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Introduction
Today’s digital world is constantly generating data from traffic sensors, health sensors, 
customer transactions, and various other Internet of Things (IoT) devices. Continuous 
never-ending streams of Big Data are creating new sets of challenges from the perspec-
tive of data mining. Mining only static data in snapshots of time is no longer useful. 
Streaming data, being dynamic or volatile in nature, has changing patterns over time, 
and this is more technically known as concept drift. Algorithms developed for mining 
streaming data have to be able to detect and work with concept drifts, hence the need 
for new streaming data mining approaches. This work looks at an important data mining 
technique, frequent itemset mining, applied to streaming transaction data, in the pres-
ence of concept drift.

Frequent itemset mining, a precursor to association rule mining, typically requires 
significant processing power since this process involves multiple passes through a data-
base, and this can be a challenge in large streaming datasets. Though there is great deal 
of progress in finding frequent itemsets and association rules in static or permanent 
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databases [1, 8], since the landscape of data is changing, algorithms have to be effec-
tively extended to streaming data with concept drift. There are a number of questions 
that must be answered in order to explore this: (i) Can frequent item sets be mined while 
the streaming data is appearing without reference to a permanent master database; (ii) 
Are there techniques to reduce the time complexity of mining frequent itemsets in order 
to manage dynamic data; (iii) Are there challenges that appear as a result of a stream-
ing environment? To address the issue of time complexity, the use of genetic algorithms 
has been considered; this technique has shown to reduce time complexity of mining fre-
quent itemsets and association rules in static databases [8].

Using genetic algorithms to mine frequent itemsets in streaming data with concept 
drift is relatively unstudied, and there are a number of critical issues that must be con-
sidered. One critical issue specifically explored in this work, is the relationship between 
the rate of concept drift in streaming data and the convergence of a genetic algorithm 
used to mine frequent itemsets from that data.

In this study, genetic algorithms are used to mine frequent itemsets from streaming 
data in the presence of concept drift, with the aid of sliding windows. The novelty of 
this work lies in determining concept drift using frequent itemsets for mining streaming 
data, using the genetic algorithm framework.

Testing is done using a test harness, allowing for streaming data as needed. The test 
harness also allows the control of some of the fundamental variables, including the data 
being streamed, the number of transactions before a concept drift is introduced, and 
the size of the sliding window. The other variables, which are related to the genetic algo-
rithm, include population size, crossover probability, mutation probability, and the con-
vergence rate of the genetic algorithm.

The rest of this paper is presented as follows. To provide the background and context, 
in the introduction, a high-level overview of streaming data in a sliding window, concept 
drift, sliding window frequent itemsets, and finally genetic algorithms, is presented. The 
following section presents the related works. “Methods” section presents a detailed dis-
cussion of the proposed approach. Next, an example that illustrates how the proposed 
approach is different from the standard Apriori algorithm is presented. This is followed 
by the results and discussions, which includes a discussion of the points of interest that 
were uncovered during testing. Finally, the conclusion and future works sections are 
presented.

Streaming data in a sliding window

In most modern data environments, some static data store like a database is assumed, 
but this might not always be the case. Data can arrive at a computer port continuously 
and frequently. Further, the arrival of this data is a necessary part of a business model, 
much like the situation of ships bringing cargo to a port at a city. If the port tried to store 
all of the cargo, space could quickly become an issue. Also, while some cargo is typically 
stored, it must be processed and removed on average at least as quickly as the cargo 
arrives. Computer systems handling the persistent arrival have a similar problem regard-
ing arrival, space and processing.
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The processing that needs to be done on streaming data most often involves extracting 
some useful information from the data. There are some unique constraints to consider 
when dealing with streaming data, for example, data could be limited to one-time access, 
data could be unbounded in volume, and real time response may be necessary for the 
data to be useful [7, 12, 13, 22]. These works discuss models for processing streaming 
data, one of which is the sliding window model. The sliding window keeps track of cur-
rent transactions, letting the oldest transaction to be deleted when the new transaction 
arrives. Hence, the newest n transactions always appear in the sliding window, where n is 
the sliding window size.

