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Introduction
Emotion classification requires a study of various factors and variables including com-
mon sense emotions of happiness or anger with varying degrees. These qualities and 
intensities are second nature to humankind and their detection by facial recognition 

Abstract 

Emotion recognition using brain signals has the potential to change the way we 
identify and treat some health conditions. Difficulties and limitations may arise in 
general emotion recognition software due to the restricted number of facial expression 
triggers, dissembling of emotions, or among people with alexithymia. Such triggers 
are identified by studying the continuous brainwaves generated by human brain. 
Electroencephalogram (EEG) signals from the brain give us a more diverse insight on 
emotional states that one may not be able to express. Brainwave EEG signals can reflect 
the changes in electrical potential resulting from communications networks between 
neurons. This research involves analyzing the epoch data from EEG sensor channels 
and performing comparative analysis of multiple machine learning techniques [namely 
Support Vector Machine (SVM), K-nearest neighbor, Linear Discriminant Analysis, Logis-
tic Regression and Decision Trees each of these models] were tested with and without 
principal component analysis (PCA) for dimensionality reduction. Grid search was also 
utilized for hyper-parameter tuning for each of the tested machine learning models 
over Spark cluster for lowered execution time. The DEAP Dataset was used in this study, 
which is a multimodal dataset for the analysis of human affective states. The predic-
tions were based on the labels given by the participants for each of the 40 1-min long 
excerpts of music. music. Participants rated each video in terms of the level of arousal, 
valence, like/dislike, dominance and familiarity. The binary class classifiers were trained 
on the time segmented, 15 s intervals of epoch data, individually for each of the 4 
classes. PCA with SVM performed the best and produced an F1-score of 84.73% with 
98.01% recall in the 30th to 45th interval of segmentation. For each of the time seg-
ments and “a binary training class” a different classification model converges to a better 
accuracy and recall than others. The results prove that different classification models 
must be used to identify different emotional states.
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software has proven to be difficult and costly [1].
An electroencephalogram (EEG) is a widely used neuro-imaging modality which 

can measure the potential changes in voltages caused by the firing of electrical 
impulses of neurons, detected on the scalp and captured up by a device containing a 
pattern of electrodes. EEG signals tend are categorized based on their frequency and 
divided into five major bands: delta band from 0.5 to 3 Hz, theta band from 4 to 7 Hz, 
alpha band from 8 to 13 Hz, beta band 14 to 30 Hz, and gamma band greater than 30 
Hz. Each of these spectra are generally associated with some kind of activity like mov-
ing fingers, sleeping, active thinking, or problem solving. EEG is used in brain com-
puter interfaces (BCI), which allow the human subject and computer to communicate 
with no contact. Applications of such research are gaining popularity to the field of 
affective computing, which aims to understand the states of the human mind [2]. Cur-
rently various EEG based BCI paradigms are well known [3].

Emotion is omnipresent and an essential aspect of human existence  [1]. A sub-
ject’s behavior can heavily influence their way of communication, and directly affects 
their daily activities. Emotions also perform a vital role in everyday communications. 
Simply saying ‘ok’ can have a different meaning depending on context which could 
convey remorse, sadness, anger, happiness, or even disgust; however, the full mean-
ing can be understood using facial expressions, hand gestures, and other non-verbal 
communication means. Research in the field of BCI for spotting feelings by comput-
ers has experienced an exponential growth over the past two decades. An example 
of this research is using EEG sensor data to detect emotions [4], alongside using face 
markers or a fusion of these with body signals like pupil dilation [5]. Measuring emo-
tion directly from the brain is a novel approach, and in theory can eliminate subject 
deceptions or inability to show their emotions due to disabilities, suggesting that fea-
ture extraction from EEG signals are more easily distinguishable.

