‑level methods

In the algorithm-level category, the existing learner is modified to remove its bias 
towards the majority classes. The most common approach is the cost-sensitive learning 
in which the learner is forced to correctly classify the minority class samples by setting 
a high cost to the misclassified samples of minority class [32]. For correct classifica-
tion samples, no penalty is assigned, but the misclassifying cost for minority samples is 
higher than the majority samples. The goal is to minimize the total cost of the training 
dataset [33]. However, determining the cost values is not an easy task, as they depend on 
multi factors that have trade-off relationships.

Hybrid methods

Hybrid methods combine previously mentioned approaches. Ensemble learning is one 
of the most frequently used classifiers that combine data level and algorithmic level 
methods for handling the imbalanced data problem [34]. The main goal of the ensemble 
is obtaining better predictive performance than the case of using one classifier. However, 
its main drawback is generating more classifiers, which increases computational com-
plexity [35]. The best-known methods of the ensemble classifiers are bagging and boost-
ing [36, 37]. In bagging, the original training set is divided into N subsets of the same 
size, and then each subset is used to create a classifier. The whole classification model is 
built by aggregating particular classifiers. On the other hand, boosting algorithms gener-
ates a new weak learning model, and after many rounds, the boosting algorithms com-
bine these weak learners into a single prediction model that will be much more accurate 
than anyone of the weak learners.

Ensemble learning has been investigated in order to handle multiclass imbalanced prob-
lems, as well. Specifically, hybridizing ensemble methods such as boosting, bagging and 
random subspace with the previously mentioned solutions (sampling or cost-sensitive) 
has been proved to be effective in imbalanced data problem [38]. For example, Wang and 
Yao compared the performance of Adaboost.NC and Adaboost in combination with ran-
dom oversampling with (or without) using class decomposition for multi-class imbalanced 
datasets [13]. By applying ensemble learning to each sub-problem, Zhang et al. proposed a 
method to improve the performance of binary decomposition used in multi-class imbal-
anced problems [39]. Krawczyk also developed a new approach to handle multi-class 
imbalanced datasets by combining pairwise OVO decomposition and ensemble learning. 
He divided the original set into several binary sub-problems in order to simplify the classifi-
cation task. Then, an ensemble classifier designed for handling such simplified binary prob-
lems, and outputs of individual classifiers were combined with pairwise coupling method 
[40]. Feng et al. proposed a new ensemble margin-based algorithm which emphasizes on 
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the use of a large number of informative low margin samples compared to margin samples 
by the aim of handling imbalanced data problem [41].

Boosting methods

Boosting as the most popular category of ensemble learning, builds a strong classifier by 
combining many weak classifiers [12]. The superiority of boosting is in its serial learning 
nature, which results in excellent approximation and generalization. In other words, weak 
classifiers are learned sequentially, aiming to reduce the errors of the previously modeled 
classifier. Many boosting approaches have been proposed so far. Each improves the clas-
sification performance by varying some steps of the general boosting scheme. Among the 
various kinds of boosting approaches, we have participated 14 well-known methods in our 
experimental comparisons. The methods involve AdaBoost.MH, SAMME, LogitBoost, 
GradientBoost, XGBoost, LightGBM, CatBoost, SMOTEBoost, RUSBoost, MEBoost, 
AdaCost, AdaC1, AdaC2 and AdaC3. We have chosen these approaches due to their high-
citation count and popularity. We have selected representative approaches from all the 
categories of boosting. AdaBoost.MH, SAMME, LogitBoost, GradientBoost, XGBoost, 
LightGBM and CatBoost are general boosting algorithms applicable for all applications. 
Besides, SMOTEBoost, RUSBoost, MEBoost, AdaCost, AdaC1, AdaC2 and AdaC3 are 
specifically developed for imbalanced data classification problem. Among these meth-
ods, SMOTEBoost and RUSBoost are data-level approaches and the rest are algorithm-
level. The detailed descriptions of these approaches are provided in “General Boosting 
approaches” section. Furthermore, a brief description for some other known boosting 
methods is provided in Table  1. The description of boosting approaches involves their 
exclusive features, discriminations and proposal objectives. The presented techniques are 
sorted based on their publication year and cover most of the methods from 1997 to 2019.

General Boosting approaches

AdaBoost.MH

AdaBoost.MH, as a boosting approach proposed in 2000, is an extension of the AdaBoost 
algorithm. In order to deal with multi-class classification, AdaBoost.MH decomposes a 
multi-class problem into K (K − 1)/2 binary problems ( K  is the number of classes) and 
applies a binary AdaBoost procedure to each of the binary datasets [42]. In order to better 
understand the AdaBoost.MH, binary AdaBoost algorithm is explained by details.

AdaBoost (Adaptive Boosting), which is one of the primary and well-known boosting 
approaches, is proposed by Freund and Schapire in 1997. In its procedure, an ensemble of 
M classifiers is learned sequentially [43]. The main idea of AdaBoost is bolding the effect 
of misclassified samples by increasing their weights in the iterations of boosting. Hence, in 
all iterations of the algorithm, the sample set is fixed, and only their weights are changed. 
By doing so, classifiers can learn from the errors of the current classifiers and improve the 
accuracy. AdaBoost uses exponential loss function as Eq. (1).

The boosting procedure in AdaBoost is as follows. At first, all n samples get the same 
weight w1

i = 1/n . Then in each iteration of the boosting, a classifier f m(x) is selected with 

(1)LAdaboost
(

y, f
)

= exp
(

−yTf
)
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respect to the loss function and is fitted to the data points considering their current weights. 
Then, the error rate of the selected classifier is computed as Eq. (2).

(2)err(m) =
∑n

1 w
m
i .⋖

(

f m(xi) �= yi
)

∑n
1 w

m
i

Table 1 Overview of the boosting approaches

Approach Brief description Years

AdaBoost.M1 [43] A multiclass variation of AdaBoost which uses multiclass base classifier
Weight of each base classifiers is a function of error rate

1997

AdaBoost.M2 [43] A multiclass variation of AdaBoost
Weight of each base classifiers is a function of pseudo-loss

1997

GentleBoost [45] Extended version for AdaBoost which uses Newton steps
Using weighted least-squares regression for fitting the base classifiers

2000

CSB1 [58] A Cost-sensitive variation of AdaBoost proposed for handling imbalanced data
Adding cost item into the weight update formula of AdaBoost
Removing step size coefficient from the weight update formula of AdaBoost

2000

CSB2 [58] A Cost-sensitive variation of AdaBoost proposed for handling imbalanced data
Adding cost item into the weight update formula of AdaBoost
The step size is considered in the weight update formula, like AdaBoost

2000

MAdaBoost [59] Proposed with the goal of solving the AdaBoost’s sensitivity to noise
Modifying the weight update formula of AdaBoost

2000

RareBoost [60, 61] An improvement for AdaBoost
Using different weight update scheme for positive and negative predictions
Considering False Positive, True Positive, True Negative and False Negative in step 

size calculation

2001

Modest AdaBoost [62] An improvement of GentleBoost
Using different weight update formula for misclassified and truly classified 

samples
Using inverted distribution to assign larger weights to truly classified samples

2005

JOUSBoost [63] Proposed with the goal of handling imbalanced data in AdaBoost algorithm
Combining the jittering of the data and sampling techniques with AdaBoost

2007

ABC-LogitBoost [47] An improvement of LogitBoost for multiclass classification
Solving the difficulties of dense Hessian Matrix in Logistic loss

2009

AdaBoost.HM [64] A multiclass variation of AdaBoost which uses hypothesis margin
Using multiclass base classifiers instead of decomposing the multiclass classifica-

tion problem into multiple binary problems

2010

RAMOBoost [65] Proposed with the goal of imbalanced data handling
Combining Ranked Minority Oversampling with AdaBoost.M2
Using the sampling probability distribution for ranking the minority class samples

2010

AOSO-LogitBoost [48] One versus one version of LogitBoost for multiclass classification
Solving the difficulties of dense Hessian Matrix in Logistic loss by utilizing vector 

tree and adaptive block coordinate descent techniques

2011

CD-MCBoost [66] Performing coordinate descent on multiclass loss function
Concentration of each base classifier on margin maximization of a single class

2011

EUSBoost [67] An improvement of RUSBoost which uses evolutionary undersampling
Using different subsets of majority class samples in the training phase of each 

base classifier to ensure diversity

2013

RB-Boost [68] Combining Random Balance with AdaBoost.M2
Using SMOTE sampling to deal with imbalanced data problem
The difference with SMOTEBoost is using random proportion of classes in each 

iteration of booting to ensure the diversity of base classifiers

2015

LIUBoost [69] Proposed with the goal of imbalanced data handling
Using undersampling in order to solve the imbalanced data problem
Adding a cost term to the weight update formula of the samples

2019

TLUSBoost [70] Proposed with the goal of imbalanced data handling
Using Tomek-linked and redundancy-based undersampling for removing outlier 

samples

2019
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In which f m(xi) and yi indicates the predicted value and actual output of the sample 
xi , respectively. ⋖

(

f m(xi)  = yi
)

 is the indicator function with a value equal to 1 when the 
statement is true; otherwise, it is equal to zero.

Then the step size (or the coefficient of the f m(xi) ) is calculated according to the error 
rate value as Eq. (3).

According to this equation, the fitted classifier of each iteration will get a high impact 
in the ensemble if it has a lower error rate on the training data. After calculating the 
error rate and step size of the classifier. The misclassified samples are reweighted accord-
ing to Eq. (4).

When M classifiers are produced, the final ensemble model is constructed by Eq. (5).

The pseudo-code of the AdaBoost algorithm is provided in Algorithm 1.

SAMME

SAMME [44] is a multi-class variant of AdaBoost, which uses a multi-class exponential 
loss function as follows.

(3)αm = log
1− err(m)

err(m)

(4)wm+1
i = wm

i .exp
(

αm.⋖
(

fm(xi) �= yi
))

i = 1, . . . , n

(5)F(x) = sign

(

M
∑

m=1

αmfm(x)

)

Algorithm1: AdaBoost algorithm

i. Input: ,erehw,tesgniniarT ( 1, 1),…, ( , ) ∈ ∈ = { ―1, + 1}

Base-learner algorithm, Number of iterations .

ii. Initialization: Weight the training samples 1 = 1 ,   =

iii. Iteration: For =

(1) Use the Base-learner algorithm to fit a classifier  to the training 

data using weights . 

(2) Calculate the training error  of the classifier :( )

( ) =

∑
1

. ( ( ) ≠ )

∑
1

(3) Calculate the weight  for the classifier :

= log
1 ― ( )

( )

(4) Update the weight of the training samples:
+ 1 = .exp ( . ( ( ) ≠ )) = 1,…, 

iv. Output: The final ensemble model:

( ) = sign( ∑
= 1

( ))
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In which the target variables are encoded using the codewords technique to the form 
yi =

(

y1, . . . , yK
)T , i = 1, 2, . . . ,N  , where

In this algorithm, the boosting procedure is exactly the same as the AdaBoost with 
minor differences. The error rate calculation for the weak learners and the reweighting 
phase for the misclassified samples are same as the AdaBoost. The difference is in the 
extra term log(K − 1) in the step size calculation equation as following equation.

