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Introduction
Traditional food knowledge is the collective cultural wisdom of food systems that is 
passed down through generations [1]. Food systems involve the processes of production, 
processing, distribution, and consumption of food [2]. Hence, the sociocultural, eco-
nomic, and health aspects of a specific ethnic group of a specific region can be inferred 
based on the traditional food knowledge. Traditional food knowledge helps in main-
taining cultural diversity and ensuring food security for the community [1]. Accord-
ing to Sharif, the cultural identity of an ethnic community or region corresponds to the 
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traditional food [3]. In other words, traditional food represents the cultural diversity of 
a region, as it uniquely represents each ethnic community within the region. Therefore, 
it is essential to preserve the traditional food knowledge to maintain the diversity of the 
region. The food security in a region can be ensured by suitably managing the food sys-
tems. The Director of the Food and Agriculture Organization of the United Nations rec-
ommends implementing this concept based on the associated territory to rediversify the 
dietary intake of a community. Dietary diversity is specifically required for traditional 
diets [4]. Furthermore, localizing the food systems can support the local food suppliers 
in the agricultural sector and boost the economy of the region.

Indonesia has one of the most diverse cultural heritages in the world. The southeast 
Asian nation has more than 300 unique ethnic groups. As mentioned previously, the cul-
tural identities of these ethnic groups are related to the traditional foods. Owing to the 
large number of unique ethnic groups in Indonesia, the number of distinct traditional 
food is also quite large. Despite the rapid urbanization of the country, the dietary prefer-
ences of both rural and urban residents still include traditional foods [5]. However, the 
dietary preferences of certain small ethnic groups that have moved to megacities such as 
Jakarta have shifted towards western food [5]. Recently, several efforts have been con-
centrated to ensure food security in Indonesia. Ensuring food security is essential to pro-
tect the diversity of traditional foods in Indonesia, as the appropriate food systems must 
be implemented for each region. However, according to a study conducted by the United 
Nations World Food Program (UN WFP), several regions in Indonesia are still catego-
rized as “chronically food insecure.” One of the listed causes of this problem is that the 
food supply and availability threaten the food security in Indonesia [6]. This fact is also 
supported by an existing work [7]. In several regions of Indonesia, food is either under 
or oversupplied. The UN WFP recommends developing a surveillance system to realize 
food security and satisfy the nutrition requirements in Indonesia.

To the best of our knowledge, at present, no specific Indonesian food database is avail-
able that describes the traditional food knowledge of a specific region in Indonesia or can 
be used to realize a surveillance system for the food supply. Iqbal and Permadi mapped 
the nutritional values of Indonesian food. However, this study did not consider the food 
knowledge, in terms of how the food was produced and processed, among other fac-
tors [X1]. The Indonesian Ministry of Health attempted to achieve a similar goal using 
the website panganku.org, which primarily focuses on the composition of the nutrients 
inside the food. However, panganku.org does not specify certain necessary information 
about the food, such as its place of origin and grouping.

Considering these problems, the objective of this study was to create a new and scal-
able platform that can record the traditional food knowledge of Indonesian. The system 
was designed as a database to monitor the specific food systems for various Indonesian 
regions. The first phase of this system was to prepare a new Indonesian traditional food 
dataset to realize automatic food classification in Indonesia. This dataset was used to 
train the automatic classifier to classify Indonesian foods automatically. The dataset was 
prepared in a standardized manner in a professional laboratory setting. The standardiza-
tion of data gathering was expected to enhance the accuracy of the classifier.

The dataset and automatic classification system can be used to prevent the loss of the 
traditional food knowledge. The dataset includes traditional foods from different ethnic 
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groups from several regions in Indonesia. Moreover, the system can be used as a surveil-
lance system to monitor the supply of commodities in a given region, as recommended 
by the UN WFP. Thus, the system can help address the problem of threatened food secu-
rity in Indonesia.

The remainder of this paper is organized as follows: The introduction section 
describes the general problem and the high level solutions proposed in this research. 
The subsequent section describes several related works on traditional food classification 
performed using various datasets and classification algorithms. The methodology sec-
tion describes the process used to classify the traditional food data. The fourth section 
describes the automatic classification experiment setup and its results. The results and 
their analysis are discussed in this section. Finally, the conclusion summarizes the exper-
imental findings of this paper.

