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Introduction
When called upon to define big data, researchers and practitioners in the field of data 
science frequently refer to the six V’s: volume, variety, velocity, variability, value, and 
veracity [1]. Volume, most certainly the best-known property of big data, is associated 
with the profusion of data produced by an organization. Variety covers the handling of 
structured, unstructured, and semi-structured data. Velocity takes into account how 
quickly data is manufactured, issued, and dealt with. Variability refers to the fluctuations 
in data. Value is often regarded as a critical attribute because it is required for effective 
decision-making. Veracity is associated with the fidelity of data.
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A definition of big data related to a minimum number of dataset instances has not 
been established in the literature. For example, in [2] this minimum was identified as 
100,000 instances, but other works use 1,000,000 instances [3, 4]. The increasing reliance 
on big data applications is pushing the development of efficient knowledge-extraction 
methods for this type of data.

Any dataset containing majority and minority classes, e.g., normal transactions and 
fraudulent transactions for a large bank over the course of a day, can be viewed as class-
imbalanced. Various degrees of class imbalance exist, ranging from slightly imbalanced 
to rarity. Class rarity in a dataset is defined by comparatively inconsequential numbers of 
positive instances [5], e.g., the occurrence of 10 fraudulent transactions out of 1,000,000 
total transactions generated daily for a bank. Binary classification is usually associated 
with class imbalance since many multi-class classification problems can be managed by 
breaking down the data into multiple binary classification tasks. The minority (positive) 
class, which comprises a smaller part of the dataset, is usually the class of interest in 
real-world problems [2], as opposed to the majority (negative) class, which comprises 
the larger part of the dataset. Although class imbalance affects both big and non-big 
data, the adverse effects are usually more perceptible in the former, due to the existence 
of extreme degrees of class imbalance within big data [6] as a result of voluminous over-
representation of the negative (majority) class within datasets.

Machine Learning (ML) algorithms are usually better classifiers than traditional sta-
tistical techniques  [7–9], but these algorithms cannot properly differentiate between 
majority and minority classes if the dataset is plagued by class rarity. The inability to suf-
ficiently distinguish majority from minority classes is analogous to searching for the pro-
verbial needle in a haystack and could result in the classifier labeling almost all instances 
as the majority (negative) class. Performance metric values based on such poor analysis 
would be deceptively high. When the occurrence of a false negative incurs a higher cost 
than a false positive, a classifier’s bias towards the majority class may lead to adverse con-
sequences [10]. As an example, if defective flight-control software for a jetliner is labeled 
as defect-free (false negative), the end result of proceeding with the production of this 
software could be catastrophic. On the other hand, if the software is free of defects but 
was mislabeled as faulty, the outcome would most certainly not be life-threatening.

Our work evaluates the classification performance of three learners (Gradient-Boosted 
Trees, Logistic Regression, Random Forest) with three performance metrics (Area Under 
the Receiver Operating Characteristic (ROC) Curve, Area Under the Precision-Recall 
Curve, Geometric Mean), and also compares results from two case studies involving 
imbalanced big data from different application domains. Class rarity was injected by 
randomly removing positive instances to artificially generate eight subsets of positive 
class instances (1,000, 750, 500, 400, 300, 200, 100, and 50). For comparative purposes, 
we also evaluated the original positive class instances for both datasets. All model evalu-
ations were performed through Cross- Validation. For our processing needs, we use the 
Apache Spark [11] and Apache Hadoop frameworks [12–14], both of which can handle 
big data.

The first case study is based on the Medicare Part B dataset [15, 16]. The original data-
set contains 1,409 (0.038%) positive class instances out of 3,692,555 total instances. The 
results indicate that performance scores for the learners generally improve with the Area 
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Under the ROC Curve metric as the rarity level decreases, while corresponding scores 
with the Area Under the Precision-Recall Curve (AUPRC) and Geometric Mean (GM) 
metrics remain relatively unchanged. The second case study is based on a combina-
tion of two datasets: POST dataset  [17] and Slowloris dataset  [18]. POST and Slowlo-
ris are two types of Distributed Denial of Service (DDoS) attacks. The resultant dataset, 
referred to as POSTSlowloris Combined, contains 6,646 (0.203%) positive instances out 
of 3,276,866 total instances. The results show that the Area Under the ROC Curve (AUC) 
metric yields very high-performance scores for the learners, with all subsets of positive 
class instances. With the exception of the GM metric score obtained by the Random For-
est (RF) learner in the second study, scores for the learners generally improve with the 
AUPRC and GM metrics as the rarity level decreases. For both case studies, our results 
show that the GBT learner produces the best overall performance.

