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Introduction
Many data sets continuously stream from weblogs, financial transactions, health records, 
and surveillance logs, as well as from business, telecommunication, and biosciences [1, 
2]. Referred to as “big data,” a term that describes the large and distributed nature of the 
data sets, this area has recently become a focus of scholarship. Gartner [3] defines big 
data as high-volume, high-velocity, and high-variety data sets that demand cost-effective 
novel data analytics for decision-making and to infer useful insights. In recent years, the 
core challenges of big data have been widely established. These are contained within the 
five Vs of big data—value, veracity, variety, velocity, and volume [4]—as shown in Fig. 1.

Value refers to the benefits associated with the analysis of data; veracity refers to the 
accuracy of the data; and variety refers to the many types of data, such as structured, 
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semi-structured, or unstructured. Volume is the amount of data that is being accumu-
lated (i.e., the size of the data)—the larger the dimensionality of the data, the larger 
the volume. Dimensionality refers to the number of features or attributes or varia-
bles within the data available for analysis. By contrast, velocity refers to the “speed” at 
which the data are generated and may contain many dimensions. These elements of 
the current definition of big data address basic challenges. However, such a definition 
ignores another important aspect: “dimensionality,” which plays a crucial role in real-
world data analysis [4, 5]. The increase in dimensions or features or attributes poses 
significant challenges for anomaly detection in large data sets.

Anomaly detection aims to detect abnormal patterns deviating from the rest of the 
data, called anomalies or outliers. High dimensionality creates difficulties for anomaly 
detection because, when the number of attributes or features increase, the amount of 
data needed to generalize accurately also grows, resulting in data sparsity in which 
data points are more scattered and isolated. This data sparsity is due to unnecessary 
variables, or the high noise level of multiple irrelevant attributes, that conceal the true 
anomalies. This issue is widely acknowledged as the “curse of dimensionality” [6, 7]. 
It is an obstacle for many anomaly detection techniques addressing high dimensional-
ity that fail to retain the effectiveness of conventional approaches, such as distance-
based, density-based, and clustering-based techniques [8].

This survey aims to document the state of anomaly detection in high dimensional 
big data by identifying the unique challenges using a triangular representation of ver-
tices: the problem (big dimensionality), techniques/algorithms (anomaly detection), 
and tools (big data applications/frameworks). Authors’ work that falls directly into 
any of the vertices or closely related to them are taken into consideration for review 
(see Fig. 2). Furthermore, the limitations of traditional approaches and current strat-
egies of high dimensional data are discussed along with the recent techniques and 
applications on big data required for the optimization of anomaly detection. Hence, 
the contributions of this survey are threefold: 

Fig. 1  The high dimensionality problem in big data
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1.	 Review existing literature to highlight the theoretical background and current strate-
gies for managing the big dimensionality problem.

2.	 Identify unique challenges and review the techniques/algorithms of anomaly detec-
tion that address the problems of high dimensionality and big data.

3.	 Review the big data tools, applications and frameworks for anomaly detection in 
high dimensional big data.

This paper highlights techniques concerning anomaly detection as well as covering 
other closely related machine learning fields, such as pattern recognition, outlier 
detection, spam detection, suspicious detection, fraud detection, deep learning and 
novelty recognition.

The rest of the paper is structured as follows. “Related work and scope” sec-
tion provides an overview of differences between this survey and existing surveys. 
“Anomaly detection in big data” section presents the introduction of big dimen-
sionality problem in anomaly detection. “The high dimensionality problem” sec-
tion presents the theoretical background including visualization and the curse 
of dimensionality, and discusses the challenges of traditional models dealing with 
high dimensionality in anomaly detection. “Strategies for tackling the problem of 
high dimensionality” section provides strategies to tackle the high dimensional-
ity problem, such as dimensionality reduction methods to ascertain the benefit of 
one approach over another. “Unique challenges brought by anomaly detection in 
high-dimensional big data” section provides a taxonomy of big data anomaly detec-
tion problems with regard to high dimensionality in the form of a survey of closely 
related work. “Tools in high dimensional big data” section provides the review of 
big data tools and frameworks handling big dimensional data. The final section con-
cludes the survey and considers the direction of future research.

Fig. 2  Scope of the paper
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Related work and scope
Anomaly detection in high-dimensional data is becoming a fundamental research 
area that has various applications in the real world. As such, a large body of research 
has been devoted towards addressing this problem. Nevertheless, most existing sur-
veys focus on the individual aspects of anomaly detection or high dimensionality. 
For example, Agrawal and Agrawal [9] provide a review of various anomaly detec-
tion techniques, with the aim of presenting a basic insight into various approaches 
for anomaly detection. Akoglu et  al. [10] present several real-world applications of 
graph-based anomaly detection and concluded with open challenges in the field. 
Chandola et al. [11] present a survey of several anomaly detection techniques for var-
ious applications. Hodge and Austin [7] present a survey of outlier detection tech-
niques by comparing techniques’ advantages and disadvantages. Patcha and Park [12] 
have conducted a comprehensive survey of anomaly detection systems and hybrid 
intrusion detection systems by identifying open problems and challenges. Jiang et al. 
[13] present a survey of advanced techniques in detecting suspicious behaviour; they 
also present detection scenarios for various real-world situations. Sorzano et al. [14] 
categorize dimensionality reduction techniques, along with the underpinning math-
ematical insights. Various other surveys can also be observed, such as those by Gama 
et al. [15], Gupta et al. [16], Heydari et al. [17], and Jindal and Liu [18], Pathasarathy 
[19], Phua et al. [20], Tamboli et al. [21], and Spirin et al. [22], which further highlight 
the problems either in anomaly detection or in high-dimensional data.

A limited amount of work has been done that emphasizes anomaly detection and 
high dimensionality problems together, either directly or indirectly. Zimek et al. [23] 
present a detailed survey of specialized algorithms for anomaly detection in high-
dimensional numerical data; they also highlight important aspects of the curse of 
dimensionality. Parsons et  al. [24] present a survey of the various subspace cluster-
ing algorithms for high-dimensional data and discuss some potential applications in 
which the algorithms can be used.

To the best of the authors’ knowledge, no surveys directly highlight the problems of 
anomaly detection and high dimensionality in big data. In this survey, we present an 
integrated overview of these two problems from the perspective of big data. Table 1 
summarises the differences between this survey and other related works.

Anomaly detection in big data
Anomaly detection is an important technique for recognizing fraud activities, suspi-
cious activities, network intrusion, and other abnormal events that may have great sig-
nificance but are difficult to detect [25]. The significance of anomaly detection is that the 

Table 1  Comparison of our survey to other related survey articles

Surveys Anomaly detection High dimensionality problem Big data 
aspects

[7, 9–11, 14, 20] � ✖ ✖
[13, 17, 18, 22–24] � � ✖
[15, 16, 19, 21] � ✖ �

Our survey � � �
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process translates data into critical actionable information and indicates useful insights 
in a variety of application domains [11]. For example, cancer treatment plans need to 
be formulated based on the readings from an Intensity-modulated Radiation Therapy 
(IMRT) machine [26]; locating anomalies is critical before recommending the amount of 
radiation for a patient. Even if part of the treatment is based on anomaly detection, the 
accuracy of the data plays a crucial role and may have negative consequences if the data 
are analyzed ineffectively. As mentioned earlier, Chandola et al. [11] provided a survey, 
taxonomy, and analysis of several anomaly detection techniques for various applications, 
such as manufacturing defects, sensor networks, intrusion detection, and finding abnor-
mal behavior of the data. Most of the applications were important for high dimensional 
data sets that contained thousands or even millions of attributes. The traditional tech-
niques that detect anomalies in high-dimensional space are complicated, as anomalies 
are rare and generally appear in fractional views of subsets of dimensions or subspaces 
[27]. It has also been suggested by Aggarwal [28] that almost any anomaly detection 
algorithm based on the concept of proximity degrades qualitatively in high-dimensional 
space; therefore, redefinition of the algorithm is necessary. Furthermore, traditional 
methods become less meaningful with increasing dimensionality, as they use strategies 
that make certain assumptions about the comparatively low dimensionality of the data 
[29]. Moreover, it is possible that only a fraction of data points are informative for data 
sets with high dimensionality [28].