Food datasets
Food datasets have been developed in several studies for various objectives. Most 
of these studies corresponded to the detection and recognition of the type of food to 
achieve the primary objectives, such as calorie counting and nutrition calculation. In 
several studies, food images were captured to record eating habits. Joutou and Yanai 
developed a 50-class food dataset from the web, consisting mostly of Japanese food with 
some western foods [8]. Subsequently, the authors extracted the features for each type of 
food and classified the data using MKL SVM. Wazumi et al. conducted a similar study 
in which Japanese food images were collected and classified to prepare a dietary log. 
However, instead of collecting the images from the web, the authors collected the food 
images from a university cafeteria, which were organized into 20 different classes. More-
over, each image in the dataset likely included various foods, as the images corresponded 
to the food placed on cafeteria trays [9]. Furthermore, Ciocca et al. performed multiple 
food classification. The authors acquired 3616 different food images from the univer-
sity cafeteria, which were organized into 73 different classes. Subsequently, the authors 
classified the data by using a deep learning technique involving convolutional neural 
networks [10]. Zhu et al. collected 79 different classes of food, consisting of 20 to 50 dif-
ferent foods per class. Similar to in previous research, the image data contained various 
foods that were classified to assess the food and beverage intake. The food images were 
classified using the SVM classifier, with the color, texture, and SIFT features extracted 
from the dataset. In another study, researchers performed food recognition for dietary 
assessment [11]. American fast food images were acquired under restaurant and labora-
tory settings. In addition to the images, the authors also collected videos of the food. The 
dataset included seven classes of 101 different food images.

Furthermore, several researchers gathered food datasets to be implemented in systems 
to automatically determine the number of calories or food portions. In [12], 3000 dif-
ferent images were collected and classified into different types of foods. Subsequently, 
the system could automatically measure the calorie intake for the food. Similar efforts 
were made in studies [13] and [14]. The main focus of [13] was to classify food data from 
the ETH Food 101 dataset combined with the authors’ Indian food dataset. The authors 
utilized ensemble deep networks, consisting of the AlexNet, GoogleNet, and ResNet 
frameworks. The ETH Food 101 dataset consists of 101 classes of food, and the authors’ 
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Indian food dataset, extracted from the web, consists of 50,000 images classified into 50 
classes.

Furthermore, in another study [14], a complete system to measure the calories of sev-
eral foods in a single image was developed. The authors used the faster R-CNN to clas-
sify images from the web and the UEC Food 100 images, which primarily correspond to 
Japanese food. Anthimopoulos et al. classified food images to measure the carbohydrate 
(CHO) intake to develop a system for Type 1 diabetic patients. The image dataset con-
sisted of 5000 different images acquired from the web. The authors utilized various clas-
sifiers, such as ANN, SVM, and random forest.

In various studies, images of local food were acquired to create a dataset. Phat et al. 
collected 2315 images of Vietnamese food divided into five different classes [15]. The 
images were obtained from the web. The authors used convolutional neural networks 
with handcrafted feature extractors, such as SIFT, SURF, and HOG. Similarly, in studies 
[16] and [17], Thai food was classified using convolutional neural networks and the mod-
ified visual geometry group (VGG) 19 network, respectively. In study [16], the authors 
developed a dataset via participants using a smartphone. The dataset included 3960 
images divided into 11 different classes. In addition, in study [17], 7632 food images 
were collected from the web and divided into 11 different classes.

In this research, the data were acquired in a professional laboratory setting, similar 
to in study [11]. The literature review indicates that in nearly none of the existing stud-
ies were the image datasets acquired in a standardized environment. Therefore, in this 
work, the data acquisition process was standardized to ensure the same level of qual-
ity between each image in the dataset. The data for Indonesian traditional food were 
acquired. In recent literature [14, 18], deep learning approaches have been used to 
develop the classifier. Therefore, in this work as well, the data were classified using four 
different deep learning models: ResNet50, InceptionV3, Densenet121, and NasNetMob.

