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Introduction
When a customer orders a product, which is not available in the store or temporary out 
of stock, and the customer decides to wait until the product is available and promised to 
be shipped, then this scenario is called backorder of that specific product [1, 2]. If back-
orders are not handled promptly, they will have high impacts on the respective compa-
ny’s revenue, share market price, customers’ trust, and may end up losing the customer 
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or sale order. On the other hand, the prompt actions to satisfy backorders put enormous 
pressure on different stages of the supply chain which may exhaust the supply chain pro-
cesses or may appear with extra labor and/or production costs, and associated shipment 
expenses [3, 4]. Moreover, the uncertainty in customers’ demands causes difficulty in 
forecasting the demand which makes the traditional supply chain management systems 
less effective in many ways such as inaccurate demand forecasting or misclassifying of 
back-ordered products [5, 6]. Nowadays, some companies predict the backorders of 
products by applying machine learning prediction processes to overcome the associated 
tangible and intangible costs of backorders [7].

Machine learning models may misclassify many records if the dataset contains mis-
leading or missing information. This issue is a challenge to analyze the dataset of this 
study. There are very high negative and positive values in several predicting features of 
this dataset. Our dataset contains the number of negative records related to the inven-
tory. The negative inventory level suggests that the current stock level of the product is 
less than zero. The causes and effects of negative inventory are well understood in the 
supply chain industry [8]. An inventory level dependent ordering model discusses the 
relationship between inventory level and demand which reflects how negative inventory 
level can affect the demand [9]. Recent studies suggest that the correlation factor among 
the product variety, sales, and inventory level is biasing the inventory level [10, 11].

Backorder aging prediction can be feasible for the market with non-volatile demand 
where the lead time, price per unit, quantity of placed order, and product stock level 
are the main drivers [12]. However, a sudden change in the demand may raise other risk 
flags associated with the supply chain and may lead to a loss [13, 14]. To cope with the 
challenges of stochastic demand, a few researchers developed multi-objective inventory 
models [15]. It has been proven mathematically that the hybrid backorder (i.e., fixed and 
time-weighted backorder) inventory model is more efficient than the fixed backorder 
inventory model in the market with volatile demand. To subside the stochastic demand 
problem, forecasting partial backorders based on the periodic count on the current stock 
level seems profitable, but this process may exhaust the local inventory system [8].

In this work, a flexible inventory solution is provided by listing easily understandable 
probable backorder scenarios. “Literature review” section of this paper focuses on the 
literature review. Then, “Dataset and exploratory analysis” section is devoted to the data-
set and exploratory analysis. The methodology is described in “Methodology” section. 
Then, the experiments and the results are discussed in “Experiment” and “Results on test 
data” sections, respectively. Besides, conclusions are provided in “Conclusions” section.

We have performed some hypothesis tests considering backorder scenarios. The out-
comes of the hypothesis’s tests are helpful to choose the appropriate machine learning 
model for prediction. Distributed Random Forest (DRF) and Gradient Boosting Machine 
(GBM) techniques [16, 17] are chosen on the H2O platform. To resolve the imbalanced 
class problem, a synthetic minority oversampling technique (SMOTE) [18] on the tar-
get class is selected. We have divided our predicting features in different ranges, and we 
have passed it to GBM and DRF models for prediction. Besides, the actual data is fed 
to those models. It can be observed that the two models show different characteristics 
in the test run. This research considers backorder forecasting using DRF and GBM and 
reports easily understandable probable backorder decision scenarios.
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Literature review
Machine Learning (ML) techniques enable us to forecast accurately multiple aspects 
related to supply chain management such as demand, sale, revenue, production, and 
backorder. ML approaches have been used to predict manufacturers’ garbled demands 
where some researchers applied a representative set of ML-based and traditional fore-
casting methods to the data to compare the precision of those used methods [19]. Those 
researchers found that the average performances of the ML method did not outperform 
the traditional methods, but when a Support Vector Machine (SVM) was trained on sev-
eral demand-series, it produced the most precise predictions [20]. The same research-
ers extended their research works using Support Vector Machines (SVM) and Neural 
Networks (NN) [21]. They have found that the techniques of applying machine learning 
models provided noticeable improvements over the traditional models [22].

An analysis of the supply chain’s demand prediction was carried out by applying the 
Support Vector Regression (SVR) method in the paper of Guanghui [23]. The outcome of 
that investigation indicated that the prediction performance of SVR is superior to Radial 
Basis Function (RBF) [24], as SVR produced smaller results of the relative mean square 
error along with higher forecast precision of the supply chain. However, several factors 
were not taken into account in that research (e.g., imbalance class problem, application 
of machine learning techniques like neural network and ensemble methods due to the 
limitations of the computational resources).

