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Introduction
In the context of today’s computing, context-awareness becomes one of the most pop-
ular terms, because of the vast usage of Internet of Things (IoT), and lots of applica-
tions related to IoT. In particular, with the recent advanced features in the most popular 
IoT device, i.e., smartphones, context-awareness has become more effective in our daily 
activities. In the real world, users’ interest in “Mobile Phones” is more and more than 
other platforms like “Desktop Computer”, “Laptop Computer” or “Tablet Computer” 
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over time [1]. Although voice communication is the main activity with one’s mobile 
phone, people use smartphones for various daily activities with apps like social net-
working systems, online shopping, recommendation systems, instant messaging, tour-
ist guides, location tracking, or medical appointments etc [2]. Individual’ behavior with 
these apps are not static, may vary from user-to-user according to their current needs. 
Thus, user-centric context-aware predictive model with these apps is needed that consid-
ers user’s current needs in different contexts such as a temporal context that represents 
time-of-the-days or days-of-the-week, one’s working status in workday or holiday, spa-
tial context or user current location, user emotional state, Internet connectivity or Wifi 
status, or device configuration or relevant status, etc. These contexts may have different 
types of values depending on individuals’ interests and their behavioral patterns with 
the surrounding environment and contexts. Therefore, context pre-modeling tasks based 
on this contextual information is considered as a key issue and task, to build an effective 
machine learning-based context-aware model that assist the users in various day-to-day 
situations in their daily life activities.

In this paper, we define context pre-modeling as the representation of contextual data 
to build effective context-aware predictive models based on machine learning classifica-
tion techniques. A “context” in a context-aware modeling is considered as a contextual 
variable [1], and “context pre-modeling” is the general term for the process of creating 
and manipulating contextual variables, so that machine learning-based context-aware 
models can be built. This paper mainly explores the role of major context pre-modeling 
tasks, such as context vectorization, context generation and extraction, context selec-
tion, and eventually context evaluation that are involved in a data-driven context-aware 
predictive model. In the process of context vectorization, the contexts are defined as 
good numerical measures through transformation and normalization. In context genera-
tion and extraction, new brand components that capture most of the useful information 
are created and used in the machine learning classification based modeling. In the pro-
cess of context selection a subset of most relevant contexts is selected, where the less sig-
nificant, irrelevant, or redundant contexts are eliminated from the dataset. Thus, the key 
difference between context generation and selection is that context generation creates 
brand new ones, while context selection keeps a subset of the original contexts accord-
ing to their relevance and influence with the target behavioral activities of the users. 
Both approaches could be useful for handling high dimensions of contexts in terms of 
reducing context-dimensions, model complexity while building effective context-aware 
models and systems, as well as increasing prediction accuracy with unseen test cases. 
Finally, in the process of context evaluation, the resultant context-aware models are eval-
uated with the associated contextual data.

Nowadays, machine learning classification techniques have been successfully used 
while building data-driven intelligent systems in various application areas including 
smartphone apps [3–5]. In the area of machine learning, a tree-like model is one of the 
most popular approaches for predicting context-aware smartphone usage [6, 7]. In this 
study, various popular machine learning classification techniques such as decision tree 
(DT), random forest (RF), k-nearest neighbor (KNN), support vector machines (SVM), 
naive Bayes classifier (NB), and deep learning by constructing artificial neural network 
(ANN) of multiple hidden layers, are used for creating models. Based on the context 
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pre-modeling tasks discussed above and these classification methods, we experimentally 
analyze personalized smartphone usage behavior utilizing their smartphone datasets. 
For this, we have first collected contextual apps usage datasets consisting of different 
categories of apps usages in different contexts that include both the user-centric context 
and device-centric context form individual smartphone users. We then analyze person-
alized apps usage behavior by exploring context pre-modeling tasks and various popular 
machine learning classification methods, as well as deep learning by constructing mul-
tiple hidden layers based neural networks. The effectiveness of these models is exam-
ined by considering prediction accuracy in terms of precision, recall, f-score, and ROC 
values, and make an empirical discussion within the scope of our study. Overall, this 
research aims to determine the combination of context pre-modeling and classification 
methods that work well together to build user-centric context-aware predictive models 
and systems for unseen test cases, to intelligently assist the users.

The rest of the paper is organized as follows. “The motivation and scope of the study” 
section motivates the work of context pre-modeling for building context-aware models 
and finds the scope of our study. “Background and related work” section provides back-
ground and related work in the scope of our study. “Context pre-modeling strategies” 
section provides an overview of various context pre-modeling strategies that are taken 
into account in our analysis. In "Implementing machine learning classification methods" 
section, we discuss various machine learning classification techniques to build a con-
text-aware model. We have shown the experimental results in “Experimental results and 
evaluation” section. Some key observations including several application areas are sum-
marized in “Discussion” section. Finally “Conclusion and future work” section concludes 
this paper and highlights the future work.

The motivation and scope of the study
In this section, our goal is to motivate the study of exploring context pre-modeling and 
classification methods that work well together in user-centric context-aware predictive 
models and applications in today’s interconnected world, especially in the environment 
of IoT and smartphones. Hence, we also present the scope of our study.