Proposed method
The methodology for this research is illustrated in Fig. 1. The investigation involved four 
main processes: acquisition of traditional food image data, preprocessing, development 
of automatic recognition model, and model evaluation. In the initial process, we cap-
tured the food images using professional photo studio equipment. High-quality food 
images were recorded professionally, and automatic classification of Indonesian food 
images was realized.

The images were obtained under identical settings for the light intensity, camera 
parameters (ISO, aperture, and shutter speed), object position, and camera position. In 
the preprocessing stage, the RAW files captured from the camera were edited to ensure 
that all the food images in the dataset had the same exposure and size. After ensuring 
that the data had identical exposure, training was performed using the food image data-
set. A total of 1644 food images were obtained in the data collection process. The data 
consisted of 34 types of traditional foods, with 30–50 pictures for each type of food. The 
total size of the raw data for the food image dataset was 53 GB. The data.

were divided into training, testing, and validation data. Specifically, 70% of the data 
was used as training data, 20% was used as testing data, and 10% was used as valida-
tion data. As mentioned previously, the training on food image datasets was realized 
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using several kinds of deep learning network models such as Densenet121, Resnet50, 
Inception-V3, and Nasnetmobile. The evaluation results were evaluated considering the 
metrics of AUROC values, accuracy, precision, recall, F1 score, and model training time.

Acquisition of professional food images

As mentioned previously, the dataset consisted of 1644 images of traditional food. Sev-
eral sample images in the processed food dataset are shown in Fig.  2. The traditional 
food considered in this research originated from various parts of Indonesia. Specifi-
cally, five, twenty, three, five, and three types of the food originated from the island of 
Sumatera, islands of Java-Bali-Lombok, Kalimantan, Sulawesi, and Papua, respectively. 
Thirty to fifty images were obtained for each food type. All the images in the dataset had 
consistent shooting angles, albeit with different augmentations. For every food image, 
the camera was set in two different angles, 45° and 90°. Every image in the dataset was 
obtained under identical shooting conditions (same exposure and ambience). The total 
size of the food image dataset was 53 GB.

Fig. 1  Research workflow
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The data were not collected using search engines. Instead, the food data were acquired 
by delivering each food item to the studio lab to ensure consistency in capturing the 
pictures. Each food item was treated equally during the acquisition processes. Therefore, 
the resulting images were obtained under identical conditions for the camera sensor. The 

Sumatra

Jawa-Bali-Madura

Kalimantan-Sulawesi-Papua

Fig. 2  Sample images from the traditional food image dataset
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distance of the food to the camera was measured using a laser distance sensor placed 
3 m from the front side and 1 m from the top side. The light intensity during shooting 
was 1250 lumens. Moreover, the camera settings were set to the same value to ensure 
that each type of food had the same exposure during imaging. The camera was used in 
the manual mode, with the aperture, ISO, and shutter speed set to f/8.0, 100, and 1/50 s, 
respectively. This acquisition method is unconventional, as in general, almost all datasets 
are obtained with the camera in the automatic mode, which results in different expo-
sures owing to the camera automatically changing the settings for each image capture.

Preprocessing

During data acquisition, the file generated by the camera is a RAW file and not a jpeg 
file. Standard camera settings produce JPEG files captured from camera sensors. How-
ever, the jpeg file does not fully represent the conditions captured by the sensor because 
an automatic process is conducted internally by the camera processor to ensure that 
the resulting image matches the shooting conditions. Moreover, the JPEG file is a lossy 
file, which means that certain captured results are ignored, and the information is not 
entered into the file to reduce the file size. Unlike jpeg files, raw files record all the pixel 
conditions of images captured by the camera sensors with a higher dynamic range than 
that of jpeg files. The resolution for each shot is approximately 4864 × 3868 pixels and 
240 dpi.

At the preprocessing stage, each image was subjected to the same preprocessing treat-
ment. If a jpeg file is used, the enhancing and preprocessing are done automatically by 
the camera. Jpeg images from the camera lead to a different exposure for each image. 
The size of each raw file ranges from 21–30 MB in contrast to the jpeg file, whose size 
is approximately 2–3 MB. The depth per inch (DPI) for the raw camera and smartphone 
camera images is approximately 240 DPI and 70 DPI, respectively.