To minimize the supply chain and inventory control costs, a risk-based dynamic back-
order replenishment planning framework was proposed by Shin et al. [25] applying the 
Bayesian Belief Network. A similar framework was prescribed by Acar and Gardner [26], 
using optimization and simulation techniques. Rodger [12] presented a risk triggering 
model using fuzzy feasibility Bayesian probabilistic evaluation of backorder.

To deal with the imbalanced class problem efficiently, ML classifiers were examined in 
[27] to identify a suitable forecasting model. To carry out this task, they applied differ-
ent measures along with the ensemble learning. The results of that investigation showed 
that the ensemble learning method provided feasible performance when precision-
recall curves were considered, and also minimized the computational costs. They also 
suggested applying different ML algorithms such as SVM and NN for the verification 
of potential performance improvements. Prak and Teunter [28] investigated the predic-
tion uncertainty in an inventory model, and they proposed a framework to estimate the 
demand to obtain more accurate inventory decisions.

The competition among different ML techniques produces a higher rate of accuracy of 
forecasts which improvises the necessitous decisions to increase revenue. Dancho [29] 
predicted the product backorders using a stack-ensemble machine learning approach. 
The author also discussed the cost–benefit of early prediction of the backorder. How-
ever, the demonstration of a probable backorder situation has not been discussed in that 
paper. The research in [30] and [31] have proposed an order policy-based inventory sys-
tem model to observe the performance using ARIMA models, Theta method, and mul-
tiple temporal aggregation techniques. Performances of ML models with and without 
Google trends were measured to identify the trend of oil consumption in the paper of 
Yu et al. [32]. Comparisons among different error measures such as Mean Square Error 
(MSE) and Root Mean Square Error (RMSE) are shown in the research of Hyndman and 
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Koehler [33] to indicate the models’ performance. Kim and Kim [34] introduced a new 
metric of measuring the performance known as Mean Arctangent Absolute Percentage 
Error (MAAPE), and they compared with the other ML error calculations. Martínez 
et  al. [35] evaluated the performance of ML models such as Lasso, Extreme learning 
machine, and Gradient tree boosting to forecast future purchase trends. The efficiency 
and impact of different types of forecasting methods were measured for promotional 
products in business in the research of De Baets and Harvey [36].

Some related papers to our research have been classified in Table 1. Based on the liter-
ature review, there are some research gaps. To our knowledge, just a few researchers [10, 
11] have explored the negative values in the supply chain data. Besides, very few papers 
have considered flexible inventory control and cost minimization techniques separately, 
but none of them provided the probable backorder scenarios in inventory management.

As our research problem falls under the decision-making problem, we have investi-
gated the decision tree-based predictive modeling approach in this research. Decision 
trees are supervised learning techniques that can be used to solve both classification and 
regression problems. Each branch of a decision tree is highly traceable, and a decision 
tree model can be easily interpreted without having expert knowledge in the predictive 
modeling domain [37]. These characteristics of the decision tree make it popular among 
the organizational decision-makers to solve different decision-making problems. How-
ever, when the input data size is very large, predictions using decision trees suffer from 
both execution time and performances. If the training data size is big, the tree construc-
tion during the training phase of a decision tree based predictive model increases the 
computational complexity in terms of memory consumption and execution time [38]. 
Moreover, the constructed trees with big input data suffer from the same input label dis-
tribution among different classes which lowers the predictive performance of a decision 
tree model [39]. To overcome these problems, a few researchers adopted the tie braking 
method [40] for a decision tree. The tie-breaking method increases the performance of 
model. However, the memory overflow problem remains in the big data environment 
[41]. Random sampling [42], tree pruning on input space [43], and few-shot samplings 
[44] are some techniques proposed by a few researchers to undersize the input space. 

Table 1  Review of the related papers

Authors Prediction 
domain

ML models Performance 
metrics

Flexible 
inventory control 
with ranged data

Probable 
decision 
scenarios

Carbonneau et al., 
(2008)

Manufacturers’ gar-
bled demands

SVM, NN ✓

Guanghui (2012) Supply chain’s 
demand

SVR, RBF ✓

Shin et al., (2012) Backorder replen-
ishment planning

✓ ✓

de Santis et al., 
(2017)

Material backorder 
in supply chain

LOGIST, CART, 
Ensemble

✓

Prak and Teunter 
(2019)

Prediction uncer-
tainty

✓ ✓

Proposed work Product backorder 
in supply chain

DRF, GBM ✓ ✓ ✓
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These proposed techniques decrease the computational complexity, but also they reduce 
the model’s performance. The different data types and data structures in the input space 
also affect the performance of a tree-based model [37]. In this study, we have proposed 
the technique of clustering the input space to reduce the data dimensionality and the 
computational cost. This ranged based clustering technique also improves the model 
predictive performances where there are many ties. Besides, we have used a correla-
tional factor among clusters to have better performance. The main research contribu-
tions of this work are as follow.