Anomaly detection that addresses problems of high dimensionality can be applied in 
either online or offline modes. In an offline mode, anomalies are detected in historical 
data sets known as “batch processing.” This relates to the “volume” feature of big data. 
By contrast, in online mode, new data points, known as “data streams,” are continually 
introduced while anomalies are being detected. This relates to the “velocity” feature 
of big data. A number of existing surveys and reviews highlight the problem of high 
dimensionality for various fields, such as machine learning and data mining. The “size” 
aspect of the volume [30–34] and “speed” aspect of the velocity [35–40] are frequently 
addressed in the literature; however, the “dimension” aspect remains largely ignored. 
Zhai et al. [4] termed this gap “big dimensionality” and we attempt to review the tech-
niques that are related to big dimensionality problem. However, to derive the unique 
challenges brought by anomaly detection in big dimensionality and to understand the 
core problem hindering the performance and accuracy of the available techniques, the 
theoretical background and current strategies are presented in the following sections.

The high dimensionality problem
High dimensionality refers to data sets that have a large number of independent vari-
ables, components, features, or attributes within the data available for analysis [41]. The 
complexity of the data analysis increases with respect to the number of dimensions, 
requiring more sophisticated methods to process the data. Data sets are growing in 
terms of sample size n but even more in terms of dimension m. At the same time, in 
the era of big data, m is commonly misconstrued as high-dimensional, since thousands 
of dimensions are very common. If a data set has n samples and m dimensions (or fea-
tures), then the data can be referred to as m-dimensional. In general, a data set can be 
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called high dimensional when the number of dimensions m causes the effect of ‘curse of 
dimensionality’.

One of the main sources of high-dimensional data sets are organizations with huge 
transactions and associated databases. Furthermore, it is common to have multiple 
dimensions in many application areas such as data mining and machine learning [42]. 
The advent of cloud-based storage enables organizations to store massive amounts of 
detailed information easily. A financial organization may monitor its stock price every 
minute, every hour, or every day, and the stock price may be predicted with linear com-
binations of thousands of underlying traded portfolios, each of which is a dimension. 
The other sources might be science or biology related; for example, healthcare data are 
known for having multiple dimensions, such as treatment plans, radiation therapy, and 
genetic background. The major difference between these examples (i.e., business and 
healthcare data) is the number of samples. The number of variables or components 
can be similar for each (in the thousands); however, the business data set can have mil-
lions of records, whereas the health data will rarely involve more than a few thousand 
samples. A sophisticated approach handles the number of increasing dimensions with-
out affecting accuracy in either situation. High-dimensional data is often referred to as 
multi-dimensional or multi-aspect or multi-modal data throughout the literature [43, 
44]. Highly detailed data from diverse platforms such as the web, social media is typi-
cally high-dimensional in nature. A generalised term for multi-dimensional data struc-
ture, along with arithmetic operations viability can be referred to as a tensor and appears 
frequently in many web-related applications.

Visualization in high‑dimensional data

Visualization is the graphic representation of data that aims to convert data to a quali-
tative understanding that supports effective visual analysis. The visualization of a mul-
tidimensional dataset is challenging, and numerous research efforts have focused on 
addressing the increasing dimensionality [45]. The scatter plot matrix is a straightfor-
ward technique that employs pairwise scatterplots as matrix elements to represent 
multidimensional datasets; however, a loss of significant detail limits this technique to 
two-variable projection. Parallel coordinate plots (PCPs) [46] are proposed as a mul-
tivariate visualization technique that overcomes the scatter plot’s two-variable limit; 
it does this by mapping data points of a multidimensional space to a two-dimensional 
plane by laying the features as parallel vertical axes at a uniform spacing [47, 48].

Dimensionality reduction that converts a large set of input features into a smaller 
set of target features is a common method of addressing the issue. It is categorized 
into “distance” and “neighborhood” preserving methods. The former aims to minimize 
cost (so-called “aggregated normalized stress”), while the latter maximizes the overlap 
between the nearest neighborhoods and identifies the patterns [49]. Techniques such 
as principal component analysis (PCA) [50] and multi dimensional scaling (MDS) 
[51] are based on dimensionality reduction and aim to preserve as much significant 
information as possible in the target low-dimensional mapping. PCA is discussed in 
“Strategies for tackling the problem of high dimensionality” section in detail, MDS is 
a method for constructing similarity (or dissimilarity) among pairs of generally high-
dimensional data as distances among points into a target low-dimensional space. The 
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standard distances used are Euclidean and cosine, and the algorithm input is an m × 
m distance matrix between all paired observations. The advantage of MDS is that it 
does not require original dimensions; it can generate an output (i.e., a point pattern) 
by computing a dissimilarity matrix among observations. Conversely, the disadvan-
tage is that it requires analysis and storing of the m × m distance matrix, making the 
method computationally expensive when m increases [49, 52]. The Fastmap algorithm 
that projects the instance space in the directions of the maximum variability by cal-
culating the dissimilarities is significantly faster than MDS [53]. Various other meth-
ods have been proposed, such as ISOMAP, Landmarks MDS, and Pivot MDS [54, 55], 
which can compute the projections in linear time to the number of observations.

In other cases, in which the number of dimensions is very high, the distances 
between paired observations appears similar and, as such, preserving such distances 
accurately is ineffective. Instead, preserving the neighborhoods in a projection is 
advantageous and effective in reasoning the patterns (anomalies) in the high-dimen-
sional data [52]. A most effective technique used in this case is t-stochastic neighbor 
embedding (t-SNE), which is widely employed in many fields, such as pattern recog-
nition, machine learning, and data mining. t-SNE is designed to capture most of the 
local structure in the high-dimensional data while simultaneously detailing the global 
structure, such as number of available clusters [56]. However, when the projection of 
dimensionality reduction fails, it is impossible to visualize the data in detail and it can 
only be comprehended mathematically [57]. For example, a linear separator in two-
dimensional space is a line:

However, a linear separator in three-dimensional space is a plane:

A linear separator in a high-dimensional space can be mathematically represented as

The curse of dimensionality

The term “curse of dimensionality” was first introduced by Bellman [58] to describe 
the problem caused by a rise in the number of dimensions or input variables. When 
the dimensionality of data increases, data size increases proportionally, leading to 
data sparsity, and sparse data is difficult to analyze. The curse of dimensionality affects 
anomaly detection techniques because the level of abnormal nature with respect to 
the increasing dimensions can be obscured or even concealed by unnecessary attrib-
utes [27]. Since outliers are defined as data instances in sparse regions, an inadequate 
discriminative region is observed in almost equally sparse locations of high-dimen-
sional space [28].

(1)ax1 + bx2 = d

(2)ax1 + bx2 + cx3 = d

(3)
∞∑

i=1

xi = d
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The increase in dimensions makes data points scattered and isolated, and makes it 
elusive to find the global optima of the data set. The more dimensions that are added 
to a data set, the more complex it becomes, as each added dimension brings about 
a substantial number of false positives [42]. Figure  3 illustrates the sparsity of the 
data when projected in one, two, and three dimensions. The curse of dimensionality 
refers to a number of occurrences that emerge when analyzing and organizing data 
in high-dimensional spaces. The very nature of these occurrences is that, whenever 
there is an increase in dimensionality, the volume of the space increases proportion-
ally, such that all other data points become sparse. This sparsity is challenging for any 
technique that requires statistical value. Further, it produces numerous complications 
associated with other noise levels, which may be irrelevant features or unnecessary 
attributes, that could complicate or even conceal the data instances [29]. This is the 
main reason why many algorithms struggle with high-dimensional data. As the num-
ber of dimensions increases, statistical approaches such as distance measures become 
less useful, since the points become almost equidistant from each other, due to the 
curse of dimensionality.