The final ensemble model has the following form

LogitBoost

LogitBoost is one of the state-of-the-art approaches proposed by Friedman et al. in 1998 
[45, 46]. The LogitBoost utilizes adaptive Newton steps to fit an additive logistic model. 
So, LogitBoost is a boosting approach with logistic loss function (negative conditional 
log-likelihood) as Eq. (10).

where Pk(x) = exp(Fk(x))
∑K

j=1 exp(Fj(x))
 and 

∑K
k=1 Fk(x) = 0.

The boosting procedure in K-class LogitBoost is as follows. At first, all n samples get 
the same weight w1

i = 1/n . The initial probability for each class for samples is set to 
Pk(x) = 1/K , k = 1, . . . ,K .

At each iteration of the LogitBoost, K independent classifiers that each minimizes the 
overall loss function with respect to the kth class, are fitted. So, an ensemble of classifiers 
is considered for each class. The final ensemble model is chosen by Eq. (11).

where Fk(x) =
∑M

m=1 f
m
k (x) =

∑M
m=1

K−1
K

(

f mk (x)− 1
K

∑K
j=1 f

m
j (x)

)

.

LogitBoost algorithm was designed as an alternative solution to address the limita-
tions of AdaBoost in handling noise and outliers. It is less sensitive to outliers and noise 
due to using a logistic loss function that changes the loss function linearly. In contrast, 
AdaBoost uses an exponential loss function that changes exponentially with the classifi-
cation error, which makes AdaBoost more sensitive to noise and outliers.

(6)LSAMME

(

y, f
)

= exp

(

−
1

K
YTf

)

(7)yk =
{

1 ifyi = Ck

− 1
K−1 otherwise

(8)αm = log
1− err(m)

err(m)
+ log(K − 1)

(9)F(x) = argmax
k

M
∑

m=1

αm.⋖
(

fm(x) = k
)

.

(10)LLogitBoost
(

y, f
)

= −
K
∑

k=1

⋖

(

k = y
)

logPk

(11)F(x) = argmax
k

Fk(x).
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LogitBoost supports both binary and multi-class classification. This algorithm can 
handle multi-class problems by considering multi-class logistic loss. Also, it can address 
multi-class classification problems by using a parametric method. Some other multi-
class variants of LogitBoost, have been proposed too, e.g., ABC-LogitBoost [47] and 
AOSO-LogitBoost [48] (which is a one-vs-one LogitBoost for multiclass problems).

GradientBoost

GradientBoost is based on trees which is applicable for various kinds of loss functions. 
Like other boosting algorithms, it builds a stage-wise additive model. Unlike traditional 
boosting in which weak-learners fit a model to the output values of samples, in each iter-
ation of this algorithm, the decision trees are generated by fitting the negative gradients 
[49]. Negative gradient is also called residual error that is a function of the difference 
between the predicted value and the real value of the output. Generally, in Gradient-
Boost the model is initialized with a constant value γ (A tree with just one leaf node) that 
minimizes the loss function over all the samples as Eq. (12).

Then, in each iteration, the negative gradient of the loss function is computed with 
respect to the current ensemble as following equation.

A decision tree is fitted on the negative gradients (residuals) and then the values of the 
leaf nodes are computed with the goal of loss function minimization as Eq. (14).

where, Jm is the number of the leaf nodes in the mth iteration tree, and γjm is the value of 
jth leaf node at iteration m. Note that the summation of loss values is calculated over the 
samples that belong to that leaf nodes region Rjm . Finally, the new model is added to the 
ensemble as the following equation.

Besides the effective process of boosting in GradientBoost, a shrinkage metric ν is also 
for controlling overfit to training data. In other words, in each boosting iteration, the 
selected model is multiplied by a coefficient between 0 and 1, which indicates the learning 
rate (shrinkage value). GradientBoost supports both binary and multi-class classifications.

CatBoost

CatBoost is a novel algorithm for gradient boosting on decision trees, which has the 
ability to handle the categorical features in the training phase. It is developed by Yan-
dex researchers and is used for search, recommendation systems, personal assistant, 
self-driving cars, weather prediction and many other tasks at Yandex and in some other 

(12)F0(x) = argmin
γ

∑n

i=1
L
(

yi, γ
)

(13)rim = −

[

∂L
(

yi, F(xi)
)

∂F(xi)

]

F(x)=Fm−1(x)

, i = 1ton

(14)γjm = argmin
γ

∑

xi∈Rjm
L
(

yi, F
m−1(xi)+ γ

)

, j = 1, . . . , Jm

(15)F(x) = Fm−1(x)+ νf m(x)
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companies. CatBoost has both CPU and GPU implementations which accelerates the 
training process [50].

Like all gradient-based boosting approaches, CatBoost consists of two phases in build-
ing trees. The first is choosing the tree structure and the second is setting the value of 
leaves for the fixed tree. One of the important improvements of the CatBoost is doing 
unbiased gradient estimation in order to control the overfit. To this aim, in each itera-
tion of the boosting, for truly estimating the gradient of each sample, it excludes that 
sample from the training set of the current ensemble model. The other improvement is 
the automatic transformation of categorical features to numerical features without any 
preprocessing phase. CatBoost is applicable for both binary and multi-class problems.

XGBoost

XGBoost is an optimized version of GradientBoost, which is introduced by Chen in 
2016. XGBoost has improved the traditional GradientBoost by adding up some efficient 
techniques to control overfitting, split finding and handling missing values in the train-
ing phase [51]. In order to control the overfitting, the objective (minimization) function 
consists of two parts: loss function and regularization term, which controls the complex-
ity of the model as Eq. (16).

where, �
(

f m
)

 is the regularization term. In XGBoost, a second-order approximation is 
used to optimize the objective function. Accordingly, in each iteration, the best tree is 
selected by using Eq. (17).

where, T  is the number of leaf nodes. Gj and Hj are the summations of the first and sec-
ond-order gradient statistics on the loss function over the samples of the j-th leaf node, 
respectively. � and γ are the regularization coefficients. Thus, in this approach, the com-
plexity of the tree is chosen and controlled separately in each iteration and the number 
of the leaves is not a fixed value during all the iterations. After the best tree selection in 
each iteration, the values of the leaf nodes are calculated by the use of gradient statistics 
of each leaf by the use of Eq. (18).

In addition, an approximate technique is used for split finding in each node of the tree. 
To this aim, for each feature, all the instances are sorted by that feature’s value, then a 
linear search is done to find the best split along that feature. The best split is chosen by 
comparison among the best split of all the features. Furthermore, after constructing the 
tree, in each node the direction with maximum score is marked to make a default path 
on the tree for classification of data with missing values.
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n

∑
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∑
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)

(17)Obj = −
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T
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(18)w∗
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XGBoost algorithm has made excellent improvements in the implementation level. It 
utilizes parallel learning, out-of-core computation and cache-aware access techniques to 
minimize the time complexity of learning, thus it is applicable for very large datasets.

LightGBM

LightGBM, as an efficient implementation of GradientBoost, is proposed by Ke et al. in 
order to solve the efficiency and scalability problem of GradientBoost in the case of high 
dimensional feature space or large data size. In the GradientBoost, for each feature, all 
the data samples are needed to be scanned and all the possible split points are examined. 
Therefore, the most time-consuming part of the GradientBoost is the splitting procedure 
in each tree node. In the this algorithm, two novel techniques called Gradient-based 
One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) are proposed. In the 
GOSS technique, only the small set of samples which have large gradients are consid-
ered in the split point selection. This works, because samples with larger gradients play a 
more important role in the computation of the information gain. In the FEB technique, 
in order to reduce the number of features, mutually exclusive features are bundled with 
the use of a greedy approach. LightGBM only supports binary problems [52].

Boosting for imbalanced data

SMOTEBoost

SMOTEBoost, proposed by Chawla et al., is a data-level method to deal with the imbal-
anced data problem. The main steps of the proposed approach are SMOTE sampling 
and boosting. This algorithm uses SMOTE technique as a data level solution. SMOTE 
adds new minority class examples to a training dataset by finding the k-nearest neigh-
bors (KNN) of a minority class example and extrapolating between that example and its 
neighbors to create new examples. Im addition, it adopts the AdaBoost algorithm as its 
ensemble approach. In each iteration of the SMOTEBoost, the sampling is done based 
on the original data, but the training process is done based on all the original and syn-
thetic data. Like AdaBoost, after training a classifier the weights of the misclassified sam-
ples are updated, but here the update is done only for the original data. Thus, after each 
step of the boosting, the weights of the original data change and new synthetic data are 
generated. One of the main drawbacks of the SMOTEBoost is generating a large train-
ing dataset and, therefore, relatively slow in training phase of the boosting algorithm. 
SMOTEBoost supports both binary and multi-class problems [53].

RUSBoost

RUSBoost, as a data-level solution, is proposed by Seiffert et al. to reduce the com-
putational requirement of SMOTEBoost. RUSBoost combines data sampling and 
the AdaBoost algorithm. It uses RUS (Random Under Sampling) sampling approach 
to balance the initial data. RUS technique randomly removes the examples from the 
majority class. Each iteration of the boosting consists of two phases. In the first phase 
of the algorithm, random under-sampling is performed on all the classes except the 
minority class. Under-sampling continues until all the classes reach the same size 
(minority class size). In the second phase of the algorithm, AdaBoost is applied on 
the sampled data. So, the training set is not fixed over all the iterations. One of the 
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drawbacks of the RUSBoost is its data loss in the under-sampling level. It supports 
both binary and multiclass problems [54].

MEboost

MEBoost is a novel boosting approach that is proposed for handling imbalanced data 
with an algorithm level solution. MEBoost mixes two different weak learners with boost-
ing to improve the performance and taking the benefits of both classifiers. In each itera-
tion of the boosting, it either uses a decision tree (which uses information entropy as 
splitting metric) or an extra tree classifier (Randomized tree classification) as its learner. 
In this algorithm, the ensemble model is tested according to the AUC (area under 
Receiver Operating characteristic curve) score. It keeps adding weak learners to the 
model until there is no significant change in the auROC on the test data. Furthermore, 
MEBoost has an early stopping criterion for the case that the improvement between two 
iterations of boosting is not significant. MEBoost only supports binary problems [55].

AdaC

AdaC is proposed by Sun et al. in order to improve the imbalanced data classification. 
The main idea of this approach is to take an algorithm level solution to handle the imbal-
anced data by adding a cost item into the learning procedure of the AdaBoost. The cost 
item Ci ∈ [0,+∞] (for each sample i ) is added in order to increase the impact of minor-
ity class samples in the training phase and improve the performance. To this aim, the 
cost item is set to higher values for minority class samples and smaller values for major-
ity class samples. The cost value of each sample shows the importance of correctly clas-
sifying that sample [56].