Proposing a ranged based clustering method to reduce the dimensionality of input 
space and to decrease the computational cost.
Implementing the correlational factor among ranged clusters in the input space to 
increase the performance of the model.
Developing a tunable ranged based model for flexible inventory control by incorpo-
rating both negative and positive data types.
Demonstrating probable backorders scenarios using a decision-based approach 
where the number of ties for classification is minimized.

To our knowledge, the range-based clustering to reduce data dimensionality, combined 
with the association establishment among clusters for better prediction accuracy is new. 
The ranged method that is used in this research can be easily tunable based on the types 
of businesses. We have chosen a tree-based method in our study because the tree-based 
algorithm is appraised as one of the easiest and strongest supervised machine learning 
techniques which is widely used by many researchers e.g., [45, 46]. It is well established 
that predictive models incorporating tree-based techniques provide high accuracy along 
with the interpretive ease. Tree-based algorithms are very effective at mapping nonlinear 
associations which are the shortcomings of other available linear methods [47]. Decision 
trees, random forest, and gradient boosting are some examples of tree-based methods 
that are used in the data science research domain frequently. Some researchers e.g., [45, 
46, 48] have preferred the GBM model for prediction purposes as it provides very good 
accuracy when it is tuned correctly. Considering these advantages, GBM and DRF are 
utilized in this paper.

Dataset and exploratory analysis
The dataset of this research has been published in Kaggle. It is divided into the train-
ing and testing datasets. Each dataset contains 23 attributes with 1,687,862 and 242,077 
observations for the training and testing sets, respectively. Both datasets contain a mix 
of features with floating-point, integer, and string values. For this study, we intend to use 
the most common data attributes that can be readily available for any business. Hence, 
we have chosen inventory, lead time, sales, and forecasted sale as our predicting varia-
bles and ‘went on backorder’ as our response variable. Our target variable is labeled with 
two classes. Hence, this scenario falls under the binary classification problem. The inven-
tory feature indicates an available stock of products, although it contains high numbers 
of negative records. The negative inventory may arise due to the machine or human 
error. It may also occur when a shipment is recorded as complete before it arrives. The 
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‘lead time’ feature indicates the elapsed time between the placement of products’ orders 
and delivery of those products to the customers. The lead time in our dataset ranges 
from 0 to 52  weeks. The sales features are divided into four parts as one-month sale, 
three months sale, six months sale, and nine months sale. The forecasted sale is divided 
into three columns showing the forecast of three months, six months, and nine months.

Figure 1 shows the distribution of some samples in the dataset. It is observable in this 
figure that the data points of different features have many outliers with different ranges. 
In both training and testing datasets, a large number of missing values across the pre-
dicting variables are observed. Moreover, our response variable is highly imbalanced 
with 0.669% data from ’Yes’ class, and 99.33% data from ’No’ class. Figure 1 depicts how 
the data samples are distributed among two classes, where 0 indicates ‘No’ class or non-
backorder items and 1 indicates ‘Yes’ class or backorder items.

Hypothesis testing

The central limit theorem states that the distribution of the sample is normal if the sam-
ple size is large or greater than 30. For large size samples, the distribution of the data can 
be ignored, and parametric tests can be applied. In this study, the Wilcoxon rank-sum 
test with continuity correction is used for the hypothesis test.

We would like to examine the relationship between the products that went on back-
order with some features of our training dataset. First, we want to see whether the 
current level of products’ stock affects the decision of the backorder or not. We have 
assumed a null hypothesis that if the stock level of a product reaches zero, it results in 
backorder. The significance Alpha level of 0.05 is selected, which means that there is a 5% 
chance of rejecting the null hypothesis when the hypothesis is true. It has been observed 
that the p-value for this null hypothesis is far below the significance level. Hence, we 
cannot accept this hypothesis.

In the next stage, it is assumed that the most sold items per month went on backorder. 
To consider this assumption, all the sales columns are added, and the average is calcu-
lated. It is observed that the p-value for this null hypothesis is far below the significance 
level. Therefore, the alternative hypothesis is true.

It is examined whether the lead time factor or the high forecasted demands cause 
backorders. It is observed that the p-value is less than the significance level in both 

Fig. 1  Distribution of samples among features
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cases. Thus, the null hypothesis cannot be accepted. Table 2 includes a summary of the 
hypothesis testing results and decisions.

Methodology
In this study, we build our proposed model mainly focusing on sales and forecasted 
sales. As the product stock level and the lead time of products are commonly known 
attributes, we include these two factors with the sales and forecasted sales data.