We are currently living in the era of Data Science, Artificial Intelligence (AI), Inter-
net-of-Things (IoT), and Cybersecurity, that are commonly known as the most popu-
lar latest technologies in fourth industrial revolution (4IR) [8, 9]. The computing devices 
like smartphones and corresponding applications are now used beyond the desktop, in 
diverse environments, and this trend toward ubiquitous and context-aware smart com-
puting is accelerating. One key challenge that remains in this emerging research domain 
is the ability to enhance the behavior of any application by informing it of the surround-
ing contextual information such as temporal context, spatial context, social or device-
related context, etc. Typically, by context, we refer to any information that characterizes 
a situation related to the interaction between humans, applications, and the surround-
ing environment [1, 10]. In the area of artificial intelligence, machine learning (ML) 
techniques can be used to build data-driven intelligent mobile systems based on these 
contextual information [3, 5, 7, 11]. However, contextual data needs to fed effectively to 
a machine learning model, so that the model can understand the contexts and behave 
intelligently. Thus, the overall performance of the machine learning-based context-aware 
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systems depends on the nature of the contextual data, and context pre-modeling tasks 
that can play a significant role to build an effective model, in which we are interested 
in this paper. Thus, context pre-modeling mainly manipulates contextual data to cre-
ate features that make machine learning classification algorithms work well. Overall, 
the reasons for context pre-modeling tasks in a context-aware model and system can be 
summarized as below -

•	 To deal with a large number of contexts for reducing context-dimensions according 
to their importance, in order to generalize and simplify the model and makes it easy 
to interpret.

•	 To minimize over-fitting of a machine learning-based context-aware model and to 
improve the model’s performance in terms of accuracy for unseen test cases.

•	 To reduce the context space and storage requirements as well as model complexity 
and computation cost in a context-aware model.

•	 To enable machine learning algorithms to train faster.

In this study, we mainly explore several context pre-modeling and classification methods 
that are relevant within the scope of this study, especially which are relevant in user-cen-
tric context-aware predictive modeling. Thus, we intend to tackle the following research 
questions with our study:

RQ1. Are the contexts varied with significant information related to the target behav-
ioral activity classes of the users, on which several contextual features are determined, to 
build an effective data-driven context-aware predictive model?

RQ2. Do the machine learning classification based user-centric context-aware predic-
tive models have an impact on context pre-modeling tasks, to effectively predict for unseen 
context-aware test cases?

To answer these research questions, in this work, we take into account an empirical 
analysis of several context pre-modeling tasks mentioned earlier, and to build user-cen-
tric context-aware predictive models based on various popular machine learning classifi-
cation techniques. Users contextual apps usage datasets consisting of different categories 
of apps usages in different contexts are used in our empirical analysis.

Background and related work
Classification techniques are well-known and popular in the area of machine learning 
and data science, to build the prediction models. In general, the goal of classification is 
to effectively classify or predict the target class labels whose contextual features values 
are known in a context-aware model, but class values are unknown [12]. Several machine 
learning classification techniques such as ZeroR, naive Bayes, decision tree, random for-
est, k-nearest neighbor, support vector machines, artificial neural network, etc. exist 
with the capability of building context-aware predictive models in the domain of smart-
phone data analytics and to analyze context-aware personalized behavioral model [7].

In addition to classification techniques, unsupervised learning like clustering and 
association analysis, are well-known branches in the area of machine learning and 
data science and can be used for smartphone analytics. For instance, a number of 
authors use association learning [13–16], and clustering approaches [17, 18] for user 
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behavioral analytics based on contextual information. Although, several context 
pre-modeling tasks can help to build effective context-aware models based on these 
unsupervised approaches, in this work, we particularly focus on the supervised clas-
sification techniques for the purpose of building user-centric context-aware predic-
tive models. Classification learning techniques typically build a context-aware model 
utilizing a given training dataset with contextual information and then the resultant 
predictive model can be used for testing purposes.

Among the traditional machine learning classification approaches, a tree-based, 
particularly, a decision tree based context-aware model is more effective to analyze 
user behavior in the domain of smartphone data analytics [7]. A number of research-
ers use decision tree classification technique in their study for different purposes 
[19–23]. For instance, Hong et al. [20], Lee et al. [21] propose context-aware model 
for providing personalized services utilizing context history. In [19], Zulkernain 
et al. design a rule-based context-aware system to intelligently assist mobile phone 
users. A decision tree based robust user behavior model utilizing contextual smart-
phone data has been presented in [11]. In addition to smartphone usage, decision 
tree based model can also be used in the domain of IoT or cybersecurity analytics 
[23]. Several decision tree learning approaches such as ID3 decision tree [24], C4.5 
decision tree [25], behavioral decision tree BehavDT [6] exist with the capability of 
constructing contextual decision trees and building context-aware predictive mod-
els. Recently, Sarker et al. use an ensemble learning approach consisting of multiple 
decision trees for analyzing smartphone data [3]. Similarly, a number of researchers 
use ensemble learning approach, particularly, random forest classification technique 
in the area of context-aware mobile services in different purposes [26–28].

In addition to the context-aware tree-based models discussed above, several 
other machine learning classification techniques are used in the area of context-
aware computing and smartphone analytics. For instance, Bozanta et  al. [29] use 
the k-nearest neighbor classification technique while developing a contextually per-
sonalized recommender system. Ayu et  al. use k-nearest neighbor classification in 
their study while recognize activity using mobile phone data. In [30], the authors 
use the k-nearest neighbor classifier while designing their recommendation system. 
Similarly, the naive Bayes classification technique is used in Ayu et  al. [31], Fisher 
et  al. [32] in their analysis. To analyze contextual mobile phone data, Pielot et  al. 
[33], Bedogni et al. [27], Bayat et al. [34] have used support vector machines in their 
context-aware analysis to build context-aware models. In addition to these classi-
cal machine learning classification techniques, several research has been done based 
on artificial neural network [7, 35–37]. Although a number of research summarized 
above, has been done in the area of context-aware analysis and predictive modeling, 
more attention is needed to explore context engineering or pre-modeling tasks, to 
make the model more effective with reduced computational cost for unseen test 
cases, in which we are interested.

Therefore, in this paper, we mainly focus on context pre-modeling tasks and 
explore the most popular machine learning classification techniques to build effec-
tive user-centric context-aware predictive models utilizing multi-dimensional con-
textual data.
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Context pre‑modeling strategies
Context pre-modeling can also be considered as context engineering or pre-process-
ing tasks such as context vectorization, context generation and extraction, context 
selection, and eventually context evaluation, etc. In the following, we briefly discuss 
these tasks to build effective context-aware models utilizing multi-dimensional con-
textual data.

