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Introduction
A method that is utilized to identify and estimate bone age is called bone age assess-
ment. Bone age from the x-ray pictures can be estimated from the time of little children 
to youngsters. Bone development is not just impacted by genetic disorders, hormones, 
and supplements. It is also impacted by disease and mental conditions. Abnormal 
growth can be caused by several factors, such as genetic disorders, endocrine issues, and 
pediatric disorders [1–4].

Medical references explain that among several parts of the body, x-ray images of the 
left wrist can be used to evaluate bone growth. Manually, a radiologist uses two methods 
to evaluate bone age. These methods are the Greulich–Pyle (GP) and the Tanner–White-
house (TW) method [5]. TW uses the scoring method to determine bone age, while the 
GP method uses the atlas reference from bone age data [6]. Manual assessment of hand 
radiographs takes a long time and is quite expensive. So we need an automated recogni-
tion system that can recognize the age of bone based on the principles of medical sci-
ence that are studied by radiologists.
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In the last decade, evaluation of bone age has become essential to reduce the 
problems in the manual method for bone age estimation [7]. The main challenge is 
choosing the most appropriate method for building a bone age prediction system. In 
general, two methods can be done. The first is the use of image processing to retrieve 
features that affect bone development. These features will be input for the machine 
learning algorithm to make predictions. This process is commonly referred to as 
traditional machine learning or handcrafted method [8]. The second approach is to 
use deep learning convolutional neural networks. Automated feature extraction has 
been performed when the convolution occurs, so that prediction of bone age can be 
directly predicted.

TW method is implemented by Davies et  al. which extracted edges, and critical 
points for local image features [9]. Some local image extraction work to predict bone 
age is done by Zhang et al. [10]. They implemented fuzzy classification for predicting 
bone age. Somkantha et al. extracted carpal bones edge and Support Vector Regressor 
to estimate bone age. The histogram of Oriented Gradient (HOG) and BoG (Bag of 
Visuals Words) is classified with the Random Forest algorithm [11].

Two cutting edge techniques that are used by radiologists to do Bone Ages Assess-
ment are the Greulich–Pyle (GP) [12] and Tanner–Whitehouse (TW) technique [13]. 
The GP strategy runs dependent on a current hand atlas. The format incorporates x-ray 
pictures from 0 to 18 years. The GP strategy works dependent on coordinating the x-ray 
picture that has been acquired with a current hand atlas reference. This methodology is 
not challenging to do and can be utilized by many radiologists. However, the GP method 
has a weakness. The outcomes may vary from one radiologist to the other radiologist.

The TW strategy assesses by evaluating the significant regions of the bone x-ray. 
Region of Interest (ROI) is utilized to see the significant parts in the bone that decide 
the bone development. Those parts are Ulna, Epyphysis, Metaphysis, Radius, Phalanx, 
and Metacarpal which are shown in Fig. 1.
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Fig. 1 ROI areas of hand X-ray
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This paper consists of five sections. The first section consists of the introduction and 
background of this paper. The second section explains our research position and litera-
ture review. The third section explains our proposed method. The fourth section is the 
experiment result, and the last section consists of our discussions.

Related works
Spampinato et al. has utilized a deep learning approach to predict the bone age of chil-
dren or teenagers [14]. They experiment with a few deep learning models, for example, 
Bonet, Googlenet, and Oxford. The BAA result from their experiment can deliver MAE 
for around 9.6 months. The dataset is assembled from an open dataset got from the Dig-
ital hand atlas. The number of datasets utilized was 1391 x-ray pictures [15].

Castillo et al. estimated bone age by utilizing the VGG-16 model [16]. The dataset that 
is used is the RSNA dataset. It consists of 12,611 x-ray pictures. The MAE result of their 
experiment was 9.82 months for male patients and 10.75 months for female patients. Lee 
et al. contributed to segmenting the standardizing processes, segmenting the Region of 
Interest, pre-process radiographs, and estimating the bone age assessment. The assess-
ment results have indicated 57.32% and 61.40% precision for the forecast of the age of 
women and men, respectively [6]. The dataset consists of 4047 for male and 4278 for 
female x-ray picture.