This research aims to apply a variety of classic machine learning algorithms and 
compare them based on p-value, minimum error, accuracy, precision, and f-score, to 
further enhance the performance with dimensionality reduction and to obtain hidden 
information as suggested in  [6, 7]. Classic machine learning algorithms tend to be 
outperformed by artificial neural networks (ANN) and deep neural networks (DNN) 
in specific applications, as they obtain better accuracy. Three different classes of posi-
tive, neutral, and negative were used to narrow down the degree of each sample.

The following are some of the technical contributions to the field of of neuroscience 
and computer science as a result of this project:

•	 Datasets pre-processed and combined into a new large dataset.
•	 Workflow methodology is easily reproducible.
•	 Identification of the best classification algorithm to be used for each emotion.
•	 Accuracy of each classification model for EEG data.
•	 Time segmentation approach of data yields better features for classifiers.
•	 Analysis and visualizations of dataset “emotion analysis using eeg, physiological 

and video signals” (DEAP) dataset.
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It is interesting to note that the DEAP dataset is an aggregation of a variety of data as dif-
ferent sampling rates were used in data collection and different types of tests were con-
ducted. Aggregating this data into 1 comprehensive dataset shows the large volume of 
the data, especially when the face recordings are added to the dataset. It is ensured that 
this raw data cannot be tampered with as files are made to be read only, furthermore the 
collection of data was done 5 times for each test to ensure trustworthy data.

The following sections in the paper explains the detailed workflow and organization 
of the research conducted. Related works/literature review is explained in “Related 
work” section. The algorithms, methodologies in a broad sense are explained in sec-
tion  “Preliminaries” section. The proposed step wise implementation of the algorithm 
and with the subroutine explanations and utility is outlined in “Methods” section. The 
datasets descriptions are seen in “Data” section. The “Experimental setup” defines the 
recommended hardware and software used for replicating the results. The “Experimen-
tal results” section, discusses the experimental results. Concluding remarks and future 
research are made in “Conclusion” section.

Related work
Research being carried out in the field of brain computer interface gearing more towards 
BCI applications [3]. The EEG research community is diversifying their applications into 
many different subdomains. EEG signals are normally used for detecting stress as seen 
in [8, 9], and they suggest a strong correlation between stress and EEG signals. Koelstra 
et al. [10] used Hilbert-Huang Transform (HHT) to remove artifacts and perform clean-
ing. HHT is a time-frequency analysis method, which extracts the intrinsic mode func-
tions (IMFs) that produce well-behaved Hilbert transforms from the signals that have 
been extracted, using an empirical mode decomposition. With the Hilbert transforma-
tion, the IMF gives instantaneous frequencies as a function of time.

Their use of hierarchical Support Vector Machines (SVM) achieved much better 
results than a linear SVM, resulting in an accuracy of 89%. Taking into account multiple 
different parameters is necessary, even when considering classic machine learning algo-
rithms. Their findings inspired us to look into the use of cross-validation within a grid 
search and apply it to our experiments. Liao et al. [9] made use of Fast Fourier Transform 
and deep learning with back propagation to figure out the best way to sooth stress, but 
only obtained a 75% precision. In the field of motor imagery, EEG signals can be utilized 
to operate robotic arms [11]. Fakhruzzaman et al. [12] explained how BCI can identify 
and distinguish brain waves of people when they are performing different tasks. Their 
implementation was based on an automative EPOC to test out if the classifier “SVM” 
can distinguish between two major training activities: moving the left hand and moving 
the right foot, and four more combinations of the same two actions coupled with the 
addition of noise, like nodding or moving right foot along with left hand movement.