High-dimensional data requires significant computational memory and brings a 
huge computational burden. For high-dimensional data, recognizing useful insights 
or patterns becomes complex and challenging. The simplest approach to handle high 
dimensionality problem is to minimize the features and can be better understood by 
studying either the intrinsic or embedding dimensionality of data sets. It is essential 
to understand the subtle difference between intrinsic and embedding dimensionality. 
Intrinsic dimensionality is the smallest variety of the features that cover the full rep-
resentation of the data; embedding dimensionality is the representation of the num-
ber of features or columns of the whole data space. Moreover, it is also important to 
understand how statistical models tackle the problem of high dimensionality.

Traditional models addressing the high dimensionality problem

High-dimensional data have special challenges in data mining in general and anomaly 
detection in particular [23]. Anomaly detection is difficult for data sets with increasing 
dimensionality and poses serious issues for many traditional data mining techniques. 
The problems emerging from the curse of dimensionality are not just specific to anom-
aly detection; they are also applicable to many other data mining techniques. Statistical 

Fig. 3  The effect of the curse of dimensionality when projected in (1) one dimension, (2) two dimensions, 
and (3) three dimensions
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models use various methods, such as proximity-based, cluster-based, distance-based, 
density-based, and classification-based, to tackle the dimensionality problem. How-
ever, these methods bring greater computational complexity as the number of dimen-
sions increases, the data instances are scattered and become less dense, affecting data 
distribution [7]. It is widely known that numerous issues, such as clustering and similar-
ity of search experience, emerge with the increasing range of dimensions. Zimek et al. 
[23] discussed important aspects of the curse of dimensionality in their study of spe-
cialized techniques for anomaly identification. They highlighted common issues related 
to high-dimensional data and examined the difficulties in anomaly detection. They have 
concluded that more research is needed to tackle the problem of high dimensionality 
in anomaly detection. Some of the traditional models that address this problem are dis-
cussed below.

Many algorithms build on concepts of proximity to find anomalies that are based on 
relationships between data points. However, such algorithms suffer from huge computa-
tional growth in high-dimensional space and, consequently, fail to retain their effective-
ness. This is because computational complexity of the algorithm is directly proportional 
to both the increased dimensionality of the data m and the number of samples n. The 
data distribution model interprets sparsity in a completely different way; it implies that 
every data instance is equidistant to others, which makes it difficult to differentiate close 
and distant pairs of data instances. The increase in dimensionality scatters the spread 
of data instances, making them less dense. It has been suggested by Aggarwal [28] that 
almost any technique that is primarily based on the concept of proximity would degrade 
qualitatively in high-dimensional space, and would, therefore, need to be redefined in 
a more meaningful way. Proximity-based techniques, which involve defining a data 
instance as a point of reference when its locality or proximity is sparsely distributed, are 
simple to implement. The locality can be defined in various ways, such as cluster-based, 
distance-based, and density-based, and no prior assumptions about the data distribution 
model are made. The difference between various proximity techniques lies in how the 
locality or proximity is defined.

When the data become sparse and methods based on the concept of proximity fail 
to maintain their viability, interpreting the data becomes difficult. This is because the 
sparsity of high-dimensional data can be comprehended in several ways that suggest 
that every data instance is an equally good anomaly with regard to the definition of a 
distance-based algorithm. Aggarwal and Yu [8] developed a method for outlier detec-
tion based on an understanding of the nature of projections. The method focused on 
lower dimensional projections that are locally sparse and cannot be recognized easily 
by brute-force techniques due to various possible combinations. They developed the 
method using a naive brute-force algorithm, which is very slow at identifying the mean-
ingful insights because of its exhaustive search of the entire space, and another faster 
evolutionary algorithm to quickly discover underpinning patterns of dimensions. Due 
to the exponentially increasing search space, the brute-force technique is computation-
ally weak for problems of even modest complexity. However, the technique has advan-
tages over simple distance-based outliers that cannot overcome the effects of the curse 
of dimensionality. Other related studies that address the high dimensionality problem in 
anomaly detection are discussed below.
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Distance‑based techniques

As mentioned in the above section, distances between pairs of data instances are simi-
lar for a wide variety of data distributions and distance functions in high-dimensional 
space [59]. Distance concentration is one of the problems associated with sparsity and 
is related to the hubness phenomenon. Hubness is the tendency of some data instances 
to occur more frequently than others within the data set. It is dependent on feature rep-
resentation, normalization, and similarity. Hence, hubs can sometime be interpreted as 
noise effects. Angiulli and Pizzuti [30] proposed a distance-based anomaly detection 
technique called “HilOut” to detect the top n outliers of large and high-dimensional data 
sets. HilOut uses the notion of the space-filling curve to linearize the data set; it provides 
an approximate solution before calculating the exact solution by examining the candi-
date outliers that remain after the first phase. Angiulli and Pizzuti presented both in-
memory and disk-based versions of the their proposed HilOut algorithm, as well as a 
thorough analysis of the method, which scaled well.

One of the more effective ways to handle sparse data in high-dimensional space is 
to employ functions based on dissimilarities of the datapoints. An assessment of small 
portions of the larger data set could help to identify anomalies that would otherwise be 
obscured by other anomalies if one were to examine the entire data set as a whole. Meas-
uring the similarity of one data instance to other within a data set is a critical part of low-
dimensional anomaly detection procedures. This is because an uncommon data point 
possesses insufficient data instances that are alike in the data set. Several anomaly detec-
tion methods practice Manhattan or Euclidian distance to estimate similarity among 
data instances [35]; however, when Euclidian distance is used to measure the similar-
ity, the results are often treated as meaningless due to the unwanted nearest neighbors 
from multiple dimensions. This is due to the distance between two similar data instances 
and the distance between two non-similar data instances can be almost equal; hence, 
methods such as k-nearest neighbor with O(n2m ) runtime are not viable for high dimen-
sionality data sets unless the runtime is improved. Nevertheless, Euclidean distance is 
the most common distance metric used to calculate the similarity of low-dimensional 
data sets. Though Euclidean distance is suitable for low-dimensional data sets, it does 
not work as effectively in high-dimensional data [60].

To address the issue, Koufakou and Georgiopoulos [61] proposed an anomaly detec-
tion strategy where the speedup is achieved by its distributed version which is very close 
to linear. They called the approach as “fast distributed” and intended for mixed-attrib-
ute data sets that deal with sparse high-dimensional data. Their method, which takes 
the sparseness of the data set into consideration, is extremely scalable, as it has several 
points and many attributes in the data set.

Clustering‑based techniques

Clustering is an important technique of data analysis. Ertoz et al. [63] introduced a shared 
nearest neighbor clustering algorithm to identify clusters of fluctuating shapes, sizes, and 
densities, along with the anomalies. Their method, which deals with multidimensionality 
and changing densities, automatically calculates the number of clusters. Initially, the algo-
rithm recognizes the nearest neighbors of each data instance; it then redefines the simi-
larity among pairs of data instances in terms of the number of nearest neighbors the data 
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instances share. The method recognizes core points and constructs clusters around these 
using the similarity. The shared nearest neighbor definition of similarity diminishes issues 
with differing densities and increasing dimensions. The authors identified a number of 
optimizations that allow their technique to process large data sets efficiently.

