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Introduction and motivation
Prevention is one of the most important pillars of public health. The Institute of Medi-
cine (IOM) estimates that missed prevention opportunities cost the US $55 billion every 
year, and an estimate of ~ 30 cents on every healthcare dollar. In total, the healthcare 
system squanders $750 billion a year [1]. Accordingly, amongst all the countries of the 
OECD (the Organization for Economic Co-operation and Development), the US has the 
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highest expenditures (illustrated in Fig. 1). Preventive measures are economically criti-
cal. They are very clear pointers to the quality of service at hospitals and clinics; as well 
as the general health of citizens across any country.

Our work’s main objective (hypothesis) is two-tier: through one of the largest and most 
representative national health datasets for population-based surveillance, data imputa-
tions and machine learning models (such as clustering) offer preventive care pointers by 
grouping patients into heterogeneous clusters, and providing data-driven predictions and 
policies for healthcare in the US.

In our work, preventive care is measured and affected through three main parameters: 
1-Immunizations, 2-Access to Healthcare Providers, and 3- Chronic Disease Prevention 
as indicated in United America’s Health Ranking [2]. We explain in detail these three 
important parameters in subsequent sections.

Immunization policy

Immunization policies directly influence the health of a state. Different states in the US 
adopt different levels of immunization enforcement. Immunizations prevent the occur-
rence or spread of Vaccine Preventable Diseases (VPDs). For example, in the 20th cen-
tury; the annual morbidity of smallpox was 48,164. Due to vaccines, in the year 2000 that 
number dropped to 0. Measles dropped from an annual morbidity rate of 503,282 to 81; 
and Rubella from 47,745 to 152 [3]. All VPDs had a reduction of more than 98% due to 
immunizations [4, 5].

Therefore, the case for immunizations has been considerably studied. States with low 
vaccine rates (such as Missouri, Indiana, Alaska, and Mississippi) hold campaigns to 
change public belief about immunizations. Due to the lack of public trust in vaccines 
and pharmaceutical companies, immunization rates have been declining. Figure 2 shows 
how Non-Medical Exemptions (NMEs) are on the rise in many states across the country 

Fig. 1  US healthcare expenditures vs. other OECD countries [6]
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(between years 2009 and 2017). The study declared the following conclusions [7]: “A 
social movement of public health vaccine opposition has been growing in the US in 
recent years; subsequently, measles outbreaks have also increased. Since 2009, the num-
ber of philosophical-belief vaccine NMEs has risen in 12 of the 18 states that currently 
allow this policy; namely: Arkansas (AR), Arizona (AZ), Idaho (ID), Maine (ME), Min-
nesota (MN), North Dakota (ND), Ohio (OH), Oklahoma (OK), Oregon (OR), Pennsyl-
vania (PA), Texas (TX), and Utah (UT)”.

The Center for Disease Control and Prevention (CDC) reported on those states, and 
presented multiple cases to help increase public trust in immunizations: “We hope this 
report is a reminder to healthcare professionals to make a strong vaccine recommenda-
tion to their patients at every visit and make sure parents understand how important it is 
for their children to get all their recommended vaccinations on time” [5, 8]. Immuniza-
tion rates vary among states, and lag behind the Department of Health and Human Ser-
vices’ Healthy People 2020 targets. It is yet to be determined how states will react to the 
recent outbreak of Covid-19 and its vaccination when that is made available.

Access to healthcare

The second factor that affects preventable healthcare is access to healthcare providers. 
It has high correlation with poverty rates, education levels, and job rates; (i.e. it can be 
considered an economic attribute). Socioeconomic factors are heavily implicated with 
low or poorer management of disease and preclude patients from complying with seek-
ing early screening and preventive care [9]. From a healthcare policy perspective, access 
is due to factors such as the lack of physicians in many areas of the country. In the US, 
in 2013, the ratio of physician-to-patient was 2.6-to-1000, which is below the OECD 

Fig. 2  NMEs trends across the US [7]
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recommended average of 3.3-to-1000 [8]. Additionally, OECD market research predic-
tions indicate that by the year 2025, 52,000 more primary care physicians are needed 
to meet demand; especially due to the ACA’s provisions to increase that number [10]. 
While the US average for doctors active in patient-care per 100,000 people = 225.6 (in 
2014), there is a wide variance across states: Massachusetts ranks the highest with 349.5 
active doctors per 100,000 people (the ACA is a reincarnation of the Massachusetts 
healthcare system). Mississippi has only 170.3 doctors per 100,000 people [10, 11].

In this manuscript, we present methods that focus on the third (and most critical) 
variable in preventable healthcare: Chronic Disease Prevention and Prediction (CDPP) 
(Fig. 3).

Most chronic diseases are linked to risk factors or indicators such as obesity, smok-
ing and inflammatory conditions. As a result, sub-clinical changes are potentially occur-
ring with subjects, and that can be detected prior to clinical manifestations. In addition 
to indispensable clinical tests and screening, a programmable bio-nano-chip (PBNC) 
system for example could be used in enabling the detection of proteins and molecules 
known as biomarkers that facilitate ‘early’ diagnosis for possible disease prevention. 
This technology is generally referred to as a lab on a chip (L-O-C). One example is the 
blood glucose monitoring device. Thus, evaluation of changes occurring prior to dis-
ease appearance (preventive) may highly lead to better management of the disease and 
is likely considered more cost-effective. When physicians are presented with such pro-
jections, they can augment their recommendations to patients. Patterns can be drawn 
between patients’ clinical and laboratory data, passed to predictive and intelligent mod-
els for proactive actions. These attributes are collected in this study using CDC data, and 
pointers to enforcing CDPP using ML are presented.