Prediction outline

The proposed model can be described using a five-level decision tree to predict back-
order products. In the first level, the current inventory level is considered. Lead time, 
past sales, forecasted sales, and prediction decisions are in levels two, three, four, and 
five, respectively. Figure 2 shows the different levels of the prediction method.

Converting into different range levels isolates the nodes and they may not have the 
same association with other features as the actual numerical values will change to the 
categorical levels. For instance, when the inventory level is converted into different range 
groups, it can be considered as an isolated node as the actual value in this feature is not 
changed. To minimize this issue, the associated factors of inventory level and other fea-
tures are captured. After converting the inventory level into ranges, the range levels are 
multiplied with the association factors. A similar idea is used in path analysis. If A and B 
are two independent nodes and both are associated with a third node, C, then the asso-
ciation between A and B will be the multiplication of the correlation coefficient of AC 
and BC.

In this study, the Spearman correlation method is utilized to capture the association. A 
Spearman correlation coefficient measures the strength of association between two vari-
ables [49]. In the real world, most of the data can be classified as nonparametric. Spear-
man’s method can handle this issue efficiently. If some non-linear relationships among 
two variables exist, Pearson correlation would produce zero which can be interpreted 
as no linear relationship among two variables. Spearman’s method can figure out both 
linear and non-linear relationships among two variables. Moreover, this technique can 
be used for both continuous and discrete variables.

Table 2  Hypothesis testing summary

Question Hypothesis Result analysis Decision

a) Are the products out 
of stock resulting back-
orders?

H0: n = 0; where n = Quan-
tity of product in the 
stock

Ha: n ≥ 1

p-value < 2.2e−16, for  
α = 0.05

Alternative hypothesis 
is true

b) Were the most sold 
items per month pro-
ducing back-ordered?

H0:BackorderYes = n , 
n = Average number 
of products sold per 
month

p-value < 2.2e−16, for 
α = 0.05

The alternative hypothesis 
is true

c) Are the lead time factors 
producing backorders?

H0: BackorderYes = 
factorslead−time .

p-value < 2.2e−16, for 
α  = 0.05

The alternative hypothesis 
is true

d) Are the forecasted 
demands of products 
resulting in backorders?

H0: BackorderYes = 
Forecasthigh

p-value < 2.2e−16, for 
α  = 0.05

The alternative hypothesis 
is true
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Inventory level

In the current inventory stock, there are negative, zero, and positive values. To deter-
mine the stock level, the safety stock is calculated. The safety stock is calculated by 
assuming the most common service level in the retail industry which is 90% [50, 51]. 
The average demand is denoted by Davg . Besides, the desired service level is shown 
by Z, and the standard deviation of lead time is expressed as σLT  . The desired service 
level of 90% is considered in this experiment. The corresponding Z value is fetched 
from the normal distribution chart which gives the value of 1.28. The safety stock is 
calculated for each item using Eq. (1).

The safety stock is subtracted from the current stock value and is distributed among 
five different ranges, namely, negative, zero, low, medium, and high levels. These five 
levels denote the status of the current inventory level.

Negative stock values refer to the situation where the inventory count of the prod-
ucts turns to less than zero. It may happen due to several reasons such as accidental 
duplication of sales.

The zero-stock level happens if no physical unit of products is in the current stock. 
The low, medium, and high stock levels can be defined based on the prescribed ranges 
of supply chain managers. This range may vary based on the business types.

Generally, there is a correlation between lead time and inventory. Low cost or fast 
selling products may have a very fast lead time. However, large and expensive items 
usually have a long lead time.  Similarly, actual sales and forecasted demand have a 

(1)SafetyStock = Z ∗ σLT ∗ Davg

Fig. 2  Decision tree structure
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relational factor with the current stock level. These correlation factors are used to 
intensify the five levels of inventory which can be shown using Eq. (2).

Inventorylevelstatus denotes the numerical representation of five levels. Negative, zero, 
low, moderate, and high levels are shown by 1, 2, 3, 4, and 5, respectively.
ρIL denotes the Spearman correlation factor between inventory and lead time.
ρIS denotes the Spearman correlation factor between inventory and sales.
ρIF denotes the Spearman correlation factor between inventory and forecasted sale.

Lead time

In this research, the lead time is grouped into four different categories including fast, 
moderate, slow, and very slow. Then, it is converted from the week into the number of 
days, and it is grouped in a range as 0 to 10 days as fast lead time, 11 to 40 days as mod-
erate lead time, 49 to 120 days as slow lead time, and 121 to 364 days as a very slow one. 
The ranges may vary based on the type of business. Generally, faster sale items may have 
faster lead time and vice versa. We measure the linear relation among lead time, inven-
tory, average forecast, and average sales. Then, we multiply these factors by the four dif-
ferent ranges of lead time as shown in Eq. (3).