Figure 1 illustrates a sliding window of size 5. {Item B, Item D, Item E} are no longer 
in the window. This data has been deleted. The boxed area presents the current window. 
The new transactions are the two transactions above the window. They have not yet been 
included in the window. Once {Item B, Item C} has been included, {Item C, Item D} will 
be removed.

Concept drift

Mining information from static data results in static information. In streaming data, 
the information learned is not static. It is dynamic. When the nature of information in 
data changes over time, this is called a concept drift. It may also be important to capture 
the drifting of a concept. In this paper, concept drifts are measured in terms of frequent 
itemsets, by change in frequent itemsets. Other works have also looked at using frequent 
itemsets for mining streaming data [7]. Gama [7] mentions that the most difficult prob-
lem in mining frequent itemsets from streaming data is that itemsets that were infre-
quent in the past might now become frequent, and itemsets that were frequent in the 
past might become infrequent. Hence, in addition to concept drift detection, manage-
ment of concept drifts are also an important aspect of mining streaming data.

Sliding window frequent itemsets

An association rule is a conditional statement that says, if item A exists in a transaction 
then it is likely that item B is in that transaction. In association rule mining, support is 
defined as items found with some minimum frequency in the whole dataset. Confidence 
is defined as an item’s frequency in relation to the set of items that contain the supported 
items. A frequent itemset is an itemset that meets the minimum support threshold. The 

Fig. 1  Sliding window
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challenge is to find frequent itemsets in sliding windows of streaming data. Before pre-
senting the formulas that were used for calculating support counts in sliding windows, 
the background on the general Apriori algorithm is presented.

Given:

•	 sliding window length = 20
•	 minimum support = 0.3
•	 minimum confidence = 0.6.

And,

•	 6 transactions contain (A), hence support is 6/20.
•	 8 transactions contain (B), hence support is 8/20.

And, A and B appear together in a transaction 4 times, then:

•	 support (A ⇒ B) = 4/20 or 0.2.
•	 confidence (A ⇒ B) = P(B|A) = (support_count(A ∪ B))/(support_count(A)) = 4/6 or 

0.66.

Confidence (A ⇒ B) > minimum confidence (of 0.6), so this is a strong association rule.
Hence, for static data, a frequent itemset will be any itemset that has support > 0.3.
For streaming data, a sliding window is used, hence the modified support_count to 

determine frequent itemsets is:

Hence the sliding window frequent itemset is:

The genetic algorithm support_count will be:

Hence, the itemset (A ∪ B) will be a considered genetic algorithm frequent itemset 
when:

The metric used in the fitness function of this genetic algorithm is the genetic algo-
rithm frequent itemset inclusion threshold:

Genetic algorithms

The genetic algorithm mimics the action of natural selection. First, the structure of 
the genes for an individual are defined. These are portrayed as a list of 0 s and 1 s. The 

support_count =
(

size of sliding window ∗minimum support
)

Support(A ⇒ B) >
(

size of sliding window ∗minimum support
)

support_count =
(

size of sliding window ∗ support ∗ confidence
)

Support (A ⇒ B) >
(

size of sliding window ∗ support ∗ confidence
)

(

size of sliding window ∗ support ∗ confidence
)
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individuals are then evaluated for fitness using a fitness function. Then the best indi-
viduals are crossed, that is, some of their genes are swapped. Next the individuals are 
mutated, that is, one or more of their genes might be randomly flipped from 1 to 0 or 
vice versa. Once the genetic operators have been used to define a new population, the 
fitness function is applied again. This process repeats until a successful individual is 
found or the maximum number of generations is found.

Related works
Mining association rules and frequent itemsets have a well established history and in 
fact [15, 20, 22] discuss algorithms to accomplish these tasks in the context of stream-
ing data. The accumulative model, the sliding window model, and the weighted accu-
mulative model are presented by Yu and Chi [22] as ways of handling streaming data. 
The accumulative model and weighted accumulative models keep all the data in a data 
store. However, in the weighted accumulative model, data becomes less important as 
it gets older. In Krempl et  al. [13] ’s discussion of the challenges facing this kind of 
research is a lack of commonly accepted set of environments, protocols and bench-
marking methods necessary for testing and comparison. In the context of mining 
frequent itemsets, Gama [7] states that concept drift is the most difficult problem. 
Hoens et al. [10] presents a method of detecting and adapting to concept drift while 
focusing on classification learning. Kim and Park [11] and Wang and Abraham [21] 
also consider the detection of concept drift.