Context vectorization

Context vectorization typically defines a good numerical measure to characterize a 
categorical context value. The vectors rather than direct contexts are used widely in 
machine learning because of the effectiveness and practicality of representing objects 
in a numerical way to help with many kinds of analyses. Thus, both the context trans-
formation and context normalization are used to represent the contextual values into 
numerical values to feed into the machine learning technique.

Context transformation

Smartphone contextual data with users’ behavioral activities, may contain categorical 
variables [5, 38]. These variables are typically stored as text values such as location 
at home, on the way; or Internet connectivity is on/off. Since machine learning clas-
sification algorithms are based on mathematical computing and relevant equations, 
it would cause a problem with such type of categorical values of the contexts. Thus, 
context transformation is needed for further processing, if the algorithms do not sup-
port categorical values. One hot encoding and label encoding are the most popular 
approaches to encode the categorical contextual features into numeric vectors [3, 39]. 
In one hot encoding technique, a significant number of dummy variable increases, 
and consequently increases the dimensions of the datasets. On the other hand, in 
label encoding, the context values converted directly into particular numeric values, 
and thus the number of features remains the same. In our experiments, we take into 
account the label encoding technique in the scope of our context-aware analysis. In 
this encoding technique, each categorical value is assigned a numeric value from 1 
through N, where N represents the number of categories for a particular context. For 
instance, in terms of the spatial context, label encoding can turn users’ diverse loca-
tions [at home, at the office, on the way, at home, on the way, at playground] into 
numeric values [0, 1, 2, 0, 2, 3].

Context normalization and scaling

The contextual dataset may contain context values highly varying in magnitudes, 
units, and range. As a result, further processing and building machine learning classi-
fication models may face problems while computations. With few exceptions, machine 
learning algorithms don’t perform well when the input numerical attributes have very 
different scales [39]. Thus, context normalization or scaling is needed to resolve the 
issues involved. Context normalization is typically a method used to standardize the 
range of independent variables representing the contextual information. In data pro-
cessing, it is also known as data scaling or standardization and is generally performed 
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during the data pre-processing step [12]. Standard scaler, Min-max scaler, Robust 
scaler, are the well-known normalization approaches in data pre-processing [39]. In 
our experiment, we take into account the Standard scaler by assuming the contextual 
data is normally distributed within each contextual feature and make scale them such 
that the distribution is centered around 0, with a standard deviation of 1. The mean 
and standard deviation are calculated for the contextual features based on the equa-
tions given below [39]:

Thus, context transformation with normalization and scaling can be a good fit to repre-
sent contextual data into numeric values, to feed the necessary contextual information 
into the machine learning techniques, to build a data-driven context-aware model.

Contextual feature generation and extraction

Feature generation and extraction techniques typically provide a better understanding of 
the data, a way of improving prediction accuracy, as well as reducing computational cost 
or training time in a machine learning-based model or system [40]. Feature extraction typi-
cally is a process of combining existing features to produce a more useful one, also known 
as dimensionality reduction by which an initial set of raw data is reduced to more manage-
able groups for further processing [39]. For example, principal components analysis (PCA) 
can be used to extract a lower-dimensional space [12]. The key principle is that the extrac-
tion process takes into account creating brand new components based on the contextual 
information in the datasets. Several methods such as Principal Component Analysis (PCA), 
Singular Value Decomposition (SVD), and Linear Discriminant Analysis (LDA), etc. can be 
used for analyzing the significance of the contextual features [12, 39]. In our experiment, we 
take into account the PCA method, which is a popular and well-known feature extraction 
method used in the area of data science and machine learning. PCA method can produce 
new brand features or components by analyzing the characteristics of the contextual data-
sets [4]. Technically, PCA finds the eigenvectors of a covariance matrix with the highest 
eigenvalues and then uses those to project the data into a new subspace of equal or fewer 
dimensions. The below mathematical equations are relevant to the principal component 
analysis [4, 12].

(1)Standardization : z =
x − µ

σ
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1
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Where, the first principal component be a linear combination of X defined by coeffi-
cients or weights w = [w1...wn] , and can be written in matrix form as U1 = wTX . Thus, 
in the scope of our study, we create principal components and calculate the variance of 
the components using this PCA method, considering the contexts and target behavioral 
activity of the users, to determine the significance of the contexts in a given dataset.

Contextual feature selection

Contextual feature selection could be another way to resolve the issues of high dimen-
sional contextual data, as well as to analyze the significance of the contextual features 
in a predictive model. It selects the most useful features to train on among existing fea-
tures [39]. Feature selection techniques typically provide a better understanding of the 
data, a way of improving prediction accuracy, as well as reducing computational cost or 
training time in a machine learning-based model or system [40]. A contextual dataset 
may contain data with high dimensions, and some of them might not contain signifi-
cant information for building a machine learning classification-based model. Moreover, 
further processing with all the given features or attributes using machine learning tech-
niques might give poor prediction results because of the over-fitting problem [23, 41]. 
Thus, an optimal number of features by selecting contexts, is needed not only to reduce 
the computational cost but also to build a more effective context-aware model with a 
higher accuracy rate. For this, we can filter less significant, irrelevant or redundant con-
text from the given dataset, by analyzing the data patterns and dependency. Several sta-
tistical methods such as chi-squared test, analysis of variance test, correlation coefficient 
analysis, etc. can be used for analyzing the significance of the given features [12, 40]. In 
our experiment, we take into account the correlation of the contexts, known as Pearson 
correlation coefficient [12], which is the most popular method for analyzing how each 
context is correlated with each other and with the target behavioral activity of the users. 
Correlation is a well-known similarity measures between two contextual features, and 
measures the strength between features and with behavioral activity class. The correla-
tion-based feature selection is based on the following hypothesis: “Good feature subsets 
contain features highly correlated with the target class, yet uncorrelated or less corre-
lated to each other”. If X and Y represent two random contextual variables, then the cor-
relation coefficient between X and Y is defined as [12] 

(5)r(X ,Y ) =

∑

n

i=1(Xi − X̄)(Yi − Ȳ )
√

∑

n

i=1(Xi − X̄)2
√

∑

n
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(6)w
T
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T
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T
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In the field of statistics, the formula Eq. 8 is often used to determine how strong that 
relationship is between those two variables X and Y with values between −1 and 1 con-
sidering both positive and negative correlation. Thus, in the scope of our study, we calcu-
late the correlation coefficient values of each context and target behavioral activity of the 
users, to determine the significance of the contexts in a given dataset.