Leadtime levelstatus denotes the numerical representation of the four levels (the fast 
level as 1, medium level as 2, slow level as 3, and a very slow level as 4).
ρIL denotes the Spearman correlation factor between inventory and lead time.
ρLS denotes the Spearman correlation factor between lead-time and sales.
ρLF denotes the Spearman correlation factor between lead-time and forecasted sales.

Sales

The sales quantities are grouped into five different ranges which are very-low, low, 
moderate, high, and very high. The number of ranges can be tuned based on business 
requirements and policies. Generally, the number of items sold has a direct impact on 
the inventory level, lead time, and forecasted sale. These impact factors are used to 
strengthen the sales range as shown in Eq. (4).

Sales levelstatus denotes the numerical representation of five levels, i.e., very-low level 
as 1, low level as 2, moderate level as 3, high level as 4, and very high level as 5.
ρIS denotes the Spearman correlation factor between inventory and sales.
ρLS denotes the Spearman correlation factor between lead-time and sales.
ρSF denotes the Spearman correlation factor between sales and forecasted sale.

Forecasted sale

Companies can forecast based on their sales data. In this study, the forecast is divided 
into five different ranges such as very-low, low, moderate, high, and very high. The range 

(2)Inventorylevel = Inventorylevelstatus ∗ ρIL ∗ ρIS ∗ ρIF

(3)Leadtime level = Leadtime levelstatus ∗ ρIL ∗ ρLS ∗ ρLF

(4)Sales level = Sales levelstatus ∗ ρIs ∗ ρLS ∗ ρSF
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numbers can be changed based on the business type and requirements. The average per-
centage error is calculated to report the forecasting error using Eq. (5).

VSF is the variance between the actual sales and forecasted sales. The range of forecast 
is divided by the forecasting error to eliminate the effect of deviation as shown in Eq. (6).

Forecast levelstatus denotes the numerical representation of the five levels, i.e., very-low 
or 1, low or 2, moderate or 3, high or 4, and very high level or 5.

Prediction equations and notations

In this subsection, the notations and two equations are discussed.
Invi : Five levels of inventory status (Negative, Zero, Low, Moderate, High).
LT j : Four levels of lead time status (Fast, Moderate, Slow, Very slow).
Sk : Five levels of sales status (Very low, Low, Moderate, High, Very High).
Fl : Five levels of forecast status (Very low, Low, Moderate, High, Very High).
ρIL : Spearman correlation factor between inventory and lead time.
ρIS : Spearman correlation factor between inventory and sales.
ρIF : Spearman correlation factor between inventory and forecasted sale.
ρLS : Spearman correlation factor between lead-time and sales.
ρLF : Spearman correlation factor between lead-time and forecasted sale.
ρSF : Spearman correlation factor between sales and forecasted sale.
ε : Average percentage forecast error.
Dyesx

 : Number of yes decision nodes.
Dnox : Number of no decision nodes.
x : Set of n number of items.
Equations (7) and (8) calculate the final backorder decisions.

(5)The average percentage error for forecast, ε =

∑

|VSF|
∑

Actual Sales
∗ 100

(6)Forecast level = Forecast levelstatus/ε

(7)
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n
�
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Because the number of decision nodes grows exponentially based on the number 
of items, we use a tree-based machine learning model to carry out the solution. One 
advantage of this approach is that we can get the interpretable backorder decision sce-
narios from the tree-based approach regarding the dataset. There are some tree-based 
approaches, and among them, the widely used algorithms are Decision Trees, Random 
Forest, Bagging, Boosting, Xgboost, and Gradient Boosted Machine (GBM). The inabil-
ity to handle continuous numerical variables and overfitting are the disadvantages of 
decision trees. Random Forest (RF) algorithm can cope with large datasets including 
multiple dimensions. It can perform both classification and regression. RF is widely used 
for unsupervised clustering in the real world. It works as a black box when large propor-
tions of data are missing or the data dimensionality is unknown. In this study, RF is cho-
sen as the baseline model. GBM is a type of boosting algorithm which applies gradient 
descent technique to minimize the error rate which has made this model popular among 
many researchers in recent years [45–47]. The GBM is selected in this study as the sec-
ond model for the backorder prediction solution.

Experiment
Experimental environment setup

We have initialized the H2O cluster to run our targeted algorithms. Our datasets are in 
the data frame format, and H2O requires the data in the H2O frame format. Therefore, 
the datasets are converted into the H2O frame.

Model construction

The H2O models are constructed for both synthetic minority oversampling techniques 
and random oversampling techniques. The feature variables related to inventory, lead 
time, forecast, and sales along with the response variable for backorder are selected from 
the actual dataset. These features are converted into different class ranges and are multi-
plied by previously captured correlational factors from the actual dataset.