To the best of our knowledge, our work is unique in investigating class rarity in big 
data through the use of three learners and three performance metrics. We also demon-
strate the effectiveness and versatility of our approach by using case studies with imbal-
anced big data from different application domains.

The remainder of this paper is organized as follows: Section "Related Work" provides 
an overview of literature that focuses on datasets with class rarity; Section "Case studies 
datasets" provides details on the Medicare Part B and POSTSlowloris Combined data-
sets; Section "Methodologies" describes the different aspects of the methodology used 
to develop and implement our approach, including injection of rarity, model evalua-
tion, and experiment design; Section "Results and discussion" presents and discusses our 
empirical results; Section "Conclusion" concludes our paper with a summary of the work 
presented and suggestions for related future work.

Related work
Our search for related work found many more big data studies involving severe class 
imbalance than class rarity. It should be noted that research on class rarity is still in its 
infancy.

In  [11], researchers examine Evolutionary Undersampling (EUS) in cases of class 
imbalance in big data, based on the initial knowledge that EUS had shown promise in 
addressing class imbalance in traditional data. The EUS approach is implemented within 
the Apache Spark framework, and compared with their previous implementation of EUS 
with the Apache Hadoop framework. The base learner in both implementations is the 
C4.5 decision tree learner which is incorporated into the overall class balancing and 
classification process. EUS provides a fitness function for a prototype selection method, 
where the fitness function aims to find the proper balance between reduction (under-
sampling) of training data instances and classification performance  [19]. The authors 
recognized that divide-and-conquer methods based on MapReduce can potentially be 
affected by a lack of density from the minority class in the subsets created. As a result, 
the in-memory operation of Apache Spark is modified such that the majority and minor-
ity class instances can be independently managed. This enables a relatively higher num-
ber of minority class instances to be retained in each subset created. The case study data 
was comprised of variants of two big data sets, i.e., ECDBL’14 and KDD Cup 1999 data-
sets. Two subsets, 50% and 25%, of the ECBDL’14 data were used, each with 631 features 
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and a class ratio of 98:2. Three variants of the KDD Cup 1999 data were used, based 
on different binary class combinations, each with 41 features and the approximate class 
ratio values of 95:1, 3450:1, and 74,680:1 for the three datasets. The dataset with the ratio 
of 74,680:1 definitely has class rarity, with 52 positive instances and 3,883,370 negative 
instances. The key results observed in the paper include: Apache Spark framework had 
shorter runtimes than Apache Hadoop; EUS performed better than Random Undersam-
pling (RUS), but as expected, its runtime was much longer than that of RUS. The best 
overall values of GM classification performance metric for EUS and RUS were 0.672 and 
0.662, respectively. The focus of this work, however, is not on class rarity.

An evaluation of the performance of several methods used to address class imbal-
ance in big data was performed in [20], where all methods were implemented within the 
Apache Hadoop framework, with RF as the base classifier. These methods included Ran-
dom Oversampling (ROS), RUS, Synthetic Minority Over-sampling TEchnique (SMOTE), 
and a cost-sensitive learning version of RF. The datasets in this study ranged from 
approximately 435,000 to 5,700,000 instances, with feature set sizes between 2 and 41. 
Majority-to-minority class ratios varied between 80:20 and 77,670:1. There were several 
clear instances of big data datasets with class rarity in this work: (52 positive instances 
and 3,883,370 negative instances; 52 positive instances and 972,781 negative instances; 
15 positive instances and 1,165,011 negative instances; 20 positive instances and 
1,553,348 instances; 26 positive instances and 1,941,685 negative instances; and 52 posi-
tive instances and 3,883,370 negative ones. The results of the experiment were inconclu-
sive, as there was no best model among these four diverse algorithms. The authors state 
that the best performing algorithm depends on the number of mappers with MapReduce 
that are chosen to run the experiment. For GM, the best overall values of ROS, RUS, 
SMOTE, and RF were 0.986, 0.984, 0.914, and 0.965, respectively. Just like the related 
work in the previous paragraph, the focus of this related study is not on class rarity.