Density‑based techniques

Density-based techniques deal with the dense localities of the data space, identified by 
various regions of lower object density. These are not effective when the dimensionality of 
the data increases because, as data points are scattered through a large volume, their den-
sity decreases due to the curse of dimensionality, making the relevant set of data points 
harder to find [7]. Chen et al. [62] introduced a density estimator for estimating measures 
in high-dimensional data and applied this to the problem of recognizing changes in data 
distribution. They approximated the probability of data µ , aiming to bypass the curse of 
dimensionality by utilizing the assumption that µ is lying around a low-dimensional sub-
set embedded in a high-dimensional space. However, the estimators they proposed for 
µ are based on a geometric multiscale decomposition of the given data while controlling 
the overall model complexity. Chen et al. [62] proved strong finite sample performance 
bounds for various models and target probability measures that are based only on the 
intrinsic complexity of the data. The techniques implementing this construction are fast 
and parallelizable, and showed high accuracy in recognizing the outliers.

Classification‑based techniques

Regarding classification and high dimensionality, a common problem occurs when the 
dimensionality m of the feature vector is much larger than the available training sample 
size n. According to Fan and Fan [64], high dimensionality in classification is intrinsic 
and due to the presence of irrelevant noise effects that do not help in minimizing the 
classification error. high dimensionality also affects classification accuracy, which is the 
predictive power and model interpretability, meaning the model can interpret the kind 
of connection between input and output. When the number of features is high, some of 
the traditional classification methods yield poor accuracy, with increasing dimension-
ality resulting in false classifications. The relationship between variables often builds a 
model that better understands the data; however, too many dimensions can complicate 
the interpretation model [64]. The most effective strategies focus on the relevant features 
and can process large numbers of dimensions within a manageable time span. However, 
many statistical techniques are vulnerable to increasing dimensionality. See Table 2 for 
the summary of statistical methods. Some machine learning techniques are based on the 

Table 2  Summary of statistical methods and author’s work

Distance-based Density-based Clustering-based Classification-
based

[30] � ✖ ✖ ✖
[59] � ✖ ✖ ✖
[62] ✖ � ✖ ✖
[63] ✖ � � ✖
[64] ✖ ✖ ✖ �
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assumption that dimensionality reduction can be achieved by projecting the data onto 
a lower dimensional space where learning might be easier after such lower dimensional 
projection [65, 66]. Techniques that are based on dimensionality reduction strategy pro-
jects data onto a lower dimensional subspace [8] or PCA [7, 67, 68], as discussed in the 
following section.

This section covered the theoretical background of the high dimensionality problem 
including ‘visualization’ and ‘the curse of dimensionality’, and also discusses the chal-
lenges of traditional models addressing the problem of high dimensionality in anomaly 
detection.

Strategies for tackling the problem of high dimensionality
One way to address the problem of high dimensionality is to reduce the dimensionality 
which projects the whole data set into a lower dimensional space, either by combining 
dimensions into linear combinations of attributes [69] or selecting the subsets of locally 
relevant and low-dimensional attributes called subspaces. As discussed above, many 
dimensionality reduction methods, such as PCA, MDS, Karhunen–Loeve Transform, 
local linear embedding, Laplacian Eigenmaps, and diffusion maps, have been proposed 
to achieve dimensionality reduction [51, 70–74]. In many application areas, data repre-
sentations consists of dimensions that are dependent on each other, and correlation and 
redundancy can be noted. The intrinsic dimensionality of those data representation is 
smaller than the available relevant dimensions. Many techniques have been proposed to 
measure the intrinsic dimensionality [75–80].

Principal component analysis

PCA was first described by Pearson [50]. One of the oldest and most popular methods 
to address multidimensionality, it is used in many scientific disciplines [81]. Synonyms 
for PCA, such as empirical orthogonal functions, correspondence analysis, factor analy-
sis, multifactor analysis, Eigenvector analysis, and latent vector analysis, can be found 
throughout the literature [81]. PCAs are generally based on the assumption that data 
are extracted from a single low-dimensional subspace of a high-dimensional space; how-
ever, in reality, data may derive from multiple subspaces, including unknown ones [82]. 
The aim of PCA is to derive all the significant attributes from the data set and form new 
orthogonal attributes called principal components. This provides an estimation of a data 
set which is, a data matrix x in terms of the product of two small matrices T and P. These 
(T and P) identify the important data patterns of X [83] to reduce the dimensionality by 
merging all the relevant attributes, called principal components, before eliminating all 
other remaining attributes [84, 85]. In general, PCA can be used on any data set by esti-
mating the correlation structure of the features of the data set. It has three main goals: 
(1) project the most important dimensions of the data set, (2) combine the selected 
dimensions and so reduce the size of the data set, and (3) simplify the data set by analyz-
ing the structure of the observations and associated dimensions.

Wang et al. [86] presented a PCA, as well as separable compression sensing, to iden-
tify different matrices. Compressive sensing (or compressed sampling [CSG]) theory was 
proposed by Candes and Wakin [87], that uses a random measurement matrix to convert 
a high-dimensional signal to low-dimensional signal until the signal is compressible after 
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which the original signal is restructured from the data of the low-dimensional signal. 
Moreover, the low-dimensional setting contains the main features of the high-dimen-
sional signal, which means CSG can provide an effective method for anomaly detection 
in high-dimensional data sets. In the model of Wang et al. [86], abnormalities are more 
noticeable in a matrix of uncompression compared to a matrix of compression. Hence, 
their model could attain equal performance in volume anomaly detection, as it used the 
original uncompressed data and minimized the computational cost significantly.

The major drawback of using dimensionality reduction approaches based on PCA is 
that they may lead to a significant loss of information. This is because PCA is generally 
aimed at detecting orthogonal projections of the data set that contain the highest vari-
ance possible to identify hidden linear correlations among attributes [73]. If the attrib-
utes of the data set are non-linear or unrelated, PCA may result in complicated, and 
possibly uninterpretable, false positives.

Subspace approach

The subspace approach is an extension of feature selection that aims to identify local, 
relevant subspaces instead of the entire data space. Subspaces are the subsets of dimen-
sions of a dataset that use less than the full dimensional space. For example, in applying 
the subspace approach to clustering, each cluster is a set of data instances recognized 
by a subset of dimensions, and different subsets of dimensions are represented in dif-
ferent clusters. The difference between traditional clustering and subspace clustering is 
the simultaneous discovery of cluster memberships of objects and the subspace of each 
cluster [88]. Cluster memberships describe similarities in objects and can be referred to 
as local relevant spaces in a normal subspace approach. Clusters are generally embedded 
in the subspaces of high-dimensional data. Aggarwal [89] concluded that by evaluating 
the nature of data, it is practical to suggest more meaningful clusters that are specific to 
a particular subspace. This is because anomalies may only be identified in low-dimen-
sional subspaces of the data or in data sets with missing attributes [8]. Every subspace 
can be identified with its own patterns. This is due to different regions of the data being 
dense with respect to different subsets of dimensions. These clusters are referred to as 
projected clusters or subspace clusters [24, 90, 91].