Wang et al. utilized an alternate methodology in the field of bone age assessment [17, 
18]. Given medical references, they categorize bone parts based on the development 
of the bone components that are appeared in x-ray pictures. It utilized a Faster Region 
Convolutional Neural Network as the deep learning model [19]. It utilized 600 informa-
tion for the radius bone and 600 information for the ulna bone. It acquired 92% accuracy 
for the radius and 90% for the ulna.

Son et al. added to the automatic of the Tanner Whithouse (TW 3) strategy, which is 
a reference in bone age evaluation [20]. Confinement of the bone epiphysis and meta-
physis was done to estimate the age of the bone. The dataset is consists of 3300 x-ray 
pictures from medical clinics in South Korea. The classification results for the bone area 
show a precision of 79.6% and 97.2% for top-1 and top-2 accuracy. The Mean Absolute 
Error (MAE) and Root Mean Square Error (RMSE) are 5.62 and 7.44. Liu et  al. did a 
different method regarding pre-processing to estimate bone age. Non-subsampled Con-
tourlet Transform (NSCT) is done before training with a deep learning model [21]. The 
dataset utilized is the open digital hand atlas dataset. Generally, the RMSE created from 
this strategy is 8.28.

Bone information is not just utilized in the medical field. In any case, the bone pic-
ture is additionally required in the field of paleontology and taphonomy. Bone infor-
mation is utilized to get some answers concerning archeological and paleontological 
locales [22]. Explicit bone age forecast is utilized to discover and investigate historical 
timelines. Knowing when people begin to eat meat, utilize stone apparatuses, investigate 
new mainlands, and collaborate with savage creatures. Bone surface alteration is recog-
nized by utilizing a deep learning model. Automatic identification is made by utilizing 
scratched information on fleshed and defleshed bone.

A few scientists use traditional and deep learning to estimate bone age from x-ray 
images. The utilization of regression to identify bone age has been utilized by a few 
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analysts [23–25]. Furthermore, the utilization of random forest [26], K-NN [27], 
SVM [28–30], ANN [24, 31, 32], and Fuzzy Neural system [33] has been done by a 
few authors. The utilization of deep learning models also has been contributed by 
certain scientists to estimate the bone age [6, 34–36, 54].

The other researcher uses the landmark-based multi-region ensemble CNN for 
bone age assessment [37]. This work differs from our work in terms of the concat-
enation of layer, the evaluation, and the proportion of data. We combine the con-
nected feature layers of some regions. However, their work directly using input 
image and segmented to a few regions. The evaluation of this work only uses each 
of the regions as a comparison. In our research, we evaluate the whole segmented 
regions that produce Feature Connected Layers. In terms of the dataset, they evalu-
ate the bone age dataset from digital hand atlas with a proportion of 90% training 
and 10% testing. However, in our work, we evaluate with two public datasets, digital 
hand atlas dataset (1392 x-ray images) [38] and RSNA dataset (12,814 x-ray images) 
[39]. The evaluation proportion of our work is 80% training and 20% testing.

Based on previous references, the proportion of training and testing data tested is 
90% and 10% [37]. By using many datasets, we can provide the opportunity for the 
model to test its performance with less training data. We used two datasets; X-Ray 
digital hand atlas dataset totaling 1392 samples and RSNA dataset 12,814 samples. 
This large dataset is possible to be tested with a smaller proportion of training com-
pared to the proportion in [37]. With a proportion of 80% training and 20%, we can 
provide an opportunity for models to be trained with lower training data but result-
ing in a good performance.