Chronic Disease Prevention and Prediction

Chronic diseases encompass diabetes mellitus (type II), hypertension, kidney diseases, 
obesity, inflammatory diseases, and cancer, among others. Nearly half (45%) of Ameri-
cans have at least one chronic condition [12]. Direct medical costs for chronic condi-
tions are > $750 billion annually. Further, by 2023, CD cases will increase by 42%, costing 

Fig. 3  The three pillars of preventive healthcare [2]
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$4.2 trillion in treatment. Choosing the right combination of diagnostic tests requires 
the understanding of the disease, and managing it [13].

The list of tests provided through the ACA is designed to help eradicate chronic dis-
eases [14]. Out of the four possible healthcare models for a country (The Beveridge, Bis-
marck, Out of Pocket, and National Insurance) [15], a model such as the ACA provides 
guarantees for the pursuit of preventive healthcare. However, in recent years, the ACA 
has been deployed with high costs, the program has low adoption rates, and it still suf-
fers from public’s rejection. Within the ACA, all marketplace plans must cover the fol-
lowing list of 21 preventive services without charging the citizen a co-payment; those are 
presented in Appendix 1 (verbatim from Healthcare.gov) [14].

Data on the 21 listed biomarkers are collected by CDC. One of the major sources of 
such CDC data is their National Health and Nutrition Examination Survey (NHANES) 
[16] (used in this work). NHANES is a program that is concerned with population-
based surveillance of health and disease via surveying; that refers to patients’ reported 
outcomes, collecting laboratory and clinical data, as well as demographic and socioeco-
nomic statuses of the US population. Datasets are released in 2-year cycles. The program 
is part of the National Center for Health Statistics; one of the thirteen US government 
statistical agencies. Policy improvements through CDC big data and the ML meth-
ods applied make a strong case to enforcing CDPP best practices in the clinic and on a 
national scale.

Our study provides completeness to the collection of biomarkers through learning 
from clinical historical trends. Our ML models can improve preventive practices at clin-
ics, save doctors and patients time, reduce cost of unnecessary clinical tests, and provide 
improved diagnostics to incoming patients by essentially categorizing them in health 
and disease groups using k-clustering.

Data and healthcare—a literature review
In the world of silicon chips, Moore’s Law is still alive and well [17]. The law suggested 
the doubling of speed and capability of computer chips every 24  months; which still 
holds true. Interestingly though, the same logical construct has been applied to other 
areas. Eroom’s Law (reverse of Moore) suggested that the cost of developing new drugs 
has doubled every nine years since 1950 [18]. That alludes to more drugs being used for 
cure, but less towards prevention. This section presents the one of the largest US public 
health dataset that can aid in preventive practices (i.e. NHANES), and presents a history 
of ML for healthcare.

CDC data for preventive healthcare

In 2007, the Bush administration presented the Food and Drug Administration Amend-
ments Act [19]. The act reaffirmed the requirement for federal investigators to release 
partial information about clinical trials. Before the act, government agencies had no 
incentive to collect clinical data, or release comprehensive datasets to the public for 
research and policy validations.

Later on, when the Obama administration enacted the Open Data Initiative [20]; 
all government agencies became obliged to share their public data through online 
repositories.
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The CDC (through NHANES) has been performing health surveys since 1956. They 
cover hundreds of health attributes for a patient at a single point in time [21]. Clini-
cal trials and surveying are critical sources of information for such medical innovations. 
Time series data (longitudinal) are important for ML models. Predictions, forecasts, and 
other means of pattern recognition are strictly enforced by a time dimension in the data. 
NHANES data are cross-sectional (i.e. collected at a single point in time); thus a follow 
up on patients is required for ML trends and forecasts [16]. Completeness of health data 
is required to allow for comprehensive examinations and to provide early recommenda-
tions to preventive parameters. For example, an increase in blood pressure through time 
can point to cases of hypertension in some patients. In this work, we examine the nature 
of NHANES data, allocate imbalance and incompleteness, and solve that using correla-
tions, clustering, and imputation methods.

Machine Learning for healthcare

Since the early inception of Artificial Intelligence (AI), healthcare has been at the fore-
front of applications. One of the first forms of AI is expert systems. Knowledge-based 
systems (KBS or expert systems) are intelligent systems that encapsulate the knowledge 
of a skillful person. KBS are a special kind of an intelligent system that makes extensive 
use of knowledge. KBS were first introduced in the 1960s during the process of collecting 
medical knowledge from healthcare practitioners. KBS are different from conventional 
software systems or data analytical systems because they use heuristic rather than algo-
rithmic approaches for decision making [22].

The original idea of a general problem solver (GPS), that later turned into the idea 
of building a medical expert system, used generic search techniques aided by heuristic 
knowledge to solve medical problems [23]. The GPS idea was instrumental in the devel-
opment of MYCIN; a system that diagnosed blood and hemoglobin disorders. MYCIN is 
a landmark medical KBS developed at Stanford University (known to be the first expert 
system). PROFORMA was later developed as a generic model for building clinical and 
medical expert systems (due to the rise in demand for such systems) [24]. Data re-kin-
dled the promise of AI and fueled the algorithms that struggled to provide learning and 
intelligence due to the lack of abundant datasets [25]. That led to the transformation of 
the famous adage “data is the new oil” to “data is the new blood”.

