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Introduction
Nowadays, with the emergence and use of new systems, we face a massive amount of 
data. Due to the volume, velocity, and variety of these big data, managing, maintaining, 
and processing them require special infrastructures. One of the famous open-source 
frameworks is Apache Hadoop [1]. It is a scalable and reliable framework for storage 
and process big data. Hadoop divides the big input data into fixed-size pieces; stores and 
processes these split of data on a cluster of machines. By default, each split copies three 
times and transfer to different machines to manage errors and fault tolerance. Hadoop 
stores its data in a distributed file system called HDFS. MapReduce is designed to work 
with HDFS. MapReduce is the programming model that allows Hadoop to efficiently 
process large amounts of data in the cluster’s nodes. [1–5].

Since one of Hadoop’s most important tasks is managing jobs and resources, bet-
ter management will be done if estimation and prediction the runtime of a job do pre-
cisely. Also, because of limited critical resources like CPU, I/O, and memory, this issue 
is important in many aspects like efficient scheduling, better energy consumption, bot-
tleneck detection, and resource management [3–5].
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Since being aware of the runtime of a job is crucial to subsequent decisions, the con-
tribution of this paper is to propose a new method to estimate the runtime of a job in 
Hadoop MapReduce version 2. For this purpose, first, we investigate the anatomy of 
Hadoop and its performance precisely in each stage, then we consider two cases: when 
a job runs for the first time and there is not any history of it, or a job has run previously, 
and its profile or history is available. In the first case, by considering essential and effi-
cient parameters that higher impact on runtime and the status of each node in the clus-
ter, we try to formulate each phase of the Hadoop execution pipeline and state them by 
mathematical expressions to calculate runtime of a job. In the second case, by referring 
to the profile or history of a job in the database and use a weighting system (the recent 
runtime becomes more important, hence giving more weight) the runtime is estimated.

At last, for evaluating the proposed model, the error rate calculates and investigated by 
two common benchmarks: RMSE and MAPE.

The remainder of this paper is as follows: First, we explain the background and related 
works; second, describing our methodology to estimate runtime; then results and dis-
cussion and finally, the conclusion and future works are explained.

Background and related work
Hadoop is a data storage and processing platform, based upon two main concepts: HDFS 
and MapReduce. HDFS (Hadoop Distributed File System) is a file system to provide high 
throughput access to data and MapReduce is a framework for the parallel processing of 
large data sets. Hadoop works based on the master/slave style. There is a master node in 
the Hadoop cluster and many Slave nodes. The Master Node manages, maintains, and 
controls the Slave nodes, while the Slave nodes are the actual components of the task. 
The master node only stores metadata while slaves are nodes that store data. Data stor-
age is distributed among clusters. Hadoop framework executes a job in a well-defined 
sequence of processing phases [1–3].

Figure 1 illustrates the pipeline and process phases in Hadoop MapReduce.
According to Fig. 1, The following steps are implemented. In brief, they are: [1–3].
Read phase: The input data as a map task typically read a block with a fixed size 

(128 MB) from HDFS.
Map Phase: It applies the user-defined Map function to the data and generates a set of 

(key, value) pairs.
Collect Phase: The output of the Map phase is buffered and sorted.
Spill Phase: The results of the Collect step are placed on the disk.

Fig. 1  MapReduce processing pipeline [2]
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Merge Phase: The results of the Spill phase are merged and partitioned.
Shuffle Phase: The partitions sort and the data with the same key is sorted.
Reduce Phase: The user-defined Reduce function is applied to the previous step data to 

obtain dense data.
Write Phase: Finally, the output writes on HDFS.
The execution time of a job depends on the above phases also some parameters affect 

the speed of each phase. Figure 2 shows some parameters that impact each phase of the 
Hadoop execution pipeline. These parameters and their operations explain in Table 2.

Also, other parameters like the amount of data flowing through each phase, the per-
formance of the underlying Hadoop cluster, the user-defined functions (Map, Reduce), 
the status of the network and so on affect the runtime.