Implementing machine learning classification methods
In this section, we discuss the machine learning classification techniques to build con-
text-aware predictive models, within the scope of our study. For this, we use the most 
popular machine learning library scikit-learn [42], as well as the deep learning libraries 
Keras [43], and Tensorflow [44] written in Python, where Keras is a high-level API that 
runs on top of TensorFlow [39]. In the following, we discuss the implemented machine 
learning classification techniques that are taken into account in our context-aware 
models.

Naïve Bayesian classification

Naïve Bayesian (NB) [45] classification is one of the popular supervised learning tech-
niques based on statistical probability. This classifier is widely used in various applica-
tion areas because of its simplicity and easy to build. In many application areas, it gives 
significant prediction results with the test cases. A naive Bayesian contextual model is 
based on the most popular Bayes’ theorem in statistics, with the assumptions of inde-
pendence between contextual features or predictors. Bayes’ theorem typically provides 
a way of calculating the posterior probability of an event and is stated mathematically as 
the following equation [12]:

where, c is a class variable that represents user behavioral activity and P(c) is the class 
prior probability. X = {x1, x2, ..., xn} is a dependent feature vector of size n consists of 
contextual information, and P(X) is the prior probability of a contextual feature. P(c|X) 
represents the posterior probability of target class of the given contextual feature, while 
P(X|c) is the likelihood which is the probability of contextual feature of a given class.

K‑nearest neighbor

Another classification algorithm, K-nearest neighbors (KNN) [46] is a simple and popu-
lar technique, in the area of machine learning, used in many application areas for analyz-
ing the prediction problems. This is also called as a lazy learning algorithm because of its 
working procedure. This technique does not have a specialized training phase for build-
ing a model rather uses all the data instances while classification. It classifies new test 
cases based on a ‘feature similarity’ measure, such as a distance function, e.g., Euclidean 
distance [12]. A case is classified by a majority voting of its neighbors indicating as k 
values. Figure 1 shows an example to understand the concept of k in a KNN algorithm, 

(9)P(c|X) =
P(X |c)P(c)

P(X)

(10)P(c|x1, x2, ..., xn) =
P(x1|c)P(x2|c)...P(xn|c)P(c)

P(x1)P(x2)...P(xn)
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considering different k values, such as k = 3 and k = 6 . While building our context-
aware model, we take into k = 5 , as the number of neighbors.

Support vector machine

Support vector machine (SVM) [47] classification is another popular supervised learn-
ing technique in machine learning, that can be used to build a context-aware predictive 
model. The computation concept behind this classifier is to find a hyperplane between 
the contextual data space, which best divides the dataset into two behavioral activity 
classes as shown in Fig. 2. The main principle to estimate the hyperplane is that it maxi-
mizes the margin between the two classes, and the vectors (cases) that define the hyper-
plane are the support vectors [12]. Overall, it works in two steps that include identifying 
the optimal hyperplane in contextual data space, and then to map the data instances 
according to the decision boundaries specified by the hyperplane for a given dataset.

In our context-aware model, we take into account several parameters including the 
kernel, while building the SVM based model. In the area of machine learning, kernel 
functions can be different types such as linear, poly, RBF, sigmoid, precomputed etc. [12, 
39]. We use the Radial Basis Function (RBF), which is a popular kernel function used 
in various kernelized learning algorithms. In addition, the regularization parameter C, 
also known as the penalty parameter of the error term, which controls the trades-off the 
correct classification of training examples against the maximization of the decision func-
tion’s margin. The strength of the regularization is inversely proportional to C. Thus we 
use C = 1.0 , considering the trade-off between achieving a low training error, and a low 
testing error in our SVM based context-aware model.

Fig. 1  K-nearest neighbor considering different k values such as k = 3 and k = 6

Fig. 2  Support vector machine data distribution over the hyperplane
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Decision tree

Decision tree (DT) [25] classification is a well-known supervised learning method, 
which is used widely for solving various prediction or classification problems in various 
application areas. A decision tree is a non-parametric supervised learning method that 
builds classification models in the form of a tree structure consisting of several nodes. 
It breaks down a contextual dataset into subsets and the associated tree is incremen-
tally developed. It calculates entropy and information gain [25] while building the tree. 
In addition to entropy, “gini” function could be effective in a decision tree model [39]. 
An example of the decision tree nodes is shown in Fig. 3.

In our context-aware model, we take into account the best split at each node and use 
the “gini” function to measure the quality of a split in a decision tree model. In our deci-
sion tree model, nodes are expanded until all leaves are pure or until all leaves contain 
less than the minimum number of samples required to split an internal node, which is 
set as 2 in this experiment. We also set the minimum number of samples required to be 
at a leaf node as one. The maximum number of features are taken into account as the 
equal number of the contextual features in this experiment, to build our context-aware 
model.

Random forest

The random forest (RF) [48] is an ensemble classification technique in machine learn-
ing consisting of multiple decision trees. It combines bootstrap aggregation (bagging) 
[49] and random feature selection [50] to construct a collection of decision trees exhibit-
ing controlled variation. While training, each tree in a random forest contextual model 
learns from a random set of contextual data instances. The instances are drawn with 
replacement known as bootstrapping, which means some instances are used multiple 
times to build the tree. Overall, the entire random forest learner might have lower vari-
ance while building a model. After constructing the forest model, the prediction result 
is measured by taking into account the majority voting of the generated decision trees. 
Fig. 4 shows an example of a random forest structure considering several decision trees.