Bull [4] considers genetic algorithms as one of the most useful optimization algo-
rithms, but only if the function being optimized is cheap to calculate. Rabinovich 
and Wigderson [17], on the other hand, believes they can be used on hard practical 
problems. There has been a good deal of research concerning the convergence rate 
of genetic algorithms. Forrest and Mitchell [5], Ruholla and Smith [19], Aldallal [2], 
Lin et al. [14], Angelova and Pencheva [3] and Pellerin et al. [16], all consider ways to 
improve the convergence rate in genetic algorithms. These studies affect the conver-
gence rate by manipulating the genetic operators. According to Aldallal [2], the most 
common metric of convergence in a genetic algorithm is the number of generations 
required for an individual to meet the fitness requirements. However, He and Lin [9] 
considers the “normalized geometric mean of the reduction ratio of the fitness differ-
ence per generation” as a better metric that is still easily calculable. Ghosh et al. [8] 
and Rangaswamy and Shobha [18] discuss mining frequent itemsets and association 
rules with genetic algorithms.

While all of the individual pieces related to this work have been addressed indepen-
dently, there is no research directly addressing all these issues together. That is, there 
is no work addressing the problem of mining frequent itemsets from streaming data 
with genetic algorithms in the presence of concept drift, the problem being addressed 
in this work.

Methods
This section offers a detailed description of the operations of the proposed system.
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Overview

In order to study the dynamics of this problem, a system was developed that includes a 
data generator, a genetic algorithm [6], a stream tracker and a driver, as shown in Fig. 2. 
The driver is the main instrument that sets all the necessary variables. The driver asks 
the data generator for the next item, passes the item to the stream tracker, detects the 
concept drift and starts the genetic algorithm when needed.

The workflow, presented in Fig. 3, can be presented as follows.

•	 The driver gets a transaction from the data generator.
•	 The driver enqueues that transaction in the stream tracker.
•	 The driver gets a reference to the stream tracker and initializes the genetic algorithm 

with that and the required support and confidence.
•	 On initialization, the genetic algorithm makes a copy of the queue to be used for fur-

ther processing during the fitness evaluations.

Fig. 2  System overview

Fig. 3  System operations
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•	 When the driver detects a concept drift, it resets the queue in the genetic algorithm 
before starting the genetic algorithm’s find frequent items function.

Concept drift detection

In streaming data, frequent itemsets for a stable concept would be identified by the set of 
frequent itemsets remaining constant in both number and content, despite data flowing 
through the window. In other words, if the set of itemsets changes in any way, then it will 
be considered as a concept drift occurring.

The driver detects concept drift by keeping a copy of the stream tracker’s set of poten-
tial frequent items. Each time an item is added to the queue, the new potential frequent 
itemset is compared with the old one, and if it has changed, the concept has potentially 
changed. This, along with a check that the frequent itemset has at least two members 
and that the sliding window is full, triggers the driver to start the genetic algorithm.

Data generator

The data generator continuously emits single transactions when called. It takes one argu-
ment, the number of items that it is required to emit, before switching to a different 
concept. It does this by cycling through and returning elements of one text file of trans-
actions until the required number of emissions is met. It then gets a different file and 
does the same.

Sliding window model: stream tracker

In a specialized queue, the stream tracker keeps track of the number of transactions 
specified as the size of the sliding window. When a transaction is enqueued, if the 
required size of the window is met, the oldest item is automatically dequeued. When a 
transaction is enqueued, the individual items in the transaction are added to a dictionary 
with the counts in the sliding window. On dequeuing a transaction, the item counts are 
decremented. This allows the stream tracker to return a set of items that could poten-
tially be considered part of a set of frequent items based on their frequency in the sliding 
window. This set is the template for a potential individual in the genetic algorithm. Any 
itemset in the dictionary with a count greater than the genetic algorithm frequent item-
set inclusion threshold (size of sliding window*support*confidence) is the set of potential 
frequent itemsets. If a frequent itemset’s count is lower than that calculation, then the 
item cannot possibly be part of a genetic algorithm frequent itemset.