The aim of this paper is to estimate the runtime of a job in Hadoop MapReduce ver-
sion 2 by analyzing each phase and investigating the effect of some important param-
eters. Since being aware of the runtime of a job is crucial to subsequent decisions, there 
was some researches in this field.

In [6], the authors propose ROUTE, a runtime workload prediction method for 
MapReduce. It samples the partition size of the early completed mappers and performs 
estimation at the runtime. In this method, a sampler is developed that determines the 
minimum number of samples automatically for satisfying the accuracy requirement 
specified by users. Furthermore, ROUTE requires no apriority knowledge of the map 
function and input datasets, nor making assumptions on the underlying distribution of 
the intermediate data.

In [7, 8], the proposed model based on the historical job execution records and uses 
Locally Weighted Linear Regression (LWLR) technique to estimate the runtime of a 
job. LWLR is an instance-based nonparametric function, which assigns a weight to each 
instance according to its Euclidean distance from the query instance. LWLR assigns high 
weight to an instance which is close to the query and low weight to the instances that are 
far away from the query.

Liu et al. [9] proposed a two-phase regression (TPR) method to predict the finishing 
time of each job precisely. Detailed data of each job had made with a detailed analysis 

Fig. 2  Parameters that affect Hadoop pipeline [1, 11]
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report. TPR divided into four steps: data preprocessing, data smoothing, data regression, 
and data prediction.

Ramanathan and Latha [10] proposed a regression-based performance model to pre-
dict the MapReduce job completion time by using the Scale-Out strategy. The authors 
used this method for Optimizing resource provisioning. They propose five typical situa-
tions by varying resources, data size, and time constraints.

Chen et  al. [11] used Petri Net to estimate the execution time of MapReduce jobs. 
They analyzed each phase of MapReduce job execution and investigated the mean delay 
time of each phase of runtime and combined the delay times from all phase to estimate 
the execution time of a MapReduce job.

Kozyrev [12] presented a survey of the available techniques for estimating the estimation 
of the worst-case execution time. The author divided this issue into the overall three cat-
egories: static, dynamic, and hybrid approaches. Each case can use this technique: control 
flow analysis, context analysis, estimate calculation, symbolic computation parameteriza-
tion of estimates. The author investigated the advantages and disadvantages of each one.

Amannejad et al. [13] proposed a model to quick prediction runtime a job when lit-
tle cluster resources are available. They used logs from two executions of an application 
with small sample data and different resource settings and explore the accuracy of the 
predictions for other resource allocation settings and input data sizes then expanded 
their model to the Spark waves.

Kecskemeti et al. [14] proposed a technique for predicting background workload in the 
cloud environment. They simulated a workflow according to the plan specified runtime 
properties, like job start time, completion time, and times for creating virtual machines. 
For simulation, they imitated the long-running workflows and investigated behavior dis-
crepancies, then tried to replicate these in a simulated cloud.

Lu et  al. [15] proposed and evaluated IoTDeM. IoTDeM was an extended IoT Big 
Data-oriented model for predicting MapReduce performance. It was able to predict 
MapReduce jobs’ total execution time in a general implementation scenario with varying 
cluster scales. This model works based on historical job execution and Locally Weighted 
Linear Regression (LWLR) techniques to predict the runtime of a job. The LWLR model 
assigns a weight coefficient to each sample of jobs.

Uvaneshwari and Senthil Kumar [16] explained a predictor of the possibility of job 
completion with the user-specified time. If the user-defined time is not available then a 
job’s runtime estimator is run. For a Map-reduce job that needs to be completed within 
a certain time, the job profile is built fro the past runtime of the jobs or by executing 
a smaller block of the job and thereby predicting the expected estimation time of the 
entire job.

Methodology
To estimate the runtime of a job in Hadoop MapReduce, first, we investigated the anat-
omy of Hadoop’s job and the stages of running a job precisely [1–5]. Since Hadoop works 
on the repetitive application on the same data type [17], we use the profiling method, 
which means that there is some separate table in the database for each application. After 
each job executed, its input data size and the runtime is stored in the database as a his-
tory of a job. Tables are updated with new runs.
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There may be two situations for estimating the runtime:

1	 The job with the specified data size and application run for the first time, and no 
information is available since its execution in the database.