AdaC algorithm has three versions, namely AdaC1, AdaC2 and AdaC3. The difference 
between these three versions is in the way of adding cost to the weight update equation 
of the AdaBoost. In the AdaC1 algorithm, the cost item is embedded inside the expo-
nent part. The weight update equation of AdaC1 is provided in Eq. (19).

Moreover, the step size parameter αm is modified to the form shown in Eq. (20).

In the AdaC2 algorithm, the cost item is embedded outside the exponent part. The 
weight update equation of AdaC2 is shown in Eq. (21).

The step size parameter αm is modified to the form shown in Eq. (21).
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AdaC3 algorithm is the combination of AdaC1 and AdaC2, in which the cost item is 
embedded both inside and outside the exponent part as Eq. (23).

And the step size parameter αm has the form provided in Eq. (24).

AdaC algorithms only support the binary classification.

AdaCost

AdaCost as another algorithm level cost-sensitive AdaBoost approach is proposed by 
Fan et al. in 1999 [57]. The main idea is to emphasize on the minority class classification 
accuracy and adding larger cost values to the minority class samples. In this approach, 
the weight of misclassified minority class samples increases higher than misclassified 
majority class samples. Moreover, the weight of a truly classified sample decreases less 
if it belongs to the minority class. As a result, the weight update equation is changed by 
adding a cost adjustment function β , which is a function of cost item C as Eq. (25).

where, β+ refers to the case sign
(

fm(xi).yi
)

= +1 and β− refers to the case 
sign

(

fm(xi).yi
)

= −1 . In the main reference, the optimum value for β is recommended 
as β+ = −0.5Ci + 0.5 and β− = 0.5Ci + 0.5 . Hence, the step size parameter αm is modi-
fied to Eq. (26).

AdaCost algorithm only supports binary classification.

Experimental study
Dataset characteristics

The aforementioned boosting algorithms are evaluated on 15 conventional and 4 big 
multi-class imbalanced datasets from UCI1 and OpenML2 repositories. The characteris-
tics of these datasets are given in Table 2.
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1 https ://archi ve.ics.uci.edu/ml/index .php
2 https ://www.openm l.org/searc h?type=data

https://archive.ics.uci.edu/ml/index.php
https://www.openml.org/search?type=data
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Performance metrics

Using evaluation metrics is an essential factor to assess the classification performance of 
a learning algorithm. Accuracy and error rate are the most widely used metrics for this 
purpose. However, they are biased toward the majority class in imbalanced datasets as 
described in “Handling imbalanced data problem” section. Therefore, the values of these 
popular metrics do not show the ability of the classifier to predict examples from minor-
ity classes.

Alternative criteria have been used for this scenario that can be roughly categorized 
into single-class and overall performance measures. The first group category of criteria 
shows how well a classifier performs in one class and the second one allows to have a 
clear and intuitive interpretation on the performance of the classifier on all classes.

Although in the literature, many evaluation metrics have been proposed to meas-
ure the classifier performance when dealing with imbalanced data problem, Precision, 
Recall, F-measure, AUC, G-mean, Kappa, and MCC are the most prevalently used met-
rics in the two above mentioned categories. All of these metrics are calculated from the 
confusion matrix. A confusion matrix is a two-dimensional matrix that presents a clear 
explanation of how a classifier works in predicting new samples [71]. One dimension is 
indexed by the actual class of an object and the other by the class that the classifier pre-
dicts. Figure 1 shows the confusion matrix for a multi-class classification task. The entry 
Nij, with i  = j , shows the number of samples that classified as class Cj but actually belong 
to class Ci. The best classifier will have zero values in non-diagonal entries.

Like the previous studies, the minority class is considered as positive, while the major-
ity class is considered as negative.

Table 2 Characteristics of the test datasets

Dataset # of Attributes Instances # of classes IR

Conventional datasets

 Wine 13 178 3 1.47

 Hayes-Roth 4 132 3 1.7

 Contraceptive 9 1473 3 1.89

 Pen-Based 16 1100 10 2.18

 Vertebral column 6 310 3 2.5

 New thyroid 5 215 3 5

 Dermatology 34 366 3 5.6

 Balance Scale 4 625 3 5.8

 Glass 9 214 7 8.44

 Heart (Cleveland) 13 303 5 12.62

 Car Evaluation 6 1728 4 18.61

 Thyroid 21 7200 3 40.15

 Yeast 8 1484 10 92.5

 Page blocks 10 5473 5 175.46

 Shuttle 9 58,000 7 4558.6

Big datasets

 FARS 29 100,968 8 4679

 KDD Cup’99 41 494,021 5 1870

 Covertype 54 581,012 7 103

 Poker 10 1,000,000 10 64,212
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Single‑class measures

Single-class metrics are calculated for each class and are less sensitive to class imbalance, 
therefore, naturally are better suited to evaluate classifiers in skew data domains. In this 
section, the used single-class metrics are briefly reviewed.

Precision metric measures the correctly classified positive class samples and defines as

where TP and FP indicate the counts of true-positive and false-positive, respectively.
Recall measures the proportion of correctly identified of all real positive samples and 

computed by Eq. (28):

where FN indicates the counts of false-negative.
In general, there is a trade-off between precision and recall. To have an intuitive view 

of the performance of the classifier based on these metrics, F-measure [72] can be used. 
It is a harmonic mean of precision and recall in which the user can adjust the relative 
importance to recall as to precision by the β parameter. Usually, the value of this param-
eter is taken as 1. The following equation show how F-measure is computed:

F-measure can be extended by micro-averaging or macro-averaging methods for 
multi-class cases. In micro-averaging, F-measure is computed globally over all classes 
and its elements (Precision and Recall) are obtained by summing over all classes, while 
in macro-average, it is obtained for each class locally, and then by averaging those, a sin-
gle value can be computed as a F-measure value for whole classes.

Due to the independence of the imbalanced distribution, Geometric-mean (G-mean) is 
another suitable single metric for imbalanced data problems [19] that is defined as Eq. (30)

Like F-measure, this metric can be extended by micro-averaging or macro-averaging 
methods for the multi-class problems, however, in this study the method that was proposed 
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(28)Recall =
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(1+ β)PrecisionRecall
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√
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Fig. 1 Confusion matrix for multi-class classification
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by Sun et al. [19] is used to extend it to multi-class domains by the geometric mean of recall 
values of all classes as defined in Eq. (31).

Although both G-mean and F-measure measures can be used to evaluate the perfor-
mance of a learning method in class imbalanced classification problems, F-measure may 
get infinity when classifier all samples were classified as negative class. Therefore, in this 
study we will use G-mean as a single class performance evaluation criterion.

Overall metrics

The area under the curve (AUC) of the receiver operating characteristic (ROC) is extremely 
used as an overall evaluation technique, especially for ranking classifiers in the presence of 
class imbalanced for binary classifiers. The ROC curve shows all possible conflicts between 
true-positive rate (TPR) and false-positive rate (FPR) across various decision thresholds 
and AUC evaluation metric converts this curve to a value in the range of [0.5, 1], where the 
value 1 shows a perfect classifier and the lower value 0.5 means the classifier does not work 
better than random guess [73].

Although extending the AUC to multi-class problems is an open research topic, the 
MAUC metric [20] which averages the AUC value of all pairs of classes, are mostly used in 
the researches multi-class imbalanced data learning and defined as

where C denotes the number of classes, A(i, j) is the AUC between class i and class j.
Matthews Correlation Coefficient (MCC) is the third overall evaluation metric used in 

this study to evaluate the performance of boosting algorithms, which is especially utilized 
in biomedical imbalanced data analysis [74]. MCC contributes all classes’ values in the con-
fusion matrix for computing a measure of the correlation between actual and predicted 
samples. Its value is located between − 1 and + 1. The value + 1 means perfect prediction 
and − 1 inverse prediction [75]. This metric can be directly calculated from the confusion 
matrix using Eq. (33)

Furthermore, MCC is a binary classification evaluation metric and how it performs in 
the multi-class imbalanced dataset has not yet been well studied. However, it has been 
shown that the behavior of MCC remains consistent in multi-class settings [76]. Based 
on these facts and inspired by the MAUC metric, we extend the MCC metric to multi-
class case, called MMCC, by employing the OVO decomposition strategy. As MAUC, 
MMCC average the MCC value of all pairs of classes and it is defined as Eq. (34).
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Parameter settings

The Performance of the algorithms is investigated with default parameter settings, 
except the nearest neighbor parameter for SMOTEboost is set to 3, and the population 
of the minority class C is increased to be approximately equal to the size of the major-
ity class. In addition, since in gradient boosting methods the value between 8 and 32 is 
usually used for the number of leaves in the tree, the C4.5 decision tree is employed with 
depth 5 as a base learner in all boosting algorithms. Each boosting consists of 100 trees 
with the learning rate of 0.3.

For binary boosting algorithms, One-Versus-One (OVO) decomposition method is 
obtained to split multi-class datasets to multiple binary problems and then the voting 
aggregation strategy is used in order to detect the class of new data samples from the 
aggregated classifiers [77].

In the experiments, the means and standard deviations of three performance criteria, 
which were described in the previous section, are calculated for the algorithms, and the 
procedures are repeated 10 times by employing fivefold cross-validation to reduce any 
bias because of the randomness. For creating the folds, the stratified sampling method is 
used instead of simple random sampling to guarantee that each fold contains a number 
of samples from each class especially minority class.

Statistical comparison of boosting algorithms

For comparing more rigorously the difference between classification algorithms, a statis-
tical test suite is carried out on the experimental results to validate their results further 
and determine whether there exists a significant difference among them.

The statistical test procedure can be categorized into parametric (e.g., paired t-test and 
ANOVA) and nonparametric methods (e.g., the Wilcoxon and Friedman tests) from a 
methodological perspective. Although parametric tests are more robust than nonpara-
metric, they are based on strict assumptions that are often violated in machine learning 
studies and make their results to be unreliable [78]. Therefore, nonparametric tests are 
preferred for comparing the results of classifiers.

According to the recommendation made by Demšar [79], in this study, the Friedman test 
is used to compare multiple classifiers over multiple datasets. The null-hypothesis (there is 
no significant difference between the performance of all algorithms) is rejected at a speci-
fied level of significance when Friedman test statistic ( χ2

F ), computed as Eqs. (35) and (36), is 
greater than the critical value from the chi-square table. The rejection of the null-hypothesis 
implies the existence of at least two classification algorithms that are significantly different.
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where D and M indicate the number of datasets and classification algorithms, ARj is the 
rank of j-th classifier, and  rji is the rank of jth classifier on ith dataset.