Genetic algorithms

A genetic algorithm is an algorithm that mimics a natural selection. As presented in 
Fig. 4, it:

1.	 Generates a random population of individuals.
2.	 Evaluates each individual’s fitness using a fitness function.
3.	 Applies a mating operation based on a crossover probability and with more fit indi-

viduals having a higher chance of being chosen for mating.
4.	 This creates a new population.
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5.	 The new population is subjected to mutation with each gene’s chance of being 
mutated being determined by the mutation probability, usually a very low chance.

6.	 The new population’s fitness is evaluated. If the fitness of a best individual has not 
reached some desired level, and the maximum number of generations has not been 
reached, then the process starts over at step 3.

To implement the genetic algorithm, the open source library, Distributed Evolutionary 
Algorithms in Python [6] was used. This framework allows the user to easily define the 
parts of a genetic algorithm that are fairly common, like the definition of an individual as 
a list of 0 s and 1 s with each 0 or 1 representing a single gene. At the same time, it pro-
vides the flexibility to defining the methods and registering them with the framework as 
needed to define the required genetic algorithm.

Individuals and genes

In this implementation, the individuals were made up of a list of 0 s and 1 s that map to 
the sorted list of possible frequent items from the stream tracker, for example:

Frequent items: [apple, banana, candy, diapers, soap]
Random Individual: [0,1,1,0,1]
Gives a potential frequent itemset consisting of {banana, candy, soap}

Fig. 4  Operations of the genetic algorithm
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Population size

To find multiple sufficient itemsets rather than just one best itemset, it is important to 
maintain a population of unique individuals. Hence the population size was based on 
the potential itemset’s length or some maximum size. The rule used for the size of the 
population was:

This kept population sizes down while ensuring unique individuals throughout the 
population.

Fitness function

To determine the fitness of an individual, the fitness function would get the items that 
were mapped to the 1  s in the individual, then loop through a snapshot of the queue 
checking to see if the set of the individual’s items were a subset of each transaction and 
keep count of this. The final fitness function was:

Tournament selection for mating

Tournament selection for mating involves randomly choosing a small number of indi-
viduals (in this case, 3) and taking the one with the highest fitness and putting it in the 
new population. This was done without removing the original individuals from the old 
population.

Two point crossover

Once individuals were chosen for mating, they were subjected to a two-point crosso-
ver operation. This involved finding a random middle section from two individuals and 
swapping the sections. Two random numbers were chosen, the first greater than the 0 
index and then from that index to the second to last index in the list. Once the middle 
section was found, it could be swapped with the same section from the other individual 
(see Fig. 5).

Mutation

The last genetic operation that was applied before re-evaluating each individual’s 
fitness was the mutation operator (see Fig.  6). Usually, a random number is gener-
ated for each bit in the gene and if the random number is lower than the mutation 

minimum(2(length_of _genes−1), 100).

count of transactions/size of sliding window.

Fig. 5  Crossover operation
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probability then the bit is flipped. The mutation probability was often very low, that 
is, under 5%. However, due to the uniqueness requirements, the mutation operator 
was used to remove duplicates from the population. Each new individual that was 
being added to the population was converted to a string and if that string was already 
in a temporary set of strings, the individual was mutated again. Though data was not 
kept on the mutation rate, spot-checking indicated that this resulted in an unusually 
high rate of mutation.

Evaluation procedure

Testing this application involved setting various variables in the driver and capturing the 
output stream and evaluating the resulting output. For example, Fig. 7 shows the param-
eters at this point:

•	 Sliding window size: 100 transactions
•	 Concept drift every: 2000 transactions
•	 Support: 0.25
•	 Confidence: 0.5
•	 Number of generations: 50
•	 Crossover probability: 0.5.