The work in [21] examined a modification to DeepQA, the technology that powered 
IBM Watson on the Jeopardy! game show. DeepQA is a question-and-answer, natural 
language processing system that can help professionals make critical and timely deci-
sions [22]. During the process of gamification, a significant majority of generated ques-
tion labels are incorrect because of missing data, badly constructed training questions, 
incorrect feature merging, answer key errors, or missing domain features. The massive 
number of false to true labels creates the class imbalance condition. The authors com-
bined a data-Level approach (manual question and answer vetting, over-sampling) with 
an algorithm-Level approach (Logistic Regression (LR) with a regularization term) to 
address the issue of high-class imbalance. The dataset in this study contained approxi-
mately 720,000 instances and 400 features, with a majority-to-minority class ratio 
of 6930:1. This means that there are about 100 positive instances and 719,900 nega-
tive instances. The results show that regularized LR with over-sampling outperformed 
unregularized LR with over-sampling in terms of accuracy, which increased from 1.6 to 
28%. It is worth mentioning that for this study, some data scientists may not consider the 
total number of dataset instances (720,000) as big data.

Finally, in [5], the impact of class rarity on big data is evaluated. The researchers use 
publicly available Medicare data and map known fraudulent providers, from the List of 
Excluded Individuals/Entities (LEIE) [23], as labels for the positive class. This Medicare 
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dataset contains 3,691,146 instances, with 1,409 (0.038%) positive class instances. Three 
learners are used to evaluate fraud detection performance. Additional datasets are arti-
ficially generated from the original Medicare dataset by gradually decreasing the num-
ber of positive class instances (while leaving the number of negative class instances 
untouched). The generated datasets have positive class counts as low as 50. The research-
ers observed that the original Medicare dataset generally performs better than the data-
sets with small counts of positive instances. A noticeable deterioration in performance 
occurs at 200 positive instances and lower count values. Based on the results of the 
experiment, the researchers proposed a taxonomy of class imbalance: positive counts 
of 1409 and 1000 (imbalanced or highly imbalanced); positive counts of 750, 500, 400 
and 300 (severely imbalanced); positive counts of 200, 100, and 50 (class rarity). While 
this study focuses on class rarity, the approach is based on a dataset from one applica-
tion domain. In our work, we attempt to generalize our approach by using datasets from 
two different application domains. Moreover, we use three performance metrics (AUC, 
AUPRC, GM), whereas this related study only uses AUC.

Case studies datasets
Our work includes two case studies. The dataset used in the first case study came from 
a different application domain than the dataset used in the second case study. The first 
case study is based on the Medicare Part B dataset, which contains 1,409 (0.038%) posi-
tive class instances out of 3,692,555 total instances. The second case study is based on a 
combination of two datasets: POST dataset and Slowloris dataset. The merged dataset, 
referred to as POSTSlowloris Combined, contains 6,646 (0.203%) positive instances out 
of 3,276,866 total instances.

Medicare Part B

The Medicare Physician and Other Supplier (Part B) dataset used in this paper spans 
years 2012 to 2016. It is provided by the Centers for Medicare and Medicaid Services. 
The Part B dataset, which includes claims information for each procedure that a physi-
cian/provider performs in a given year, is derived from administrative claims data for 
Medicare beneficiaries enrolled in the Fee-For-Service program, where all claims infor-
mation is recorded after payments are made [15]. Therefore, we can safely assume that 
these datasets are already reasonably cleansed.

POSTSlowloris

DDoS attacks are carried out through various methods designed to deny network avail-
ability to legitimate users  [24]. Hypertext Transfer Protocol (HTTP) contains several 
exploitable vulnerabilities and is often targeted for DDoS attacks [25, 26]. During a Slow 
HTTP POST attack, legitimate HTTP headers are sent to a target server. The message 
body of the exploit must be the correct size for communication between the attacker 
and the server to continue. Communication between the two hosts becomes a drawn-
out process as the attacker sends messages that are relatively very small, tying up server 
resources. This effect is worsened if several POST transmissions are done in parallel. 
During a Slowloris attack, numerous HTTP connections are kept engaged for as long 
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as possible. Only partial requests are sent to a web server, and since these requests are 
never completed the available connections for legitimate users becomes zero.

Data collection for the POST and Slowloris DDoS attacks was performed within a 
real-world network setting. An ad hoc Apache web server, which was set up within a 
campus network environment, served as a viable target. The Switchblade 4 tool from the 
Open Web Application Security Project and a Slowloris.py attack script [27] were used 
to generate attack packets for POST and Slowloris, respectively. Attacks were launched 
from a single host computer in hourly intervals. Attack configuration settings, such as 
connection intervals and number of parallel connections, were varied, but the same PHP 
form element on the web server was targeted during the attack.