The performance of the bone age assessment method is presented by Dallora et al. 
[40]. It shows the machine learning algorithm performance result for each dataset. 
It gives us wholistic information about the current machine learning performance 
to estimate bone age. Region detection and maturity classification are proposed by 
Bui et al. [41]. Thy utilize it to estimate the bone age. Based on the experiment result 
by using Digital Hand Atlas Dataset, the performance of the MAE is 7.1  months. 
The performance of deep learning methods to estimate the bone age is presented by 
Larson et al. [42]. Also, the large Scale Hand X-Ray Dataset bone age estimation is 
proposed by Pan et al. [43]. The other researcher use two step method in bone age 
estimation. The authors use deep learning method as a feature extraction then clas-
sified it with the age group of the bone [44].

In this research, we try to segment the most important parts of the bone, which 
is the critical region to estimate bone growth. The baseline method (a manual pro-
cess) to do bone age assessment is TW and GP, which have been introduced in the 
introduction sections. We proposed a segmentation in the important area suggested 
by TW strategy. Those parts are Ulna, Epiphysis, Metaphysis, Radius, Phalanx, and 
Metacarpal. We choose to follow TW strategy because this method evaluates signifi-
cant regions of the bone x-ray rather than depend on hand atlas picture as a refer-
ence. The essential parts are referred to from the TW method. We use deep learning 
as a method for extracting Feature Connected Layers (FCL). FCL Concatenation is 
done to predict the estimated age of bone age using several regressor methods.
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Proposed method
In this research, we contributed to create an age prediction expert system from hand 
x-ray. We do the segmentation of the essential parts of bone x-ray. Based on the radi-
ologist’s reference, the radius-ulna, carpal, metacarpal, phalanges, and epiphysis sec-
tions are parts that can affect the age of the bone. The results of the segmentation of 
these parts are trained in deep learning to produce a Feature Connected Layer fea-
ture (FCL). Several scenarios are carried out to produce the smallest prediction error. 
Based on the results of the trial, merging some connected layer features from the seg-
mentation section can produce the smallest MAE error with a value of 6.97 months.

There are two flows to do FCL Fusion. In the first flow, the bone dataset is seg-
mented based on the critical regions in determining bone age. The results of each 
region segmentation are trained using deep learning models and produce FCL with 
1024 dense features. Flow 1 has process identifiers 1.1, 1.2, 1.3, and 1.4 in Fig. 2. Fig-
ure  2 shows the segmentation results of the hand x-ray. Part 1, which is yellow, is 
Radius-Ulna. The second part is carpal with green color. The third part is the space 
between metacarpal and phalanges with people’s color. The fourth part is phalan-
ges with blue. The fifth part is the space between phalanges with the name ephypisis 
in red. In the second flow, the whole hand bone image is trained using several deep 
learning models. We extracted FCL with 1024 dense features. The results of the dense 
layer will be combined with the results in the first path. The way strand is identified in 
process numbers 2.1, 2.2.

Automatic segmentation is done by using the Faster R-CNN standard to sepa-rate 
essential regions from the original image [45, 46]. Region algorithm is implemented 
in Faster R-CNN. It utilize Region Proposal Network (RPN) to produce the region 
proposal. It gives around 0.2  s computation time to detect an image. Each of these 
regions based training is conducted on several deep learning models, namely Incep-
tionV3, Densenet121, and InceptionResnetV2. The selection of this deep learning 
model is based on the evaluation of FCL results from the deep learning evaluation 
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Fig. 2 Region-Based Feature Connected Layer (RB-FCL) approach
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shown in Table 2. In both the first and second flows, we use transfer learning from 
weights derived from the results of x-ray [47, 48].

To predict bone age, researchers use several layers in the deep learning model to pre-
dict accurately. In the deep learning model, there are several components, including the 
input layer, the convolution layer, the pooling layer, and the Feature Connected Layer 
(FCL). In this research, we treat FCL as a result of feature extraction from bone images. 
FCL of several deep learning models fusion treated as input features to be included in 
regressors. Several variations of the integration of FCL are combined to obtain the best 
accuracy results. FCL layers are taken from the deep learning model DenseNet121 [49], 
InceptionV3 [50], and InceptionResNetV2 [51, 52].