When the sliding window reached capacity at 100 transactions, the genetic algorithm 
evolved for 50 generations and was able to find 5 frequent itemsets. The concept was 
detected as stable until transaction 2023, where the algorithm was triggered again but 
only 2 itemsets were found. At transaction 2025, the algorithm was once again triggered 
and 3 itemsets were found.

Fig. 6  Mutation operation

Fig. 7  Screen example
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A comparative example
This section presents an example of the Apriori algorithm working in a sliding win-
dow, and then presents the genetic algorithm’s generation of frequent itemsets using a 
sliding window. When sliding windows are used in Apriori, support_count is defined 
as the size of the sliding window multiplied by the minimum support; when genetic 
algorithms are used in frequent itemset calculations, Apriori’s support_count is 
modified by multiplying the confidence to Apriori’s support_count. This makes the 
genetic algorithm’s frequent itemsets more inclusive. That is, even if an itemset was 
not included as a frequent itemset using the Apriori approach, it would be included 
as a genetic algorithm frequent itemset. This is illustrated next—first the frequent 
itemset generation for the Apriori algorithm with the sliding window is presented 
and then the genetic algorithm frequent itemset generation with the sliding window 
is presented.

The Apriori frequent itemsets with the sliding window

The Apriori algorithm is the standard algorithm for mining frequent itemsets. Fre-
quent itemsets can be further processed to generate association rules. First, a defini-
tion of some terms in relation to the Apriori algorithm: A transaction is one line or 
row in the dataset. An itemset is any subset of the set of all individual items. K-itemset 
is an itemset that contains k items. Support is the count of the number of transactions 
in which a particular itemset can be found. Support is also represented as the percent 
of transactions in which a particular itemset can be found. Confidence is used when 
determining association rules. Confidence is the probability of a subset of transac-
tions occurring given some particular itemset. Support and confidence are defined by 
conditions of the problem, and can be set as needed. A frequent itemset is any itemset 
where the support count is above some value.

Given a database of transactions:

{Item 2, Item 4, Item 6}
{Item 2, Item 4, Item 1, Item 5}
{Item 6, Item 4, Item 1, Item 3}
{Item 2, Item 6, Item 4, Item 1}
{Item 2, Item 6, Item 4, Item 3}

Apriori follows the following pattern:

•	 Generate all candidate 1-itemsets and calculate their support.
•	 Eliminate any 1-itemsets that do not meet the minimum support criteria.
•	 Combine the remaining 1-itemsets into all possible candidate 2-itemsets and cal-

culate their support.
•	 Eliminate any 2-itemsets that do not meet the minimum support criteria.
•	 Combine the remaining 2-itemsets into all possible candidate 3-itemsets and cal-

culate their support.
•	 Eliminate any 3-itemsets that do not meet the minimum support criteria.
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•	 This is repeated until no new “candidate” itemsets can be created.

Given:

•	 Minimum support > 0.5
•	 Support_count = 2.5.

The support_count for the Apriori algorithm using a sliding window of 5 is calculated 
as:

which is

Hence the support_count is 2.5.
Table 1 presents the general pattern of Apriori.
From Table 1: First the 1-itemsets are counted. Items 3 and 5 do not have the mini-

mum support_count, hence are eliminated. 2-itemsets are created out of the remaining 
1-itemsets. Sets {Item 1, Item 2}and {Item 1, Item 6} did not reach the required mini-
mum support_count and hence are eliminated. Next the 3-itemsets are generated. There 
are 4 possible 3-itemsets and all are eliminated except {Item 2, Item 4, Item 6}. There are 
no possible 4-itemsets. This leaves a total of 9 frequent itemsets that meet the support 
criteria.

The genetic algorithm frequent itemsets with the sliding window

When genetic algorithms are used to create frequent itemsets, the first step is to search 
for 2-itemsets or more. The support_count criteria is also adjusted, as discussed pre-
viously. This is illustrated using the itemset {Item 1, Item 6} from the Apriori example 
above.

Given:

•	 Minimum support = 0.5
•	 Minimum confidence = 0.6.