It is also observed that faces can be seen even when there are none, suggesting EEG 
can be used while seeing optical illusions [13] and also to find out the more active areas 
of the brain, detecting early visual processing (before one can think subconsciously). 
P100 and N170 perceptual signatures are found to be of much more importance than 
others. In motor imagery, deep learning has been used as seen in [14], which proposed a 
high-level goal of finding robust representations from EEG data, that would be invariant 
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to inter and intra-subject differences and to inherent noise associated with EEG data 
collection. Specifically, rather than representing low-level EEG features as a vector, they 
transformed the data into a sequence of topology-preserving multi-spectral images (EEG 
“movie”), as opposed to classic EEG analysis techniques that disregard such spatial info. 
EEG signals are also widely seen in sleep pattern analysis as in [15, 16], which allowed 
for better detection and identification of situational causes where subjects had better or 
worse sleep cycles. This research lead to various sleep improvement mobile applications 
that help people develop different exercises to get the optimal sleep, an interesting note 
is that Convolutional Neural Networks were used to extract time-invariant features, 
and bidirectional-Long Short-Term Memory in order to automatically predict the sleep 
transition stages From EEG epoch data. They used two public sleep datasets and used 
a two-step training algorithm. The first step involved training the model to learn filters 
to extract time-invariant features from the raw uni-channel EEG epochs. The second 
step involved sequence residual learning, useful for encoding the stage transition rules 
of sleep from a sequence of EEG epochs in the extracted features. It is interesting to note 
that CNNs require images as raw data and to convert EEG signals to images of 2D pro-
jection map, or azimutul 2D projection as explained in  [17].

Another recent classifier is ICLabel [18], which is open source and runs on MatLab. 
ICLabel improves upon existing classifiers by suggesting approaches that result in an 
increased accuracy of the computed label estimates and enhancing its computational 
efficiency. Their classifier outperforms the existing automated IC component classifica-
tion method for all measured IC categories while increasing the speed of computation 
speed by nearly 10 times. More complicated methods involving Monte Carlo simulations 
were seen in [19], where a comparison on three different machine learning techniques 
were performed for detecting epileptic seizure risks and further goes on to determine 
if 1-h screening is more feasible, to identify patients with less seizure risk (less than 5% 
seizures risk in 48 h). The different methods they used were the elastic net regression 
(EN), Critical Care EEG Monitoring Research Consortium (CCEMRC), and multicenter 
with a dataset of 7716 continuous EEGs (cEEG), and neural networks and sparse lin-
ear integer model (RiskSLIM). These methods performed relatively similar in terms of 
evaluation metrics, but RiskSlim using 2HELPS2B achieves slightly better results. EEG 
signals are also seen to help prevent seizures and seizure type prediction [18, 19]. These 
articles discussed how data collected from intracranial EEG-based monitoring systems 
can be used to predict epilepsy episodes in patients up to an hour earlier. They have used 
a number of different classification techniques with a wide variety of features from the 
dataset, both univariate and bivariate for their prediction models.

Many other papers have explained various degrees of success, ranging from 50 to 
85% through the use of different classification techniques. Further improvement in 
accuracy was seen in Belakhdar et al.  [20] gave a maximum accuracy of 86.5% during 
the detection of drowsiness. Additionally SVM and ANN were used in comparison 
after performing fast Fourier transformations to get vector of 9 features, suggesting 
that ANN though more robust did not provide drastic accuracy improvements. In 
contrast the work by Li et al.  [21] suggests that for the WAY-EEG-GAL dataset, an 
approach based on AlexNet works better giving an accuracy of 96%. However the 
approach used cannot exactly suggest that neural nets work better since the data 
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preparation technique used was tailored more towards feature extraction before 
classification. An algorithm based on entropy called wavelet packet decomposition 
was seen in  [22] which improved the accuracy of SVM to 87–93% for the sample 
subjects tested. Promising results were also seen in Jin et  al.  [23] which suggested 
that a combination of FFT, PCA, and SVM gave results of nearly 90%. Therefore in 
conclusion the accuracy of any model is highly reliant on the feature extraction stage 
and not necessarily on how complex of a classification technique used is as implied 
in  [21]. Thus reliable accuracy and recall can even be achieved with classification 
techniques.

Preliminaries
Principle component analysis

PCA is a common dimensional reduction technique used to minimize the number of 
training features by grouping the features together. In doing so, it maintains the origi-
nal feature information, thus retaining trends and patterns. Dimensionality reduction 
is a technique that summarizes features by projecting the high dimensional axes onto 
principle components with the goal of finding the best stigmatization. This minimizes 
the computational cost and the error rate caused by unnecessary features.