Anomaly detection techniques that are based on subspace approaches are complex; they 
assume that anomalies are rare and can be found only in some subsets (locally relevant sub-
sets) of dimensions. For this reason, statistical aggregates on individual dimensions in a spe-
cific region often provide very weak hints in subspace searches, resulting in the omission of 
useful dimensions, especially when locally relevant subspaces provide only a small view of 
the total dimensionality of the data. The challenge is identifying relevant subspaces, as the 
number of possible subspaces is directly proportional to the increasing dimensionality of 
the data. To build a robust anomaly detection model based on this assumption, it is neces-
sary to simultaneously find relevant subspaces and low-dimensional spaces. Simultaneous 
discovery plays a crucial role because different subsets of dimensions are relevant to differ-
ent anomalies. The discovery of multiple subspaces is important because selection of a sin-
gle or only a few relevant subspaces may cause unpredictable results [28]. Hence, subspace 
anomaly detection is an ensemble-centric problem [89]. Lazervic and Kumar [92] pro-
posed a model that detects anomalies using a scoring system called “feature bagging” that 
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randomly selects subspaces. However, this results in the rise of irrelevant dimensions due 
to random subspace selection. To address this problem, Kriegel et al. [23] adopted a tech-
nique to select informative or relevant dimensions. Müller et al. [93] proposed a subspace 
method called “OUTERS,” an outrank approach that ranks anomalies in heterogeneous 
high-dimensional data by introducing a novel scoring algorithm using subspace clustering 
analysis to detect anomalies in any number of dimensions. Zhang et al. [94] proposed an 
angle-based subspace outlier detection approach that selects meaningful features of sub-
space and executes anomaly detection in the selected subspace projection in order to retain 
the accuracy of detecting anomalies in high-dimensional data sets. They also included sub-
space detection approaches and illustrated the steps of relevant subspace selection suita-
ble for analysis. Thudumu et al. [41] proposed a method to detect outliers, by bifurcating a 
high-dimensional space into locally relevant and low-dimensional subspaces using Pearson 
correlation coefficient (PCC) and PCA. They derived candidate subspaces where anomalies 
may possible be hidden and developed an adaptive clustering approach to filter the anoma-
lies [5].

Another algorithm, called Outlier Detection for Mixed-Attribute Data sets (ODMAD) 
proposed by Koufakou and Georgiopoulos [61], detects anomalies based on their cate-
gorical attributes in the first instance, before focusing on subsets of data in the continuous 
space by utilizing information about the subsets based on those categorical attributes. Their 
results demonstrated that the speed of the distributed version of ODMAD is close to linear 
speedup with the number of nodes used in computation. Mixed attributes are addressed 
by Ye et al. [95], who proposed an outlier detection algorithm to detect anomalies in high-
dimensional mixed-attribute datasets by calculating the anomaly subspace, combined with 
information entropy. They used a bottom-up method to detect interesting anomaly sub-
spaces and compute the outlying degree of anomalies in high-dimensional mixed-attribute 
data sets.

This section provided strategies to tackle the high dimensionality problem, such as sub-
space methods and principal component analysis to ascertain the benefit of one approach 
over another.

Unique challenges brought by anomaly detection in high‑dimensional big 
data
As discussed in "Introduction", the two features of big data that have the greatest effect 
on the problem of high dimensionality are “volume” and “velocity.” The high dimen-
sionality problem not only leads to difficulties in detecting anomalies, but also brings 
additional challenges when data are increasing and arriving at speed as unbounded data 
streams. The most common strategies to address the problem of high dimensionality are 
to locate the most important dimensions (i.e., subset of features), known as the vari-
able selection method, or to combine dimensions into a smaller set of new variables, 
known as the dimensionality reduction method [73]. However, these strategies become 
highly complex and ineffective in detecting anomalies due to the challenges associated 
with large data sets and data streams. This is because anomaly detection techniques are 
generally based on statistical hypothesis tests, such as the Grubb’s test and the Dixon 
test, which work on an assumed distribution of some underlying mechanism within the 
data [96]. However, the underlying distributions are unclear and most of the techniques 
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are generalized to work with few dimensions. When the data size is large, accumulat-
ing, and generated with speed, anomaly detection techniques bring further challenges. 
Many researchers have addressed the challenges of anomaly detection techniques with 
regard to high dimensionality and big data problems individually, but not jointly or 
comprehensively.

Moreover, each problem has their individual challenges, for example, ‘velocity’ aspect 
of big data has many challenges [35] such as transience, arrival rate, and the notion of 
infinity, but they are insignificant while tackling high dimensionality or anomaly detec-
tion problems. Furthermore, big data is still evolving, and there is no specific technique 
or algorithm to address the increasing ‘dimensionality’ as it varies from one application 
to other. To set future directions in this area, we review the works of various authors that 
are closely related (either directly or indirectly) to the above three problems, thus by, 
deriving the unique challenges. Here, we present a taxonomy of unique challenges (see 
Fig. 4) brought by anomaly detection in high-dimensional big data. We have described 
each one of them in the following subsections. Table 3 presents the description of chal-
lenges of anomaly detection from the perspective of high dimensionality problem.

Many anomaly detection techniques assume that data sets have only a few features, 
and most are aimed at identifying anomalies in low-dimensional data. Techniques that 
address the high dimensionality problem when data size is increasing face challenges 
in anomaly detection due to a range of factors, as outlined in Table  3. Anomalies are 
masked in high-dimensional space and are concealed in multiple high-contrast subspace 
projections. The selection of subspace is both vital and complex, especially when data is 
increasing. Fabien and Kelloer [100] proposed to estimate the contrast of subspaces by 
enhancing the quality of traditional anomaly rankings by calculating the scores of high-
contrast projections as evaluated on real data sets. The factor that affects the nature of 
distance in high-dimensional space, hindering the anomaly detection process, is distance 

Fig. 4  Taxonomy of unique challenges brought by anomaly detection in high-dimensional big data
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concentration: all data points become essentially equidistant [101]. Tomasev et al. [102] 
addressed the problem of clustering in high-dimensional data by evaluating frequently 
occurring points known as hubs. They developed an algorithm that proved that hubs 
are the best way of defining the point centrality within a high-dimensional data cluster. 
Radovanović et al. [103] provided useful insights using data points, known as anti-hubs; 
although they appear very infrequently, they clearly distinguish the connection between 
outliers. The authors evaluated several methods, such as angle-based techniques, the 
classic k-NN method, density-based outlier detection, and anti-hub-based methods.

Challenges in the context of volume aspect of big data

With the advent of big data, the processing efficiency of anomaly detection tech-
niques becomes increasingly complex. When the underlying probability distribution is 
unknown, and the data set size is huge, computational requirements increase. The “vol-
ume” feature of big data stresses the storage, memory, and computing capacity of the 
system to handle the increasing data size [104]. Performance is the major challenge of 
anomaly detection techniques when dealing with large data sets. When the data size 
is large, anomaly detection techniques may falter, due to limited computational capac-
ity and associated factors. To overcome this issue, researchers have proposed the use 
of a parallel and distributed computing model. This section focuses on the challenges 
of anomaly detection in parallel, distributed environments and ensemble strategies. The 
unique challenges brought by anomaly detection from the ‘volume’ aspect of big data 
when data are high-dimensional is listed in Table  4.

Managing computational power and disk input/output (I/O) communication can 
result in improving the efficiency of the technique. Shin et al. [106] proposed a technique 
called D-cube, which is a disk-based detection technique to find fraudulent lockstep 
behaviour in largescale multi-aspect data and runs in a distributed manner across mul-
tiple machines. They compared D-cube technique across state-of-the-art methods and 
proved that D-cube is memory efficient, they have also proved it accurate by successfully 

Table 3  Challenges of anomaly detection in context of high dimensionality problem

Characteristic Features Description

1. Relevant attribute identification This refers to the difficulty of 
describing the relevant quantita-
tive locality of data instances in 
the high-dimensional space

2. Distance concentration Due to the sparsity of data, the 
datapoints become nearly 
equidistant in high dimensional 
space depending on the distance 
measure used [59, 97–99]

3. Subspace selection The potential features of subspace 
increase exponentially in line with 
the increasing dimensionality of 
the input data, which results in an 
exponential search space

4. Hubness The behavior of high-dimensional 
data containing data instances 
that are frequently appearing in 
nearest neighbors known as hubs
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spotting network attacks from TCP dumps and synchronised behaviour in rating data 
with highest accuracy. Hung and Cheung [107] introduced an efficient and parallel ver-
sion of the nested loop (NL) algorithm, based on the NL algorithm proposed by Knox 
and Ng [108], that reduces both computation and disk I/O costs. The NL algorithm is 
a straightforward method to mine outliers in a database. Ramaswamy et al. [109] pro-
posed a construction model for distance-based anomalies, which is built on the distance 
of a point from its neighbor, and also developed an effective partition-based algorithm 
to pull out abnormal patterns in huge data sets. The former segregates input data into 
separate subsets and prunes partitions that do not contain anomalies, resulting in con-
siderable savings in computation. Angiulli and Fassetti [110] presented a distance-based 
anomaly detection approach called “DOLPHIN” (for Detecting OutLiers PusHing data 
into an INdex)—that works on disk-resident data sets in huge datasets.