Methodologies
This section is a report on the methodologies followed, including our reasons for choos-
ing them. We discuss the big data processing framework, injection of rarity, one-hot 
encoding, classifiers, performance metrics, model evaluation, addressing of randomness, 
and experiment design.

Big data processing framework

To facilitate the use of ML in big data analytics, data engineers build algorithms within 
software modules or packages, ensuring that reliability, speed, and scale are factored in. 
For the ML tasks, we use a state-of-the-art library, Machine Learning Library (MLlib), 
provided by Apache Spark [28, 29], hereinafter referred to as Spark. Compared to tra-
ditional ML methods, Spark is exponentially faster at data processing, and is one of the 
largest open source projects for big data processing [30]. In addition, we utilize Apache 
Hadoop [12–14], which provides Hadoop Distributed File System (HDFS), a scalable 
component capable of storing large files across node clusters, and also utilize Yet Another 
Resource Negotiator (YARN) [31], a component used for job management and schedul-
ing in High Performance Computing (HPC).

For performance stability, we kept our data partitions invariant and memory use fixed 
during the experiments. Thus, the number of distributed data partitions and the num-
ber of the cluster slave nodes were picked based on the available resources of our HPC 
cluster.

Injecting rarity

The Medicare Part B dataset contains 1,409 (0.038%) positive class instances out of 
3,692,555 total instances, and the POSTSlowloris Combined dataset contains 6,646 
(0.203%) positive instances out of 3,276,866 total instances.

From this original data, we artificially generate eight subsets with gradually decreas-
ing numbers of positive class instances (1,000, 750, 500, 400, 300, 200, 100, and 50). To 
create each subset, we built the model with the same number of negative instances and 
randomly picked a basket of positive counts from the positive instances. Table 1, which 
provides information on the minority (positive) and majority (negative) classes, summa-
rizes the datasets (subsets) used in our experiment.
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One‑hot encoding

Another factor needing attention is categorical features. In their raw form, these are 
generally not compatible with ML algorithms. Additionally, if the categorical features 
were indexed, some models assume that there is a logical order or a value of the indi-
ces. Such subsets of categorical features are known as ordinal features. A nominal 
feature, unlike an ordinal one, is a categorical feature whose instances can take a value 
that cannot be organized in a logical sequence [7]. In our work, all categorical features 
(nominal) were transformed into dummy variables using a one-hot encoding method 
[32], allowing conversion of nominal features into numerical values. One disadvan-
tage of this method is that a new number of features equaling C − 1 is generated from 
each feature, where C is the number of categories belonging to the specific feature, 
and consequently, the total feature space increases in size.

Classifiers

Our work uses three off-the-shelf learners (RF, GBT, LR), all of which are available 
in the Spark MLlib. These classifiers were selected to provide good coverage of vari-
ous ML model families. Performance-wise, the three classifiers are regarded favora-
bly, and they incorporate both ensemble and non-ensemble algorithms, providing 
a reasonable breadth of fraud detection results for assessing the impact of rarity in 
Big Data [33, 34]. In this section, we describe each model and note configuration and 
hyperparameter changes that differ from the default settings.

Table 1  Summary of datasets

Positives Negatives Total %Positives %Negatives

a. Medicare Part B

 1,409 (all) 3,691,146 3,692,555 0.038 99.962

 1,000 3,691,146 3,692,146 0.027 99.973

 750 3,691,146 3,691,896 0.020 99.980

 500 3,691,146 3,691,646 0.014 99.986

 400 3,691,146 3,691,546 0.011 99.989

 300 3,691,146 3,691,446 0.008 99.992

 200 3,691,146 3,691,346 0.005 99.995

 100 3,691,146 3,691,246 0.003 99.997

 50 3,691,146 3,691,196 0.001 99.999

b. PostSlowloris Combined

 6,646 (all) 3,270,220 3,276,866 0.203 99.797

 1,000 3,270,220 3,271,220 0.031 99.969

 750 3,270,220 3,270,970 0.023 99.977

 500 3,270,220 3,270,720 0.015 99.985

 400 3,270,220 3,270,620 0.012 99.988

 300 3,270,220 3,270,520 0.009 99.991

 200 3,270,220 3,270,420 0.006 99.994

 100 3,270,220 3,270,320 0.003 99.997

 50 3,270,220 3,270,270 0.002 99.998
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•	 RF is a regression and classification model that employs an ensemble learning 
approach. RF constructs a large number of independent decision trees during 
training and returns a final model prediction that is the average or majority vote 
of the individual tree results. We build each RF learner with 100 trees. The param-
eter that caches node IDs for each instance was set to true, and the maximum 
memory parameter was set to 1024 MB in order to minimize training time. The 
maximum bins parameter, which is for discretizing continuous features, was set to 
2 since we use one-hot encoding on categorical variables.