In 2018, at Stanford University (the developer of MYCIN), healthcare and ML are 
hand-in-hand at the Center for Clinical Excellence (CERC). In their recent publication 
[26], they point to multiple endeavors at their centers to deploy AI/ML in healthcare. 
Additionally, they point to the rising trend of AI in the healthcare domain, and how it 
is expected to grow (percentage-wise and 11-fold) by year 2021 (Fig. 4). Many medical 
research labs and clinics are starting to deploy ML models within their practices, albeit 
still considered scarce [25, 27].

The data replication crisis

Before presenting our models, it is very important to point to a very critical and danger-
ous phenomenon in healthcare research and deployment of data-driven methods: the 
replication crisis; something we avoid in our study by using open data, and providing our 
models, code, and datasets to anyone interested in replicating our study.
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Data for scientific research need to be reliable. “Reliable” in this context means the fol-
lowing: 1-unbiased to one geographical location, 2-unbiased to one or few demograph-
ics, 3-unbiased to certain arguments for a policy by candidates on the political left or 
right 4—data modeling needs to avoid issues such as overfitting/underfitting or imbal-
ance. Although the majority of clinical studies are dependent on data collected at one 
clinic, hospital, or university, there has been major pushback on medical studies and 
the lack of ability to regenerate the results with a different set of patients, pre-conceived 
clinical setup, a variety of geographical locations, inherited biases in the analysis, or 
hyper-parameter’s tuning that is specific to the results of one study—all those practices 
lead to an inability in replicating a study [28–30].

NHANES is an open and democratized dataset that represents national health and dis-
ease. It is also claimed to be verified by multiple practitioners throughout the years. Like 
other big data repositories, albeit being incomplete, NHANES was used for our models. 
We allocated biases or inconsistencies, solved these issues, and then built our models.

The remaining of the manuscript is organized as follows: the next section presents 
the CDC big data management processes using SQL, bias removal, and data wrangling. 
“Results: preventive healthcare through Data Analytics” section presents the ML mod-
els (clustering, correlations, and imputations), and their results (result #1–result #7). 
Lastly,  “Discussion: conclusions, policies, and future plans” section demonstrates con-
clusions and implications on preventive policies.

Methods: CDC data collection and bias detection
Data are collected through the CDC’s NHANES web-pages. Files get extracted into a 
SAS viewer, and then exported into a SQL database management studio. All the tables 
had one primary key: SEQN, which represents a distinct sequence ID for every patient. 
The database has 27 tables, a total of 1000 + data columns, and tens of thousands of data 
points (detailed later in this section). No other similar relational database that includes 
the majority of the CDC survey data exists in literature.

Preventive health variables from the CDC

Most years within the NHANES surveys have missing data. Righteously however, the 
CDC published a report declaring the reasons, counts, and summaries of missing data 
from their surveys. In the report, the following reasons are mentioned (verbatim): 

Fig. 4  Growth of AI in healthcare [26]
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“the answers are classified as unusable; the respondent does not have the information 
to answer a particular item or refuses to answer a specific question or undergo a par-
ticular test; laboratory equipment fails; test results are faulty; specimens are lost in 
shipping; or some items of information fail to be recorded on the examination record”.

Reasons, as such, were only documented after 1988. With data collected previous 
to that year, it is unclear what pitfalls exist (the electronic collection survey began in 
1971). NHANE’s history of data collection is broken into the following five phases:

1.	 1971–75—National Health and Nutrition Examination Survey I (NHANES I)
2.	 1976–80—National Health and Nutrition Examination Survey II (NHANES II)
3.	 1982–84—Hispanic Health and Nutrition Examination Survey (HHANES)
4.	 1988–94—National Health and Nutrition Examination Survey (NHANES III)
5.	 1999–present—National Health and Nutrition Examination Survey (Continuous 

NHANES)

In this study, we investigate data from 2009 to whatever is available up to 2019—an 
effort to cover the last 10 years of surveying. It is worthy to mention that every batch 
of NHANES has a different set of patients (and consequently a different set of patient 
IDs).

As one can assume, the sample citizen set which NHANES presents is not biased 
or imbalanced to any demographical group (we challenge that in upcoming sections). 
NHANES claims that they sample the data in accordance with percentages by the US 
Census Bureau; they consider Race, Age, Income, and Gender as basis to stratify the 
population. In their guides, NHANES claims the following: “Race and Hispanic-origin 
information used for sampling is based on census population estimates and obtained 
from the household screener to determine eligibility for inclusion in the survey” [16]. 
One can argue that stratification is not of relevance to a patients’ medical status, and 
in order to cover a wider part of the variety in the clinical spectrum, stratifying needs 
to be performed based on medical variables. Most importantly however, the data 
are not found to be longitudinal; it is therefore not possible to completely follow a 
patient’s progress over time. Patients are presented in ID forms, but multiple vari-
ables on their demographics, habits, medical history, clinical tests, and multiple other 
important variables are recorded. We collected data from all six groups (Demograph-
ics, Dietary, Examination, Laboratory, Questionnaire, and Limited Access). Out of 
these six groups, we traced 27 preventive care categories. Those are:

Questionnaires Group: 1-Cholesterol, 2-Cardiovascular health, 3-Current health 
status, 4-Diabetes, 5-Diet behavior, 6-Drug use, 7-Hospital Utilization and Access 
to Care, 8-Medical Conditions, 9-Oral health, 10-Four parameters of smokers, 
11-Weight history, 12-Smoking—Cigarette, Use 13-Smoking—Household smok-
ers, 14-Smoking—Recent Tobacco Use, 15-Smoking—Secondhand Smoke Expo-
sure. Demographics Group: 16-Variables and Sample Weights. Examination Group: 
17-Blood Pressure, 18-Oral Health—Dentition. Laboratory Group: 19-Standard bio-
chemistry profile 20-Plasma fasting glucose 21-Insulin 22-Glycohemoglobin 23-Feri-
tin 24-Cholesterol-Total 25-Cholesterol-LDL 26-Cholesterol-HDL 27-Complete 
Blood Count with 5-part [16].
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The mentioned 27 diagnostic categories include 1000 + variables, all of which are con-
sidered in the ML models (clustering and imputations). Prior to developing the models, 
a significant effort of data wrangling is deployed, that process is presented next.

Experimental setup and data wrangling

After data collection and transformation, all tables have been merged into one data-
base view within the dbo schema; analysis has been performed on the unified table. 
For example, a SQL code for merging Cholesterol levels data with smoking, cardio-
vascular health, and diabetes is as follows (Inner joining tables on SEQN):

When the data are merged, several observations are possible. These observations 
span the entirety of the NHANES data. Observations (presented as result #1 of this 
manuscript) on the merged, cleaned, and wrangled data are:

(1)	 Data categories did not have the same counts, which could lead to data imbalance 
and lack of comprehensive experimentation in terms of preventive parameters.

(2)	 Demographic data are the largest. The dataset included more than 40,000 patients 
(Fig. 5 summarizes counts of all NHANES variables).

(3)	 Demographical categories are not equal, not balanced, and had a serious case of 
bias towards certain demographic factors (Figs. 6, 7, 8, and 9 show the demographic 
categories and their imbalance—something that could be improved within CDC’s 
data collection process).

Fig. 5  Counts of patients per category in NHANES data for 2009 onwards
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(4)	 Ferritin data (for instance) did not have any overlap in terms of patient IDs with any 

other category.
(5)	 The majority of surveyed patients’ household income is > $100,000 (i.e. more well-

off patients are surveyed in comparison to middle class & poor patients).

Fig. 6  Household income counts (solely from the household table)

Fig. 7  Gender and birth percentages in CDC surveys

Fig. 8  Age counts in CDC surveys
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(6)	 When merged on patient IDs, the data size reduces drastically, due to the minimal 
overlap between different categories (for clustering, we ended up clustering more 
than resulted ~ 1500 patients, instead, we used the imputed data as well).

(7)	 Female vs. male distributions are fairly unbiased. However, when it comes to race, 
some races, such as Hispanics, are not well represented in the survey (Fig.  10). 
Studies show that Hispanics, along with African Americans have higher level of 
diabetes than other races [31]. Therefore, for preventive parameters of diabetes, 
data for more races ought to be collected or created.

The NHANES data collection process was rather costly. Therefore, as an attempt 
to substitute for the need to acquire expensive utilities needed to collect clinical 
parameters, data imputation methods were applied to compensate for missing clinical 
data. These methods are applied in  “Multivariate imputation by chained equation” to 

Fig. 9  Number of patients by NHANES survey year

Fig. 10  Counts of patients per race in NHANES data



Page 12 of 25Batarseh et al. J Big Data            (2020) 7:38 

NHANES 2015-2019 datasets with missing clinical oral health parameters and smok-
ing variables as examples.

Table 1 summarizes all the data categories’ counts across the NHANES survey data-
base (presented as result # 2). After cleaning, wrangling and merging the data, the 
method presented in the next section could be deployed to solve any NHANES data 
imbalance issue. The results introduced in   “Results: Preventive Healthcare through 
Data Analytics” section are presented through multiple dimensions such as dental 
diseases, and smoking (SMQ).

The next section presents the experimental methods used for imputations of pre-
ventive biomarkers (in accordance to what was proposed by the ACA), and the ML 
models deployed through the database.

Results: preventive healthcare through Data Analytics
This section introduces the models and the results for data imputations, as well as the 
clustering model for patients included in the CDC surveys. The next two sub-sections 
include the following: 1—Imputations using correlations (Pearson and others) for data 
creation of variables that can point to preventable diseases 2—A multivariate clustering 

Table 1  Summary of data for preventive parameters in NHANES

Healthcare Variable 2009-2010 2011-2012 2013-2014 2015-2016
BioPro 7369 6549 6979 6744
BP 10253 9338 9813 9544
BP_Chol 6889 6175 6464 6327
Cardio 4135 3603 3815 3766
CholHDL 8591 7821 8291 8021
CholLDL 3581 3239 3329 3191
CompBC 9835 8956 9422 9165
CotiHydro 9211 8435 8913 8608
CurrH 9835 8956 9422 9165
Demo 10537 9756 10175 9971
Diabetes 10109 9364 10175 9575
DietBH 10537 9756 9770 9971
Drug 5302 4796 5057 4843
Ferritin 3521 0 0 3252
Glycoh 7369 6549 6979 6744
HUAC 10537 9756 10175 9971
MediCon 10109 9364 9770 9575
OHXDEN 8189 8956 9422 9165
SMQ 7528 6790 7168 7001
SMQFAM 10537 9756 10175 9971
SMQRTU 7369 6549 6979 6744
SMQSHS 0 0 10175 9971
TCHOL 8591 7821 8291 8021
Weight 6889 6175 6464 6327
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model of patients, based on all variables mentioned above. The goal of the model is to 
group patients into multiple clusters for preventive recommendations and management.