Ensemble strategies

Some studies aim to improve the efficiency of anomaly detection techniques by using 
ensemble strategies. To solve the sequential exception problem in large databases, Arn-
ing et al. [111] proposed a linear algorithm using a dissimilarity function to capture the 
similarity rate of a data point. More and Hall [112] proposed an algorithm to group large-
scale datasets without clustering entire data in a single instance. Erfani et al. [6] intro-
duced an unsupervised technique for high-dimensional large-scale unlabeled data sets 
to detect anomalies that are a combination of a deep belief network (DBN) and one-class 
support vector machines (SVM). One-class SVMs (1SVMs) are used for detecting outli-
ers through unsupervised learning and aim to model the underlying distribution of data 
while not considering irrelevant attributes or outliers in the training records. Features 
derived from training samples are taken as input to train 1SVMs. Conversely, a DBN is 
a multiclass semi-supervised approach and dimensionality reduction tool. It uses multi-
layer generative models (non-linear manifold) that learn one layer of features at a time 
from unlabeled data. Camacho et al. [113] presented an interesting outline for anomaly 
detection, identifying and interpreting unusual events in a forensics system network by 

Table 4  Challenges of anomaly detection in context of big data problem (volume aspect)

Characteristic features Description

1. Uncertainty Data can be uncertain due to 
external events from vulner-
able sources, such as failing to 
calculate the measure of attrib-
utes, imprecision, vagueness, 
inconsistency, and ambiguity. 
Data that cannot be depended 
upon with complete certainty are 
known as uncertain [105]

2. Performance The performance of the technique 
in terms of time and the amount 
of memory is vital while detect-
ing anomalies in high-dimen-
sional data

3. Scalability It is the ability of the technique to 
cater the increasing dimensions 
and data size
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addressing the 4Vs of big data—volume, variety, veracity, and velocity. Their framework 
is based on input from several heterogeneous data sources. First, the system pre-pro-
cesses incoming data; second, extracted features are calculated from the streaming data; 
third, all features representing diverse sources are combined and called a parameteriza-
tion step; and, fourth, these new features are utilized in updating a set of intermediate 
data structures representing the present stage of the network. The updated strategy fol-
lows an exponentially weighted moving average method and uses a PCA model.

Challenges in the context of velocity aspect of big data

Velocity refers to the challenges associated with the continuous generation of data at 
high speed. A data stream is an infinite set of data instances in which each instance is a 
set of values with an explicit or implicit time stamp [35]. Data streams are unbounded 
sequences and the entry rate is continuously high, as the respective variations repeat-
edly change over time. Data streams reflect the important features of big data in that the 
aspects of both volume and velocity are temporally ordered, evolving, and potentially 
infinite. The data may comprise irrelevant attributes that raise problems for anomaly 
detection, and there are several other factors involved, such as whether the data are from 
a single source or multiple sources. Multiple data streams are made up of a set of data 
streams, and every data stream comprises an infinite sequence of data instances accom-
panied by an explicit or implicit time stamp history. In a single data stream, anomaly 
detection compares the history of data instances to determine whether an instance is an 
outlier or anomaly. By contrast, in multiple data streams, data instances are recognized 
as anomalies by comparing them to the history of data instances from the same stream 
or other streams. The unique challenges [35, 105, 114–117] of anomaly detection for 
data streams are listed in Table 5.

Most anomaly detection strategies assume that there is a finite volume of data gen-
erated by an unknown, stationary probability distribution, which can be stored and 
analyzed in various steps using a batch-mode algorithm [119]. Anomaly detection on 
streaming data is a highly complex process because the volume of data is unbounded 
and cannot be stored indefinitely [35]. Data streams are produced at a high rate of 

Table 5  Challenges of anomaly detection in context of big data problem (velocity aspect)

Characteristic features Description

1. Asynchronous instances Multiple asynchronous data streams arrive at different times and are inde-
pendent of one another. The data instances from any source may be 
missing at any point of time, or delay in arrival is possible; therefore, to 
detect anomalies, the specific temporal context should be determined 
on the data instances of both the streams. In multiple data streams, 
there are many sources from which data points are generated and these 
arrive at distinctive times. Such data points are described as asynchro-
nous [35, 118]

2. Dynamic relationship The correlation of data points is continuously monitored from multiple 
data streams that differ due to the asynchronous behavior of data [35]

3. Heterogeneous schema Data instances arriving from various data sources may have different sche-
mas. Compiling various multiple data instances over different schemas 
is a complex task, as is detecting an anomaly [35, 118]

4. Concept drift The data distribution changes over time, which means that the proper-
ties of the target variable that are being predicted by the model also 
changes over time. This is called concept drift [116]
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generation, which makes the task of detecting anomalies and extracting useful insights 
challenging. This is a main disadvantage that arises in several application areas [37].

Silva et  al. [119] highlighted the following restrictions for the successful develop-
ment of algorithms in data streams: (1) the data instances arrive continuously; (2) 
there is no control over the order of processing or handling of data instances; (3) the 
size of a data stream can be unbounded; (4) data instances are deleted after process-
ing; and (5) the data generation process can be nonstationary; hence, its probability 
distribution may evolve over the period.

A hypothesis behind all data stream models is that the most recent data instances 
are more than historical data. The simplest model uses sliding windows of fixed size 
and works on the basis of first in, first out [38]. A sequence-based sliding window 
is one in which the size of the window is defined as the number of observations in 
regard to fixed size and specific time [75]. There is another type of sliding window 
called a time stamp window in which the size of the window is representative of the 
duration of the data [38].

Angiulli and Fasseti [120] introduced techniques for recognizing distance-based 
outliers in data streams using a sliding window model in which anomaly queries are 
executed for the purpose of identifying anomalies in the current window. Their algo-
rithms execute anomaly queries and return an approximate answer based on accu-
rate estimations with a statistical guarantee. These algorithms are based on a method 
known as stream outlier miner, or STORM, which is used to find outliers on distance-
based windowed data streams. A sliding window is used to continuously inspect the 
object until it expires. Later, Angiulli and Fasseti [121] presented an additional algo-
rithm for identifying distance-based anomalies in data streams using the sliding win-
dow model; although based on their previous approximate algorithm, this algorithm 
emphasized fixed memory requirements.

An algorithm based on the sliding window model for mining constrained frequent 
item sets on uncertain data streams was introduced by Yu et al. [39]. Known as CUSF-
growth (constrained uncertain data stream frequent item sets growth), the algorithm 
determines the order of items in transactions and analyzes the properties of constraints. 
According to the order of items determined by the properties of constraints a CUSF-tree 
is created; later, after the frequent item sets are satisfied, the constraints are mined from 
the CUSF-tree.

Kontaki et al. [122] also studied the problem of continuous anomaly detection in data 
streams using sliding windows. They proposed four algorithms that sought effective 
anomaly monitoring with lesser memory requirements. Apart from assuming that the 
data are in metric space, their model did not make any assumptions about the behav-
ior of input data. Their techniques have considerable flexibility with regard to param-
eter values, enabling the execution of multiple distance-based outlier detection tasks 
with different values, and they reduced the number of distance computations using 
micro-clusters. Their primary concerns were to improve efficiency and reduce stor-
age consumption. Their methods incorporate an event-based framework that bypasses 
unneeded computations benefiting from the expiration time of objects.