Two GBM models are constructed using the actual data and the converted data. Two 
DRF models are also constructed by a similar process. To speed up the models’ training, 
a separate validation frame is used, which is 35% of the training dataset. The number 
of trees is tuned from 50 to 1000 to have an early stopping or fast runtime. The learn-
ing rate is set to 0.1 for both models. The lower learning rate provides a fine output, 
although it may slow down the training process if it is tuned below the range of 0.01. 
The maximum depth is set to 10 to avoid overfitting of the model and to get interpret-
able outcomes. The higher depth may provide higher accuracy, but the computational 
time will increase. The sample rate is set to 0.9 which means that 90% of the training 
data rows will be considered for each tree. The column sample rate is set to 1 to consider 
100% of the columns per split of the trees.

The first GBM model with actual data has specified the three months sales as the most 
important factor for identifying back order (see Fig. 3). Besides, it has shown 9 months 
forecasts, and three months forecasts, as the second and third important factors, 
respectively.

Using the proposed grouping methods, the GBM model has identified the inventory level 
as the most important feature, nine months sales, and one-month sales, as the second and 



Page 12 of 22Islam and Amin ﻿J Big Data            (2020) 7:65 

third important elements for predicting backorder as shown in Fig. 4. A backorder scenario 
where the inventory is negative/low/very low/ and the sale is moderate/high matches the 
second GBM model.

The first DRF model with actual data has considered three months forecasts as the main 
predicting factor, nine months forecasts, and national inventory as the second and third 
important factors for predicting backorder as shown in Fig. 5. On the other hand, the sec-
ond DRF model with the ranged data has considered national inventory, nine-month sales, 

Fig. 3  GBM model’s important features with actual data

Fig. 4  GBM model’s important features with range converted data

Fig. 5  DRF model’s important features with actual data
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and six-month sales as the top three important factors for predicting backorders as shown 
in Fig. 6.

Model evaluation

Table 3 shows that the GBM and DRF models with actual data and ranged training data 
have no significant difference in terms of the Area Under the Curve (AUC) value. The mean 
per class error is high for the RF model with the ranged data.

Making predictions

The constructed models are used on the testing dataset, and the performances are 
observed by visualizing Receiver Operating Characteristics (ROC) Curve along with 
AUC.

Fig. 6  DRF model’s important features with range converted data

Table 3  Models’ performances during the training phase

Performance metric GBM (with actual 
data)

GBM (with ranged 
data)

DRF (with actual 
data)

DRF (with 
ranged 
data)

LogLoss 0.016 0.019 0.016 0.029

AUC​ 0.994 0.979 0.987 0.985

Mean per class error 0.029 0.089 0.030 0.060

Table 4  Models’ performances during the testing phase

Performance metric GBM (with actual 
data)

GBM (with ranged 
data)

DRF (with actual 
data)

DRF (with 
ranged 
data)

LogLoss 0.098 0.029 0.036 0.042

AUC​ 0.795 0.946 0.787 0.959

Mean per class error 0.423 0.07 0.430 0.103
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Results on test data
Model performance

Table 4 shows that how GBM and DRF models perform when they have been exposed to 
the actual and ranged testing dataset. The mean classification error per class of the GBM 
model with actual data and the DRF model with actual data is high. Moreover, the AUC 
is low for both models with actual data which indicates the overfitting of those two mod-
els in the training phase. One of the main reasons for the overfitting of a model is the 
high diversity of the data in the test phase. It can be observed that the AUC and mean 
class errors are slightly decreased compared to the training phase. This slight variation is 
tolerable in the test phase.

Confusion matrix

The first thing we would like to focus on is the model’s Confusion matrix as it is one of 
the easiest ways to get a glimpse of the correctness of the model. Most of the perfor-
mance measures depend on the different term values of the Confusion matrix. The con-
fusion matrix consists of four terms, namely true positive (TP), true negative (TN), false 
positive (FP), and false negative (FN). Different performance measures are elaborated for 
the prediction run of one model to show how each term can be interpreted. To do so, the 
confusion matrix of the GBM model trained with ranged data is fetched.

The distributions of TP, FP, TN, FN are shown as a Confusion matrix in Table  5. 
According to Table  5, the classifier has perfectly classified 11,915 products as a back-
order. They were marked as went on backorder on the dataset. Therefore, the TP 
instances are 11,915. This predictive model also classified 426,522 products correctly 
which did not go as the backorder. So, we get 426,522 TN instances. The classifier 
marked 3265 products as they did not go on backorder which did go on backorder in the 
dataset. Besides, 1518 products were wrongly classified as went on backorder. Hence, 
we get 3265 FN instances and 1518 FP instances. A high number of TN instances are 
observed because most of the products in the dataset did not go on backorder.