Each captured image in the dataset (in raw form) was obtained under the same expo-
sure. Therefore, all the preprocessed images had the same capture quality, ambient 
lighting, position and augmentation, thereby leading to a high quality image dataset. 
Subsequently, each image was cropped. The cropped image contained only the actual 
food. The cropped part was considered as the captured image of the food, and most 
images included a small cross-section, because certain parts of the food likely spilled 
over from the container.

Model development

To realize automatic recognition, the CNN model was used for automatic feature extrac-
tion. We tested several CNN network approaches for traditional food, namely, depth-
based CNN principles and multipath based CNN.

The CNN architecture has been constantly improved since 1989, in terms of param-
eter optimization, structural changes, and regularization. However, the most significant 
contribution to the implementation of CNNs is the development of blocks and restruc-
turing of the processing unit. The development trend of CNNs includes the development 
of more in depth or more diffused architectures. The improvement of CNNs can be cat-
egorized as spatial improvement, depth improvement, and multipath improvement.
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In this work, depth-based CNN and multipath-based CNN were evaluated. Both 
the CNN methods have different operation mechanisms. The depth-based CNN is 
deeper and more efficient compared to shallow networks in preparing representa-
tions. However, these CNNs encounter the gradient vanishing problem. In contrast, 
in multipath-based CNNs, the path attempts to correct the vanishing gradient prob-
lem by creating a gradient that can access the lower layers. Our evaluation indicated 
that multipath-based CNN (Densenet-121) can achieve a higher AUROC compared 
to that of the depth-based CNN (Inception-V3).

Depth‑based CNN

According to the CNN principle, a deeper network is better at target function esti-
mation. This method increases the feature representation and nonlinear mapping. In 
theory, a deep network is more efficient compared to shallow networks in preparing 
representations. Csaji et al. considered a single hidden layer to be sufficient to per-
form several functions; however, this approach was not feasible owing to the large 
computations [19]. Bengio et  al. suggested that deep networks may have the same 
representation capabilities, albeit with more efficient computing capacities [20, 21]. 
Inception and VGG, which represent depth based CNNs, exhibited a high perfor-
mance in the 2014-ILVR computation [22–25].

ResNet  ResNet was proposed by He et al. [26], and this network is a continuation of 
the deep network. ResNet can implement a CNN that is 152 layers deep. The archi-
tecture of the residual ResNet is 20 and eight times deeper than that of the original 
AlexNet [27] and VGG [28], respectively. He et al. demonstrated that the ResNet with 
50,101,152 layers can achieve more accurate results compared to the results obtained 
using 34 layers. During testing, the Resnet demonstrated a 28% increase in the accu-
racy when using COCO 114 datasets. This finding proves that depth is an essential 
parameter to realize image recognition.

Inception‑V3  Szegedy et al. proposed Inception-V3, which is an improved version 
of Inception V1/2 [25]. The main concept of Inception-V3 is to reduce the computa-
tion of a deep neural network without reducing the generalization ability by changing 
large filters (5 × 5 and 7 × 7) to small and asymmetrical filters (1 × 7 and 1 × , respec-
tively). This process narrows the filter before it is fed into a larger filter [25]. These 
filters make the convolutional processes similar to those of cross-channel correlation 
[29].

Inception-V3 utilizes a 1 × 1 convolution operation that maps the input data into 
3 or 4 separate spaces smaller than the input space. The mapping correlations are 
performed in smaller 3D spaces with 3 × 3 or 5 × 5 convolutions. In the Inception-
ResNet, Szegedy et al. combined the capabilities of residual learning and inception 
blocks [26, 29, 30]. At this stage, the residual connection replaces the concatenation 
filter. Szegedy et al. also demonstrated that training with a residual connection sig-
nificantly accelerates the training of inception networks.
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Multipath based CNNs

Deep network training is complex. Deep CNN can be used to realize the efficient 
computing of complex tasks. However, deep networks experience performance deg-
radation in the form of gradient vanishing problems, which result in increased errors 
during training and testing [31–33]. However, it this phenomenon is not caused by 
overfitting [30, 34]. The concept of multipath or cross-layer connectivity can be used 
to address this problem [35–38]. The cross-layer network connectivity is divided into 
several blocks. The path attempts to correct the vanishing gradient problem by creat-
ing a gradient that can access the lower layers. To this end, several shortcut connec-
tions are developed, including zero padded, proconnection based, dropout, and 1 × 1 
connections.