The first process flow is indicated by the explanation of Eq. 1 through Eq. 9

If K is an image of a hand bone in Eq. 1, X-Ray and L is the result of region segmenta-
tion using RCNN in Eq. 2. There are five results of the segmentation matrix derived from 
the RCCN (K) process with notation; i = 0, 1, 2, 3, 4

Each region is generated from RCNN will extract its FCL using several deep learning 
models with FCL M, N, O results. There are five matrices for each FCL deep learning 
models result. Each FCL layer result has 1024 dense features.

AM in Eq. 7 is the result of the combined concatenation of the FCL layer matrix results 
for each region generated by InceptionV3. AN is the concatenation of the combined FCL 
layer matrix results for each region produced by DenseNet121. AO is the result of the 
combined FCL layer matrix results for each region produced by InceptionResNetV2.

The second process flow is shown by the explanation of Eq. (10). If K is an image of 
hand bone X-Ray and W, X, Y is the result of FCL extraction from the whole image.

(1)K = [k0, k1, k2, . . . , kn]

(2)L = RCNN (k)

(3)L = { [li]; i = 0, 1, 2, 3, 4}

(4)FCLInceptionV 3(L) = { [Mi]; i = 0, 1, 2, 3, 4}

(5)FCLDenseNet121(L) = { [Ni]; i = 0, 1, 2, 3, 4}

(6)FCLInceptionResnetV 2(L) = { [Oi]; i = 0, 1, 2, 3, 4}

(7)AM = [M0|M1|M2|M3|M4]

(8)AN = [N0|N1|N2|N3|N4]

(9)AO = [O0|O1|O2|O3|O4]

(10)FCLInceptionV 3(K ) = W
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Suppose W  is the FCL result from InceptionV3, X is DenseNet121, and Y  is Incep-
tionResNetV2. Each of the FCL output has 1024 output features. The results of 
combining FCL from three deep learning models are explained in Eq.  13 notation. 
Concatenation results will be processed by PCA feature decomposition with 50 com-
ponents, labeled with variable P , as can be shown in Eq. 6. The scenario is done by 
combining the matrix between AM, AN, AO, and AZ as P. P notation will be included 
in the PCA Feature Decomposition.

Variable G is a gender variable, G is 1 for men and 0 for women. The conjugate 
results of P and G are labeled with variable F  in Eq. 16. Bone age prediction is labeled 
with BA notation. BA is generated from the regressor results using the F  features con-
jugation. We consider using the FCL output from Multi-Path Connectivity and the 
depth revolution represented by DenseNet and Resnet. In addition, we also tested 
the output of the deep learning model with Spatial Exploitation, Parallelization, and 
Inception Block, which is represented by InceptionV3 and InceptionResNetV2. We 
consider gender as a feature to determine the age of bone images. Feature decom-
position is done using Principal Component Analysis (PCA) with a total of 50 com-
ponents. After that, the gender feature is combined with FCL results from the deep 
learning model. A complete diagram of the process that we carried out is shown in 
Fig. 2.

We use Mean Absolute Error (MAE)

Mean Absolute Percentage Error (MAPE)

and Root Mean Squared Error (RMSE).

(11)FCLDenseNet121(K ) = X

(12)FCLInceptionResnetV 2(K ) = Y

(13)AZ = [W|X|Y]

(14)P : PCA(AM|AN |AO|AZ) → P(p0, p1, p2, . . . , p49)

(15)G =
{

g : g = 1,male, g = 0, female
}

(16)F = [P|G]

(17)BA = Regressor(F)

(18)MAE =
1

n

n
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(19)MAPE =
1

n
x100%

n
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n is the total of data, ri is the forecasted value, and ti is ground truth value.