After the rejection of null-hypothesis, a post-hoc test should be conducted to determine 
whether the control a(usually, the best one) presents significantly statistical differences than 
the rest. In this study, the Holm post-hoc test [79] is used for this purpose. In this test, the 
test statistic is computed as Eq. (37), and the Z value is used to find the p-value from the 
table of normal distribution based on a level of significance of α = 0.05. The null-hypothesis 
is rejected if the p-value is lower than the Holm’s critical value.

where Ri and Rj are the rank of ith and jth classifier, respectively.
However, the Holm test does not detect the difference between a pair of algorithms. For 

pairwise comparison and determining the existence of significant differences between a 
pair of classifiers, the Wilcoxon rank-sum test [80] is adopted.

Comparison of evaluation metrics

One of the key challenges in imbalanced data classification is selecting an appropriate eval-
uation metric for a better comparison of classification algorithms. To this aim, the statistical 
test proposed in [21] is carried out for comparing the performance of evaluation metrics. 
Firstly, the consistency of the evaluation metrics with each other are examined. Secondly, 
the degree of discriminancy of the metrics is investigated. Furthermore, the degree of Indif-
ferency of metrics is tested as proposed in [22].

Degree of consistency

For a better comparison of two evaluation metrics on two algorithms, at least their man-
ner should be consistent [74]. Two evaluation metrics are consistent with each other in the 
evaluation of two algorithms A and B, when metric f states that aA is better than aB, metric 
g doesn’t indicate that aB is better than aA. The degree of consistency (DoC) of two evalua-
tion metrics f and g is calculated as follows.

where R and C are defined as Eqs. (39) and (40) in the domain �.

The value C shows the degree of consistency of two metrics f and g on algorithms A 
and B that its value is located in the interval [0, 1].
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(39)R = {(a, b)|a, b ∈ � , f (a) > f (b), g(a) > g(b)}

(40)S = {(a, b)|a, b ∈ � , f (a) > f (b), g(a) < g(b)}
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Degree of discriminancy

Besides the consistency of two evaluation metrics, there exist some cases that metric f 
can distinguish between two algorithms and states that for example, aA is better than aB, 
but the metric g cannot distinguish between these two algorithms. In this case, metric 
f is more discriminating than metric g. The degree of discriminancy (DoD) of metric f 
over metric g is calculated as follows.

where P and Q are defined as Eqs. (42) and (43) in the domain �.

The value D shows the degree of discriminancy of metric f over metric g on algorithms 
A and B. In order to claim that one metric is better than another one, the condition 
C > 0.5 and D > 1 should be satisfied. In this case, we can conclude that two metrics f 
and g are statistically consistent with each other and metric f can D times better tell the 
difference between two algorithms.

Degree of indifferency

There exist some cases in comparison that none of the two metrics can report the differ-
ence between two algorithms A and B. The degree of Indifferency (DoI) of two evalua-
tion metrics f and g is calculated as follows.

where V and U are defined as Eqs. (45) and (46) in the domain �.

The value I shows the degree of Indifferency for metrics f and g on algorithms A and B.

Experimental results and analysis

In this section, which consists of two parts, we empirically compare the boosting algo-
rithms that have been reviewed in “General Boosting approaches” section. In the first 
part, the performance of the algorithms and their computational time are compared on 
15 multi-class imbalanced conventional datasets through various statistical tests. Then, 
the best evaluation metric is determined based on the obtained results. In the second 
part, the performance of the algorithms is investigated on 4 multi-class imbalanced big 
datasets.

The experiments were conducted using a computer system with Intel Core i3 2.13 GHz 
CPU, 8 GB RAM running Microsoft Windows 10 64-bit operating system. The overall 

(41)D =
|P|
|Q|

(42)P = {(a, b)|a, b ∈ � , f (a) > f (b), g(a) = g(b)}

(43)Q = {(a, b)|a, b ∈ � , f (a) = f (b), g(a) > g(b)}

(44)I =
|V |
|U |

(45)V = {(a, b)|a, b ∈ � , a �= b, f (a) = f (b), g(a) = g(b)}

(46)U = {(a, b)|a, b ∈ � , a �= b}
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results were obtained by averaging the values of evaluation criteria over 10 runs of the 
algorithms ( 10× 5 cross-validation). For the sake of clarity, it should be noted that the 
library of all algorithms were installed using the pip Python installer, e.g., sudo pip install 
xgboost, except MEBoost, SMOTEBoost, and AdaCosts, which their implemented 
python source codes are freely available at GitHub3 repository.

Experiments on conventional datasets

The performance of the boosting algorithms are studied on 15 multi-class imbalanced 
conventional datasets as follows.

MAUC as a measure

Table 3 shows the average and standard deviation of the results for MAUC obtained for 
the boosting algorithms. The best results are in bold for each dataset. By looking at the 
results in this table, although it can be seen that CatBoost presents the highest aver-
age MAUC, but for the assurance we need to conduct a non-parametric statistical test 
on the results. By conducting the Friedman Test, the value of 0.043 was computed for 
p-value, which rejects the null hypothesis. Moreover, the average ranks from this test are 
presented in Fig. 2. It is observable that CatBoost and AdaC1 achieved the lowest and 
highest rank, respectively. Therefore, we select this aas a control method and continue 
with the Holm post-hoc test. Based on the presented results for p-values in Table 4, it 
can be seen that CatBoost statistically outperforms AdaBoost, SAMME, MEBoost, and 
RUSBoost.

For comprehensive analysis and understanding of the difference between pairs of algo-
rithms the Wilcoxon signed-rank test is used. The results of this test are presented in 
Tables 5 and 6. Table 5 shows the computed ranks by the test. Each number below the 
main diagonal is the sum of the ranks for the datasets that the row aoutperforms the cor-
responding column a(R+ ), while each number above the main diagonal is the sum of the 
ranks for the datasets on which the column ais worse than the corresponding row a(R− ). 
Two classifiers are significantly different and reject the null hypothesis if the test statis-
tic, min(R+, R−) , is equal or less than the critical value which is 25 for the confidence 
level of α = 0.05 and N = 15, according to the table of Wilcoxon test.

The summary of the comparison results is presented in Table 5, in which the mark 
● indicates that the row asignificantly outperforms the corresponding column algo-
rithm. As can be observed from this table, CatBoost outperforms most of the algo-
rithms. SMOTEBoost outperforms four algorithms and we saw that it has the second 
rank from Fig. 2. We can see that binary classification boosting algorithms could not 
outperform any algorithms except AdaCost that outperforms just AdaC1 algorithm. 
Therefore, we can conclude that binary boosting algorithms do not show better per-
formance in multi-class classification problems based on the MAUC criteria. Another 
interesting analytic finding is that the under-sampling method for encountering class 
imbalanced problems is not a satisfactory solution based on the obtained results for 
the RUSBoost algorithm, while SMOTEBoost which uses the oversampling method 

3 MEBoost: https ://githu b.com/farsh idray hanui u/MEBoo st
SMOTEBoost, AdaC1, AdaC2, AdaC3, AdaCost: https ://githu b.com/gkapa tai/MaatP y

https://github.com/farshidrayhanuiu/MEBoost
https://github.com/gkapatai/MaatPy


Page 22 of 47Tanha et al. J Big Data            (2020) 7:70 

Ta
bl

e 
3 

Th
e 

ob
ta

in
ed

 re
su

lt
s 

fo
r M

A
U

C 
fr

om
 b

oo
st

in
g 

al
go

ri
th

m
s 

us
in

g 
de

ci
si

on
 tr

ee
 a

s 
a 

ba
se

 le
ar

ne
r

D
at

as
et

A
lg

or
ith

m

A
da

Bo
os

t.M
H

SA
M

M
E

Ca
tB

oo
st

Lo
gi

tB
oo

st
G

ra
di

en
tB

oo
st

XG
Bo

os
t

M
EB

oo
st

SM
O

TE
Bo

os
t

RU
SB

oo
st

Li
gh

tG
BM

A
da

C1
A

da
C2

A
da

C3
A

da
Co

st

W
in

e
0.

90
34

0.
91

39
0.

97
83

0.
95

74
0.

99
17

0.
96

59
0.

98
38

0.
94

99
0.

96
21

0.
96

93
0.

92
94

0.
91

64
0.

91
76

0.
93

2

±
 0

.0
18

3
±

 0
.0

12
8

±
 0

.0
05

4
±

 0
.0

09
8

±
 0

.0
02

5
±

 0
.0

12
9

±
 0

.0
07

7
±

 0
.0

16
7

±
 0

.0
09

1
±

 0
.0

15
2

±
 0

.0
16

8
±

 0
.0

16
2

±
 0

.0
13

4
±

 0
.0

13
9

H
ay

es
-R

ot
h

0.
80

64
0.

79
51

0.
75

88
0.

80
25

0.
80

32
0.

79
79

0.
79

41
0.

79
56

0.
77

34
0.

53
39

0.
80

13
0.

81
07

0.
81

62
0.

80
95

±
 0

.0
15

5
±

 0
.0

10
4

±
 0

.0
15

4
±

 0
.0

08
7

±
 0

.0
13

8
±

 0
.0

15
1

±
 0

.1
90

1
±

 0
.0

15
3

±
 0

.0
29

2
±

 0
.0

34
3

±
 0

.0
10

7
±

 0
.0

11
5

±
 0

.0
19

7
±

 0
.0

17
3

Co
nt

ra
ce

pt
iv

e
0.

52
81

0.
49

44
0.

53
05

0.
49

04
0.

49
39

0.
53

66
0.

50
32

0.
48

01
0.

44
58

0.
50

05
0.

54
55

0.
34

79
0.

44
22

0.
55

24

±
 0

.0
04

8
±

 0
.0

07
1

±
 0

.0
04

6
±

 0
.0

06
1

±
 0

.0
10

0
±

 0
.0

07
2

±
 0

.0
05

1
±

 0
.0

12
1

±
 0

.0
07

4
±

 0
.0

06
0

±
 0

.0
05

6
±

 0
.0

04
4

±
 0

.0
11

4
±

 0
.0

09
3

Pe
n-

ba
se

d
0.

90
12

0.
95

81
0.

96
2

0.
95

54
0.

95
13

0.
93

27
0.

97
26

0.
95

03
0.

95
92

0.
95

26
0.

90
35

0.
90

38
0.

90
29

0.
90

31

±
 0

.0
05

5
±

 0
.0

05
5

±
 0

.0
04

5
±

 0
.0

05
3

±
 0

.0
03

0
±

 0
.0

05
7

±
 0

.0
03

7
±

 0
.0

02
7

±
 0

.0
04

7
±

 0
.0

02
0

±
 0

.0
09

6
±

 0
.0

05
6

±
 0

.0
06

1
±

 0
.0

07
9

Ve
rt

eb
ra

l c
ol

um
n

0.
77

58
0.

77
58

0.
79

99
0.