To evaluate the model’s strength, several performance measures are investigated. 
First, we have looked at how many backorder and non-backorder decisions have been 
classified by the model correctly. The classification accuracy of the model in our case 
is 0.9892 which reflects that it predicted approximately 98 products out of every 100 
products correctly, whether those go on backorder or not. The next measure we have 
looked at is what proportions of the products that are predicted as going to the back-
order, actually became backorder. We have done this by dividing the actual true positive 
instances with the cumulative true positive and false positive instances. The proposed 

Table 5  Confusion matrix for GBM with ranged data

Models’ prediction Actual values in the dataset

Backorder Non-backorder

Backorder TP
11,915

FP
1518

Non-backorder FN
3265

TN
426,522
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model predicts 88% of the products correctly that went on backorder. In contrast, the 
specificity of the model is also calculated to figure out the percentage of correctly classi-
fied non-back ordered products by the model, which is 99%. The probable reason for the 
difference between correctly classified true positive instances (88%) and true negative 
instances (99%) is because of the imbalanced class distribution. The error rate of the pro-
posed model is also calculated as 0.0107 which shows the model’s prediction strength.

Comparison table for four models

For simplicity, we did not elaborate on each term of sections 6.2.1 to 6.2.6 for all models. 
The results for all measures are reported in Table 6. From Table 6, it is observed that the 
overall performances of the models with the ranged data are higher than the others. The 
GBM and DRF have performed almost similar for the ranged data. However, DRF per-
formed better than GBM for the actual data. Both GBM and DRF with ranged data have 
misclassified 1 product out of 100 products. On the other hand, the models trained with 
the actual data have misclassified 15–0 products out of 100 products.

ROC‑AUC curve

In this part, we would like to show the performances of our model by visualizing 
Receiver Operating Characteristics (ROC) Curve along with AUC. The ROC curve 
tells us how our models have performed throughout the prediction phase for all pos-
sible threshold values whereas the AUC represents the performance summary in a single 
value. The higher AUC value can lead to a more accurate predictive model. The ROC 
curve is plotted considering True Positive Rates (TPR) in the y-axis, and False Positive 

Table 6  Models’ characteristics during the testing phase

Performance metric GBM trained 
with ranged data

GBM trained 
with actual data

DRF trained 
with ranged data

DRF trained 
with actual 
data

Classification accuracy 0.9892 0.7919 0.9835 0.8436

Precision 0.8869 0.6896 0.8231 0.7213

Recall/sensitivity 0.7849 0.5876 0.8488 0.6893

Specificity 0.9964 0.7991 0.9986 0.8407

F1 score 0.7845 0.6345 0.8357 0.7049

Misclassification error 0.0107 0.2080 0.0164 0.1563

Fig. 7  Area under the curve of GBM models which are trained differently
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Rates (FPR) in the x-axis on a scale from 0 to 1. The TPR and FPR are calculated for each 
threshold point of the classification process. The threshold points are the probability val-
ues that have been used to determine the class.

Figures 7 and 8 depict the performances of the models. The diagonal dotted lines rep-
resent the random guessing states for each threshold. The colored portion of Figs. 7 and 
8 denote the area under the curve. Figure 8 shows the AUC of the DRF models. Both 
GBM and DRF trained with the ranged dataset have produced similar characteristics. 
However, the GBM and DRF models that have been trained with the actual data have 
acted differently in the test phase. The DRF has produced more accurate results than the 
GBM in this case.

Tree investigation for probable backorder cases

We investigate the tree of our models. The investigation begins with the fetching of the 
tree that has produced the highest AUC. As mentioned in “Model construction” sec-
tion, we have selected the max depth of 10. Figure 9 shows the AUC achieved at differ-
ent depths. This figure illustrates that the selected model reached AUC of almost 94% at 
Depth 9. The trees are sorted based on their AUC values in the descending order, and 
the first tree is pulled out. To understand how the tree is grown, the sample representa-
tion for each level is presented.

Figure  10 shows that the negative inventory level has produced the probability of 
positive 0.19 which means that the products with negative inventory may lead to the 

Fig. 8  Area under the curve of DRF models which are trained differently

Fig. 9  AUC of GBM trained with ranged data at different depth
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backorder in 19 cases among 100 cases. In addition, 17 products out of 100 which have 
zero or no stock may go to the backorder. It is also noticed that the high and the medium 
inventory levels produce a 30% chance together that the items may not become a back-
order. The sign in the prediction denotes the binary class (yes or no, 0 or 1). In our case, 
the positive ( +) sign in prediction denotes the chance to become backorder, and the 
negative (−) sign denotes the probability of non-backorder.

Figure 11 shows that the slow and very slow lead time produces a 25% chance of back-
order scenario. There is a 15% chance that the product is not a backorder product if the 
lead time is in the moderate range.

Figure  12 depicts that the moderate and high sales levels produce 9% chances of 
backorder whereas the low and very low sales denote that there is a 2% chance for 
non-backorder.