Result
The hardware specifications that we use in this research are Intel(R) Core(TM) i7-6800K 
CPU @ 3.40  GHz, 32  GB Physical RAM, and 6 GPU NVIDIA GTX 1080 Ti × 11  GB 
VRAM. We utilized Ubuntu 16.04 as the operating system. We utilized TensorFlow 
and Keras framework model on top of python programming language to evaluate our 
proposed method. Keras model application is also be used by Ren et al. to perform the 
augmentation of the bone [36]. The other researcher uses GoogleNet and ImageNet 
model to perform the simulation [34]. We use standard input for InceptionV3 and Incep-
tionResNetV2 (299 × 299). DenseNet121 and ResNet50 use 224 x244 for the size of the 
input. We have added three dense layers at the end of our network. The standard depth 
InceptionV3, InceptionResnetV2, DenseNet121 are 159,572, 121 respectively. We con-
sider having 99.99% variety from the principal component from the features. Thus we 
choose 50 component for the principal components

In general, we conduct four test scenarios. All scenarios are performed on two public 
datasets, namely digital hand atlas dataset and RSNA dataset. The first test scenario is 
carried out to evaluate errors in standard deep learning models. The label we give in 
this scenario is std. The test results are shown in Table 1. The second scenario is the test 
scenario using a single Feature Connected Layer. The FCL output of scenario 2 is pro-
duced by each deep learning model. The label we gave in the second scenario is FCL. The 
extraction results from 1024 dense feature of FCL will be input to be tested on several 
regressor algorithms. Table results of the scenario 2 test results are shown in Tables 2 
and 3.  

The third scenario that we do is to merge the five FCL layers by using Region-Based 
Feature Connected Layer (RB-FCL). The FCL is produced by each region that has been 
trained using several deep learning models. The regions are 1-radius-ulna, 2-carpal, 
3-metacarpal-phalanges, 4-phalanges, and 5-epiphysis. The results of scenario three are 
shown in Tables  3 and 4. The label for the third scenario is RB-FCL. The fourth sce-
nario that we do is to do the feature layer concatenation of scenario two (FCL) and sce-
nario three (RB-FCL). In the fourth scenario, we combine the RB-FCL output produced 
by InceptionV3, DenseNet121, and InceptionResNetV2. We provide IRD labels for the 
merged features. In general, the smallest MAE value is obtained from the concatenation 
features merge in the fourth scenario, which is 6.97 months.

(20)RMSE =

√

√

√

√

1

n

n
∑

i=1

|ri − ti|
2

Table 1 Result of standard deep learning models evaluation

Dataset InceptionV3-std DenseNet121-std InceptionResNetV2-std

MAE RMSE MAPE% MAE RMSE MAPE% MAE RMSE MAPE%

Digital hand atlas 9.41 11.83 10.17 11.76 14.94 12.64 12.71 16.63 15.32

RSNA 10.89 15.07 12.62 12.87 16.24 14.71 12.11 15.68 12.25
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Table  1 shows the results of evaluating the deep learning model directly in training 
into the hand x-ray dataset. From the evaluation results using several deep learning 
models, for the digital hand dataset, the best MAE value is 9.41, and for the RSNA data-
set is 10.89. Experiments from the proposed method that we propose d we propose can 
produce MAE values up to 6.97.

Tables  2 and 3 show the test results using a single Feature Connected Layer out-
put (FCL) scenario for the Digital Hand Atlas dataset and RSNA dataset. The FCL 
scenario uses a whole hand x-ray image for training into each deep learning model 
(InceptionV3, DenseNet121, and InceptionResNetV2). Models of the training results 

Table 2 Result of  single Feature Connected Layer output (FCL) for  digital hand altlas 
dataset