78
14

0.
77

94
0.

78
24

0.
78

14
0.

80
69

0.
78

51
0.

79
57

0.
79

3
0.

79
73

0.
79

11
0.

78
81

±
 0

.0
21

8
±

 0
.0

21
8

±
 0

.0
23

0
±

 0
.0

16
5

±
 0

.0
16

2
±

 0
.0

15
5

±
 0

.0
18

4
±

 0
.0

21
8

±
 0

.0
16

9
±

 0
.0

27
8

±
 0

.0
08

9
±

 0
.0

13
5

±
 0

.0
11

9
±

 0
.0

14
5

N
ew

 th
yr

oi
d

0.
88

79
0.

87
13

0.
88

99
0.

90
98

0.
90

63
0.

88
94

0.
62

25
0.

90
71

0.
88

4
0.

90
97

0.
89

87
0.

87
28

0.
88

55
0.

88
33

±
 0

.0
21

7
±

 0
.0

26
9

±
 0

.0
12

6
±

 0
.0

20
6

±
 0

.0
11

7
±

 0
.0

27
3

±
 0

.0
21

7
±

 0
.0

35
4

±
 0

.0
21

0
±

 0
.0

10
9

±
 0

.0
29

6
±

 0
.0

41
5

±
 0

.0
43

1
±

 0
.0

35
1

D
er

m
at

ol
og

y
0.

95
51

0.
96

57
0.

97
83

0.
96

81
0.

97
15

0.
97

00
0.

91
87

0.
96

56
0.

94
38

0.
90

24
0.

95
58

0.
95

92
0.

95
17

0.
95

26

±
 0

.0
10

3
±

 0
.0

05
0

±
 0

.0
03

3
±

 0
.0

08
7

±
 0

.0
05

7
±

 0
.0

12
3

±
 0

.0
16

91
±

 0
.0

06
2

±
 0

.0
11

3
±

 0
.0

12
1

±
 0

.0
10

7
±

 0
.0

08
7

±
 0

.0
10

1
±

 0
.0

10
8

Ba
la

nc
e 

sc
al

e
0.

61
31

0.
62

8
0.

67
19

0.
60

79
0.

61
03

0.
62

04
0.

62
68

0.
60

71
0.

66
18

0.
71

16
0.

36
03

0.
60

86
0.

56
6

0.
68

93

±
 0

.0
11

8
±

 0
.0

18
0

±
 0

.0
24

6
±

 0
.0

09
9

±
 0

.0
15

0
±

 0
.0

09
1

±
 0

.0
08

5
±

 0
.0

10
0

±
 0

.0
20

9
±

 0
.0

17
9

±
 0

.0
08

6
±

 0
.0

06
4

±
 0

.0
19

4
±

 0
.0

14

G
la

ss
0.

63
81

0.
66

44
0.

68
57

0.
71

87
0.

64
55

0.
70

87
0.

62
35

0.
66

62
0.

53
34

0.
42

05
0.

64
07

0.
64

79
0.

59
28

0.
64

12

±
 0

.0
24

8
±

 0
.0

32
4

±
 0

.0
24

4
±

 0
.0

22
9

±
 0

.0
48

5
±

 0
.0

24
6

±
 0

.0
38

8
±

 0
.0

19
2

±
 0

.0
43

7
±

 0
.0

04
2

±
 0

.0
32

4
±

 0
.0

18
3

±
 0

.0
35

6
±

 0
.0

16
9

H
ea

rt
0.

28
39

0.
28

87
0.

30
54

0.
26

73
0.

28
38

0.
27

83
0.

27
2

0.
32

16
0.

29
49

0.
31

82
0.

28
53

0.
27

81
0.

29
23

0.
29

8

±
 0

.0
13

6
±

 0
.0

11
2

±
 0

.0
13

1
±

 0
.0

14
7

±
 0

.0
17

1
±

 0
.0

18
1

±
 0

.0
13

6
±

 0
.0

20
2

±
 0

.0
14

4
±

 0
.0

38
9

±
 0

.0
15

2
±

 0
.0

25
7

±
 0

.0
14

5
±

 0
.0

16
5

Ca
r e

va
lu

at
io

n
0.

98
48

0.
95

28
0.

98
5

0.
99

8
0.

98
51

0.
84

71
0.

99
09

0.
95

89
0.

84
39

0.
98

43
0.

77
11

0.
89

67
0.

94
78

0.
96

98

±
 0

.0
10

2
±

 0
.0

11
5

±
 0

.0
03

4
±

 0
.0

02
5

±
 0

.0
07

5
±

 0
.0

09
8

±
 0

.0
04

6
±

 0
.0

08
6

±
 0

.0
19

6
±

 0
.0

03
6

±
 0

.0
27

8
±

 0
.0

04
6

±
 0

.0
04

7
±

 0
.0

04
9

Th
yr

oi
d

0.
98

17
0.

97
54

0.
98

89
0.

97
69

0.
97

65
0.

98
7

0.
97

18
0.

98
67

0.
96

12
0.

88
99

0.
66

67
0.

99
05

0.
99

07
0.

66
67

±
 0

.0
03

3
±

 0
.0

02
3

±
 0

.0
02

6
±

 0
.0

03
8

±
 0

.0
02

9
±

 0
.0

02
2

±
 0

.0
07

0
±

 0
.0

02
1

±
 0

.0
16

8
±

 0
.0

32
5

±
 0

.0
00

0
±

 0
.0

02
2

±
 0

.0
01

0
±

 0
.0

00
0



Page 23 of 47Tanha et al. J Big Data            (2020) 7:70  

Ta
bl

e 
3 

(c
on

ti
nu

ed
)

D
at

as
et

A
lg

or
ith

m

A
da

Bo
os

t.M
H

SA
M

M
E

Ca
tB

oo
st

Lo
gi

tB
oo

st
G

ra
di

en
tB

oo
st

XG
Bo

os
t

M
EB

oo
st

SM
O

TE
Bo

os
t

RU
SB

oo
st

Li
gh

tG
BM

A
da

C1
A

da
C2

A
da

C3
A

da
Co

st

Ye
as

t
0.

50
88

0.
40

92
0.

47
57

0.
49

58
0.

46
19

0.
53

9
0.

43
97

0.
48

89
0.

29
46

0.
42

09
0.

41
07

0.
48

06
0.

50
55

0.
48

46

±
 0

.0
27

0
±

 0
.0

09
8

±
 0

.0
13

9
±

 0
.0

17
4

±
 0

.0
20

0
±

 0
.0

15
9

±
 0

.0
09

9
±

 0
.0

11
6

±
 0

.0
13

3
±

 0
.0

06
3

±
 0

.0
16

1
±

 0
.0

15
3

±
 0

.0
23

7
±

 0
.0

23
7

Pa
ge

 b
lo

ck
s

0.
81

83
0.

78
58

0.
86

45
0.

81
31

0.
30

38
0.

82
38

0.
81

17
0.

82
5

0.
83

22
0.

55
66

0.
74

57
0.

73
91

0.
88

95
0.

74
55

±
 0

.0
14

9
±

 0
.0

19
8

±
 0

.0
09

5
±

 0
.0

17
3

±
 0

.0
46

2
±

 0
.0

21
3

±
 0

.0
18

8
±

 0
.0

19
4

±
 0

.0
18

5
±

 0
.0

27
4

±
 0

.0
29

3
±

 0
.0

09
0

±
 0

.0
05

8
±

 0
.0

07
4

Sh
ut

tle
0.

94
79

0.
97

34
0.

96
07

0.
96

08
0.

26
82

0.
97

14
0.

81
21

0.
98

63
0.

97
27

0.
39

47
0.

94
57

0.
95

02
0.

94
67

0.
95

08

±
 0

.0
17

7
±

 0
.0

11
9

±
 0

.0
12

1
±

 0
.0

21
3

±
 0

.0
40

4
±

 0
.0

15
8

±
 0

.0
14

9
±

 0
.0

12
7

±
 0

.0
16

5
±

 0
.0

31
7

±
 0

.0
14

6
±

 0
.0

16
8

±
 0

.0
11

6
±

 0
.0

17
0

A
ve

ra
ge

0.
76

89
6

0.
76

34
0.

78
9

0.
78

02
0.

69
54

0.
77

67
0.

74
16

0.
77

97
0.

74
32

0.
68

4
0.

71
02

0.
74

66
0.

76
25

0.
75

11

Th
e 

be
st

 p
er

fo
rm

an
ce

 is
 s

ho
w

n 
in

 it
al

ic
 fo

r e
ac

h 
da

ta
se

t



Page 24 of 47Tanha et al. J Big Data            (2020) 7:70 

to handle imbalanced data, got the second Friedman rank and could outperform four 
algorithms.

By comparing a family of binary classification boosting algorithms that OVO strat-
egy was taken to them to handle multi-class problems, in addition to get higher Fried-
man rank, none of them could outperform other algorithms, except AdaCost that 
outperforms just AdaC1 in terms of MAUC criterion.

From the cost-sensitive boosting approaches, in overall AdaCost shows better per-
formance; however, AdaC3 presents better average MAUC value than the others. 
Moreover, AdaC3 works better than all algorithms for 3 datasets.

MMCC as a measure

Table  7 shows the average results of cross-validation for MMCC measurement. The 
form of the reported results is similar to Table 3. It is clear that, except AdaBoost.MH, 
SAMME, RUSBoost, and AdaC1, the rest of the algorithms present the best MMCC 

Fig. 2 Average ranks obtained from Friedman test based on the MAUC 

Table 4 Holm post-hoc test results based on the MAUCs

Control method (CatBoost)

Algorithm Z p‑value Holm Hypothesis (α = 0.05)

AdaBoost.MH 3.3387 0.0008 0.0038 Rejected

SAMME 2.7277 0.0045 0.0055 Rejected

LogitBoost 1.3311 0.1831 0.0008 Not rejected

GradientBoost 2.2258 0.026 0.01 Not rejected

XGBoost 1.1783 0.2386 0.025 Not rejected

MEBoost 2.9022 0.0037 0.0041 Rejected

SMOTEBoost 1.0038 0.3154 0.05 Not rejected

RUSBoost 2.8804 0.0039 0.0045 Rejected

LightGBM 2.6186 0.0088 0.0062 Not rejected

AdaC1 3.3387 0.0008 0.0038 Rejected

AdaC2 2.8368 0.0045 0.005 Rejected

AdaC3 2.4876 0.0128 0.0083 Not rejected

AdaCost 2.1167 0.0342 0.0125 Not rejected
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for at least one dataset. However, the p-value computed by the Friedman test is 0.0439, 
which rejects the null hypothesis. Furthermore, according to Fig. 3 CatBoost algorithm 
achieves the lowest average rank. By selecting the CatBoost algorithm as a control 
method and conducting the Holm post-hoc test, we can see that it fails to find a signifi-
cant difference between CatBoost and others, as stated in Table 8. On the contrary, the 
Wilcoxon rank-sum test shows that CatBoost outperforms ten algorithms as presented 
in Tables 9 and 10.