For a rule: Item 1 ⇒ Item 6

Support_count = size of sliding window ∗minimum support

5 ∗ 0.5 = 2.5.

Table 1  Apriori example

1-Itemsets Count 2-Itemsets Count 3-Itemsets Count

Item 1 3 Item 1, Item 2 2 Item 1, Item 2, Item 4 2

Item 2 4 Item 1, Item 4 3 Item 1, Item 2, Item 6 1

Item 3 2 Item 1, Item 6 2 Item 1, Item 4, Item 6 2

Item 4 5 Item 2, Item 4 4 Item 2, Item 4, Item 6 3

Item 5 1 Item 2, Item 6 3

Item 6 4 Item 4, Item 6 4
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This itemset {Item 1, Item 6} did not meet the criteria for a frequent itemset in the 
regular Apriori algorithm. But, Item 1 is in 3 transactions which satisfies the required 
support. And, of the 3 transactions that Item 1 appears in, Item 6 appears in 2 of them. 
That is, this rule has a confidence of 2/3 or 0.66, which exceeds the stated minimum of 
0.6, thus this is a valid association rule.

The proposed genetic algorithm implementation uses the genetic algorithm frequent 
itemset inclusion threshold (size of sliding window*support*confidence) as the support_
count required for inclusion as a valid frequent itemset. In this case, the support_count 
is:

Hence, itemset {Item 1, Item 6} would be a genetic algorithm frequent itemset. The 
genetic algorithm frequent itemset inclusion threshold is set up in this manner to be able 
to include itemsets that contain both the consequent and antecedent of a potential asso-
ciation rule as part of the frequent itemset.

As transactions come in, a count is kept of how many transactions each individual 
appears in, and those that do not meet the minimum support count threshold are elim-
inated. In this example, Item 5 is eliminated from a possible mapping in the genome. 
Given that there are five eligible items in this dataset, the first step is to start by creating 
a random population of 2(5 − 1) or 16 individuals, each with 5 genes and each gene map-
ping to one of the possible items.

Note: Not all individuals are included in the following example presented in Table 2.
[Item 1, Item 2, Item 3, Item 4, Item 5, Item 6]

5 ∗ 0.5 ∗ 0.6 = 1.5.

Table 2  Genetic algorithm example

Individual Maps to Fitness 
is checked

Select 
for mating

New 
Individuals

Mutate New 
Individuals

Maps to Fitness

[01101] [Item 2, Item 
3, Item 6]

1 Individuals 
2, 3

[01001]
Child 1

[01001] [Item 2, Item 
6]

3

[00011] [Item 4, Item 
6]

4 Individuals 
2, 3

[10010]
Child 2

[10010]
No genes 

mutated

[Item 1, Item 
4]

3

[11000] [Item 1, Item 
2]

2 Individuals
2, 4

[00011]
No crossover. 

Crossover 
prob-
ability not 
exceeded

Individual 2 
carried to 
the next 
generation

[00011] [Item 4, Item 
6]

4

[01010] [Item 2, Item 
4]

4 Individuals
2, 4

[01010]
No crossover. 

Crossover 
prob-
ability not 
exceeded

Individual 4 
carried to 
the next 
generation

[01010]
No genes 

mutated

[Item 2, Item 
4]

4
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The above process is repeated until some stopping condition is met. This stopping 
condition includes a maximum number of generations or some fitness condition. Only 
the generation of frequent itemsets is shown, and not the association rules that would 
follow.

Results and discussions
Test results have been presented for: (i) maximum generations; (ii) concept drift detec-
tion; (iii) varying sliding window sizes; and finally, (iv) some examples of ideal operations.

Maximum generations

Figure 8 presents the results of maximum generations. The parameters listed in Fig. 8 are 
(in order):

•	 Sliding window size: 100 transactions
•	 Concept drift every: 2000 transactions
•	 Support: 0.25
•	 Confidence: 0.5
•	 Maximum number of generations: 50
•	 Crossover probability: 0.5.