•	 GBT is a boosting ensemble method, but unlike RF, new models are added to the 
ensemble sequentially. The predicted values are evaluated with the actual values, 
allowing the algorithm to pinpoint and correct previously mislabeled instances. The 
parameter that caches node IDs for each instance was set to true, and the maximum 
memory parameter was set to 1024 MB to minimize training time.

•	 LR is similar to linear regression except that it employs a sigmoidal (logistic) function 
to generate class probabilities to predict class membership. The bound matrix was 
set to match the shape of the data (number of classes and features) so that the algo-
rithm knows the number of classes and features the dataset contains. The bound vec-
tor size was equal to 1 for binomial regression and no thresholds were set for binary 
classification.

Performance metrics

Accuracy or error rate is usually derived from a naive 0.50 threshold that is used in the 
prediction of one out of the two classes. This is usually impractical since in most real-
world situations the two classes are imbalanced, creating the majority and minority 
class groups. The Confusion Matrix (CM) for a binary classification problem is shown in 
Table 2 [10], where positive, the class of interest, is the minority class and negative is the 
majority class.

•	 True positive (TP) are positive instances correctly identified as positive.
•	 True negative (TN) are negative instances correctly identified as negative.
•	 False positive (FP), also known as Type I error, are negative instances incorrectly 

identified as positive.
•	 False negative (FN), also known as Type II error, are positive instances incorrectly 

identified as negative.

Table 2  Confusion matrix

Predicted class

Positive Negative

Actual class  Positive True positive (TP) False negative (FN) (Type 
II error)

 Negative False positive (FP) (Type 
I error)

True negative (TN)
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From those four broad CM metrics, we may calculate other performance metrics that 
consider the rates between the positive and the negative class as follows.

•	 True positive Rate (TPrate) , also known as Recall or Sensitivity, is equal to TP / (TP + 
FN).

•	 True negative Rate ( TNrate ), also known as Specificity, is equal to TN / ( TN + FP ).
•	 False positive Rate ( FPrate ), also known as false alarm rate, is equal to FP / (FP + TN), 

which usually refers to the expectancy of the false positive ratio.
•	 Positive Predictive Value (PPV), also known as Precision, is equal to TP / ( TP + FP ).

From a comparative standpoint, our work benefits from the use of three performance 
metrics. The three metrics are commonly used within the ML community for addressing 
high class imbalance, and are calculated as follows:

•	 GM, which indicates how well the model performs at the threshold where TPrate and 
TNrate are equal, is given by 

√
TPrate × TNrate.

•	 AUC calculates the area under the ROC curve, which is a plot of TPrate versus FPrate 
at different classification cut-offs.

•	 AUPRC calculates the area under the Precision-Recall curve. This metric summa-
rizes the trade-off between the PPV and the TPrate for a predictive model using dif-
ferent probability thresholds. It is important to note that AUPRC does not account 
for the number of true negatives.

Note that ROC curves are usually used when there are roughly equal numbers of 
instances for each class, in other words when the data is balanced  [35]. On the other 
hand, the use of Precision-Recall curves is preferred when there is a moderate to large 
class imbalance [35]. Since our datasets are severely class-imbalanced, the use of AUC in 
this study is for comparative purposes only.

Model evaluation

In ML, one of the commonly used model evaluation methods is Cross-Validation (CV), 
in which a portion of the data trains the model while the remaining portion validates the 
built model. Also known as rotation estimation, k-fold CV evaluates predictive models 
by partitioning the original sample into several folds of approximately equal size. The 
inducer is trained and tested k times, where each time it is trained on k − 1 folds and 
tested on the remaining fold. This is to ensure that all data are used in the classification.

With imbalanced data, one typically uses stratified k-fold CV, where the minority and 
majority classes have representative proportions, in each fold, of the class labels from the 
training data. When compared to regular cross validation, the stratification scheme is 
generally better suited for addressing bias and variance [36].