ResNet  To address the problems in deep networks, He et  al. proposed the use of 
ResNet. ResNet is a CNN architecture with a depth based CNN that bypasses the 
pathways [21]. This network was inspired by highway networks [35]. ResNet can be 
mathematically formulated as in Eqs. (1) and (2).

In Eq. (1), f (xi) is transformed into a signal, where xi is the original input. The first 
input xi is added to f (xi), thereby bypassing the pathways. In Eq. (2), g (xi) performs 
residual learning operations. ResNet introduces shocut connections to exhibit cross-
layer connectivity. Each gate in ResNet has independent data and parameters. In 
highway networks, when the shortcut to a gate is closed, the layers act as a residual 
function [35]. However, in ResNet, the residual information is always transmitted, 
and the shortcut identifier is never closed. The shortcut connections increase the con-
vergence speed of a deep network and mitigate gradient diminishing problems.

Densenet  Densenet is a continuation of the highway network and ResNet. Densenet 
can solve the vanishing gradient problem [26, 35, 36]. ResNet explicitly stores informa-
tion through additive identity transformations, wherein many layers contain little to 
no representative information. Moreover, ResNet has a large weight for each layer. To 
solve this problem, DenseNet utilizes the cross-layer connectivity concept, albeit in a 
different manner. Specifically, Densenet connects the intermediate layers by using the 
feedforward method. In this case, the feature map from the previous layer is used as 
the input for all the subsequent layers.

Densenet connections are represented as l(l + 1)/2, where l represents the connec-
tion between the layers in a traditional CNN. This aspect results in cross-layer depth 
wise convolution. Densenet does not add feature layers but concatenates the features 
of the previous layers. Therefore, the network can distinguish the information that 
must be stored and the information that must be added. Densenet has a simpler layer 
structure compared to that of the ResNet. However, Densenet has more parameters 
owing to the addition of the feature maps. The flow of information from each layer 

(1)g(xi) = f (xi)+ xi.

(2)f (xi) = g(xi)− xi.
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through the gradient and loss function improves the process of delivering information 
on the network, leading to a positive regularization effect that reduces the overfitting 
during training.

Nasnet  Nasnet helped in the realization of a search space known as the neural archi-
tecture space (NAS). The network child is trained to converge and enhance the accuracy 
in a held out test architecture. The results are used to update the controller so that the 
controller can have the optimal architecture. The building blocks of NASnet are repetitive 
blocks consisting of a combination of convolution filters. The convolution filters must be 
selected carefully to generate accurate results. NASnet can be used to develop an RNN 
controller to predict generic convolution cells, which can manage the inputs having sev-
eral spatial dimensions and filter depths. NASnet has a top 1 accuracy of 74%, which is 
3.1% better than that of state of the art models for mobile platforms [38].

Model evaluation

After classifying the images of the traditional food, the performance of the classification 
methods is evaluated considering the average area under receiver operating characteris-
tic (AUROC), accuracy, precision, recall, and F1 score. We evaluated the AUROC results 
from every food class and obtained the average of those values. The accuracy was calcu-
lated using Eq. (3).

Moreover, we obtained the precision, recall, and F1 score using Eqs. (4), (5), and (6), 
respectively.

where tpi is a true positive, fni is a false negative, and fpi is a false positive. The F1 score 
was calculated using Eq.  (6). In addition to the model accuracy, we also measured the 
execution time for each training model. The training model time was measured from 
when the image dataset was loaded up until 50 epochs in the training process. The work-
stations were used exclusively during training, and no other processes were conducted 
during training.

The data acquisition, preprocessing, and model development were performed consec-
utively. To evaluate the result, we assessed the traditional food image dataset obtained 

(3)Accuracy =
Correctly classified data

Total data
.

(4)Recall =

∑l
i=1

tpi
∑l

i=1
tpi + fpi

.