A continuous outlier detection algorithm (CODA) is an event-based technique that 
estimates the expiration time of objects to circumvent undesirable computations. This 
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technique quickly determines the nature of elements by probabilistic pruning, thereby 
improving efficiency and consuming significantly less storage. Since different users may 
have different views of outliers, an advanced CODA that can handle numerous values by 
enabling the concurrent execution of various monitoring strategies has also been pro-
posed. Another algorithm to decrease the quantity of distance computations—micro-
cluster CODA—was inspired by the work of Zhang et al. [123].

The two popular ensemble learning techniques are Bagging and Boosting. Bagging is 
used for variance reduction and was first introduced by Breiman [124]. Boosting was 
first proposed by Schapire [125] to strengthen the ability of weak learners to achieve 
arbitrarily high accuracy. Oza and Russell [126] proposed two online variations of bag-
ging and boosting for data streams. They showed how the training data could be simu-
lated from the data stream perspective. They achieved the simulation of training data 
from the replication of the sampling bootstrap process. Bifet et  al. [127] developed a 
model for examining concept drift in data streams with two new adaptations of bagging: 
ADWIN bagging and adaptive-size Hoeffding tree bagging. The Hoeffding tree is a tech-
nique that can learn from data streams that does not change over time. It is an incre-
mental algorithm based on decision tree induction and the hypothesis of distribution 
generating examples [40]. The framework and approach of Bifet et  al. [127] was simi-
lar to that proposed by Narasimhamurthy and Kuncheva [128], which accommodates 
STAGGER and moving hyperplane generation strategies.

ADWIN is a change detector and an estimator that interprets the issue of tracking 
the average of a stream of bits or real-valued numbers in a well-specified way [129]. The 
drift detection method introduced by Gama et  al. [130] controls the errors generated 
by the learning model during the stage of prediction and then evaluates two windows; 
the first window comprises all the data, the second contains the data until the number 
of errors increases. These windows are not stored in-memory; only statistics and a win-
dow of recent errors using the binomial distribution are kept. Faria et al. [131] proposed 
a method for multiclass novelty detection in data streams that associate with novelty 
patterns, which are recognized by the algorithm through unsupervised learning using 
a confusion matrix that increases over time. Chu and Zaniolo [36] proposed a fast and 
light boosting for adaptive mining of data streams. The technique supports concept drift 
in data streams via change detection, which is built on a dynamic sample-weight assign-
ment scheme

The problems that occur when data streams have multidimensional features are 
caused by the curse of dimensionality and drifting of data streams. To simultaneously 
address these two challenges, Zhang et al. [27] presented an unsupervised, online sub-
space learning approach to anomaly detection from nonstationary high-dimensional 
data streams. In order to find low-dimensional subspace faults from high-dimensional 
data sets, an angle-based subspace anomaly detection technique is designed by select-
ing fault-relevant subspaces and calculating vectorial angles, which compute the local 
anomaly score of the data instance in its subspace projection. The technique is extended 
to an online mode to continuously monitor systems and to detect anomalies from data 
streams based on the sliding window strategy. This section provided a taxonomy of big 
data anomaly detection problems with regard to high dimensionality in the form of a 
survey of closely related work. The aim of the review is to provide an understanding of 
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the underlying relations and patterns among variables by evaluating anomaly detection 
techniques dealing high dimensionality and big data problems.

Tools in high dimensional big data
Parallel or distributed computing is one of the most important techniques to handle 
and process big data [132]. In general, big data requires sophisticated methodologies to 
handle and process the large volume of data within limited run times efficiently. It dis-
tributes intensive computations over numerous computer processors and accelerates the 
overall run time by running parallelizable parts of the computation concurrently. There-
fore, scalability is the major issue to many existing state-of-the-art techniques with big 
dimensionality problem. Luengo et al. [133] analysed this issue using two popular data 
repositories that ranged from 256 to 20 million dimensions and suggested that the future 
systems are to equip with necessary techniques to handle the big dimensionality issue. 
Zhai et al. [4] observed that the dimensionality issue handled by state-of-the-art tech-
niques are not satisfactory and suggested that majority of them might fail to process any 
data with more than 10,000 dimensions. Hence, techniques based on distributed com-
puting that supports the scalability are needed to handle the complex requirements of 
big dimensionality enabling quick processing and storage handling. MapReduce is one 
of the first distributed programming paradigms to handle big data storing and process-
ing. Henceforth, many frameworks for distributed computing such as Apache Hadoop 
[134], Apache Storm [135], Apache Spark [136], Apache Flink [137] and MXNet [138] 
were developed addressing the increasing demands of big data. Most of these frame-
works have in-house machine learning (ML) libraries, and Apache Spark has a powerful 
ML library than any of the other frameworks [139]. In this section, we review anomaly 
detection techniques implemented on these frameworks. Other parallel and distrib-
uted models that are focused on the scalability of the algorithms/techniques rather than 
frameworks are discussed in the following subsection “Other parallel and distributed 
models” (see “Other models” column in Table 6).

MapReduce, a programming paradigm for processing vast amounts of data, pro-
vides high-level parallelization that runs on clusters or grids of nodes (i.e., computers) 
to handle big data [156, 157]. MapReduce splits processing into “map” and “reduce” 
phases and each phase is based on key-value pairs used as input and output [158]. 
All operations of each map function are independent of each other and are fully par-
allelizable as the map function takes a single record. However, the reduce function 

Table 6  Review of big data tools in context of anomaly detection

Works MapReduce Spark Storm MXNet Flink Other 
models

[32, 36, 140, 141] � ✖ ✖ ✖ ✖ ✖
[139, 142, 143] ✖ � ✖ ✖ ✖ ✖
[144] ✖ ✖ � ✖ ✖ ✖
[145] ✖ ✖ ✖ � ✖ ✖
[139, 146] ✖ ✖ ✖ ✖ � ✖
[44, 147–151] ✖ ✖ ✖ ✖ ✖ �

[33, 34, 152–155] ✖ ✖ ✖ ✖ ✖ �
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is processed in parallel based on the intermediate pairs with the same key. Apache 
Hadoop is one of the most popular large-scale opensource frameworks that is based 
on the MapReduce [156]. Hence, we combine both MapReduce and Hadoop into one 
subsection and present the relevant work related to both as seen in Table 6. Koufa-
kou et al. [140] proposed a fast parallel anomaly detection approach that is dependent 
on the attribute value frequency approach, a scalable, high-speed outlier detection 
process for categorical data that is effortless to parallelize and intended to recog-
nize anomalies in large data mining issues. They used MapReduce because it offers 
load balancing and fault tolerance, and is extremely scalable concerning a number of 
nodes. Leung and Jiang [36] reported a solution which utilizes MapReduce to mine 
uncertain big data for frequent patterns satisfying user-specified anti-monotonic 
restrictions. Extant big data mining algorithms mainly focus on association analysis, 
which amounts to mining interesting patterns from particular databases. Jiang et al. 
[141] reported on a tree-based technique, BigSAM, that permits operators to express 
the patterns to be mined according to their interests via the use of constraints, as 
MapReduce enables uncertain big data to be mined for common patterns. He et  al. 
[32] presented a parallel application of a KD-Tree-based anomaly identification tech-
nique to manage large data sets, implemented as a parallel KD-Tree-based anomaly 
detection algorithm. Their experimental results showed that the algorithm not only 
processed large data sets on commodity hardware efficiently, but also scaled well.