2	 The job with this size and application has already run, and its results recorded in the 
database.

Each case explains below.

Estimating runtime for the first run

If a job had not already been executed and no information was available from its runt-
ime, it should be estimated. Running a job in Hadoop can be divided into two general 
phases: Map and Reduce. So, the runtime of a job is the total execution time of the Map 
and Reduce steps (Eq. 1).

The Map stage includes the following steps [18]: read, map, collect, spill, and merge, so 
the execution time of the Map is equal to the total time of each step (Eq. (2)).

The Reduce step also includes [18] the shuffle, reduce, and write, so the run time of the 
Reduce step calculated from Eq. (3).

Therefore, the time of each stage must be calculated and summated.
Since Hadoop run on a distributed system, many factors and parameters affect Tmap 

and Treduce [1–5, 22]. So, we investigate the parameters with more impact on runtime.

Parameters affecting the runtime in Hadoop

There are many hardware and software parameters that affect the runtime in Hadoop. In 
general, three categories of influencing factors are: [11].

1.	 Hardware factors: Some factors such as the number of nodes in the network, proces-
sor power, the core of the CPU, main and secondary memory size and speed, net-
work bandwidth, and the number of Containers affect the speed of running the job. 
Table 1 shows these factors and the amount specified for testing.

2.	 The settings of each node: The configuration of each node in the cluster will affect 
the execution speed of the jobs. Some items such as the size of the data block, the 
number of Map and Reduce that can be run simultaneously on a node, the buffer size 
and the replication value have a significant impact on the execution time of a job. 
Table 2 shows these parameters and the default value for each one.

3.	 Application Properties: Some items such as complexity of Map and Reduce func-
tions, the size of input and output data and the runtime of each split as a sample of 

(1)TJob = TMap + TReduce

(2)TMap = Tread + Tmap + Tcollect + Tspill + Tmerge

(3)TReduce = Tshuffle + Treduce + Twrite
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Table 1  Hardware specification of node i (i = 1,2,3,…,N)

Parameters Notation Test value

Number of nodes N 13

Number of containers Ncontainer 96

Processor power CPUi 3.40 GHz

The number of processor cores Ci 3

Network bandwidth BWi 100 Mb/s

Reading speed from RAM RMi 6000 MB/s

Writing speed to RAM WMi 5000 MB/s

Reading speed from Hard disk RHi 120 MB/s

Writing speed to Hard disk WHi 60 MB/s

Table 2  Node configurations [28]

Parameters Description Notation Default value

dfs.blocksize Size of the blocks or splits BS 128 MB

mapreduce.task.io.sort.mb The total amount of buffer 
memory to use while sorting 
files, in megabytes.

Sort.mb 100

mapreduce.task.io.sort.factor The number of streams to merge 
at once while sorting files. This 
determines the number of open 
file handles.

Sort.factor 10

mapreduce.map.sort.spill.percent A thread will begin to spill the con-
tents to disk in the background.

Spill.percent 0.80

io.sort.record.percent This parameter determines the 
percentage of sort.mb used to 
store map output’s metadata.

Record.percent 0.05

mapreduce.reduce.shuffle.paral-
lelcopies

The default number of parallel 
transfers run by reduce during 
the copy (shuffle) phase.

parallelcopies 5

mapreduce.reduce.shuffle.merge.
percent

The usage threshold at which an 
in-memory merge will be initi-
ated, expressed as a percentage 
of the total memory allocated to 
storing in-memory map outputs, 
as defined by mapreduce.reduce.
shuffle.input.buffer.percent.

shuffle.merge.percent 0.66

mapreduce.reduce.shuffle.input.
buffer.percent

The percentage of memory to be 
allocated from the maximum 
heap size to storing map outputs 
during the shuffle.