(5)Precision =

∑l
i=1

tpi
∑l

i=1
tpi + fni

.

(6)F1 = 2
Precision ∗ Recall

Precision+ Recall
.
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using a few deep learning models based on a few metrics (AUROC, F1 score, and model 
training time.

Results and discussion
This section describes the analysis of the obtained traditional food dataset. Several 
methods were used to divide the data into training data, testing data, and validation 
data. As described in the next subsection, we measured and analyzed the performance 
of several deep learning methods evaluated considering the dataset. The evaluation met-
rics included the AUROC value, F1 score, precision, and recall.

The limitation of this work corresponds to the lack of existing research on complete 
food classification in Indonesia. Several studies presented the result of small datasets 
for Indonesian food classification. However, the complete reference for the variations of 
food types representing several regions in Indonesia is not available. Moreover, in previ-
ous studies, the dataset was obtained from the internet or the food images only had a 
small sample size.

Data preparation and analysis

The data from the preprocessing stage was divided into three parts, namely, training 
data, testing data, and validation data. The training data was used by the model to real-
ize supervised learning. The validation data was used to validate the supervised learning 
during training. The testing data was used to test the model after training. The com-
position of data was as follows: 70%, 20%, and 10% of the data were used as the train-
ing data, testing data, and validation data, respectively. The composition for each fold is 
illustrated in Fig. 3.

70 %

20 %

10%

100 %

20 %

10%

70%

20%

10 %

40 %

30 %

All food dataset Training data Tes	ng data Valida	on data

Fold-1 Fold-2 Fold-3

Fig. 3  Illustration of data composition
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To enable a more extensive evaluation, a threefold dataset was employed. Therefore, 
the data of all the images were used as training, testing, or validation data. The tradi-
tional food image dataset included 1644 images for 34 types of food. Each food corre-
sponded to 30–50 pictures.

Model analysis and evaluation

The dataset was evaluated using several metrics, including AUROC, precision, recall, 
F1 score, and training time. The CNN network models used to test the performance 
included Dense121, ResNet50, InceptionV3, and Nasnet Mobile. The computer specifi-
cations were the same for all the experiments; no other users used the computer during 
the simulations. The computer specifications were as follows: CPU: Dual 20 Core Intel(R) 
Xeon(R) CPU E5-2698 v4 @ 2.20 GHz; RAM-512 GB 2133 MHz DDR4 LRDIMM; Stor-
age 4 × 1.92 TB SSD Raid 0; GPU 8 × Tesla V100 1 Petaflop GPU Memory 128 GB; Net-
work: Dual 10 GbE 4 IB EDR; Software and OS: Ubuntu Linux Host OS; Power: 3200 W.

In the experiments, the metrics were obtained (AUROC, precision, recall, F1 score, 
and time execution) for each component of the testing data (fold 1, fold 2, and fold 3). 
The AUROC test was performed for each epoch during the training process. Figures 4 
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Fig. 4  Food dataset (fold 1), a AUROC and b val_loss performance
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and 5 show the results for the training process evaluation. The test results for the testing 
data are presented in Fig. 6.

15th epoch. Moreover, the val_loss for all the network models decreases with the 
increase in the epochs. As shown in Fig. 4b, the val_loss is already minimal (0.1–0.5) in 
the InceptionV3 and NasnetMobile network models in epochs one to five. The val_loss 
value of the Resnet50 and Densenet121 models in the 15th epoch ranges between 0.5 
and 1.7. At the 50th epoch, all the network models have an AUROC value of 0.88. This 
finding indicates that each network model can adequately classify the dataset validation 
at each epoch. The dataset validation consists of 10% of the dataset.