Multivariate imputation by chained equation

The data wrangling process is referred to as 80% of the effort in a data science lifecycle. 
The most challenging aspect in data wrangling is data incompleteness. Incompleteness 
leads to data imbalance, and therefore, leads to biased outputs from models. Incom-
plete data often makes the case for a Garbage-in Garbage-out (GIGO) situation; there-
fore, imputation is deployed. Most commonplace methods for imputation are presented 
below. None of the four mentioned methods are useful in the case of CDPP—the reason-
ing is presented in parenthesis:

1.	 Providing means, modes, and medians of a column to replace missing data (Averages 
of patients do not mean anything—patients respond to diseases in unique fashions). 
It is noteworthy to state that since NHANES data are cross-sectional, stratification is 
not possible. Such imputations are applied when monitoring patients longitudinally.

2.	 Providing means, modes, and medians of data points surrounding missing data—
usually 3 on each side, or more (Same reason as in #1. Closer patients in order are 
not closer health-wise).

3.	 Using correlations with few predefined columns to extract new values (Mostly used 
in small datasets. The number of columns that are used in this study is ~ 1000+, 
which makes it impossible to find one or few columns to be used for correlations; 
instead all columns ought to be used).

4.	 Deleting rows with missing data (Deleting rows/patients will lead to bias problems, 
and so we avoid this option).

Instead, we introduce a different process for data imputation of CDPP variables. The 
method used includes six main steps:

1.	 Stream data from the SQL database into the R environment, split data into testing 
and learning data, use learning data for all steps except step # 6.

2.	 Measure correlations between every column and all other columns to find the high-
est correlated columns for every CDPP variable.

3.	 Apply Pearson correlations for numerical values, Analysis of Variance (ANOVA) for 
columns that have numerical and categorical values, and Cramer V correlation coef-
ficients for data that are categorical:

	 i.	 Cramer V coefficient is used when both x and y are nominal. Results are deci-
mal values between 0 and 1. Formula for Cramer V is: Φ = SQRT (X2/N (K-1)). 
φ denotes Cramer V; X2 is the Pearson Chi square statistic; N is the sample 
size involved in the test; K is the lesser number of categories of either variable.

	 ii.	 ANOVA is used when x is numeric, and when y is nominal (or vice versa). The 
result is a decimal value between 0 and 1.
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4.	 Pass the top 10% correlations for every column as inputs for the Multivariate Impu-
tation by Chained Equation (MICE) model—an R library [32]. The MICE model then 
uses columns that have a correlation > 0.5.

5.	 Run through all columns of missing CDPP data and impute data points based on the 
highest correlated columns and MICE.

6.	 Validate created CDPP data versus actual data (using the testing datasets from Step 
#1).

A sample code from the MICE algorithm used for this study is as follows (used in 
Steps #4 and #5):

The 6-step process is applied to providing missing longitudinal smoking data as an 
example. Smoking is known to be one of the most common risk factors to many chronic 
diseases, therefore, completeness in this data is critical to providing health recommen-
dations. The following successful results are produced:

(1)	 Imputations error rate is: 0.071. That is deemed to be very low (result #3).
(2)	 The process created similar statistical distributions of predicted data and actual 

data.
(3)	 Top correlations for disease and smoking data are identified (Fig. 11), with low error 

rates. Such variables aid medical teams in identifying healthcare parameters for 
preventive healthcare amongst a subgroup of the population taking the NHANES 
survey. This breaks down SMQ to specific practices and can aid in making a quick 
change. For example, cigarette filter type seems to have a high effect on the patient’s 
smoking numbers (correlation = 77%). Cigarettes length and Tar content are other 
two high effect variables—(result #4).

(4)	 The listed measures (survey questions) are the preventive pointers to smokers—in 
order to avoid certain smoking-relevant diseases.

The 6-step imputations’ process of CD data can provide more detailed pointers to pre-
ventive sub-variables (such as the cigarette filter example). Another example presented is 
for missing clinical periodontal measures used to estimate prevalence of Periodontitis. Per-
iodontitis is a host-inflammatory oral disease characterized by lengthy exposure to patho-
gens. For periodontitis, imputations created similar distributions of groups (actual data vs. 
predictions) amongst periodontitis predictions. See Fig. 12 for a visual comparison.
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Periodontitis of mild, moderate or severe form affects over 64 million Americans 
today; i.e. above 42% of the US population aged 30–79 [33]. This disease is heavily 
diagnosed and monitored via clinical parameters; thus, in case where there are limited 
resources or if dubbed costly or inaccessible, imputations can potentially serve to pri-
marily identify patients requiring further screening, preventive or interventional meas-
ures. Periodontitis can be prevented and managed; therefore, a data-driven approach 
can present a state-of-the-art ML method to apply on a population; i.e. a large scale of 
individuals. Here, this was implemented on NHANES missing periodontal data for 2015 
onward. When comparing actual vs. predicted results of imputations for periodontitis, 
and comparing the highest correlated variables between both sets, many variables ended 

Fig. 11  Error rates in correlations for top imputations of SMQ data variables

Fig. 12  a Actual and b imputed/predicted periodontitis columns’ distributions are very similar
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up having similar correlations such as: OHDPDSTS dentition status, OHXCJID dentition 
status, and OXHXPCM dentition status. Figure 13 shows the top 5 variables that have 
the highest correlation.