Shuffle. buffer.percent 0.70

Max Heap size of reduce task Max heap size that can be used by
reduce task

Heapr 1024 MB

Table 3  Application parameters

Parameters Notation

Input data size Dinput

Sample data size Dsample

Map run time in sample data Tm-sample

Reduce run time in sample data Tr-sample

Output to input ratio in Map stage Selm
Output to input ratio in Reduce stage Selr
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data, alter the time of the execution of a job. Table 3 shows the notation of the appli-
cation’s parameters.

According to the Hadoop MapReduce operation [1–5], when the request to execute 
a job is issuing, the input file breaks as predefined blocks (in Hadoop, version 2, the 
size of each block or split is by default 128 MB) and divided up into nodes, each block 
is called a task or a map. The number of maps determines by dividing the input data 
size by the size of the data block (Eq. (4)). Moreover, the Map and Reduce functions 
are copied to each node. Since the replication value in the Hadoop is the default value 
of 3, each data has three copies so, data save on a local node or a remote node.

Since the data transmission rate varies between local and remote nodes, and some-
times data transfer done from remote nodes [19], a coefficient called ∂j is defined to 
the data access rate (Eq. (5)).

This coefficient is equal to the number of replications (Nrep) divided into the num-
ber of nodes (N).

The runtime of the Map stage

Each phase of the Map stage includes the following:

a.	 Read step: The input data is read from HDFS. Since the split of data spread on each 
node, reading data may be from the local nodes or remote nodes. If data is read 
remotely, the data transfer rate should also be considered. Data that is read from the 
hard disk should be written in the main memory [20]. Equation (6) shows the esti-
mated time of data reading.

	

b.	 Map step: The Map function runs on the number of map tasks, so the data must be 
initially read from the memory or the hard drive, followed by the execution of the 
Map function. The estimation map time of a job determines by sampling time. In this 
study, the sample size is considered equal to a default split size (128 MB).

	 Since the Map function is the main function of a program, the complexity of the 
algorithm is also effective at runtime. In Eq. (7), θ shows the complexity of the Map 
function. The θ is a contractually coefficient (impact factor) between 0 and 1, which 

(4)Nm=
Dinput

Dsplit

(5)∂j =
Nrep

N

0 < ∂j ≤ 1
1 ≤ j ≤ Nm

(6)

Tread ≃ Max

[(

Dsplit ∗ (1− ∂j
)

RHi
+

Dsplit ∗ (1− ∂j
)

BW i
+

Dsplit ∗ (1− ∂j
)

WMi

)]

1 ≤ i ≤ N
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in Table 4; its values determine based on the degree of complexity of each applica-
tion’s algorithm.

	 Equation (7) shows the estimated time of the map phase.

c.	 The spill and merge step: In the spill stage, the output of the map phase where the 
records have a key-value is placed and sorted in the memory buffer [21]. The buffer 
size sets according to the value of the parameter sort.mb, where the default value of 
this parameter is 100 MB. When the memory buffer fills with the threshold value, the 
data transferred to the disk. The threshold value sets by the spill.percent parameter, 
which default value is 0.8, that is, 80% of the buffer that filled with the spill action. If 
more than one file spilled, the merge operation would start. At the same time, ten 
spill files can merge. This value is adjustable by the sort.factor parameter. The default 
value for this parameter is 10. In general, the output of the Map stage is constantly 
sorting and spilling, which also requires merge-operations.

The time spends doing the spill and merge stage depends on the number of times 
that the spill or merge action performed. The execution of the spill stage depends on 
the metadata and the buffer size that holds these metadata. By default, 16 bytes for 
each record is a key-value for storing metadata. Therefore, Eq.  (8) shows metadata 
size, Eq.  (9) metadata buffer size, Eq.  (10) the data size, and Eq.  (11) the data buffer 
size.