Regressor InceptionV3-FCL DenseNet121-FCL InceptionResNetV2-FCL

MAE RMSE MAPE% MAE RMSE MAPE% MAE RMSE MAPE%

LR 10.6 14.0 11.2 10.2 13.7 12.5 10.67 15.19 10.54

KNN-R 10.7 14.4 10.8 10.3 14.2 12.4 10.70 15.60 11.07

SVR 17.9 21.8 31.0 14.2 18.1 28.7 19.20 25.08 38.28

RF-R 10.4 14.0 10.5 10.1 13.7 11.5 9.77 14.02 9.76

DT-R 14.1 19.1 13.0 16.0 21.3 17.0 14.99 20.25 13.65

ADB-R 11.8 15.9 13.2 12.5 16.3 16.0 11.75 16.63 13.54

GB-R 11.3 15.1 11.5 11.3 15.2 15.0 11.25 15.86 12.98

Table 3 Result of single Feature Connected Layer output (FCL) for RSNA dataset

Regressor InceptionV3-FCL DenseNet121-FCL InceptionResNetV2-FCL

MAE RMSE MAPE% MAE RMSE MAPE% MAE RMSE MAPE%

LR 10.22 13.55 11.15 10.14 13.21 11.52 12.23 17.64 14.07

KNN-R 10.45 13.97 10.68 10.38 13.84 10.99 11.80 16.59 12.88

SVR 10.62 14.09 11.22 10.50 14.36 12.12 15.10 23.68 18.32

RF-R 10.00 13.42 10.31 9.78 12.91 10.18 11.46 15.82 12.31

DT-R 13.85 18.60 13.63 13.33 18.19 13.20 15.60 21.84 15.87

ADB-R 12.75 16.30 14.55 12.65 16.51 15.40 15.59 21.07 18.11

GB-R 10.43 14.01 11.21 10.21 13.36 11.14 11.83 16.33 13.17

Table 4 Result of  Region Based Feature Layer (RB-FCL) output for  digital hand altlas 
dataset

Regressor InceptionV3-RB-FCL DenseNet121-RB-FCL InceptionResNetV2-RB-FCL

MAE RMSE MAPE% MAE RMSE MAPE% MAE RMSE MAPE%

LR 7.10 10.96 7.23 7.09 10.96 7.19 7.10 10.96 7.20

KNN-R 8.69 12.47 10.30 8.70 12.48 10.30 8.70 12.48 10.33

SVR 11.36 16.07 26.12 11.36 16.07 26.12 11.36 16.07 26.12

RF-R 7.91 11.61 8.41 7.91 11.61 8.48 7.89 11.56 8.50

DT-R 10.45 14.76 11.33 10.89 15.10 11.42 10.10 14.57 11.17

ADB-R 11.34 15.10 13.62 11.31 15.09 13.54 11.29 15.07 13.51

GB-R 9.08 12.91 11.05 9.26 13.00 12.25 9.02 12.50 9.51
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are used to produce output layer features that are used as input for the regressor algo-
rithm. The results of the test metric in Table 2 can be seen as the smallest error met-
ric obtained by FCL output from InceptionResNetV2 with MAE values 9.77, RMSE 
14.02, and MAPE 9.76. The results were obtained using the Random Forest Regressor.

Table 3 shows the smallest metric errors generated by FCL from DenseNet121 with 
MAE values of 9.78, RMSE 12.91, and MAPE 10.18. From the test results in Tables 1 
and 2, we can see that there is only a small reduction in errors obtained by taking 
a single feature layer output. For this reason, we try to perform FCL concatenation 
experiments by using the RB-FCL scenario, which is shown in Tables 4, 5, 6, and 7.

Tables 4 and 5 show the metric error results from the Region-Based Feature Layer 
Output (RB-FCL) scenario. RB-FCL is done by combining 5 FCL output results from 
each x-ray hand region in the digital hand atlas dataset. From Table  4 The smallest 
metric values of MAE, RMSE, and MAPE% are shown by Linear Regression (LR). 
Either using the RB-FCL feature from InceptionV3, DenseNet121, and Inception-
ResNetV2, the resulting MAE value is quite small, namely between 7.09 and 7.11. 
Using the RB-FCL method can minimize the error value from the standard deep 
learning model evaluation in Table  1 from 9.41 to 7.10, shown in Table  4. Besides, 
RB-FCL also has a smaller error value when compared to the scenario of using FCL. 
RB-FCL can produce MAE values up to 7.14 while FCL can only have MAE values of 
9.78 on testing using the RSNA dataset

Testing with RB-FCL on the RSNA dataset is shown by Table  5. From the results 
of testing the MAE value, the Random Forest Regressor has the smallest MAE value, 
which is around 7.14. The results of this error are relatively the same for the three 
deep learning models. Similar to testing on a digital hand atlas dataset, testing the 
MAE value on the RSNA dataset has a smaller value than the MAE value of the test 
results on the standard deep learning models that are equal to 10.09.