The main goal behind using PCA is that it speeds up model training time and in 
most cases improves accuracy [24]. The algorithmic approach for PCA is follows: The 
first step is to split our dataset into 2 parts, rather separate the class labels from the 
rest of the features. i.e 8046 columns are taken into account as features to be mini-
mized ‘d’. Next mean for every dimension of the dataset is computed, followed by the 
evaluating the covariance matrix. The covariance matrix. The formulae: n!

2∗(n−2) ! gives 
the required number of different covariance needed to be calculated, where n repre-
sents the number features under consideration. For n variables the covariance matrix 
C will be of the order n × n and (i,j)th element of C is given by

The next step is to compute the eigen vectors and the eigenvalues. This step requires 
evaluating the determinant of our n × n matix to 0 i.e det(C − � ∗ I) where I is an iden-
tity matrix. Solving this equation for � we get the eigen values and then the correspond-
ing eigen vectors. The next step involves sorting the eigen vectors by decreasing eigen 
values and selecting the k eigen vectors with the largest eigen values to form a d × K 
dimensional matrix W. The eigenvectors with the lowest eigenvalues give the least infor-
mation about the data distribution, and are usually dropped. After sorting and selecting 
the top 20 eigen vectors our feature space reduced to a 20 dimensional feature subspace. 
The final step involves transforming the samples to the new subspace. This is done by the 
equation y = W ′ ∗ x where W’ is the transpose of matrix W.

Therefore the final number of 20 vector features were obtained using PCA which 
optimized the accuracy of our model by 6% on average. During experimentation the 
highest explained variance by a single variable was found to be 43%; here, and the 
lowest explained variance was found to be 0.04%.

(1)Ci,j = cov(x, y) =

∑i=0
n (xi − x̄)(yi − ȳ)

(n− 1)
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Naive Bayes

The Naive Bayes classifier assumes that the presence of a selected feature in class is unre-
lated to the presence of the other feature belonging to other classes. Even if these options 
depend upon one another or upon the existence of the opposite options, all of those 
properties contribute to the chance  [25]. Naive Bayes is particularly suitable for when 
the dimensionality is higher. Therefore, we are testing this classifier in the experiment. 
Naive Bayes model is significantly helpful for wide sets with many attributes [26]. Along 
with its simplicity, Naive Bayes model may surpass even extremely subtle classification 
techniques.

The naive Bayes equation is explained below

Naive Bayes equation can be extended to real-valued attributes, most typically by 
assuming a normal distribution. Different functions do not estimate the distribution of 
the info, but relies on the estimation of the mean and therefore the variance from the 
information. The Naive Bayes algorithm requires a joint probability P(A,B). This is the 
probability of both A and B occuring given as at the same time it must be considered 
that the variables are independent of each other:

Equation 2 represents the Gaussian Naive Bayes used here and the reason behind using 
Gaussian Naive Bayes was due to the slight Gaussian distribution of the features.

Logistic regression

It is another classification algorithm available for both multi-class and binary class clas-
sification. Logistic Regression performs discrete categorization of sampled data, for a 
binary class (pass or fail) within a decision boundary. The analogy between the linear 
and logistic regression can be explained with the regression hypothesis

where 3 represents the logistic regression hypothesis and 4 is the linear regression 
hypotheses where theta represents the parameters. To determine the split between 

(2)P(A|B) =
P(B|A)P(A)

P(B)

(3)P(A|B) = P(A|B) ∗ P(B)

(4)P(xi|y) =
1

√

2πσ 2
y

exp

(

−(xi − µy)
2

2σ 2
y

)

(5)hθ (x) =
1

1+ e(−θT x)

(6)hθ (x) = (−θTx)

(7)f (z) =

{

θ0 + θ1x1 + θ2x2 + θ19x19 ≤ 0
1, otherwise
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classes, it is ideal to use all features, however with PCA we limit the features from 8064 
to just 20 as seen in 5, where f(z) gives the class for the sample.