(7)

Tmap ≃
Dsplit ∗ ∂j

RHi
+

Dsplit(1− ∂j
)

RMi
+

Nm ∗ Tm−sample

N container
∗ θ ∗

CPUsample ∗ Csample

CPUi ∗ Ci

(8)DMetaData = 16 ∗
Dinput

Dsample ∗ Nm
∗NSpilled Records

(9)DMetaBuffer = sort.mb ∗ record.percent ∗ spill.percent

(10)Ddata =

(

Dinput

Dsample
∗Nm

)

− DMetaData

Table 4  θ values indicate the degree of complexity of each application’s algorithm

The degree of complexity of the algorithm(θ) The amount of impact factor

n! 0.9

2n 0.8

n
2 log n 0.7

n
2 0.6

n log n 0.5

n 0.4

log n 0.3

c 0.1
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Concerning the above formulas, Eq. (12) shows the maximum number of spills.

And Eq. (13) shows the size of the spill.

Equation (14) shows the number of merges, and Eq. (15) shows the estimated time of 
the spill and merge stages.

The runtime of the Reduce stage

Reduce step involves the following sub-steps:

a.	 Shuffle stage: After completing the first map task of the job, the intermediate results 
sent to the reducers. The input of the Reduce step is the output of the Map stage. 
This transfer can be executed locally or remotely. In general, the transfer of data from 
mappers to reducers is called the shuffle stage.

	 The output size of the Map stage, which is given to each Reducer, estimates by 
Eq. (16).

	

	 In Eq. (16), selm is the ratio of the number of outputs of the map stage to its input 
(Eq. (17)), and Nr represents the number of reducers that obtain from Eq. (18).

	

(11)DDataBuffer = sort.mb ∗ (1− record.percent) ∗ spill.percent

(12)Nspill = max

([

DMetaData

DMetaBuffer

]

,

[

Ddata

DDataBuffer

])

(13)Dspill = DMetaData + Ddata

(14)Nmerge =

[

Nspill

sort.factor

]

(15)
T spill + Tmerge ≃ Nspill ∗Dspill ∗

(

1

RMi
+

1

WMi

)

+ Nmerge ∗Dspill ∗

(

1

RHi
+

1

WHi
+

1

RMi
+

1

WMi

)

(16)Dshuffle =
Dinput ∗ Selm ∗ Nm

Nr

(17)selm =
MapOutputRecords

MapInputRecords
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	 Data transfer performs in the Shuffle stage. Equation (19) calculates it based on the 
amount of data and its location. Also, in the shuffle step, the sort operation is per-
formed, and the data transmitted, so the estimation time of the shuffle stage can be 
calculated from Eq. (20).

	

	

b.	 Reduce step: after transferring, sorting, and merging data, the Reduce function per-
forms. The time of this step estimated based on the time spent on the tested sample. 
Equation (21) represents the estimated time at this stage.

	

c.	 Write step: At this point, the output of the write step is written to the disk and placed 
on the HDFS. Equation (22) shows the estimated time of this step.

	

Estimating runtime of a job that has executed previously

The status of each node affects the runtime of a job. If a node is engaged in a background 
job, every run may have different times. So, based on the input data size and the type of 
application, the different runtimes save in a database to use for later estimation.

According to the database, the Exponential Averaging method [23, 24] is used to esti-
mate the runtime of a new job if the input data size and the kind of application were 
similar to previous ones.

In the Exponential Averaging method (Eq.  (23)), the recent runtime becomes more 
important, hence giving more weight. This weight indicates by the coefficient α where 
0 < α < 1. α is calculated from Eq. (24).

(18)Nr = 0.95 ∗ Ncontainer

(19)Ttransmit = Dshuffle ∗

(

∂j

RHi
+

1− ∂j

BW i
+

1− ∂j

WHi

)

(20)

Tsort + Tshuffle ≃ Dshuffle ∗

(

1
RMi

+ 1
WMi

)

+
Dshuffle

Heapr∗shuffle.buffer.percent∗shuffle.merge.percent ∗

Dshuffle ∗

(

1
RHi

+ 1
WHi

+ 1
RMi

+ 1
WMi

)

(21)Treduce ≃ Dshuffle ∗
1

RMi
+

Dshuffle ∗ Tr−sample

Selm
∗
CPUsample ∗ Csample

CPUi ∗ Ci

(22)Twrite ≃
Dshuffle ∗ Selr ∗ Nr

Nr−slot
∗

(

1

WRi
+

1

RMi

)
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In this equation, n is the number of sentences sequence in Eq.  (23) that calculated 
from Eq. (24).