In our context-aware model, we take into account 100 trees while constructing the 
random forest. Although both the “gini” and “entropy” are the popular measures of 

Fig. 3  An example of decision tree nodes
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impurity of a node [12, 39], we use “gini” function that represents the average gain of 
purity by splits of a given context to measure the quality of a split. We do not restrict the 
maximum depth while generating a tree, as we have not a huge number of contexts in 
this experiment. Thus nodes are expanded until all leaves are pure or until all leaves con-
tain less than the minimum number of samples required to split an internal node, which 
is set as 2 in this experiment, mentioned in decision tree model as well. We also set the 
minimum number of samples required to be at a leaf node as one. The maximum num-
ber of features are taken into account as the square root of the total contextual features 
of this experiment, to build our context-aware model.

Artificial neural network

An artificial neural network (ANN) is mainly used for deep learning models. An ANN is 
comprised of a network of artificial neurons, also known as nodes of the network [12]. 
The nodes are connected by links and each link is associated with weight and they inter-
act with each other in different layers. In this work, we consider a feed-forward arti-
ficial neural network consisting of several layers, such as the input layer, hidden layer, 

Fig. 4  Random forest with multiple decision trees

Fig. 5  An example of neural network with multiple hidden layers
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and output layer [12, 39]. In our ANN model, the size of the input layer has been chosen 
according to the number of selected contextual features, and the number of neurons in 
the output layer is equal to the number of classes. The three hidden layers with the neu-
rons 100 have been carefully selected to build our contextual neural network model, as 
shown in Fig. 5.

In our context-aware model, we take into account three hidden layers with 100 neu-
rons and compile the neural network with Adam optimizer [39]. While training the net-
work, we use 1000 epochs with the batch size 200. We also use a small value of 0.001 as 
the learning rate as it allows the model to reach the global minimum. Regarding the acti-
vation function, we use the Rectified Linear Unit (ReLU) that overcomes the vanishing 
gradient problem, as well as allows the model to learn faster and perform better com-
pared with other activation functions like the Sigmoid [39, 51]. We empirically set these 
hyperparameters to build our context-aware model using the artificial neural network.

Experimental results and evaluation
In this section, we first describe the datasets including contexts, and apps usage, and 
then highlight the evaluation metrics that are taken into account to measure the effec-
tiveness of various machine learning classification models. We finally discuss the experi-
mental results in various dimensions related to our analysis.

Datasets

We have collected individuals’ smartphone usage datasets consisting of different catego-
ries of smartphone apps such as social networking, instant messaging, mobile commu-
nications, entertainment, or other apps related to users’ daily life services in different 
contexts. The contexts are—temporal context such as time-of-the-day [24-h-a-day], 
days-of-the-week [7-days-a-week]; spatial context or user location such as at home, 
at the office, at the canteen, in the playground, on the way, etc; user work status such 
as workday or holiday; user diverse mood such as normal, happy, or sad; user device-
related context such as battery level low, medium, or full; phone profile such as phone 
notification setting general, silent, or vibration; user Internet connectivity such as WiFi 
connectivity on or off. Different types of apps are Facebook, Gmail, LinkedIn, Instagram, 
Youtube video, Live Sport, Whatsapp, Internet browsing, watching movies, Skype, lis-
tening musics, reading news, playing games, etc. Datasets are collected from June 2018 
to October 2018 from several participants for experimental purposes.

Evaluation metric

To evaluate the machine learning-based models, we employ the most popular K-fold 
cross-validation technique in machine learning [12]. In our evaluation, we use K = 10 
for generating train and test data to build a model, and measure the predicted accuracy 
that are defined as below:

•	 Precision: It measures the ratio between the number of apps usage behaviors that 
are correctly predicted and the total number of apps that are predicted. If TP and 
FP denote true positives and false positives then the formal definition of precision is 
[52]: 
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•	 Recall: It measures the ratio between the number of apps usage behaviors that are 
correctly predicted and the total number of relevant apps. If TP and FN denote true 
positives and false negatives then the formal definition of recall is [52]: 

•	 F1 score: It is a measure that combines both the precision and recall defined above. 
It represents the harmonic mean of precision and recall. The formal definition of F1 
score is [52]: 

•	 ROC value: Receiver Operating Characteristic (ROC) that summarizes the trade-off 
between true positive rate and false-positive rate for a machine learning-based pre-
dictive model [52].

Context vectorization

As discussed above, the context values are category datatype that also considered as 
object type. Thus, we convert the context values into vectors to feed values into machine 
learning-based models. To achieve this goal, we first transform the context into numeric 
values. To do this, we use Label Encoder that transforms the context values into the 
desired numeric values. For instance, Internet connectivity on and off is transformed 
into 0 and 1. For more diverse values of contexts more numeric values are created. 
After performing encoding, we normalize the values using the Standard Scaler so that 
its distribution will have a mean value 0 and a standard deviation of 1. Table 1 shows 
the normalization value for some randomly selected instances of the dataset of user U1. 
Numerical values of different contexts shown in Table 1 are used to feed into machine 
learning-based models.