From the MMCC viewpoint, according to Table 10, both XGBoost and SMOTEBoost 
can be considered as the second best algorithm due to outperforming four other algo-
rithms, although, they are significantly better than the cost-sensitive boosting methods 
and the old AdaBoost.MH algorithm.

Another interesting point is that we can see the superiority of most of the gradient-
based boosting algorithms (CatBoost, GradientBoost, XGBoost) and SMOTEBoost 
algorithm over other methods, therefore, integrating the used sampling method in 
SMOTEBoost (Synthetic Minority Oversampling Technique) with the gradient-based 
boosting algorithm will improve their performance in front of imbalanced datasets.

G‑mean as a measure

The obtained results of G-mean for algorithms are reported in Table  11. It is observ-
able that CatBoost presents the best results in more datasets than the other algorithms. 
Furthermore, as shown in Fig. 4, CatBoost achieves the lower Friedman average rank. 
But, unlike the previous measurement criteria, RUSBoost achieves the worst rank. By 
conducting Holm post-hoc test, we can see the test cannot find a significant difference 
between the control method (CatBoost) and the other methods, as shown in Table 12. 
However, the Wilcoxon test shows the difference between each pair of algorithms.

As presented in Tables 13 and 14, we can see that CatBoost, LogitBoost, SMOTEBoost 
and XGBoost outperforms 5, 3, 3, and 1 algorithms, respectively, in terms of G-mean 
criterion. In addition, like the previous assessments by using MAUC and MMCC meas-
urements, also in G-mean, no binary boosting algorithm outperforms other methods.

Fig. 3 Average ranks obtained from Friedman test based on the MMCC
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Computational time study

Computation time analysis was performed to determine which boosting algorithm 
shows lower computation time, and the results are presented in Table 15. It should be 
noted that the times are recorded just for one fold of cross-validation in the training 
phase.

From Table 15, it is obvious that the LightGBM algorithm presents the lowest average 
computational time. This is an interesting observation, because LightGBM is a binary 
boosting algorithm and by using the OVO decomposition mechanism for handling 
multi-class problems, it should be generated boosting process for K(K−1)/2 pairs of 
classes (K is the number of classes). But, by comparing the computational times of algo-
rithms for each dataset, one can see that XGBoost is better than LightGBM in most of 
the datasets. However, considering the classification performance of the algorithms, we 
can see CatBoost shows fair computational times.

SMOTEBoost shows the highest computational time due to generating synthetic sam-
ples for minority classes. Furthermore, although it presents the best performance for the 
largest dataset (Shuttle), it needs a lot of training time.

Metric evaluation study

In this section, we aim to investigate which metric would turn out to be the most suit-
able measure for evaluating the predictable performance of the algorithm on multi-class 
imbalanced problems by comparing MAUC, MMCC and G-mean metrics by using the 
comparison framework on the 15 imbalanced conventional datasets.

By obtaining the results of the boosting algorithms on these datasets with 5-Fold 
cross-validation, 75 test sets (15 × 5) are obtained for each pairwise comparison 
between evaluation metrics (MAUC vs. MMCC, MAUC vs. G-mean and MMCC 
vs. G-mean). In this test, all the possible pairs of 14 boosting algorithms (91 pairs) 
are considered. First of all, regardless of which metric is the best, the degree of 

Table 8 Holm post-hoc test results based on the MMCCs

Control method (CatBoost)

Algorithm Z p‑value Holm Hypothesis (α = 0.05)

AdaBoost.MH 2.444 0.0145 0.0038 Not rejected

SAMME 1.833 0.0667 0.0083 Not rejected

LogitBoost 0.48 0.6311 0.05 Not rejected

GradientBoost 1.1783 0.2386 0.0125 Not rejected

XGBoost 0.9383 0.348 0.025 Not rejected

MEBoost 1.9421 0.0521 0.0071 Not rejected

SMOTEBoost 1.1783 0.2386 0.0166 Not rejected

RUSBoost 1.9639 0.0495 0.0062 Not rejected

LightGBM 2.444 0.0145 0.0041 Not rejected

AdaC1 2.1385 0.0324 0.0055 Not rejected

AdaC2 1.7893 0.0735 0.01 Not rejected

AdaC3 2.2694 0.0232 0.005 Not rejected

AdaCost 2.3131 0.0207 0.0045 Not rejected
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consistency of evaluation metrics are examined. The results of the DoC comparison 
between metrics are reported in Table 2. The C value shown in the table for each pair 
of metrics is resulted by averaging the C values of 91 pairs of algorithms. As discussed 
in “Comparison of evaluation metrics” section, the value of C larger than 0.5 indicates 
the consistency of the two metrics. According to Table 16, The C value obtained for 
all the metric pairs is larger than 0.9, which satisfies the condition of being larger than 
0.5. Thus, it can be claimed that MAUC is consistent with MMCC with a consistency 
degree of 0.9853. Also, MAUC is consistent with G-mean with a consistency degree 
of 0.9334 and finally MMCC and G-mean are constant with each other with the con-
sistency degree of 0.9403. But among these three pairwise comparisons, MAUC and 
MMCC are more consistent with each other.

In order to select the best metric, the degree of discriminancy (DoD) of each metric 
over another metric is examined. The results of the DoD comparison between metrics 
are reported in Table 17. Exceptionally, in Table 17, instead of average D values, the ratio 

Fig. 4 Average ranks obtained from Friedman test based on the G-mean

Table 12 Holm post-hoc test results based on the G-means

Control method (CatBoost)

Algorithm Z p‑value Holm Hypothesis (α = 0.05)

AdaBoost.MH 2.1385 0.0324 0.0062 Not rejected

SAMME 1.9857 0.047 0.0071 Not rejected

LogitBoost 0.6328 0.5268 0.05 Not rejected

GradientBoost 1.7675 0.0771 0.01 Not rejected

XGBoost 1.1565 0.2474 0.0166 Not rejected

MEBoost 2.1385 0.0324 0.0055 Not rejected

SMOTEBoost 0.7637 0.445 0.025 Not rejected

RUSBoost 2.5531 0.0106 0.0038 Not rejected

LightGBM 2.2912 0.0219 0.005 Not rejected

AdaC1 2.5313 0.0113 0.0041 Not rejected

AdaC2 1.7021 0.0887 0.0125 Not rejected

AdaC3 2.3349 0.0195 0.0045 Not rejected

AdaCost 1.833 0.0667 0.0083 Not rejected
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of the cases with D > 1 are reported. The reason for taking this approach is the exist-
ence of NaN and Infinite values, hence the averaging would not indicate the real results. 
According to the table, in the comparison between MAUC and G-mean, in all the cases 
(100% of cases), the value of D for MAUC over G-mean is larger than 1. So, MAUC 
always acts better than G-mean and in none of the 91 pairs of algorithms, G-mean wins 
(0%). Also, in the comparison between MMCC and G-mean, in all the cases (100% of 
the cases), the value of D for MMCC over G-mean is larger than 1 and for G-mean over 
MMCC, D > 1 is not observed in any of the 91 pairs. Until now, the results prove that 
both MAUC and MMCC are more discriminant than G-mean. The final step in selecting 
the best metric is comparing the D values between MAUC and MMC metrics. Accord-
ing to Table 3, in only 12% of the cases (11 out of 91), the DoD of MAUC over MMCC is 
larger than 1. But in 70% of the cases (64 out of 91), the DoD of MMCC over MAUC is 
larger than 1. Thus, it can be claimed that MMCC is more discriminant than MAUC and 
can better distinguish between classification algorithms. The conclusion of the DoC test 
between evaluation metrics is that MMCC and MAUC are totally better than G-mean 
and MMCC act slightly better than MAUC.

Finally, the degree of indifferency (DoI) of evaluation metrics is tested. The results of 
DoI comparison are reported in Table  18 by averaging the results of 91 pairs of algo-
rithms. According to this table, by comparing MAUC and MMCC, in nearly 8% of the 
cases, none of the metrics can distinguish between the classification algorithms. Fur-
thermore, by comparing MAUC and G-mean, the average DoC is equal to 0.0853, so, 
in 8% of the cases, both MAUC and G-mean cannot tell the difference between clas-
sification algorithms. This result is nearly true for the comparison between MMCC and 

Table 16 Experimental results for verifying degree of consistency (C) of evaluation metrics

MAUC MMCC G‑mean

MAUC – 0.9583 0.9334

MMCC – – 0.9403

G-mean – – –

Table 17 Experimental results for  verifying degree of  discriminancy (D) of  evaluation 
metrics

MAUC (%) MMCC (%) G‑mean (%)

MAUC – 12 100

MMCC 7 – 100

G-mean 0 0 –

Table 18 Experimental results for verifying degree of indifferency (E) o evaluation metrics

MAUC MMCC G‑mean

MAUC – 0.0872 0.0853

MMCC – – 0.0829

G-mean – – –
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G-mean. Also, in this case, in 8% of the comparisons, they both cannot distinguish the 
difference between classification algorithms. In all the pairwise comparisons of DoI, the 
value of E is approximately 8%.

Experiments on big datasets

According to study [16], a dataset consisting at least 100,000 instances can be considered 
as a big dataset. Therefore, 4 big multi-class imbalanced datasets, as shown in Table 2, 
were used to investigate the performance of the boosting algorithms [17, 18]. The 
obtained results for the used three performance metrics on these datasets are presented 
in Table 19.

Based on the previous experiments that were determined MMCC is the best evalu-
ation metric, we performed Friedman test on the obtained results of this metric for 
ranking the algorithms. Figure 5 shows the outcome of this statistical test. It is obvious 
that the LogitBoost algorithm performs better than the other algorithms on big data-
sets in overall. However, in particular big datasets with high imbalanced ratio (FARS 
and Poker), the LogitBoost could not present good results. For instance, according to 
Table 19, AdaC3 performs well in FARS dataset based on the MMCC metric. Moreo-
ver, all of the boosting methods perform worse than random prediction in Poker dataset 
and most of them present very low performance on FARS dataset. By considering the 
obtained values for G-mean metric, we can conclude that all of the algorithms could not 
learn one or some of the classes.

Result discussion

If we rank the algorithms based on all performance metrics, then CatBoost is the first 
due to outperforming more algorithms than the others. The second best algorithm is 
SMOTEBoost that outperforms 4, 4, and 3 other boosting methods in terms of MAUC, 
MMCC, and G-mean, respectively. This observation indicates that oversampling is an 
effective method in imbalanced data classification, while we can see RUSBoost, which 
uses under-sampling method, could not outperform any other algorithm.

Considering all evaluation metrics, XGBoost and LogitBoost outperform 7 and 6 
algorithms, respectively. Thus, XGBoost can be considered as the third best algorithm. 
It should be noted that it is possible to get better results from XGBoost by finding the 
optimal values of its parameters, but it is not an easy task and having many parameters 
increases the complexity of this issue.