In the tests carried out in this study, n = 5 is considered and is calculated up to the fifth 
sentence of the sequence.

Results and discussion
In this section, we evaluate the proposed method and discuss its error rate percentage.

To evaluate our claim, after estimating the job’s runtime by the proposed method 
explained above, we obtain the actual runtime of each job at the university lab, and 
finally, investigate the error rate between actual and estimated runtime.

RMSE and MAPE, described in Eqs. (25) and (26), respectively, are selected as our 
evaluation indicators [25–27]. RMSE (Root-Mean-Square Error) is a frequently used 
measure of the differences between values predicted or estimated by a model and the 
values observed. The MAPE (Mean Absolute Percent Error) measures the size of the 
error in percentage terms.

They are used as a standard statistical metric to compare the performance of the 
model for predicting the exchange rate values and to measure the model error.

In Eqs.  (25) and (26), Tobs is the observation or actual value, Test is the estimated 
value, and n is the number of observations.

We use three standard benchmarks of Hadoop as different jobs or applications: [1–
5, 22].

•	 WordCount—to count the number of words in a text.
•	 Sort—to sort the input files.
•	 Inverted index- to look up the set of documents that contains a given the word or 

a term that is used often in text processing.

We generate different sizes of data by using TeraGen: 1, 2, 3, 5, 10 and 20  GB as 
input data.

All tests do in the university laboratory on 13 systems with the specifications in 
Table  5. Of the 13 systems, one system as Master, and twelve systems consider as 
Slaves. Hadoop 2.9.1 installed on the systems.

(23)Tn+1 = αTn + (1− α)αTn−1 + (1− α)2αTn−2 + (1− α)3αTn−3 + . . .

(24)α =
2

(n+ 1)

(25)RMSE =

√

√

√

√

1

n

n
∑

i=1

(Tobs − Test)
2

(26)MAPE = 100×
1

n

n
∑

i=1

|Tobs − Test |

Tobs
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Evaluation of estimating runtime for the first run

If a job runs for the first time and there is not any profile or history about it, we esti-
mate its runtime by proposing a method that explained before.

Table 5  Test environment specifications

Motherboard Giga p85

CPU Intel®core i3-3240 
2*2 cores 
3.40 GHz

RAM 4 GB

HDD 500 GB

OS Ubuntu 17.04

Band Width 100 Mbps

Hadoop 2.9.1

JDK 1.8.1

Table 6  The runtime of sampling (128 MB) on WordCount, Sort and Inverted index

Information 
of sampling

Average map
time(s)

Average 
shuffle 
time(s)

Average 
merge 
time(s)

Average 
reduce 
time(s)

Average 
total 
time(s)

selm selr

WordCount 18 16.4 7.3 1.66 43.36 8.61 1

TeraSort 9.7 10.09 3.7 4.8 28.29 7.71 1.6

Inverted index 32.3 30.9 10.21 17.07 90.48 15.59 3.68

Table 7  The comparison between average actual and estimated runtime

Input data 
size (GB)

WordCount
Avg.Actual
runtime(s)

WordCount
estimated 
runtime(s)

Sort
Avg.Actual
Runtime(s)

Sort
estimated
runtime(s)

Inverted index
Avg.Actual
runtime(s)

Inverted index
estimated
runtime(s)

1 178.98 158.84 98.93 101.77 274.33 260.31

2 380.04 321 159.44 180.03 621.51 700.47

3 696.33 704.93 368.19 349.18 1310 1329.06

5 1184 1200.03 614.86 646 2849.93 3011

10 2289.07 2398.68 1327 1308.59 4830.37 4103.51

20 4865.11 4991 2502.31 2643.26 8380 8166
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Fig. 3  RMSE values
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For evaluating this method, we need runtime of the sampling values. Table 6 show 
the runtime of sampling for three benchmarks. Each benchmark run five times, and 
the average values be considered.

Table 7 shows the actual average runtime of a job after five times run and the esti-
mated values by the proposed method for different sizes of data.