Prediction results of feature generation and extraction based model

In this experiment, we show the outcome results of the principal component-based fea-
ture extraction model. For this, we first generate the principle components and their 

(11)Precision =
TP

TP + FP

(12)Recall =
TP

TP + FN

(13)F1 score = 2 ∗
Precision ∗ Recall

Precision+ Recall

Table 1  Context normalization utilizing the dataset of user U1

Instance Con1 Con2 Con3 Con4 Con5 Con6 Con7

I1 1.72776303 − 0.59938852 0.12437413 − 1.02323747 − 1.26171878 0.9962435 0.06997602

I50 0.6963469 − 0.59938852 0.12437413 0.97729024 − 1.26171878 0.43511498 − 1.21824026

I100 − 0.77342109 1.66836695 − 0.58342305 − 1.02323747 1.13253553 − 1.24827061 − 1.21824026

I500 0.82527391 − 0.59938852 1.53996849 0.97729024 1.13253553 0.43511498 1.35819231

I1000 0.7479177 − 0.59938852 1.53996849 0.97729024 − 0.06459162 0.9962435 − 1.21824026

I2000 1.5472652 − 0.59938852 0.12437413 − 1.02323747 − 1.26171878 0.43511498 1.35819231
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variance values. Figure 6 shows the cumulative graph considering all the principle com-
ponents and their explained variances utilizing the datasets of user U1 and U2 respec-
tively. The results are shown considering the variance with each component representing 
as 0, 1, 2, ....6 in the x-axis, where the variance value is between 0 and 1. If we observe 
Fig. 6, we see that, for each component, the variance graph increases linearly up to value 
0.9. That means, all these generated components associated contain significant informa-
tion to modeling.

In Tables 2 and 3, we have also shown the prediction results of the resultant context-
aware models using various machine learning classification techniques utilizing the 
datasets of both the users U1 and U2. The techniques are random forest (RF), deci-
sion tree (DT), k-nearest neighbor (KNN), naive Bayes (NB), support vector machine 
(SVM), and artificial neural network (ANN) that are discussed briefly in earlier section. 
The results are shown by varying the variance threshold of v which is 90%, 70%, and 

Fig. 6  Cumulative graph considering the generated principle components and their explained variances

Table 2  Prediction results considering different variance utilizing the dataset of user U1

Classifier v = 90% v = 70% v = 50%

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

RF 0.91 0.91 0.90 0.90 0.90 0.90 0.86 0.86 0.86

DT 0.90 0.90 0.90 0.90 0.90 0.90 0.86 0.86 0.86

KNN 0.84 0.83 0.83 0.82 0.81 0.81 0.79 0.78 0.78

NB 0.67 0.72 0.69 0.66 0.71 0.68 0.60 0.65 0.63

SVM 0.74 0.75 0.74 0.73 0.74 0.73 0.70 0.70 0.70

ANN 0.81 0.80 0.80 0.79 0.77 0.78 0.39 0.38 0.36

Table 3  Prediction results considering different variance utilizing the dataset of user U2

Classifier v = 90% v = 70% v = 50%

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

RF 0.88 0.88 0.88 0.88 0.88 0.88 0.86 0.86 0.86

DT 0.88 0.87 0.87 0.87 0.87 0.87 0.86 0.86 0.86

KNN 0.85 0.84 0.84 0.85 0.84 0.84 0.79 0.78 0.78

NB 0.66 0.71 0.68 0.65 0.71 0.68 0.58 0.63 0.61

SVM 0.73 0.74 0.73 0.72 0.72 0.72 0.67 0.66 0.66

ANN 0.81 0.81 0.81 0.80 0.79 0.79 0.69 0.68 0.68
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50%.If we observe Tables  2 and 3, we can see that different threshold values give dif-
ferent results for each machine learning-based model. For 50%, it decreases the predic-
tion results in terms of precision, recall, and f-score. The reason is that low cumulative 
variance value as a threshold, may lose the context information and consequently low 
prediction results. However, a larger value of threshold increases the number of compo-
nents in the model, consequently, increases the computational complexity and decreases 
the prediction results in several cases depending on the dataset characteristics. Thus, we 
choose 90% as a threshold as the variance graph increases linearly up to 0.9, to output 
the prediction results. For another dataset, this value might be changed depending on 
their data characteristics and patterns. According to these results shown in Tables 2 and 
3, we can conclude that the random forest classification based context-aware model per-
forms comparatively better than other classification techniques for a particular chosen 
threshold of variance. Besides, to these prediction results, we also show the ROC val-
ues considering the random forest classification model utilizing the datasets of both the 
users U1 and U2 in Fig. 7. The reason for getting better results with component-based 
random forest model is that this model fits multiple decision trees with the generated 
feature components, and averages all the single tree results.

Overall, we can conclude from our experimental results is that feature extraction by 
generating new components based context-aware models are capable to determine the 
significance of the created components. As a result, an effective context-aware model 
can be built up with this feature extraction based approach that is also able to provide 
the significant prediction results with the trade-off the components and the prediction 
accuracy according to the preferred variance in a model.

Prediction results of feature selection based model

In this experiment, we show the outcome results of the correlation-based feature selec-
tion approach for building context-aware models. For this, we first calculate the correla-
tion of each context, and later with the target behavioral activity class as well. Tables 4 
and 5 show the correlation values considering all the contexts utilizing the datasets of 
user U1 and U2 respectively. The results are shown considering the correlation with each 
context representing Con1, Con2, ..., Con7, where the value is between −1 and +1.