The dental variables’ filters used in the study are illustrated in Fig. 14 (showing the 
criteria for data collection of periodontal data in NHANES). Only the complete and 
partial dental tests are included, any data that are not done or missing are not consid-
ered in the imputations or correlations test.

Refer to Corr Order # for instance; it has filters 1 and 2. Corr#1 in actual data is the 
highest correlation variable (0.972) and corr#2 is the second highest (0.612), and so 
on. Similar to that, in predicted values, corr#1 is equal to 0.973, and corr#2 is equal to 
0.079 (result #5).

Fig. 13  Correlations results (actual vs. imputation results, filtered by periodontal test)

Fig. 14  Example NHANES codes for patients that performed the periodontitis tests [16]
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The goals desired from the mentioned periodontitis example are to present initial 
pointers to the disease, and to point to factors that would allow for preventive dental 
parameters (providing focused dental cleaning and cures). The 6-step imputations model 
presented in this section provides completeness and balance to the datasets, however, to 
fit patients into a group of similar patients, a clustering model is required, that is pre-
sented next.

Clustering patients

The k-modes clustering algorithm is an extension of the infamous k-means clustering 
model. Instead of distances, the k-modes model is based on dissimilarities (that is, quan-
tification of the total mismatches between two data points: the smaller this number, the 
more similar the two objects). K-prototype (k is the number of clusters) [34] is used for 
clustering numerical and categorical values. It is a simple combination of k-means and 
k-modes. K-prototype has the following steps:

1.	 Select k initial prototypes from the dataset X.
2.	 Choose the number of clusters (Fig. 15 illustrates the Elbow diagram for recommen-

dations of k).
3.	 Allocate each data point in X to a cluster whose prototype is the nearest.
4.	 Retest the similarity of objects against the current prototypes. If the algorithm finds 

that an object is allocated such that it is nearest to another cluster prototype, it 
updates the prototypes of clusters.

5.	 Repeat step #3, until no object changes its cluster (after fully testing X).

A variety of clusters’ descriptions could be pulled from the model developed. The 
model includes 519 variables; we only used columns that had more than 10% values, 
and less than 90% nulls. Columns with Null values could lead to model skew. Depend-
ing on the application deployed, the clusters could be defined depending on the pur-
pose. For example, they can be defined based on smoking habits and blood pressure, 

Fig. 15  Diagram for choosing the number of clusters (k = 5 and k = 11 peaks)
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but they will be categorized differently if they are defined by chronic diseases—the 
seven CDs collected in our results are (a total of 1711 cases):

1.	 Hypertension (477 cases)
2.	 Diabetes (188 cases)
3.	 Arthritis (373 cases)
4.	 Cancer (111 cases)
5.	 Asthma (173 cases)
6.	 Coronary Disease (41 cases)
7.	 Periodontitis (348 cases)

The best k-model has 11 clusters (based on the elbow method and clinical het-
erogeneity). For instance, it is worth mentioning that cluster 5 is the ‘healthy clus-
ter’. Cluster 8 has patients who don’t have high levels of Cholesterol (Mmol/L)—6 
or higher. Clusters 3 and 11 are the ones with the highest probability of oral health 
disease (i.e. periodontitis); a 300 + sample of patients had periodontitis. As one can 
notice, clusters 3, 7, and 11 are the least healthy, while 5, 6, and 8 are the healthiest 

Fig. 16  Patients with severe periodontitis within the 11 clusters (count = 348)

Table 2  Summary of CD counts within every cluster (descending order)

Cluster Count of CD cases
3 232 (most cases)
7 211
11 201
4 200
10 180
9 150
1 150
2 136
6 131
8 94
5 26 (healthiest)
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ones. Figure  16 presents the distribution of clustering results by periodontitis pro-
jections. More importantly, Table 2 presents the counts of CD patients within every 
cluster (result #6).

Most chronic pro-inflammatory conditions have common risk factors, such as smok-
ing and co-existence with other systemic diseases. In case of periodontitis, diabetes mel-
litus II is a chief risk factor to exacerbation of the disease. Both diseases were claimed to 
even have a bi-directional or a two-way relationship. Periodontitis is the 6th most com-
mon condition in diabetic patients. Susceptibility to periodontitis increased by around 
threefold in diabetic patients [35]. Evidence suggests that managing or preventing one 
could aid in alleviating the other condition. Thus, treating or preventing periodontitis 
may improve the status of other chronic conditions.

By belonging to a health group, a primary care physician can get instant expectations 
on patient’s health, and which preventive tests a patient might need. The multiple factors 
of a CD, for most physicians, can sometimes be rather time-consuming to collect; and so 
our ML model aids in providing comprehensive consideration of hundreds of variables. 
We aim to experiment with this model at small scale facilities first, such as at a university 
healthcare facility or a clinic. Further clustering data results and code are available for 
researchers upon request from the authors.