Concept drift detection

Detecting concept drift involved keeping track of a list of items that had occurred more 
times than the minimum support count. These counts were kept in a dictionary and 
updated for each new transaction, and then the dictionary was looped over to create 
a new ‘possible itemset list’. The new list was compared to the old list, and if they were 
different, then the concept was considered to be drifting. This approach required a dic-
tionary update for each item in a new transaction plus a loop through all of the items in 
the dictionary to assemble the new list. For these tests, this method of detecting concept 
drift triggered as expected and performed well, especially when a larger window size was 
used. Figure 9 presents concept drift detection.

From Fig. 9, a stable concept at transaction number 100 can be detected. No work is 
required until transaction 2023, when a new concept is first detected. At this point the 

Fig. 8  Maximum generations

Fig. 9  Concept drift detection
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whole second data file (new concept) is loaded into the sliding window, while 77% of the 
sliding window still contains the old concept.

This testing highlighted that the ratio of the window size to transactions per drift was 
a key to good performance. This is because, if a fixed random window size is used, as 
transactions per drift get larger, the data from the perspective of the sliding window 
begins to look static. An example of this can be seen in Fig. 9 which shows a concept 
drift of 2000 transactions.

In Fig. 10, both the sliding window and the transactions per drift are set to 100. As 
expected, with the new data filling the window immediately after filling up with the first 
dataset, there is no stability. Figure 11 shows the next data change and the instability in 
the number of itemsets found during these repeated runs. Also, in this run, the genetic 
algorithm was called to run about 60 times during 400 transactions with only 27 runs 
producing any itemsets at all.

Also, there were problems getting results when the sliding window size was too small. 
When the support count was very small, that is, 0, 1, 2, there were problems because of 
normal fluctuations in the data appearing to be a concept drift.

Varying sliding window sizes

In Fig. 12 the window size is 10 and the concept drift is 100. Looking at a region of con-
cept drift triggers between transactions 72 and 95, the concept should become stable. 

Fig. 10  Small concept drift illustration, illustration 1

Fig. 11  Small concept drift illustration, illustration 2
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The frequent itemset support count for this would be 10 * 0.25 * 0.5 = 1.25. Hence, almost 
every item could be part of a frequent itemset, and a large number of frequent itemsets 
can be generated, as can be seen in Fig. 13. These sets have no informative value. This 
shows that, using this technique, the window size must be managed in conjunction with 
support and confidence values in order to achieve reasonable results.

Examples of ideal operations

Under ideal operations, while the genetic algorithm was being repeatedly triggered dur-
ing a high rate of concept drift, the number of valid frequent itemsets generated would 
drop to zero, and then as the new data began to fill the window, the itemset count would 
rise to the number of frequent itemsets expected for the new dataset. The genetic algo-
rithm would not be triggered again until the concept detector began to trigger. Also, 
while this algorithm generated a very good set of rules, it would sometimes miss one, as 
would be expected by the random process of a genetic algorithm.

Figure 14 presents a stable concept at transaction 100 with 5 sets detected. This situ-
ation is stable until transaction 1023, where the concept is starting to drift and the 5 
rules diminish to 0 rules by transaction 1026. From transaction 1026 to 1063 the genetic 
algorithm is triggered 11 times with no frequent sets detected. Figure 15 presents the 
algorithm being triggered and finding 7 then 8, 10, 8 and finally 9 frequent itemsets. 
The concept is stable until transaction 2024. Note that the stable concept of 9 itemsets 
at transaction 1074 is less than the 10 sets found just 2 transactions earlier. Since the 

Fig. 12  Small sliding window size, illustration 1

Fig. 13  Small sliding window size, illustration 2
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window is filling up with data for this concept, generally, an increasing number of item-
sets would be expected. However, genetic algorithms should not be expected to neces-
sarily get all of the itemsets all of the time.

Changing the fitness function to allow early convergence would be a great improve-
ment. One simple way to do this would be to allow some small number of rules relative 
to the total expected possible rules to constitute convergence.