Fig. 7  Prediction results in terms of ROC values of feature extraction based random forest context-aware 
model considering weighted average of activity classes
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If we observe Tables 4 and 5, we see that, for each context, it generates a particular 
correlation value according to their relevance with other contexts. The negative correla-
tion shown in Tables 4 and 5 is a relationship between two contextual variables in which 
one variable increases as the other decreases, and vice versa. The higher value repre-
sents highly correlated with each other and vice-versa. For instance, a perfect positive 
correlation is represented by the value +1 while a perfect negative correlation is repre-
sented by the value -1. For any 0 value, it indicates no correlation. A good feature subset 
contains features with less correlated or even uncorrelated to each other. The reason is 
that features with high correlation are more linearly dependent, and hence have almost 
the same effect on the dependent target class variable. In addition to correlation values 
between the contextual features, Table 6 also shows the correlation values for each con-
text with the target class variable for the user U1 and U2 respectively, where the value 

Table 4  Correlation coefficient utilizing the dataset of user U1

Con1 Con2 Con3 Con4 Con5 Con6 Con7

Con1 1.000000 − 0.605791 − 0.057758 − 0.080345 − 0.106224 − 0.000900 0.077178

Con2 − 0.605791 1.000000 0.029491 0.036674 0.040462 0.011684 − 0.038999

Con3 − 0.057758 0.029491 1.000000 − 0.002305 − 0.080622 − 0.006046 − 0.004714

Con4 − 0.080345 0.036674 − 0.002305 1.000000 − 0.059981 0.030254 0.049993

Con5 − 0.106224 0.040462 − 0.080622 − 0.059981 1.000000 − 0.069363 − 0.029213

Con6 − 0.000900 0.011684 − 0.006046 0.030254 − 0.069363 1.000000 − 0.004885

Con7 0.077178 − 0.038999 − 0.004714 0.049993 − 0.029213 − 0.004885 1.000000

Table 5  Correlation coefficient utilizing the dataset of user U2

Con1 Con2 Con3 Con4 Con5 Con6 Con7

Con1 1.000000 − 0.477266 − 0.018101 0.070562 0.081548 − 0.004683 0.002113

Con2 − 0.477266 1.000000 − 0.052795 − 0.009941 − 0.068945 − 0.116782 − 0.007300

Con3 − 0.018101 − 0.052795 1.000000 0.079590 − 0.013037 0.032749 − 0.110511

Con4 0.070562 − 0.009941 0.079590 1.000000 0.096467 − 0.108341 − 0.127522

Con5 0.081548 − 0.068945 − 0.013037 0.096467 1.000000 − 0.134262 0.078804

Con6 − 0.004683 − 0.116782 0.032749 − 0.108341 − 0.134262 1.000000 − 0.014646

Con7 0.002113 − 0.007300 − 0.110511 − 0.127522 0.078804 − 0.014646 1.000000

Table 6  Correlation coefficient with target class utilizing the dataset of user U1 and U2

User U1 User U2

Context Target Class Context Target Class

Con1 − 0.041343 Con1 − 0.063652

Con2 0.086053 Con2 0.079523

Con3 0.016337 Con3 − 0.058442

Con4 − 0.010151 Con4 − 0.086163

Con5 − 0.035780 Con5 − 0.142989

Con6 − 0.035325 Con6 0.019234

Con7 − 0.003021 Con7 − 0.093992
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is also between −1 and +1 . In this case, a good feature subset contains features that are 
highly correlated with the target class variable for classification, as the target class is 
directly influenced by these features according to their correlation values.

To show the effect of feature subsets selection with their correlation values, we have 
also shown the prediction results of the resultant context-aware models using various 
machine learning classification techniques, such as random forest (RF), decision tree 
(DT), k-nearest neighbor (KNN), naive Bayes (NB), support vector machine (SVM), 
and artificial neural network (ANN), utilizing the datasets of both the users U1 and U2. 
The results are shown by varying the correlation threshold t with 90%, 70% and 10% 
in Tables 7 and 8 respectively. If we observe Tables 7 and 8, we can see that different 
threshold values give different results for each machine learning-based model. For 10%, 
it decreases the prediction results in terms of precision, recall, and f-score. The rea-
son is that low correlation value as a threshold, may lose the context information and 
consequently low prediction results. However, a larger value of threshold increases the 
number of contexts in the model, consequently, increases the computational complexity 
and decreases the prediction results in several cases depending on the dataset charac-
teristics. Thus, we choose 90% as a threshold as the correlation threshold, to output the 
prediction results. For another dataset, this value might be changed depending on their 
data characteristics and patterns. According to these results shown in Tables 7 and 8, 
we can conclude that the random forest classification based context-aware model per-
forms comparatively better than other classification techniques for a particular chosen 
threshold of correlation. Besides these prediction results, we also show the ROC val-
ues in Fig. 8, considering the random forest classification model utilizing the datasets of 
both the users U1 and U2. The reason for getting better results with correlation-based 

Table 7  Prediction results considering different correlation utilizing the dataset of user U1

Classifier t = 90% t = 70% t = 10%

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

RF 0.90 0.90 0.90 0.90 0.90 0.90 0.31 0.30 0.29

DT 0.87 0.87 0.87 0.87 0.87 0.87 0.31 0.30 0.29

KNN 0.82 0.82 0.82 0.82 0.82 0.82 0.27 0.24 0.23

NB 0.66 0.72 0.69 0.65 0.71 0.68 0.60 0.64 0.62

SVM 0.73 0.74 0.74 0.73 0.73 0.73 0.70 0.70 0.70

ANN 0.79 0.79 0.79 0.79 0.79 0.79 0.21 0.20 0.19

Table 8  Prediction results considering different correlation utilizing the dataset of user U2

Classifier t = 90% t = 70% t = 10%

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

RF 0.88 0.87 0.87 0.88 0.87 0.87 0.62 0.61 0.61

DT 0.88 0.87 0.87 0.88 0.87 0.87 0.62 0.60 0.61

KNN 0.85 0.85 0.85 0.85 0.85 0.85 0.63 0.62 0.62

NB 0.66 0.71 0.68 0.65 0.71 0.68 0.58 0.63 0.61

SVM 0.73 0.74 0.73 0.72 0.72 0.72 0.67 0.66 0.66

ANN 0.80 0.79 0.79 0.80 0.79 0.79 0.24 0.24 0.22
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random forest model is that this model fits multiple decision trees with the selected fea-
ture subsets, and averages all the single tree results.

Overall, we can conclude from our experimental results is that feature selection 
based context-aware models are capable to determine the significance of the selected 
features. As a result, an effective context-aware model can be built up with this fea-
ture selection based approach that is also able to provide the significant prediction 
results with the trade-off the selected features and the prediction accuracy according 
to the preferred correlation value in the model.