Spark and its libraries currently do not offer a CV evaluation method. Thus, for all 
model evaluations, we implemented our own scalable, stratified k-fold CV within Spark. 
Fig. 1 shows the process flow for our implementation of 5-fold CV.

Our main reason for using k-fold CV instead of the traditional train versus test 
method is to ensure that all data are used in the model building/evaluation process. This 
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consideration is particularly applicable to our study, which investigates a limited number 
of positive class instances.

Addressing randomness

Due to the random generation of the datasets (through random CV splits, the selection 
of random positive instances, and the random ordering of instances and features prior 
to model training), the datasets used to build and train the models may retain both good 
and/or poor instances. Moreover, learners such as RF and GBT may randomly select 
instances during the construction of each tree. Such randomness may affect final model 
performance. To address this problem, we use a repetitive models strategy [37] in our 
work, with each model repeated 10 times.

Experiment design

The following procedure summarizes the algorithmic steps used in our proposed 
approach. 

1.	 Distribute the data among HDFS.
2.	 Perform one-hot encoding: The categorical features space is indexed and one-hot 

encoded to dummy variables in order to exclude any assumed ordering, by the 
learner, between the categories of the nominal features. This produces new features 
equal to one less than the number of categories in each feature.

3.	 Inject rarity by artificially generating eight subsets with gradually decreasing num-
bers of positive class instances (1,000, 750, 500, 400, 300, 200, 100, and 50). Addition-
ally, we include the original datasets containing all instances of the positive class.

4.	 Perform 5-fold CV and randomly order the instances and feature space on all data-
sets. Perform the 5-fold CV with each of the three classifiers (RF, GBT, LR), and eval-
uate each model produced with the three performance metrics (AUC, AUPRC, GM).

5.	 Starting from step 3, repeat the entire process 10 times.

To sum things up, we assessed the performance of 2,700 models ( 2 datasets× 5-foldCV×

3learners× 9 positive counts (rarity)× 10 repetitions ). In total, we obtained 8100 per-
formance values for the three performance metrics involved.

Results and discussion
Tables 3 and 4 show the average results for the Medicare Part B and POSTSlowloris case 
studies, respectively. Three performance metrics are used in this work (AUC, AUPRC, 
GM). The classification performance of three learners (GBT, LR, RF) is evaluated with 
each of the three metrics. The highest score for each row, where a row represents a given 
learner for a specified metric, is shown in italics.

We artificially generated eight subsets with gradually decreasing numbers of posi-
tive class instances (1,000, 750, 500, 400, 300, 200, 100, and 50). Hereinafter, a  “Pos-
Count” refers to a basket of positive class instances, and a “PosCount” of “all” specifically 
refers to all the original positive instances.
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Generally speaking, from Table  3, part a (AUC), we observe that the performance 
increases when the number of PosCounts increases for all three learners, and “all” posi-
tives reports the best performance. For parts b (GM), and c (AUPRC), we can see that 
the results are almost zero for all PosCounts. Particularly noticeable are the distinct 0 
values for RF for all PosCounts in part b. This means that RF failed to correctly classify 
any positive counts, thus resulting in a TPrate value of 0. Consequently, the GM score, 
which relies on the product of TPrate and TNrate , is also 0. Note that RF with 100 trees 
builds 100 Decision Trees separately and then takes majority voting. Therefore, if in 
every instance prediction, the majority (more than 50) trees decided incorrectly, the final 
classification for RF will also be incorrect.

In Table 4, the results from part a (AUC) show very high-performance results for all 
three learners, no matter which PosCount is selected. One possible reason may be due 
to the fact that AUC values can mislead in some situations with severely imbalanced 
datasets. In part b, we see that GBT performed the best, on average, among all the Pos-
Counts, while LR performed the best, on average, among all three learners. It is clear 