K‑nearest neighbor

When we perform classification using K-nearest neighbor (KNN), the algorithm is 
essentially giving a way to extract the majority vote which decides whether the observa-
tion belongs to a certain K-similar instance. For this, in any dimensional space, Euclid-
ean distance is used. Since KNN is a non-parametric classification algorithm, it assigns 
labels to previously un-sampled points, generally it has a lower efficiency as the size of 
the data increases  [27]; thus, further promoting the need for a feature decomposition 
algorithm. The performance is fully-dependent on the value of k, as such the model was 
created to test over the values of k, which was done through iterations above k-fold cross 
validation from 0 to 5, where the values of k for KNN ranged from 2 to 50. This method-
ology was suggested as it is not easy to select a proper value of k theoretically, unless an 
exhaustive search using expensive techniques is performed  [25].

Support Vector Machines

Support Vector Machines (SVM) are supervised linear classification models which 
makes use of hyperplanes (i.e. the plane of separation between classes). To sample the 
data, EEG channel samples are plotted in space where the number axes determine the 
different features. Separate categories of data are divided through a separation which is 
as wide as viable. When training the model, the vector w and the bias b must be esti-
mated by the solution to a quadratic equation [12]. Hence, SVM can be implemented in 
polynomial time, which makes it a p-complete problem.

where b represents a two-dimensional plane, the margin of separation is expressed as 
follows

Considering only two dimensions, the hyperplane equation will be for each vector (6). 
This simplifies the learning problem of the SVM by transforming it into an optimization 
problem where 2

‖w‖ represents the margin of separation stated by

Using these two equations, we have the following simplified equation as given below:

(8)wTxi + b ≥ 1 for xi ∈ CLASSA

(9)wTxi + b ≤ 1 for xi ∈ CLASSB

(10)yi � wTx + b �

(11)
maximize

w
Max(w) 2

�w�

subject to W · xi + b ≥ 1 if yi = 1

(12)
maximize

w
Max(w) 2

�w�

subject to W · xi + b ≤ −1 for i = 1 to N
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Decision trees

A decision tree is a kind of hierarchical class selection support tool that uses a tree-like 
graph or model of choices and their attainable consequences [25] (i.e. bifurcation based 
on the decision taken at each level) together with accident outcomes, cost, and utility. A 
decision tree a technique which only uses the conditional management statements for 
class separation. A decision tree could be a flowchart-like structure where every internal 
node represents a “test” on an attribute (e.g. whether or not a coin flip comes up heads 
or tails). Every branch represents the result of the check, and every leaf node represents 
a category label (the decision is made once all attributes are computed). The paths from 
root to leaf represent classification rules. Decision Trees are primarily based learning 
algorithms that are among the simplest and mostly-used supervised learning strategies . 
Tree primarily based strategies empower prophetical models with high accuracy, stabil-
ity and simple interpretation. In contrast to linear models, they map non-linear relation-
ships quite well. They are adaptable at determining any reasonably downside at hand 
(classification or regression). Decision Tree classification algorithms are known as Clas-
sification and Regression Trees (CART) [3].

Parameter tuning

Sklearn is a Python library which contains a number of built-in machine learning algo-
rithms. However, in certain situations we cannot accurately predict or find the best pos-
sible way to select these parameters as the parameters can range from unique solvers, to 
value of ‘k’, to gamma to kernel names, and more, each of which varies according to the 
classification model being used. For this, it was necessary to use an exhaustive search 
method, called Grid search. The algorithm for parameter tuning is as follows:

Algorithm 1: Parameter tuning using grid search
1 Input: hyperparameters Dictionary
2 Output: best paramters key : value
3 import dataset
4 for i ∈ values ofeach key ∈ parameterDictionary do
5 for 50 fold cross validation do
6 get max accuracy value
7 if i > PreviousParams then
8 i > PreviousParams = i
9 end