Effectiveness comparison

In this experiment, we compute and compare the effectiveness of both the principal 
component-based context-aware model, and correlation-based context-aware model, 
using above mentioned machine learning classification methods. These are random 
forest (RF), decision tree (DT), k-nearest neighbor (KNN), naive Bayes (NB), support 
vector machine (SVM), and artificial neural network (ANN) that are discussed briefly 
in earlier section. Figure 9a, b show the relative comparison of prediction results in 
terms of precision, recall, f-score utilizing a collection of apps usage datasets of ten 
individual participants.

Fig. 8  ROC values of contextual feature selection based random forest model considering weighted average 
of activity classes

Fig. 9  Effectiveness comparison for various machine learning classification models considering both the 
component based and correlation based context-aware models
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If we observe Fig. 9a, b, we see that both the component-based models and the corre-
lation-based models give significant prediction results for random forest learning com-
paring to other learners. To calculate these results, we consider 90% variance, and 90% 
correlation as the threshold value, to select the number of components, and contexts 
respectively. However, different values may give different results that are discussed ear-
lier. The main difference between these two models are - in a component-based model 
the contexts are converted as principal components and are used in the model, and the 
number of components is chosen based on variance. On the other hand, a correlation-
based method directly uses a subset of the contexts in the datasets, and the number of 
contexts are chosen according to their correlation. Overall, from Fig. 9a, b, we can con-
clude that for a particular chosen threshold of variance, or correlation, the random for-
est classification based context-aware model performs comparatively better than other 
classification techniques.

Discussion
According to our empirical analysis of context pre-modeling tasks on contextual data-
sets discussed in the earlier section, it can be concluded that the integration of context 
pre-modeling and machine learning classification methods work well, in user-centric 
context-aware predictive models. Moreover, our findings through experimental analysis 
have shown that each context pre-modeling task involved in this work, such as context 
vectorization by defining a good numerical measure through transformation and nor-
malization, context generation and extraction by creating new brand principal compo-
nents, context selection by taking into account a subset of contexts according to their 
correlations, has a particular role for building effective context-aware predictive models. 
Such context-aware models can be applied in various domains of today’s interconnected 
world, especially in the environment of IoT and smartphones, such as smart cities, smart 
environments, home automation, eHealth, cybersecurity, and emergencies etc, where a 
number of contexts and data-driven services based on machine learning techniques are 
involved. Moreover, our analysis and discussion that we have done throughout the paper 
can also be helpful for the professionals of cybersecurity or mobile/IoT security domain, 
where high-dimension of security features are involved to build data-driven decision 
making [53].

Our findings show that the random forest classification based context-aware model 
performs comparatively better than other classification techniques, such as naive Bayes, 
decision tree, k-nearest neighbor, support vector machine, artificial neural network, 
etc. in both the component-based and correlation-based models for a particular chosen 
threshold of variance, or correlation discussed in our experiments. Based on our analy-
sis, we can conclude that - the associated contexts varied with significant information 
related to the target user behavioral activity class, on which several contextual features 
are determined. Moreover, the machine learning classification based user-centric con-
text-aware predictive models also have an impact on the mentioned context pre-mode-
ling tasks for effectively predicting for unseen context-aware test cases. As we claim that 
considering higher dimensions of contexts may cause over-fitting problems, and conse-
quently decrease the prediction accuracy, these methods could be effective to resolve the 
issues depending on their contextual data characteristics.
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This study has its limitations. Although, our empirical analysis has been done on con-
textual data, however, the number of contexts in the datasets is limited. Beyond that, 
this empirical analysis might deliver limited insights concerning good context engi-
neering when applied to only a few number of contexts. Our analysis would be more 
practical when more dimensions of contextual data available for building user-centric 
context-aware models. Although we have taken into account smartphone apps usages 
datasets as an example throughout this paper and done experiments accordingly, we 
believe that our analysis would beneficial for building context-aware predictive models 
in the area of relevant human-centric computing, applications, and services. The rea-
son is that while discussing the benchmarking approach in context-aware modeling for a 
particular human-centric application, the question of how to determine whether a given 
context is significant or not was raised. Thus, we recommend an assessment of the avail-
able contexts through our empirical analysis either based on creating new components, 
or calculating correlations. Further research is needed to give concrete advice on which 
contextual indicators are the most relevant for a particular context-aware system, and 
then collecting or analyzing the contextual raw data from our surrounding dynamic 
environment accordingly.

Conclusion and future work
In this paper, we have presented an empirical analysis of context pre-modeling for build-
ing user-centric context-aware predictive models utilizing smartphone datasets. For this 
purpose, we have explored several context pre-modeling tasks, such as context vectori-
zation that includes context transformation and normalization, context generation and 
extraction by creating new brand principal components, or context selection by taking 
into account a subset of contexts according to their correlations, and eventually context 
evaluation to build effective context-aware models utilizing multi-dimensional contex-
tual data. For creating models, we have used various popular machine learning classi-
fication techniques such as decision tree, random forest, k-nearest neighbor, support 
vector machines, naive Bayes classifier, and deep learning by constructing an artificial 
neural network of multiple hidden layers. The effectiveness of these models is examined 
by considering prediction accuracy in terms of precision, recall, f-score, accuracy, and 
ROC values. Our analysis has shown that exploring context pre-modeling and classifica-
tion methods work well together in user-centric context-aware predictive models and 
applications in today’s interconnected world, especially in the environment of IoT and 
smartphones. We believe that this study would be helpful to application developers to 
build corresponding human-centric real-life applications for the end-users, particularly, 
where higher dimensions of contexts involved.

To assess the effectiveness of the discussed machine learning-based context-aware 
models by collecting more dimensions of contextual data in the domain of IoT services 
and security, and measure the effectiveness in application level could be a future work.
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