Table 3  Medicare Part B average results

PosCount 50 100 200 300 400 500 750 1000 All

a. AUC​

 GBT 0.6906 0.7344 0.7649 0.7822 0.7862 0.7914 0.7888 0.7957 0.7945

 LR 0.7368 0.7477 0.7737 0.7779 0.7946 0.7973 0.8006 0.7998 0.8057

 RF 0.6059 0.6375 0.7214 0.7214 0.7369 0.7503 0.7614 0.7800 0.7962

b. GM

 GBT 0.0063 0 0.0032 0.0052 0.0045 0.0020 0.0033 0.0042 0.0112

 LR 0 0 0.0032 0.0077 0.0067 0.0080 0.0065 0.0156 0.0153

 RF 0 0 0 0 0 0 0 0 0.0012

c. AUPRC

 GBT 0.0006 0.0003 0.0018 0.0020 0.0019 0.0027 0.0035 0.0046 0.0055

 LR 0.0001 0.0002 0.0005 0.0013 0.0008 0.0017 0.0019 0.0025 0.0031

 RF 0.0002 0.0001 0.0011 0.0010 0.0011 0.0013 0.0016 0.0025 0.0037

Table 4  POSTSlowloris Combined average results

PosCount 50 100 200 300 400 500 750 1000 All

a. AUC​

 GBT 0.9948 0.9912 0.9963 0.9951 0.9903 0.9965 0.9979 0.9979 0.9990

 LR 0.9903 0.9952 0.9915 0.9907 0.9841 0.9888 0.9909 0.9888 0.9877

 RF 0.9809 0.9824 0.9818 0.9762 0.9764 0.9769 0.9766 0.9775 0.9753

b. GM

 GBT 0.6951 0.7422 0.7769 0.7723 0.7949 0.7745 0.7766 0.7484 0.7883

 LR 0 0.0313 0.1861 0.4800 0.6661 0.7392 0.7384 0.7121 0.8031

 RF 0 0 0 0 0 0 0 0 0

c. AUPRC

 GBT 0.5465 0.6266 0.6572 0.6887 0.7363 0.7202 0.7561 0.7605 0.9197

 LR 0.0874 0.2199 0.3316 0.4235 0.4738 0.5134 0.5791 0.5842 0.7942

 RF 0.0856 0.2166 0.2875 0.3551 0.4518 0.4444 0.4974 0.4957 0.6325
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that RF performed the worst with its distinct 0 values. A reason for this behavior has 
already been discussed in the previous paragraph. Part c of the table shows the results 
for AUPRC. We observe, for the most part, that the performance increases when the 
number of PosCounts increases for all three learners, and “all” positives reports the best 
performance. Furthermore, GBT reports the best performance, followed by LR and RF. 
It is very noticeable that GBT performs reasonably well with even a PosCounts of 50, 
compared to LR and RF.

Table  5 shows the ANalysis Of VAriance (ANOVA) [38] results used to analyze the 
differences among group means. Each row within the table represents an ANOVA test 
for a specific combination of case study, learner, and performance metric. Results with 