One of the interesting observations is that no binary boosting algorithm with decom-
position mechanism is not better than the others, except AdaCost which is better than 
AdaC1 in terms of MAUC. Thus, multi-class boosting algorithms can deal with imbal-
anced data problem in a more satisfactory way due to using a proper margin loss func-
tion for multi-class problems. However, from Tables 3, 7 and 11, it can be seen that there 
are some datasets in which binary boosting methods show the best results.

In addition, according to the obtained ranks from the Freidman test, the algorithm 
with lower rank (CatBoost) was selected as a control algorithm for post-hoc test, 
but it failed to reject the null hypothesis, especially in the results for MMCC and 
G-means metrics. Therefore, there are some cases that the Holm post-hoc test fails 
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in detecting differences between algorithms and it is necessary to use pairwise sta-
tistical tests.

The average computational times of algorithms on all datasets indicate that the 
LightGBM which belongs to the binary boosting set is faster than the other algo-
rithms, although it should be run for each pair of classes. The reason for this obser-
vation is that binary methods show the lower computational time in large datasets. 
However, among the multi-class boosting methods, XGBoost has the lowest com-
putation time, which is due to designing for speed and performance. Eventually, 
SMOTEBoost has the highest computation time where in large datasets, it takes lots 
of hours. This is due to generating extra samples for minority classes.

Finally, by comparing the metrics through a comparison framework, it can be seen 
that MMCC is the most suitable metric among the used evaluation metrics in the 
classification task with multi-class imbalanced datasets. The conducted test shows 
that although all 3 metrics are consistent with each other and have the same degree 
of indifferency, MAUC is more discriminant than G-mean and MMCC is more dis-
criminant than both MAUC and G-mean. The better discriminacy of MMCC can be 
explained by its computational formula. MMCC contributes all elements of confu-
sion matrix in its formula, but G-mean is calculated by using just the recall values of 
classes in its formula and MAUC is computed by the area of the ROC curve, which 
plots the true-positive rate against false-positive rate of a classifier.

The obtained results for big datasets are different. In overall, although the Logit-
Boost algorithm performs well, but no algorithm can present better performance in 
highly imbalanced big datasets. By presenting zero or very small values for G-mean 
metric, it can be observed that these boosting methods cannot learn some classes in 
this kind of datasets. Therefore, the boosting algorithms studied in this work are not 
suitable for multi-class imbalanced big datasets with higher imbalanced ratio.

Conclusion
In this paper, the most significant boosting ensemble algorithms to deal with multi-class 
imbalanced data have been reviewed. Many real-life problems are naturally multi-class 
imbalanced and in recent years, this issue has been handled by using ensemble learning 

Fig. 5 Average ranks obtained from Friedman test based on the MMCC 
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techniques. However, there was a lack of study in the literature to investigate and com-
pare the performance of boosting algorithms as a class of ensemble learning methods on 
this type of datasets.

According to the analysis, 14 binary and multi-class boosting algorithms investigated 
on 19 multi-class conventional and big datasets with various imbalanced ratios. By 
comparing multiple algorithms on multiple datasets, it is observed that CatBoost algo-
rithm outperforms most of the other boosting methods in terms of MAUC, G-mean, 
and MMCC on 15 conventional datasets. SMOTEBoost can be considered as a second 
best algorithm that outperforms 4, 4, and 3 algorithms in terms of MAUC, MMCC and 
G-mean metrics, respectively in conventional datasets. Therefore, it can be concluded 
that oversampling is an effective approach for tackling the imbalanced data problem. 
Both XGBoost and LogitBoost algorithms can be expressed as a third algorithm that 
could perform other algorithms. One of the interesting observations was that just multi-
class algorithms could outperform others in which the training process took place with-
out using class decomposition.

The computational time was performed as a part of this study to show which algo-
rithm is faster. The results indicate that binary algorithms present low computational 
time although they should run for each pair of classes.

The used evaluation metrics were compared together based on the results of algo-
rithms in conventional datasets and it was observed that MMCC is the most suitable 
metric in the multi-class imbalanced data domain. However, G-means metric gives this 
useful information that the learner could not classify the samples of one or more of the 
classes if it gets the zero value.

Finally, the results for big datasets were different. It was observed that LogitBoost 
algorithm performs better than the other algorithms in overall. But generally, boosting 
methods cannot present good prediction performance in multi-class big datasets with 
high imbalanced ratio. Therefore, one open research issue is how to modify the studied 
boosting methods so that they can perform well on highly imbalanced big datasets.

The other potential future works of this study involve the following: (1) An investi-
gation of the effect of the preprocessing operators on the performance of the boosting 
algorithms. In this study, no preprocessing operator such as normalization and stand-
ardization was applied to the data, but it is most likely to obtain better results with 
experiences by using this preprocessing operation. (2) The study of parameter values 
and determining under which values a boosting algorithm, XGBoost for example, could 
improve the performance of multi-class imbalanced data. (3) In this study, decision tree 
was employed as a base learner under the boosting procedure, but any other learning 
model can be used. Hence, the performance of boosting approaches with other base 
learners can be investigated on multi-class imbalanced datasets. (4) Comparing the per-
formance of binary boosting algorithms in multi-class data using other decomposition 
ways such as one-versus-all and all-versus-all to decompose the multi-class problem into 
multiple binary decision problems. (5) Comparing the other evaluation metrics which 
are suitable for the multi-class imbalanced domain, like Kappa, Weighted Accuracy, and 
other measures.



Page 45 of 47Tanha et al. J Big Data            (2020) 7:70  

Abbreviations
AUC : area under the curve; MAUC : multi-class area under the curve; ROC: receiver operating characteristic; MCC: Mat-
thews correlation coefficient; MMCC: multi-class Matthews correlation coefficient; SMOTE: synthetic minority over-sam-
pling technique; OVA: one-versus-all; OVO: one-versus-one; TP: true positive; FP: false positive; TN: true negative; FN: false 
negative; TPR: true positive rate; FPR: false positive rate; DoC: degree of consistency; DoI: degree of indifferency.

Acknowledgements
Not applicable.

Authors’ contributions
YA: conceptualization, methodology, software, writing, designing the experiment. NS: software, writing, designing the 
experiment. NR: writing, designing the experiment under the supervision of JT and MA as academic supervisors. All 
authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The datasets used during the current study are available https ://archi ve.ics.uci.edu/ml/index .php.

Competing interests
The authors declare that they have no competing interests.

Received: 27 May 2020   Accepted: 14 August 2020

References
 1. Japkowicz N. Learning from imbalanced data sets: a comparison of various strategies. In: AAAI workshop on learn-

ing from imbalanced data sets, Vol. 68. 2000. p. 10–5.
 2. Batista GE, Prati RC, Monard MC. A study of the behavior of several methods for balancing machine learning training 

data. ACM SIGKDD Explorations Newsl. 2004;6(1):20–9.
 3. Shatnawi R. Improving software fault-prediction for imbalanced data. In: 2012 international conference on innova-

tions in information technology (IIT); 2012. p. 54–9.
 4. Di Martino M, Decia F, Molinelli J, Fernández A. Improving electric fraud detection using class imbalance strategies. 

In: ICPRAM; 2012. p. 135–41.
 5. Majid A, Ali S, Iqbal M, Kausar N. Prediction of human breast and colon cancers from imbalanced data using nearest 

neighbor and support vector machines. Comput Methods Programs Biomed. 2014;113(3):792–808.
 6. Liu Y, Loh HT, Sun A. Imbalanced text classification: a term weighting approach. Expert Syst Appl. 

2009;36(1):690–701.
 7. Kubat M, Holte RC, Matwin S. Machine learning for the detection of oil spills in satellite radar images. Mach Learn. 

1998;30(2–3):195–21515.
 8. Su P, Mao W, Zeng D, Li X, Wang FY. Handling class imbalance problem in cultural modeling. In: 2009 IEEE interna-

tional conference on intelligence and security informatics; 2009. p. 251–6.
 9. Abdi Y, Parsa S, Seyfari Y. A hybrid one-class rule learning approach based on swarm intelligence for software fault 

prediction. Innovations Syst Softw Eng. 2015;11(4):289–301.
 10. Ganganwar V. An overview of classification algorithms for imbalanced datasets. Int J Emerg Technol Adv Eng. 

2012;2(4):42–7.
 11. Kotsiantis S, Kanellopoulos D, Pintelas P. Handling imbalanced datasets: a review. GESTS Int Trans Computer Sci Eng. 

2006;30(1):25–36.
 12. Ferreira AJ, Figueiredo MA. Boosting algorithms: a review of methods, theory, and applications. In: Ensemble 

machine learning. Boston: Springer; 2012. p. 35–85.
 13. Wang S, Yao X. Multiclass imbalance problems: analysis and potential solutions. IEEE Trans Syst Man Cybern. 

2012;42(4):1119–30.
 14. Bi J, Zhang C. An empirical comparison on state-of-the-art multi-class imbalance learning algorithms and a new 

diversified ensemble learning scheme. Knowl-Based Syst. 2018;15(158):81–93.
 15. Wu K, Zheng Z, Tang S. BVDT: A boosted vector decision tree algorithm for multi-class classification problems. Int J 

Pattern Recognit Artif Intell. 2017;31(05):1750016.
 16. Leevy JL, Khoshgoftaar TM, Bauder RA, Seliya N. A survey on addressing high-class imbalance in big data. J Big Data. 

2018;5(1):42.
 17. Abu-Salih B, Chan KY, Al-Kadi O, Al-Tawil M, Wongthongtham P, Issa T, Saadeh H, Al-Hassan M, Bremie B, Albahlal A. 

Time-aware domain-based social influence prediction. J Big Data. 2020;7(1):10.
 18. Sleeman IV WC, Krawczyk B. Bagging Using Instance-Level Difficulty for Multi-Class Imbalanced Big Data Classifica-

tion on Spark. In2019 IEEE International Conference on Big Data (Big Data) 2019 (pp. 2484–2493). IEEE.
 19. Sun Y, Kamel MS, Wang Y. Boosting for learning multiple classes with imbalanced class distribution. In: Sixth interna-

tional conference on data mining (ICDM’06); 2006. p. 592–602.
 20. Zhen L, Qiong L. A new feature selection method for internet traffic classification using ml. Phys Procedia. 

2012;1(33):1338–455.
 21. Ling CX, Huang J, Zhang H. AUC: a statistically consistent and more discriminating measure than accuracy. Ijcai. 

2003;3:519–24.

https://archive.ics.uci.edu/ml/index.php


Page 46 of 47Tanha et al. J Big Data            (2020) 7:70 

 22. Huang J, Ling CX. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans Knowl Data Eng. 
2005;17(3):299–310.

 23. Singh A, Purohit A. A survey on methods for solving data imbalance problem for classification. Int J Computer Appl. 
2015;127(15):37–41.