Validating unsupervised models is an intricate task. For the clustering model, we 
applied three main means of evaluation: (1) Relative clustering validation: evaluates the 
clustering model by varying different parameter values for the same algorithm. In this 
study, we evaluated a different number of clusters (k), however, as part of future work, 
we would like to test including/excluding other healthcare variables and observe the 
changes to the model outputs. (2) External clustering validation: compares the results 
of a cluster analysis to an externally known result, such as externally provided NHANES 
clusters (which are not provided by NHANES). Since we know the best cluster number 
in advance (k = 11 or k = 5), this approach is mainly used for selecting the right cluster-
ing algorithm. 3. Internal clustering validation: uses the internal workings of the clus-
tering process without reference to external knowledge. This type aims to minimize the 
distance between data points in the same cluster and maximize ones in different clus-
ters. Different diseases require different measures, and therefore, a breakdown of CD 
patients within every cluster is presented in Table 3 (result #7).

As noted in the table, if a patient ends up in cluster # 3 for instance, it is safe to assume 
that they have health parameters that are very similar to a group of other patients with 
Coronary disease, or Asthma. Additionally, if a patient belongs to clusters #5 or #8, then 
their health parameters are similar to a group of healthy patients. The next section pre-
sents conclusions and implications on healthcare policy.

Discussion: conclusions, policies, and future plans
Due to patient-privacy rules and legal concerns, accessible data in healthcare are scarce. 
Survey datasets from CDC/NHANES constitute an example datasets that could be used 
to provide pointers to the current general health of Americans. The surveys have been 
continuously used to draw causal inferences from health attributes, patient’s informa-
tion, and diseases. NHANES datasets are complex, highly context-dependent, inherently 
heterogeneous, and multi-dimensional. Just like any half-cleaned dataset, data wrangling 
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methods need to be applied before developing models that aid in decision making [36]. 
Besides manually evaluating patient records and health indicators by physicians, ML 
models presented in this manuscript allow for a proactive evaluation of patients’ status. 
ML models aim to augment physicians’ tasks, encourage preventive actions towards dis-
eases, and provide pointers to healthcare policies that work (or others that do not)—a 
challenging task that requires systematic data democratization [37].

The methods presented in this paper provide successful imputations, correlations, 
and grouping of patients; as suggested in the hypothesis. We present seven analytical 
results. Ten years of NHANES data are collected and multiple insights are presented, for 
example: demographical data have ~ 40,000 patients (after joining with healthcare varia-
bles)—however, demographical categories are not balanced, for instance: the majority of 
surveyed patient’s household income is $100,000 and more. In any case, NHANES data 
have enough health indicators to further impute preventive measures. As we ran mul-
tiple imputation tests, dependable data are generated through a 6-step process with a 
very low error rate: 0.071. Imputations are deployed based on high correlations (77% and 
higher) of variables relevant to preventive measures (based on the ACA benchmark). 
Some presented columns had very high correlations (up to: 97.2%). Afterwards, data 
are clustered. Eleven (11) clusters served the highest quality and distribution of patients 
amongst heterogeneous groups. Smoking and periodontitis preventive measures are 
clearly stated. Other CDs (such as diabetes and asthma) were very prevalent amongst 
clusters 3, 7 and 11.

When a patient falls into a cluster, the physician can have an initial pointer to the 
health of the patient (in terms of what preventive tests to undertake) [38]. The overarch-
ing goal is to identify health and disease parameters for the US population, elevate the 
health of the American public, effectively reduce office time for patients’ data collec-
tion, and provide completed, wrangled, and unbiased survey datasets for further clinical 
analysis.

Table 3  Chronic diseases’ distribution amongst clusters
Cluster # Coronary 

Disease
Asthma Cancer Arthritis Diabetes Hypertension Periodontitis

1 5 13 12 35 19 44 22
2 0 14 8 24 12 32 46
3 7 22 14 49 26 61 53
4 3 21 13 44 24 57 38
5 0 6 1 7 3 9 0
6 3 11 5 24 12 30 46
7 5 19 19 55 24 67 22
8 2 13 6 19 12 30 12
9 5 20 9 36 11 46 23
10 5 15 12 44 19 52 33
11 6 19 12 36 26 49 53
Sum 41 173 111 373 188 477 348
Dominating 
Cluster

Cluster  #3 Cluster 
#3

Cluster 
#7

Cluster  #7 Clusters 
#3 and 
#11

Cluster #7 Clusters #3 
and #11
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Big Data Analytics for policy making in healthcare

The ACA mandate encourages citizens to benefit from a list of 21 preventive parameters 
(Appendix 1). As our work indicates, three factors (immunization, access, and chronic 
disease) affect the efforts of national preventive care. Changes to policies in American 
states through intelligent recommendations could be driven by imputation and cluster-
ing models. Five example policy making cases are presented next.

Case #1: healthcare fraud

Healthcare fraud is on the rise, recommendations to patients by clinics or pharmaceuti-
cal companies are frequently not supported by explainable scientific proof; rather, merely 
through experience or bureaucratic governmental approvals. Intelligent recommenda-
tions and predictions could provide detailed categorizations and validations to patients 
(i.e. precision medicine). Almost every year in the US, there is a case of statewide health-
care fraud. Many times, the story behind such activities is the overuse of tests and medi-
cal examinations, ‘fake’ lab results, or ‘fake’ (placebo) medicine. Recommendations by 
fraudulent physicians/clinics/labs are usually not supported by proof, rather, only by 
opinion. Combining medical knowledge and expertise with an interactive data system 
can provide intelligent recommendations and further validation to patients. Accordingly, 
policies for the validation of clinical recommendations ought to be enforced.