Table 5  One-way ANOVA

Case study Learner Metrics Term df sum-sq mean-sq F-value p-value

Medicare Part B GBT AUC​ RarePos 8 0.5039 0.0630 40.0596 6.88 × 10− 48

Residuals 441 0.6933 0.0016

AUPR RarePos 8 0.0012 1.48 × 10− 4 14.2490 1.61 × 10− 22

Residuals 441 0.0046 1.04 × 10− 5

GM RarePos 8 0.0039 4.92 × 10− 4 0.8877 0.5267

Residuals 441 0.2444 5.54 × 10− 4

LR AUC​ RarePos 8 0.2464 0.0308 17.3412 1.69 × 10− 22

Residuals 441 0.7833 0.0018

AUPR RarePos 8 4.35 × 10− 4 5.44 × 10− 5 17.5688 8.70 × 10− 23

Residuals 441 0.0014 3.10 × 10− 6

GM RarePos 8 0.0128 0.0016 2.8390 0.0044

Residuals 441 0.2490 5.65 × 10− 4

RF AUC​ RarePos 8 1.6019 0.2002 99.2109 1.26 × 10− 93

Residuals 441 0.8901 0.0020

AUPR RarePos 8 5.07 × 10− 4 6.33 × 10− 5 18.2116 1.35 × 10− 23

Residuals 441 0.0015 3.48 × 10− 6

GM RarePos 8 6.30 × 10− 5 7.88 × 10− 6 1.0000 0.4352

Residuals 441 0.0035 7.88 × 10− 6

POSTSlowloris 
Combined

GBT AUC​ RarePos 8 0.0036 4.46 × 10− 4 5.0004 5.96 × 10− 6

Residuals 441 0.0394 8.93 × 10− 5

AUPR RarePos 8 4.3164 0.5395 100.6363 1.69 × 10− 94

Residuals 441 2.3644 0.0054

GM RarePos 8 0.3755 0.0469 16.7467 9.59 × 10− 22

Residuals 441 1.2360 0.0028

LR AUC​ RarePos 8 0.0037 4.60 × 10− 4 3.8097 2.42 × 10− 4

Residuals 441 0.0533 1.21 × 10− 4

AUPR RarePos 8 17.8364 2.2296 684.9220 2.88 × 10− 243

Residuals 441 1.4355 0.0033

GM RarePos 8 42.2446 5.2806 481.2679 1.74 × 10− 212

Residuals 441 4.8387 0.0110

RF AUC​ RarePos 8 0.0029 3.67 × 10− 4 5.3050 2.28 × 10− 6

Residuals 441 0.0305 6.91 × 10− 5

AUPR RarePos 8 11.1250 1.3906 403.8733 1.37 × 10− 197

Residuals 441 1.5185 0.0034

GM RarePos 8 0 0 NaN NaN

Residuals 441 0 0
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one factor, i.e. PosCounts, are shown to be significant at a 5% significance level for most 
rows. GM, for all three learners with the Medicare Part B dataset, shows insignificant 
levels between the PosCount group means. For RF and GM with the POSTSlowloris 
Combined case study, the ANOVA test failed to perform.

In order to evaluate which group factors are significant, a Tukey’s Honestly Significant 
Difference (HSD) [39] test is performed to show the results for each PosCount (Table 6) 
and each learner (Table 7). Letter groups assigned via Tukey’s HSD test indicate similar-
ity or significant differences in results within each factor. As an example, the combina-
tion of GBT and AUC for the Medicare Part B case study results in an assignment of 
groups ‘d’ and ‘c’ to PosCounts of 50 and 100, respectively. Table 7 shows that GBT per-
formed the best overall, being in group ‘a’ for all three metrics in the POSTSlowloris case 
study, and in group ‘a’ for the AUPRC and GM metrics in the Medicare Part B case study. 

From Table 6, we observe that performance scores for the Medicare Part B case study 
become particularly poor at PosCounts of 200 and below, whereas for the POSTSlowloris 

Table 6  Tukey’s HSD Test (PosCounts)

Case study Learner GBT LR RF

Sampling AUC​ AUPR GM AUC​ AUPR GM AUC​ AUPR GM

a. Medicare Part B 50 d d – e e – f d –

100 c d – de e – e d –

200 b cd – cd de – d cd –

300 ab cd – bc cd – d cd –

400 ab cd – abc cde – cd cd –

500 a bc – abc bc – c cd –

750 ab abc – ab bc – bc bc –

1000 a ab – abc ab – ab b –

All a a – a a – a a –

b. POSTSlowloris Combined 50 abc f d abc h f abc g –

100 bc e c a g f a f –

200 ab de ab ab f e ab e –

300 abc cd abc abc e d cd d –

400 c b a c d c cd c –

500 ab bc abc abc c ab bcd c –

750 a b ab ab b ab cd b –

1000 a b bc abc b bc abcd b –

All a a a bc a a d a –

Table 7  Tukey’s HSD Test (Learners)

Case study Learner Metrics

AUC​ AUPRC GM

Medicare Part B GBT b a a

LR a b a

RF c b b

POSTSlowloris Combined GBT a a a

LR b b b

RF c c c
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Combined case study, a noticeable deterioration of performance occurs at PosCounts 
of 100 and below. As a result, we infer that PosCounts of 200 and below, and 100 and 
below, are solid indicators of class rarity for the first and second case study, respectively.

Conclusion
We employ three learners (GBT, LR, RF) and three performance metrics (AUC, GM, 
AUPRC) to uniquely investigate class rarity in big data. Through our comparative analy-
sis, we demonstrate the effectiveness and versatility of our method with two case studies 
involving imbalanced big data from different application domains.

For the Medicare Part B case study, we observe that classification performance scores 
for the learners generally improve for the AUC metric as the number of PosCounts 
increases, with  “all”  positives reporting the best performance. The other metrics have 
scores of zero or approximately zero. With regard to the POSTSlowloris Combined case 
study, the AUC metric yields very high performance results for the learners, while cor-
responding scores for the other metrics are, for the most part, noticeably lower. With 
the exception of the GM metric score obtained by the RF learner, scores for the learn-
ers generally improve with the AUPRC and GM metrics as the number of PosCounts 
increases.

Our results show that the GBT learner performs the best for both case studies. We 
also determined that PosCounts of 200 and below, and 100 and below, are strong indica-
tors of class rarity for the first and second case study, respectively

Future work with big data and rarity will involve additional performance metrics, 
and also the investigation of data from other application domains.
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