According to Eqs. (25), (26) Figs. 3 and 4 show the values of RMSE and MAPE for 
three benchmarks, respectively. The number of observations for each size of data is 
five.

As Fig. 4 shows, the error percentage decreases with increasing data size, and this 
indicates that our proposed method is suitable for big data. The maximum error rate 
is less than 14%.

0

5

10

15

1 2 3 5 10 20
M

AP
E 

(%
)

DataSize (GB)

WordCount Sort Inverted index

Fig. 4  MAPE values
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Fig. 5  The percentage error rate on 13 nodes
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Fig. 6  The percentage error rate on 10 nodes
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For more confidence, we repeated the tests by varying the number of nodes and 
computed the error rate for each test separately by using Eq. (27) [11].

Figures 5, 6, 7, 8 show the percentage of runtime error in the WordCount, TeraSort, 
and Inverted index application. The results show that the average error rate is less 
than 10%.

(27)ErrorRange =
EstimatedTime − ActualTime

ActualTime
∗ 100%
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Fig. 7  The percentage error rate on 5 nodes
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Fig. 8  The percentage error rate on 3 nodes

Table 8  Runtime history for WordCount on 13 nodes

Input data 
size (GB)

RunTime1 RunTime2 RunTime3 RunTime4 RunTime5 Estimated runtime 
by the exponential averaging 
method

1 177 173 182 169 178.04 169.52

2 360.04 381 369.91 382.05 391.07 376.91

3 695.92 690 679.66 704.02 704.41 701.94

5 1186.77 1139.61 1181.05 1166 1190.64 1158.07

10 2290.74 2280.58 2301 2297.89 2273 2297.68

20 4879.05 4783 4955.87 4693.61 4853 4856.84
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Fig. 9  RMSE values
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Fig. 10  MAPE values
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Fig. 11  The percentage error rate on 13 nodes
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Fig. 12  The percentage error rate on 10 nodes
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Evaluation of estimating runtime of a job that has already been run

After each job is executed, based on the type of application and the size of input data, 
its runtime stored in the database. Each table stores five runtimes. By using Eq. (23) 
and the information on the database, the runtime of a new job estimated.

For instance, Table 8 shows the runtime history for WordCount on 13 nodes. (There 
is the same table for each application in the database.)

Figures 9 and 10 show the RMSE and MAPE, respectively for three benchmarks.
According to Fig. 10, the error percentage decreases with increasing data size, and 

this shows that our proposed method is suitable for big data. The maximum error rate 
is less than 12%.

According to Eq. (27), Figs. 11, 12, 13, 14 shows the error rate of the estimated runt-
ime by the Exponential Averaging method and actual runtime in WordCount, Tera-
Sort, and Inverted index in the different number of nodes. The results show that the 
error rate is less than 5%.

Conclusions and future works
One of the popular open-source frameworks for processing big data is Apache Hadoop. 
To better management of this framework, estimating the runtime of a job is a critical 
issue.

In this paper, after studying and analyzing the anatomy of processing a job in Hadoop 
MapReduce precisely to estimate the runtime of a job, we considered two cases: when a 
job runs for the first time and there is not any history about it or a job has run previously 
and its profile is available.
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Fig. 13  The percentage error rate on 5 nodes
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In the first case, by considering essential and efficient parameters that higher impact 
on runtime we formulate each phase of the Hadoop execution pipeline and state them 
by mathematical expressions to calculate runtime of a job. In the second case, by refer-
ring to the profile or history of a job in the database and use a weighting system the 
runtime is estimated. RMSE and MAPE are selected as evaluation indicators. The results 
show the average error rate is less than 12% in the estimation of runtime for the first run 
and less than 8.5% when the profile or history of the job has existed.

For future work, we plan to extend the proposed scheme by using machine learning 
techniques and optimize Hadoop parameter values by using metaheuristic algorithms. 
Also, we intend to work on estimating Spark job runtime for processing stream data.
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HDFS: Hadoop Distributed File System; RMSE: Root-Mean-Square Error; MAPE: Mean Absolute Percent Error.
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