The fold 2 experiment has the same characteristics as the fold 1 experiment. As shown 
in Fig.  5a, all the network models exhibit a high AUROC value after the 20th epoch. 
This result is slightly different from that for fold 1 experiments, in which the AUROC 
value is stable in the 15th epoch. As shown in Fig. 5b, the val_loss (0.1–0.5) is minimal in 
the InceptionV3 and NasnetMobile network models in epochs 1–9. The corresponding 
values for the Resnet50 and Densenet121 range from 0.5–1.5. At the 50th epoch, all the 
network models have an AUROC value of 0.99. In fold 2 experiments, the AUROC value 
is lower than that in the fold 1 experiment (0.88).
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According to Fig.  5a, of the four network models, Dense-net121 can attain an 
AUROC value of more than 0.9 at the 5th epoch, followed by NasnetMobile. The new 
Resnet50 and InceptionV3 models attain epoch values of more than 0.9 in the 19th 
epoch. Although Densenet121 has a reasonably large decrease in the val_loss com-
pared to that in other network models, Densenet121 can rapidly achieve the maxi-
mum AUROC value in fewer epochs compared to the other network models.

From the results in Figs. 4 and 5, it can be concluded that Densenet121 undergoes 
slow learning owing to the gradual decrease in the val_loss. This aspect is advanta-
geous as the model becomes generalized to the food dataset and rapidly attains a 
higher AUROC metric than the InceptionV3 and Resnet50 models. The literature also 
indicates that the Densenet121 can generate excellent results even with small training 
datasets.

The fold 3 experiment results exhibited the same trends as those for fold 1 and 2 
experiments. As shown in Fig. 6a, all the network models exhibited a high AUROC value 
after the 17th epoch. As shown in Fig. 6b, the val_loss value (0.1–0.5) is minimal in the 
case of InceptionV3 and NasnetMobile in epochs 1 to 9, whereas the corresponding val-
ues for the Densenet121 and Resnet50 are 0.5–2.4 and 0.2–0.7, respectively. At the 50th 

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

epochs

AUROC - (Fold-3)

Densenet121 Resnet50 Incep�onV3 NasnetMobile

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

epochs

Val_loss (Fold-3)

Densenet121 Resnet50 Incep�onV3 NasnetMobile

a

b

Fig. 6  Food dataset (fold 3), a AUROC and b val_loss performance



Page 15 of 19Wibisono et al. J Big Data            (2020) 7:69 	

epoch, all the network models exhibit an AUROC value of 0.94, which is higher than that 
for fold 1.

According to Fig. 6a, among the four network models, NasnetMobile can achieve an 
AUROC value of more than 0.9 most rapidly, at the 5th epoch. This finding is in con-
trast to those of fold 1 and fold 2 experiments, in which the Densenet121 attains a value 
higher than 0.8 or 0.9 in fewer epochs.

As shown in Fig. 6a, the InceptionV3 has an epoch value of more than 0.9 in the 9th 
epoch, followed by Resnet50, which attains this value in the 17th epoch. From the results 
shown in Fig. 5, it can be concluded that NasnetMobile exhibits the highest performance 
when testing the fold 3 dataset. This result is different from that for fold 1 and fold 2 
experiments, in which Densenet121 exhibited the best results.

The test results for the food dataset fold 1, fold 2, and fold 3 show that all the network 
models can achieve AUROC values of more than 0.8. Subsequently, testing was per-
formed using the validation data. The AUROC results for each fold were as follows: the 
values for folds 1, 2, and 3 were 0.88, 0.97, and 0.94, respectively. In folds 1 and 2, a stable 
AUROC value was most rapidly achieved by Densenet121, at the 5th epoch for fold 1 
and 5th epoch for fold 2. In fold 3, the most stable AUROC was most rapidly attained by 
Nasnetmobile, at the 5th epoch.

Figure 7 shows the average time for the fold 1, fold 2, and fold 3 scenarios for all the 
network models. InceptionV3 has the smallest simulation time of 3737  s, followed by 
Resnet50 (3790 s), Densenet121 (3931 s), and Nasnetmobile (4361 s), respectively. These 
results indicate that InceptionV3 and Resnet50 have a lower simulation time; however, 
the AUROC values for InceptionV3 and Resnet50 are not the highest. Densenet121 
obtained the highest AUROC values in fold 1 and fold 2 scenarios, whereas Nasnetmo-
bile exhibit the highest values in the fold 3 scenario.

The training time for Nasnetmobile and Densenet121 was 10  min and 5  min larger 
than that for InceptionV3. However, both the network models attained the high-
est AUROC value more rapidly than InceptionV3 and Resnet50. Thus, Densenet121 

Fig. 7  Average model training time
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requires a small epoch to obtain the maximum AUROC value. This aspect has signifi-
cant implications in reducing the total time because a substantial repetition of epochs is 
not required in the training process to obtain the maximal AUROC value.