Case #2: medical deserts

Another case where ML-driven methods could be very beneficial to the health of a state 
is when they are applied across what is referred to as medical deserts. In the US, there 
are wide areas in the heartland where there is very low access to healthcare (few doctors 
or clinics)—an automated recommendation system can help in some cases, and cover 
some of these areas. Multiple clinical and subclinical tests are implemented to acquire 
comprehensive knowledge to managing diseases and preventing them or their progres-
sion. Patients’ stratification and classification could aid in intelligently choosing appro-
priate tests; thus, minimizing the need for unnecessary access, and lowering health costs 
for patients who live in such areas.

Case #3: preventive consumption

Methods presented in this manuscript provide pointers to preventive policies that ben-
efit the general good of Americans. For example, pharmaceutical industries benefit from 
the lack of preventive practices, simply because that will allow them to sell more medica-
tion to patients that don’t undergo preventive care. Additionally, food and agricultural 
industries are able to push products to consumers that could cause chronic diseases 
(such as hypertension and diabetes). Diet for example, has major effects on health vari-
ables; however, medical institutions and policy makers are involved with cure but rarely 
with prevention. Our study evaluates the biomarkers concerned with diet and points to 
attributes that could lead to CDs.

Case #4: defensive medicine

Some clinical tests are expensive for patients and are time consuming for hospitals. 
ML methods can help in providing cheaper solutions. The models allow doctors to 
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recommend preventive measures to patients based on what group they belong to instead 
of performing all measures to avoid being sued (less tests might be recommended if the 
patient belongs to cluster 5 for instance). Cluster 5 had only 26 patients with a CD; clus-
ter 8 had 94, and cluster 6 had 131. On the other hand, cluster 3 (the least healthy clus-
ter) had 232 CD patients, and cluster 7 had 211 patients. Therefore, in a clinical setup, 
a patient that belongs to cluster 5 will require less testing than a patient belonging to 
clusters 3 or 7. This will provide a mechanism to avoid over-recommending, or under-
recommending clinical tests. Over-recommending tests is a case of Defensive Medicine, 
and as established prior, this and other practices have been on the forefront of reasons to 
the increasing expenditures within the US healthcare system.

Case #5: immunizations

Our ML methods can also aid in immunization recommendations and e-access to 
healthcare. For example, CDC can provide ML models for patients to self-evaluate, and 
quickly get predicted metrics to their immunization needs (with a certain statistical con-
fidence—error rate in this study is 0.071, and R-squared for all tested cases is higher than 
70%).

In the future, we aim to apply further experimentation on our system, such as: 1. Run 
models per US state: as different states have different rules and regulations, we aim to 
re-train models per state, and maybe also per county and city. 2. We aim to collect more 
CDC data variables to provide more correlations and further tests for imputations, 
and compare with other NHANES predictive models for specific diseases such as peri-
odontitis [39]. 3. K = 5 and k = 7 models are to be tested on the same dataset to further 
evaluate their usability for medical purposes. 4. We aim to develop a user interface for 
clinicians to allow for interaction with ML models for decision making support.

The recommendations through our models are not a replacement for visiting a pri-
mary care physician or models like the Andersen model [40]; however, they are tools 
that could keep the citizens informed about their own health and would allow them to 
take preventive parameters (on time) if needed. When such big data analytics are applied 
to a state or to the national scale, they can provide recommendations to policies based 
on the aggregated health of citizens in a state. That will eventually promote the health 
of citizens across the country, something that is currently at the forefront of American 
policy making.
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Appendix

Biomarker ID ACA preventive measure name/description

1 Abdominal aortic aneurysm one-time screening for men of specified ages who have ever 
smoked

2 Alcohol misuse screening and counseling

3 Aspirin use to prevent cardiovascular disease and colorectal cancer for adults 50 to 59 years with 
a high cardiovascular risk

4 Blood pressure screening

5 Cholesterol screening for adults of certain ages or at higher risk

6 Colorectal cancer screening for adults 50 to 75

7 Depression screening

8 Diabetes (Type II) screening for adults 40 to 70 years who are overweight or obese

9 Diet counseling for adults at higher risk for chronic disease

10 Falls prevention (with exercise or physical therapy and vitamin D use) for adults 65 years and 
over, living in a community setting

11 Hepatitis B screening for people at high risk, including people from countries with 2% or more 
Hepatitis B prevalence, and US-born people not vaccinated as infants and with at least one 
parent born in a region with 8% or more Hepatitis B prevalence.

12 Hepatitis C screening for adults at increased risk, and one time for everyone born 1945–1965

13 HIV screening for everyone ages 15 to 65, and other ages at increased risk

14 Immunization vaccines for adults (such as Mumps, and Measles)

15 Lung cancer screening for adults 55–80 at high risk for lung cancer because they’re heavy smok‑
ers or have quit in the past 15 years

16 Obesity screening and counseling

17 Sexually transmitted infection (STI) prevention counseling for adults at higher risk

18 Statin preventive medication for adults 40 to 75 at high risk

19 Syphilis screening for adults at higher risk

20 Tobacco use screening for all adults and cessation interventions for tobacco users

21 Tuberculosis screening for certain adults without symptoms at high risk
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