Figure 13 shows that if the forecast level is very high, there is a 20% chance for the 
product to be backorder. These backorder chances are almost 8% for the moderate fore-
cast level, and 5% for the high forecast level.

Figure  14 depicts that if the inventory level is negative or zero, there are 16 to 20% 
chances of backorder for different lead time levels. For the low inventory level, if the lead 
time level is moderate, the product may become backorder in 14% of cases.

Figure  15 shows that if the inventory level is negative or zero, there are 16 to 19% 
chances of backorder for different sales levels. For the low inventory level, if the sales 
level is either high, low, or moderate, the product may be considered backorder in 16% 
of cases.

Fig. 10  GBM model’s inventory level distribution for backorder class

Fig. 11  GBM model’s lead time distribution for backorder class

Fig. 12  GBM model’s sales distribution for backorder class
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Figures 10, 11, 12, 13, 14, 15 show how the tree grows with backorder probability for 
different range levels. For simplicity, we have not included every part. Table 7 includes 
the probable causes of the backorder for the full tree.

The majority count rank-based data in Table  7 can be used to get more opti-
mal backorder scenarios as depicted in Fig.  16. As an example, consider any spe-
cific product item ‘A’ with a fast lead time. Suppose that the inventory level of ‘A’ is 
observed either in negative/zero/medium levels along with the high sales level and 
high forecast level. In this scenario, there are 20% chances that the product item ‘A’ 
will be backorder.

Conclusions
Early prediction of different business issues helps organizations to act in advance and 
retain the profit along with business goodwill. The focus of this study is on the product 
backorder. In this research, the probable backorder items have been predicted using two 
machine learning techniques. Prediction using real-world data is sometimes challeng-
ing as it suffers from many problems such as high bias, redundancy, and missing values. 

Fig. 13  GBM model’s forecast distribution for backorder class

Fig. 14  GBM model’s inventory and lead time level distribution for backorder class

Fig. 15  GBM model’s inventory and sales level distribution for backorder class
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More specifically in our case, the impacts of negative values and high variance are well 
observed. Data pruning can be one of the solutions, but it requires the availability of 
experts which is costly more often. In this study, a ranged technique is proposed to solve 
this issue. The actual data and the ranged data have been used in both machine learning 
models, and their performances have been compared. The comparison result shows that 
the models’ performance increases by approximately 20% when they are trained with the 
ranged data.

As the market characteristics are varying rapidly based on the customers’ demands and 
expectations, flexibility in inventory control is required to maximize the profit. In this 
proposed method, the ranges of different inventory, lead time, sales, and forecast levels 

Table 7  Backorder cases where p ≥ 0.2

inv_level sales_level forecast_level leadtime_level Prediction >  = 0.2

Low Very low Moderate Very slow 0.2

Zero Very low very high Fast 0.2

Zero Low Low Fast 0.2

Negative Low High Fast 0.2

Zero High High Fast 0.2

Negative Moderate High Very slow 0.2

Negative Moderate Very low Fast 0.2

Negative High Moderate Fast 0.2

Zero High Very low Moderate 0.2

Low Very low High Fast 0.2

Medium High Moderate Moderate 0.2

Medium High Very low Moderate 0.2

High High Very low Moderate 0.2

Medium High High Very slow 0.2

Medium Very low High Very slow 0.2

Fig. 16  Distribution of probable backorder cases for 20% backorder probability
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are easily tunable. These ranges can be tuned based on business types, business require-
ments, and goals. The correct identification of backorder probability and tuned range 
during inventory control may play a critical role in boosting up revenues and profits. 
This method not only copes with negative inventory data but also minimizes the number 
of ties in the model building phase as well as in the prediction phase. Tie happens when 
exact prediction variables’ values are found among more than one class. Based on the 
majority of similar events of a tie, the model decides the class for those events. When 
the number of ties increases, computational complexity also increases. Decision mod-
els produce incorrect results when there are too many ties. Instead, the use of ranged 
data decreases the number of ties. The ranged method may be time-efficient for big data 
records. The decision authority of the respective business will have a broader picture 
of the backorder conditions as reported in Table  7 and may take necessary actions in 
advance.

In this paper, it has been shown that based on known inventory, lead time, sales, and 
forecasted sales, we can identify those products that will be backorder products. How-
ever, the relational factors such as local buyout quantity, past due stock, suppliers’ per-
formances, and different product risk flags have not been considered because of the lack 
of that information. We may focus on those factors in our future work. As the uncer-
tainty of demand plays a vital role to make the market volatile, the relationship between 
the predicted demand and the predicted backorder may also need attention. As future 
research, the mentioned perspectives can be considered to develop an integrated model 
and to understand more accurate backorder scenarios in advance.
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