10 end
11 end

Data
The “DEAPdataset” is an EEG signal repository freely available, found at  [10], for emo-
tion analysis. This repository contains a multi modal dataset which can be used for ana-
lyzing human brain states. The raw data set contains 32 Biosemi bdf data format files 
having 48 channels which were recorded at 512 Hz. This dataset is a result of integrating 

(13)

[

1

n

n
∑

i=0

Max[0, 1− yi[w · xi − b]] + � � w �2

]
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3 database recordings at distinct locations namely, Geneva Switzerland, Twente Nether-
lands, London United Kingdom. This shows the variety of the data as different sampling 
rates were used and different types of tests were conducted. Aggregating this data into 
1 comprehensive dataset shows the large volume of the data, especially when the face 
recordings are used for predictive purposes. It is ensured that this raw data cannot be 
tampered with as files are made to be read only, furthermore the collection of data was 
done 5 times for each test to ensure trustworthy data. Each of the two zip folders contain 
32 participants each with the data stored in a 3D matrix representation (40 × 40 × 8064) 
representing video/trial × channel × data, with the numeric class value labels saved on 
the same file as a 2D matrix. After reformatting the data during data preparation the 
updated dataset contained 204,800 × 8065. A total of 11.2 GB worth of sampled EEG 
data with an additional 15 GB raw face recording data is available for reference.

The metadata folder contains 4 important metadata files describing the way the data 
was collected and the ratings they gave during the experiment after each of the 32 par-
ticipants had 40 min-long sessions. “Wheel slice” was an important column which tells 
us exactly what the subject is feeling at that particular instant. The integer values for this 
range from 1 to 16. Similarly, the 32 participants were prompted to rate their feelings 
based on the honor system in terms of 1–9, representing their degree of arousal, valence, 
familiarity, and dominance.

Along with the raw data, the dataset includes a preprocessing script, which is available 
in either Matlab and pickled Python formats. This script contains the subject data in two 
arrays, one for data and the other for labels (arousal, liking, dominance). This data ena-
bles applying classification algorithms without worrying about the preprocessing phase. 
This research uses the pre-processed version to compare the initial accuracy of classic 
classification algorithms. EEG data collected from 32 patients can be read by using the 
pickle library in Python.

Methods
Exploratory Data Analysis (EDA) is the first step in understanding the type of data that 
is processed along with how the data can be used for developing a solid foundation on 
which we can build prediction models. Here, one creates a sense of the information that 
can be used to fire queries one wishes to raise to border their understanding. Similarly, 
one can control the knowledge sources to urge the answers they seek. The basic idea is to 
perform an analysis that can help in deciding what techniques are to be used to process, 
manipulate, normalize and extract information from the data that can help in finding 
better approaches while implementing predictive models.

Since the “DEAP dataset” contains the four distinct ratings for each of the 40 videos, 
it is possible to visualize how exactly the distribution of the ratings are, this also facili-
tated the detection of any biases towards any particular rating. In this case, a smaller bias 
would help achieve better accuracy classification, as larger bias makes machine learning 
models sway to predict the biased class.

After reading the pickled data into different files containing the encoded data from 
the numpy arrays using one hot encoding representing the different class values, it is 
possible to perform different binary class classifications for each of the four distinct 
categories of valence, arousal, dominance and liking. The subjects rated each of the 
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60 s video based on these criteria on a scale of 1 to 9. Therefore, one hot encoding 
was used to round all values below 5 to 0 and those above the threshold of 5 to 1, 
thus allowing a binary classifier. The classes were labeled as ‘unhappy’, ‘happy/joyful’, 
‘calm/board’, ‘stimulated/excited’, ‘submissive’, ‘empowered’, ‘thumbs up’, ‘thumbs 
down’ representing both the positive and negative emotion of that criteria. The fol-
lowing are the different machine learning techniques used, once the one hot encoding 
was complete

The DEAP dataset [7] gives the preprocessed data in the form of a saved pickle file. 
Loading the file gives two different arrays named labels and data. The labels were 
auto encoded into four different files, each representing an emotion. The data was 
extracted separately for each subject and stored the EEG epoch channel data in from 
each subject into a single file called “collected_features.dat”. The labels for the classes 
and the actual data were separated from each other in different files. This separation 
was performed before cross validation and limited the number of features to 20 when 
selecting each of the classification models. Grid search then gave a detailed report of 
the classification accuracy, f-score, precision, and recall. This approach yielded results 
within the range of 50 to 65%.