Experiments were performed on three folds, namely, folds 1, 2, and 3. The results for 
the dataset testing are shown in Fig. 8. The simulation results indicate that, in general, 
the evaluation of traditional food types using various network models produced satisfy-
ing results. The obtain AUROC values were more than 0.98, the accuracy values were 
higher than 0.90, precision and recall were higher than 0.92, and the F1 score was larger 
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than 0.88. These results could be obtained because the dataset was acquired profession-
ally under the same ambient, exposure, and shooting settings for each image.

Due to the diverse ways of serving food items, the model encounters challenges when 
detecting the same food in a different dish. For example, Cendol can be served in a bowl 
or glass. If the training was performed using Cendol in a glass, the results for Cendol in a 
bowl may not be 100% accurate.

The measurement results show that the Densenet121 model attains the highest accu-
racy, precision, recall, and F1 score; all the values were more than 0.994. Furthermore, 
Nasnetmobile achieved values of more than 0.961 for all the metrics. Inception V3 
achieved a high accuracy (0.901), precision (0.927), recall (0.907), and F1 score (0.899). 
Similar to Inception V3, Resnet50 also achieved a high accuracy (0.921), precision 
(0.953), recall (0.938), and F1 score (0.899). The high accuracy of Densenet121 occurs 
because of its architecture. As mentioned previously, the specific information that must 
be stored and the information that must be added are distinguished. This specific attrib-
ute of the Densenet successfully prevents the occurrence of the diminishing gradient 
phenomenon in the model.

The results indicated that the performance of Resnet50 and Inception V3 is not as 
high as that of Densenet121 and Nasnetmobile due to the occurrence of overfitting 
during training. Densenet121 and Nasnetmobile could maintain the value of val_loss 
at the end of the epoch as 0.081 and 0.0014 in fold 1, respectively. However, in fold 
1, Resnet50 and InceptionV3 produced the minimum val_loss values, 0.00053 and 
0.00033, respectively. This phenomenon was also observed in fold 2, in which Dense-
net121 and Nasnetmobile could maintain the value of val_loss at the end of the epoch 
as 0.061 and 0.0015, respectively. However, in fold 2, Resnet50 and InceptionV3 pro-
duced low values of the val_loss, that is, 0.00020, and 0.00097, respectively. The same 
phenomenon also occurred in fold 3. Densenet121 and Nasnetmobile could maintain 
the value of the val_loss at the end of the epoch as 0.025 and 0.0014, respectively, in 
fold 3. However, Resnet50 and InceptionV3 produced the minimum val_loss values of 
0.00032 and 0.00033, respectively.

The value of the val_loss for Resnet50 and InceptionV3 is extremely low. Thus, these 
models have learning characteristics that are specific to the dataset being trained at 
each epoch iteration. This aspect is in contrast to Nasnetmobile and Densenet121, 
both of which can exhibit generalizations in each learning iteration. Consequently, 
no overfitting occurs, as indicated by the value of the val_loss being reasonably high. 
Moreover, the AUROC performance is enhanced with each iteration.

Conclusion
Traditional food knowledge is an essential aspect that must be preserved. In this 
research, professional data acquisition was performed to identify 34 types of tradi-
tional food from Indonesia. The images in the dataset were input to a model to pre-
dict the traditional food types in Indonesia. The evaluation results indicated that the 
proposed model exhibited excellent performance in predicting the type of traditional 
foods. In all the testing scenarios, the AUROC value was more than 0.98, accuracy 
was more than 0.90, precision and recall were more than 0.92, and F1 score was more 
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than 0.88. This result was achieved because the data were obtained professionally, 
and each image in the dataset was obtained under identical camera settings, expo-
sure, and ambience. The deep learning network model with the highest performance 
is Densenet121 with an accuracy, precision, recall, and F1 score of 0.994, 0.994, 0.994, 
and 0.994, respectively. In the future, we aim to connect the proposed deep learning 
model with the supply chain of traditional food ingredients.
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