 24. FernáNdez A, LóPez V, Galar M, Del Jesus MJ, Herrera F. Analysing the classification of imbalanced data-sets with 
multiple classes: Binarization techniques and ad-hoc approaches. Knowl-Based Syst. 2013;1(42):97–110.

 25. Krawczyk B. Learning from imbalanced data: open challenges and future directions. Prog Artif Intell. 
2016;5(4):221–32.

 26. Tahir MA, Asghar S, Manzoor A, Noor MA. A classification model for class imbalance dataset using genetic program-
ming. IEEE Access. 2019;8(7):71013–377.

 27. Ramentol E, Caballero Y, Bello R, Herrera F. SMOTE-RSB*: a hybrid preprocessing approach based on oversam-
pling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory. Knowl Inf Syst. 
2012;33(2):245–65.

 28. Liu A, Ghosh J, Martin CE. Generative oversampling for mining imbalanced datasets. In: DMIN; 2007. p. 66–72.
 29. Kumari C, Abulaish M, Subbarao N. Using SMOTE to deal with class-imbalance problem in bioactivity data to predict 

mTOR inhibitors. In: Proceedings of the international conference on adaptive computational intelligence (ICACI), 
Mysuru, India; 2019. p. 1–12.

 30. Colton D, Hofmann M. Sampling techniques to overcome class imbalance in a cyberbullying context. J Computer-
Assist Linguistic Res. 2019;3(3):21–40.

 31. Esteves VM. Techniques to deal with imbalanced data in multi-class problems: a review of existing methods.
 32. Ling CX, Sheng VS. Cost-sensitive learning and the class imbalance problem. Encyclopedia Mach Learn. 

2008;2011:231–5.
 33. Maheshwari S, Agrawal J, Sharma S. New approach for classification of highly imbalanced datasets using evolution-

ary algorithms. Int J Sci Eng Res. 2011;2(7):1–5.
 34. Błaszczyński J, Stefanowski J. Neighbourhood sampling in bagging for imbalanced data. Neurocomputing. 

2015;20(150):529–42.
 35. Rokach L. Ensemble-based classifiers. Artif Intell Rev. 2010;33(1–2):1–39.
 36. Schapire RE. A brief introduction to boosting. Ijcai. 1999;99:1401–6.
 37. Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–40.
 38. Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F. A review on ensembles for the class imbalance problem: 

bagging-, boosting-, and hybrid-based approaches. IEEE Trans Syst Man Cybern. 2011;42(4):463–84.
 39. Zhang Z, Krawczyk B, Garcìa S, Rosales-Pérez A, Herrera F. Empowering one-vs-one decomposition with ensemble 

learning for multi-class imbalanced data. Knowl-Based Syst. 2016;15(106):251–63.
 40. Krawczyk B. Combining one-vs-one decomposition and ensemble learning for multi-class imbalanced data. In: 

Proceedings of the 9th international conference on computer recognition systems CORES 2015. Cham: Springer; 
2016. p. 27–36.

 41. Feng W, Huang W, Ren J. Class imbalance ensemble learning based on the margin theory. Appl Sci. 2018;8(5):815.
 42. Schapire RE, Singer Y. BoosTexter: A boosting-based system for text categorization. Mach Learn. 

2000;39(2–3):135–68.
 43. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. In: 

European conference on computational learning theory. Heidelberg: Springer; 1995. p. 23–37.
 44. Hastie T, Rosset S, Zhu J, Zou H. Multi-class adaboost. Stat Interface. 2009;2(3):349–60.
 45. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a 

rejoinder by the authors). Ann Stat. 2000;28(2):337–407.
 46. Sun P, Reid MD, Zhou J. An improved multiclass LogitBoost using adaptive-one-vs-one. Mach Learn. 

2014;97(3):295–32626.
 47. Li P. Abc-logitboost for multi-class classification. arXiv preprint: arXiv:0908.4144. 2009.
 48. Sun P, Reid MD, Zhou J. Aoso-logitboost: Adaptive one-vs-one logitboost for multi-class problem. arXiv preprint: 

arXiv:1110.3907. 2011.
 49. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;1:1189–232.
 50. Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. CatBoost: unbiased boosting with categorical features. 

In: Advances in neural information processing systems. 2018. p. 6638–48.
 51. Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international 

conference on knowledge discovery and data mining; 2016. p. 785–94.
 52. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY. Lightgbm: A highly efficient gradient boosting decision 

tree. In: Advances in neural information processing systems; 2017. p. 3146–54.
 53. Chawla NV, Lazarevic A, Hall LO, Bowyer KW. SMOTEBoost: Improving prediction of the minority class in boosting. In: 

European conference on principles of data mining and knowledge discovery. Springer: Berlin; 2003. p. 107–19
 54. Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A. RUSBoost: A hybrid approach to alleviating class imbalance. 

IEEE Trans Syst Man Cybern Syst Hum. 2009;40(1):185–97.
 55. Rayhan F, Ahmed S, Mahbub A, Jani MR, Shatabda S, Farid DM, Rahman CM. MEBoost: mixing estimators with boost-

ing for imbalanced data classification. In: 2017 11th international conference on software, knowledge, information 
management and applications (SKIMA); 2017. p. 1–6.

 56. Sun Y, Kamel MS, Wong AK, Wang Y. Cost-sensitive boosting for classification of imbalanced data. Pattern Recogn. 
2007;40(12):3358–78.

 57. Fan W, Stolfo SJ, Zhang J, Chan PK. AdaCost: misclassification cost-sensitive boosting. Icml. 1999;99:97–105.
 58. Ting KM. A comparative study of cost-sensitive boosting algorithms. In: Proceedings of the 17th international con-

ference on machine learning. 2000.
 59. Domingo C, Watanabe O. MadaBoost: A modification of AdaBoost. In: COLT; 2000. p. 180–9.
 60. Joshi MV, Agarwal RC, Kumar V. Predicting rare classes: can boosting make any weak learner strong? In: Proceedings 

of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining; 2002. p. 297–306.



Page 47 of 47Tanha et al. J Big Data            (2020) 7:70  

 61. Joshi MV, Kumar V, Agarwal RC. Evaluating boosting algorithms to classify rare classes: comparison and improve-
ments. In: Proceedings 2001 IEEE international conference on data mining; 2001. p. 257–64.

 62. Vezhnevets A, Vezhnevets V. Modest AdaBoost-teaching AdaBoost to generalize better. Graphicon. 
2005;12(5):987–97.

 63. Mease D, Wyner A, Buja A. Cost-weighted boosting with jittering and over/under-sampling: Jous-boost. J Mach 
Learn Res. 2007;8:409–39.

 64. Jin X, Hou X, Liu CL. Multi-class AdaBoost with hypothesis margin. In: 2010 20th international conference on pattern 
recognition. 2010. p. 65–8.

 65. Chen S, He H, Garcia EA. RAMOBoost: ranked minority oversampling in boosting. IEEE Trans Neural Netw. 
2010;21(10):1624–42.

 66. Saberian MJ, Vasconcelos N. Multiclass boosting: theory and algorithms. In: Advances in neural information process-
ing systems; 2011. p. 2124–32.

 67. Galar M, Fernández A, Barrenechea E, Herrera F. EUSBoost: enhancing ensembles for highly imbalanced data-sets by 
evolutionary undersampling. Pattern Recogn. 2013;46(12):3460–71.

 68. Díez-Pastor JF, Rodríguez JJ, García-Osorio C, Kuncheva LI. Random balance: ensembles of variable priors classifiers 
for imbalanced data. Knowl-Based Syst. 2015;1(85):96–111.

 69. Ahmed S, Rayhan F, Mahbub A, Jani MR, Shatabda S, Farid DM. LIUBoost: locality informed under-boosting for imbal-
anced data classification. In: Emerging technologies in data mining and information security. Singapore: Springer; 
2019. p. 133–44.

 70. Kumar S, Biswas SK, Devi D. TLUSBoost algorithm: a boosting solution for class imbalance problem. Soft Comput. 
2019;23(21):10755–67.

 71. Deng X, Liu Q, Deng Y, Mahadevan S. An improved method to construct basic probability assignment based on the 
confusion matrix for classification problem. Inf Sci. 2016;1(340):250–61.

 72. Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in 
binary classification evaluation. BMC Genomics. 2020;21(1):6.

 73. Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary clas-
sifiers on imbalanced datasets. PLoS ONE. 2015;10:3.

 74. Halimu C, Kasem A, Newaz SS. Empirical Comparison of Area under ROC curve (AUC) and Mathew Correlation 
Coefficient (MCC) for evaluating machine learning algorithms on imbalanced datasets for binary classification. In: 
Proceedings of the 3rd international conference on machine learning and soft computing; 2019. p. 1–6.

 75. Rahman MS, Rahman MK, Kaykobad M, Rahman MS. isGPT: An optimized model to identify sub-Golgi protein types 
using SVM and Random Forest based feature selection. Artif Intell Med. 2018;1(84):90–100.

 76. Jurman G, Riccadonna S, Furlanello C. A comparison of MCC and CEN error measures in multi-class prediction. PLoS 
ONE. 2012;7:8.

 77. Zhang ZL, Luo XG, García S, Tang JF, Herrera F. Exploring the effectiveness of dynamic ensemble selection in the 
one-versus-one scheme. Knowl-Based Syst. 2017;1(125):53–63.

 78. Singh PK, Sarkar R, Nasipuri M. Significance of non-parametric statistical tests for comparison of classifiers over 
multiple datasets. Int J Comput Sci Math. 2016;7(5):410–42.

 79. Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res. 2006;7:1–30.
 80. Wilcoxon F, Katti SK, Wilcox RA. Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon 

signed rank test. Selected Tables Math Stat. 1970;1:171–259.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Boosting methods for multi-class imbalanced data classification: an experimental review
	Abstract 
	Introduction
	Handling imbalanced data problem
	Data-level methods
	Algorithm-level methods
	Hybrid methods
	Boosting methods
	General Boosting approaches
	AdaBoost.MH
	SAMME
	LogitBoost
	GradientBoost
	CatBoost
	XGBoost
	LightGBM

	Boosting for imbalanced data
	SMOTEBoost
	RUSBoost
	MEboost
	AdaC
	AdaCost


	Experimental study
	Dataset characteristics
	Performance metrics
	Single-class measures
	Overall metrics

	Parameter settings
	Statistical comparison of boosting algorithms
	Comparison of evaluation metrics
	Degree of consistency
	Degree of discriminancy
	Degree of indifferency

	Experimental results and analysis
	Experiments on conventional datasets
	MAUC as a measure
	MMCC as a measure
	G-mean as a measure
	Computational time study
	Metric evaluation study
	Experiments on big datasets
	Result discussion


	Conclusion
	Acknowledgements
	References