From Tables  4 and 5, merging region-based segmentation on RB-FCL from each 
hand x-ray region can produce MAE, RMSE, and MAPE values that are smaller than 
the metrics error values in standard deep learning models. The average value of a suc-
cessful MAPE reduction is reduced by about 3–4% when compared to the standard 
deep learning. The region-based segmentation scenario by combining the feature lay-
ers of each region (RB-FCL) also has a smaller MAPE metric value compared to the 
FCL scenario. Decrease in MAPE% by around 2–3%.

Table 5 Result of Region Based Feature Connected Layer (RB-FCL) output for RSNA dataset

Regressor InceptionV3-RB-FCL DenseNet121-RB-FCL InceptionResNetV2-RB-FCL

MAE RMSE MAPE% MAE RMSE MAPE% MAE RMSE MAPE%

LR 7.48 10.22 9.415 7.48 10.22 9.413 7.48 10.22 9.413

KNN-R 7.3 10.1 8.809 7.3 10.1 8.809 7.3 10.1 8.808

SVR 7.85 11.64 13.44 7.85 11.64 13.44 7.85 11.64 13.44

RF-R 7.14 10.13 8.252 7.14 10.13 8.284 7.14 10.12 8.36

DT-R 9.67 13.87 10.52 9.57 13.73 10.46 9.67 13.7 10.67

ADB-R 11.1 14.68 12.63 11.1 14.7 12.68 11.1 14.72 12.65

GB-R 7.67 10.63 9.088 7.57 10.49 9.365 7.76 10.67 9.461
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From Tables  4 and 5, the result has shown that RB-FCL resulting from hand x-ray 
region segmentation can make regressor models to have smaller errors compared to 
standard deep learning models that use hand x-ray images as a whole. The division of 
region-based hand x-ray into five parts, namely 1-radius-ulna, 2-carpal, 3-metacarpal-
phalanges, 4-phalanges, and 5-epiphysis can make deep learning models to be able to 
learn only for specific regions. Hence, there is not much general information that models 
must learn. The deep learning model only studies training data for each region, not the 
whole. To get global feature information, we combine FCL from each region. Specific 
information from the highlight region is combined to produce a more representative fea-
ture for hand x-ray images.

We can compare the overall performance of our proposed RB-FCL method in Tables 4 
and 5 compared to Tables 2 and 3. We can see that the overall error performance of the 
metrics gives a lower error for RB-FCL in Tables  4 and 5 compared to single FCL in 
Tables 2 and 3. Also, in Tables 4 and 5, the variation of MAE is between 7.10 and 11.34, 
while in Tables 2 and 3, the variation of MAE is between 9.77 and 17.9. We can see that 
RB-FCL gives a smaller variation of error compared to single FCL.

Tables  6 and 7 show the results of the combination of RB-FCL with the combined 
FCL layers of InceptionV3, InceptionResNetV2, and DenseNet121. We combined the 
label IRD on the Digital Hand Atlas dataset and the RSNA dataset. The FCLOMB label 
is a combined representation of all feature output results from InceptionV3-RB-FCL, 
DenseNet121-RB-FCL, and InceptionResNetV2-RB-FCL. The best MAE results from 
the test scenario are produced by the FCLOMB + IRD scenario with MAE values of 6.97, 
RMSE of 9346, and MAPE 8128.