Discussion

A few issues led to the mitigation of some of the expected control of the genetic algo-
rithm. Initially the algorithm was converging quickly on 1 or 2 itemsets. This is the 
normal expected behavior for a genetic algorithm that is looking for the ‘best’ individ-
ual. However, the goal was to find as many of the frequent itemsets as possible. This 
convergence on the local maxima was due to the population becoming dominated by 
individuals with exactly the same gene itemset. This led to limiting the population size 
and altering the mutation function to ensure a population of unique individuals. This 
resulted in the loss of ability to control those two factors of the genetic algorithm. 
Since the stopping requirement was based on the weakest individual meeting the fit-
ness requirement or the maximum number of generations being met, the result was that 
the maximum number of generations was always met. This implied that the variables of 

Fig. 14  Ideal operation illustration 1

Fig. 15  Ideal operation illustration 2
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the genetic algorithm were not as free to be manipulated. The first conclusion is related 
to this diversity issue in the genetic population for this type of problem. The nature of 
this problem required finding all or nearly all of a set of solutions, however since the 
genetic algorithm tended to optimize to a particular solution, the makeup of the popula-
tion was altered. To address this issue, all individuals in the population were required 
to be unique. The effect of this decision was twofold. First, this limited the population 
size to a maximum of 2(number of possible items − 1), ensuring the possibility of a population 
of unique individuals, but taking away control of population size. Second, in order to 
ensure uniqueness in the population, the mutation operation was tracked, and if a new 
individual was a duplicate, then that individual was mutated. This implied that the muta-
tion probability was no longer reflective of the actual mutation rate, nor was it a valid 
control mechanism. This left only the crossover probability, which seemed to have lit-
tle effect on the operation of the genetic algorithm. The most concerning result of this 
development was that the genetic algorithm never converged before the maximum num-
ber of generations were concluded. Even in the best circumstance, when the window was 
initially filled with five copies of the same data file and no concept drift, the genetic algo-
rithm was terminating at the maximum number of generations.

While the algorithm did offer good rules within certain parameters, testing was done 
in a very controlled environment. Under production conditions the performance could 
be very different. There are a number of things that could be done to help, for instance 
the fitness function could be parallelized, or, each time the genetic algorithm is started, 
the whole process could be started in its own thread. If the concept values have not 
changed, it might be possible to determine valid itemsets in live stream. This would 
obviate the need for the snapshot method being used now, but add the complexity of ter-
minating a thread as ‘failed’ if the concept drifted while it was running. Also researching 
ways to help the genetic algorithm find multiple rules while still achieving convergence 
without the artificial ‘maximum generations’ stopping, would lead to better data on this 
subject.

Conclusion
This paper presents a study of mining frequent itemsets from streaming data. An 
approach using genetic algorithms is presented and various relationships between data 
stream drift rate (concept drift), sliding window size and genetic algorithm constraints 
have been explored. Useful formulas are presented for calculating minimum support 
counts for determining frequent itemsets in streaming data using sliding windows. And, 
detecting concept drift involved keeping track of a list of items that had occurred more 
times than the minimum support count.

Testing highlighted that the ratio of the window size to transactions per drift was a key 
to good performance. But, getting good results is difficult when the sliding window size 
was too small, because then normal fluctuations in the data appeared to be a concept 
drift. Hence, the window size must be managed in conjunction with support and con-
fidence values in order to achieve reasonable results. This method of detecting concept 
drift performed well when larger window sizes were used.

Using the setup described, the important variables of the genetic algorithm were ulti-
mately decided by the data at run time. Mutation rate, individual size, and population 
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size were all beyond external control. Crossover was specified but had no effect on speed 
of convergence for the genetic algorithm, as the genetic algorithm always took the maxi-
mum number of generations while still achieving good results.

Future work
There are promising areas for future work. First, the genetic algorithm could be threaded 
allowing the stream to continue while the frequent itemsets are being generated. Sec-
ond, the genetic algorithm could be altered to allow convergence on some small number 
of valid rules. This would allow convergence before the maximum number of genera-
tions. Third, improvements in and possible parallelization of the fitness function should 
be considered. Fourth, testing on live data could lead to insights that are not considered 
due to the nature of some particular test data. Further, buffering incoming data beyond 
the sliding window, within limits, might allow more time for the genetic algorithm to 
converge.
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