Apache Spark(Spark) [136] is another distributed framework based on MapReduce 
for processing large volumes of data on a distributed system, however, has a feature 
called in-memory computation [159, 160]. In contrast to MapReduce two-phase para-
digm, Spark’s in-memory computing model aims at speed and extensibility to handle 
both batch and real-time workloads. In Spark, implicit data parallelism is achieved on 
a cluster of computers that offer fault-tolerance, locality-aware scheduling and auto-
matic load balancing. Jiang et  al. [142] reported a scalable, parallel sequential pat-
tern identification algorithm to identify probable motifs (i.e., non-exact contiguous 
sequences) from large DNA sequences using the Spark in-memory parallel resilient 
distributed data set approach. As DNA sequences are detailed using a set of four let-
ters, their algorithm restricts the search space, decreases mining time, and integrates 
user-specified features in identifying sequential patterns from big uncertain DNA in 
the Spark framework. Terzi et  al. [143] proposed an unsupervised approach using 
Apache Spark as their distributed framework. They reported 96% accuracy in the 
identification of anomalies in a public big network data.

For real-time processing, Apache Storm [135] was developed by Twitter an open-
source distributed framework with guaranteed features such as scalability, fault-tolerant, 
and resilience. Zhang et al. [144] developed a framework built on Apache Storm to sup-
port the distributed learning of large-scale Convolutional Neural Networks (CNN) using 
two datasets, that is suitable for real-time stream processing. Their experiment dem-
onstrates that more reasonable parallelisms can significantly improve the performance 
speed of their framework. Veen et  al. [161] focused on the elasticity of a streaming 
analysis platform using virtual machines from a public cloud based on Apache Storm. 
They chose the framework because of the possibility of adding and removing processing 
nodes is easier.
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MXNet is an open-source, scalable, memory-efficient, high-performance mod-
ular deep learning framework, that offers a range of application programming 
interfaces(APIs) for programming languages such as C++, Python, Matlab, and R. It 
runs on heterogeneous systems, starting from mobile devices to distributed GPU clus-
ters [162]. Abeyrathna et al. [145] proposed an anomaly proposal-based approach that 
can establish an efficient architecture for real-time fire detection using MXNet frame-
work. Their architecture is built together with a Convolutional Autoencoder (CAE) 
module for picking doubtful regions and a Convolution Neural Network (CNN) classi-
fier that can recognize fire as an outlier. For both stream processing and batch process-
ing, Apache Flink [137] another opensource framework was proposed combining the 
scalability and programming flexibility of other distributed paradigms such as MapRe-
duce [163, 164]. Toliopoulos et al. [146] conducted their work on distance-based outlier 
detection and examined in a massively parallel setting using three real-world and one 
synthetic dataset. They have considered three main parallel streaming platforms such 
as Apache Storm, Apache Spark and Apache Flink. However, they mainly targeted to 
investigate the challenges of customizing state-of-the-art techniques to Apache Flink. 
Their experiments showed the speed-ups of up to 117 times over a non-parallel solu-
tion implemented in Flink. The methods they used are publicly available as open-source 
software as they intend to offer solutions in the large-scale streaming big data analyt-
ics. García-Gil et al. [139] have performed a comparative study on the scalability of two 
frameworks Apache Spark and Apache Flink. Their experimental results showed that 
Spark has better performance and overall runtimes than Flink.

Other parallel and distributed models

Many other distributed frameworks have been proposed to support efficient parallel 
processing of anomaly detection techniques in big data. Angiulli et  al. [33] presented 
a distributed framework for identifying distance-based anomalies in massive data sets 
based on the perception of an anomaly detection resolving set, which is a small subset of 
the data set. The authors also presented a modified method—the “lazy distributed solv-
ing set”—that reduced the volume of data to be swapped from the nodes on the distrib-
uted solving set by implementing a strategy for the transmission of a condensed number 
of distances, which, to some extent, simultaneously increased the number of communi-
cations. Later, Angiulli et al. [152] proposed a set of parallel and distributed algorithms 
for GPUs resulting in two distance-based anomaly detection algorithms: BruteForce 
and SolvingSet. The difference between them is the way they utilize the architecture 
and memory hierarchy of GPUs and provide improvements with respect to CPU ver-
sions, both regarding scalability and exploitation of parallelism. The authors detailed 
the algorithms’ computational properties, measured their performance with extensive 
experimentation, and compared several implementations showing significant increases 
in speed. Matsumoto et al. [153] published a parallel algorithm for anomaly detection 
on uncertain data using density sampling, establishing implementation on both graphic 
processing units (GPUs) and multi-core central processing units (CPUs) through the 
OpenCL framework.

Lozano and Acufia [154] designed two parallel algorithms to identify distance-based 
anomalies using randomization and a pruning rule to recognize density-based local 
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anomalies. They also constructed parallel versions of Bay and Local Outlier Factor (LOF) 
procedures, which exhibited good performance in anomaly detection and run time. Bai 
et al. [34] focused on the issue of distributed density-based anomaly detection for large 
data. They proposed a grid-based partition algorithm as a data pre-processing technique 
that splits the data set into grids before distributing these to data nodes in a distrib-
uted environment. A distributed LOF computing method was presented for discovering 
density-based outliers in parallel by utilizing a few network communications. Reilly et al. 
[155] proposed a PCA-based outlier identification approach that works in a distributed 
environment, demonstrating robustness in its extraction of the principal components of 
a training set comprising outliers. Minimum volume elliptical PCA can determine prin-
cipal components more vigorously in the presence of outliers by building a soft-margin, 
tiniest volume, ellipse around the data that lessens the effects of outliers in the train-
ing set. Local and centralized approaches to outlier detection were also studied. The 
projected outlier detection technique was reformulated using distributed convex opti-
mization, which splits the issue across a number of nodes. Gunter et al. [147] explored 
various techniques for identifying outliers in large distributed systems and argued for a 
lightweight approach to enable real time analysis. No single optimal method was found; 
therefore, they concluded that combinations of various methods are needed due to the 
change in effectiveness that depends on the definition of the anomaly.

It is important to understand whether the anomaly detection technique fits the model 
and is scalable to the size of the data and dimensionality [7]. Maruhashi et al. [148] pre-
sent a technique to find patterns and anomalies in heterogeneous networks with mil-
lions of edges and proved empirically that the technique is scalable to high-dimensional 
datasets. Shin et  al. [149] develop a novel flexible framework that can identify dense 
blocks in a large-scale high-order tensor and showed that their method is scalable in 
real data by spotting network attacks from a TCP dump with near perfect accuracy. Oh 
et al. [44] provide a scalable approach that can handle high-dimensional data. In particu-
lar, they also prove that their approach is better than many baseline methods in terms 
of dimensionality. Hooi et al. [150] propose a scalable densest-subgraph based anomaly 
detection method called FRAUDAR that can not only detect various fraud attacks in real 
world graphs but also can detect a large number of previously undetected behaviour in 
large data. Jiang et al. [151] propose a scalable algorithm called CROSSSPOT that scores 
and ranks the level of suspiciousness to find dense, suspicious blocks in real-world large 
multi-modal data.

Conclusions
With the world becoming increasingly data driven and with no generic approach for 
big data anomaly detection, the problem of high dimensionality is inevitable in many 
application areas. Moreover, the loss of accuracy is greater and computationally more 
complex as the volume of data increases. Identifying anomalous data points across large 
data sets with high dimensionality issues is a research challenge. This survey has pro-
vided a comprehensive overview of anomaly detection techniques related to the big data 
features of volume and velocity, and has; examined strategies for addressing the prob-
lem of high dimensionality. It is evident that further study and evaluation of big data 
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anomaly detection strategies that address the high dimensionality problem, are needed. 
To address this research problem, we propose a future research direction of building a 
novel framework that enables anomalous data points to be identified across large vol-
umes of data with high dimensionality issues. The main contribution will be improving 
the balance between performance and accuracy of anomaly detection in big data with 
high dimensionality problems.
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