Discussions
In general, the results of all tests can be seen in summary in Fig. 3. Based on the results 
of all tests, the best metric error results obtained by testing the FCLOMB + IRD feature 
layer scenario with an MAE value of 6.97. These results are obtained based on a combi-
nation of several output layer features from each region. Region segmentation creates 
a deep learning model to produce models that can specifically study the characteristics 
of each region used to measure the age of bones. The division of regions based on seg-
mentation of 1-radius-ulna, 2-carpal, 3-metacarpal-phalanges, 4-phalanges, and 5-epi-
physis is derived from references used by radiologists to determine the age of bones. 
Obtaining a specific model for each region can produce representative connected layer 
output features for each region. The acquisition of features that are more representative 
makes the regressor model can predict bone age better. This is indicated by the decrease 
in error value in scenario III (RB-FCL) and scenario 4 (FCLOMB-IRD) when compared 
to scenario 1 (STD) and scenario 2 (FCL). In scenarios 1 and 2, no region segmentation 
was performed during the deep learning model training, whereas in scenarios III and IV, 
segmentation was carried out on the bone age determining region.

Based on the literature. Liu et al. use the same hand, atlas dataset [21]. However, they 
only use the female data from 2 to 15 years old and male from 2.5 to 17 years old. This 
dataset al.so consists of x-ray data from 0 to 2.5 years old and also above 17 years old. 
In our research, we use all of the data provided by the public dataset. Son et al. used its 
private dataset. Also, the reproducible code is not available. The other researcher uses 
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the landmark-based multi-region ensemble CNN for bone age assessment [38]. This 
work differs from our work in terms of the concatenation of layer, the evaluation, and the 
proportion of data. We combine the FCL of some regions; however, their work directly 
using input image and segmented to a few regions. The evaluation of this work only uses 
each of the regions as a comparison. In our research, we evaluate the whole segmented 
regions that produce fully connected layers. In terms of the dataset, they evaluate the 
bone age dataset from digital hand atlas with a proportion of 90% training and 10% test-
ing. However, in our work, we evaluate with two public datasets, digital hand atlas data-
set (1392 x-ray images) [38] and RSNA dataset (12,814 x-ray images) [39]. The evaluation 
proportion of our work is 80% training and 20% testing.

State of the art methods for estimating bone age using Digital Hand Atlas dataset is 
proposed by Giordano et  al. and Spampinato et  al. [14, 53]. Giordano et  al. produced 
21.84 months and Spampinato et al. produced MAE 9.48 months. Our proposed method 
RB-FCL produce MAE value of 7.1 months. The result of the state of the art method to 
estimate bone age using the RSNA dataset was produced by Castillo et al. [16]. It pro-
duces 9.73 months for MAE. While the MAE that we produce for the RB-HCL method 
is 6.71 months. Based on the RB-FCL evaluation, our method produces an MAE error 
that has the same value compared to the state of the art method for digital hand atlas 
data. For RSNA dataset, our approach produces smaller MAE value compared to the 
state of the art method.

We compare the results of predictions with MAE of 9.6 months [8] for the digital hand 
atlas dataset. The use of RB-FCL for digital hand atlas datasets has a smaller value of 
7.10 months. We compared the RSNA error results of the comparison dataset with other 
researchers, Castillo et al. Getting the best MAE value of 9.82 months [16]. While our 
results have a smaller MAE value of 6.97  months. Based on the comparison of these 
results, the use of the region-based feature layer RB-FCL method can obtain better bone 
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age prediction values when compared to standard deep learning procedures. In the next 
research, we will try to make modifications to the convolution method in order to pro-
duce more representative output layer features for each region.

Conclusion
Bone age assessment is one way to estimate the age of a human bone. The use of image 
procession and deep learning techniques has been widely used to conduct bone age 
assessment procedures. In this study, we propose the Region-Based Feature Connected 
Layer output (RB-FCL) segmentation of several deep learning models to be able to 
predict bone age. Region-based is divided according to regions recommended by radi-
ologists when they do the manual assessment on hand x-ray. The regions are 1-radius-
ulna, 2-carpal, 3-metacarpal-phalanges, 4-phalanges, and 5-epiphysis. From the results 
of testing using the proposed method (RB-FCL), the best error results obtained were 
6.97 months for the MAE, RMSE 9346, and MAPE 8128. The results are obtained from 
the merging of the output layer features for each region. These results are better than 
the test results using a standard deep learning procedure that has an MAE value of 
9.41 months.
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