This approach was done on a preliminary basis in order to get baseline results for the 
modification and optimization phase further ahead. According to the DEAP dataset, the 
epoch data was segmented into 60  s trials, thus it is not very clear where the correct 
emotion may arise within this 60 s of data. One hypothesis is that within the first few 
seconds, the subject experienced feelings prior to watching the music, i.e continuing the 
same state of emotion before the trial. Similarly, the last few seconds could provide much 
better features as the subject can now anticipate the events in the video. Thus, leading to 
the question of segmenting the data into 15sec ∗ 4partitions corresponding to 1 subject 
trial. These segments were uploaded to the google cloud clustered architecture. With 
the help of joblib a Apache spark backend library, a distributed GridSearch was done 
over the spark cluster. The number of jobs created for each machine learning algorithm 
was 3. This boosted the execution time. Each segment was tested separately to check for 
accuracy, f-score, precision and recall for each of the 4 classes. Assuming that if, any one 
segment shows better results than the others then our hypothesis is that the segment of 
epoch data giving these results is related to an important part of the trial video which 
best brings out the corresponding emotional state.

Apart from this, the objective of PCA was to minimize the features. This is due to 
the fact that even though all the channel data from each of the 40 channels were used, 
PCA did not seem to be very effective because of the fluctuation in the epoch signals. 
Therefore, a techniques adapted from [28, 29] was performed to calculate the features 
rather than the raw signal epoch data. These features include mean, mode, median as 
F1, F2 and F3 respectively; as well as the range, largest-smallest element within the 
segmented range as F4, F5, F6 variance respectively. PCA then selected the features 
that were taken from the result of the co-variance matrix, i.e the higher weighted ele-
ments. This approach achieved better results, as expected and tested by the literature. 
It is important to note that such modification is done before using any classification 
techniques. Grid search and k-fold cross-validation helped in fine tuning the param-
eters to get the best possible results. At this stage, five different classifiers were tested.
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Setup
The experimentation done with the data sets mentioned in “Methods” section   only, 
thus additional external hardware setup was not required although a spark cluster on 
google cloud was utilised to distribute the workload. This was done using parallel_back-
end function on the Joblib Apache Spark Backend. Setup seen in [30], since streaming 
raw epoch data from patients is not within the scope of this research. software packages 
including Anaconda 2019.03 Release for python 3.6, pyspark version 2.4.4 and EEGlab 
toolbox for Matlab rev. 9.0.7.6. The python libraries used were matplotlib, numpy, pan-
das, pytorch, sklearn v 0.21, to name a few. These libraries were installed on the conda 
environment using “conda install” and “pip install”. the “.mat” files from “DEAP” were 
read and exported as csv files through EEGlab The following results obtained in “Setup” 
section, were produced on Ubuntu 18.01 using 7th Generation intel@ Core i7 processor 
with 8GB RAM.

Experimental results
Figures 1, 2, 3, 4 show the Gaussian distribution of the ratings of the different emotions 
of the 32 subjects for each of the 40 videos. It is observed that the normal distribution 
is symmetric around 5, suggesting that, most of the subjects have mixed feelings about 
each of the videos. If the data had anti-Gaussian skew towards ratings 1 and 9 as seen 
in Fig. 4, then a binary classification model would achieve much better results, particu-
larly if one hot encoding variables were to be taken at the extremes. Another important 
observation is that test subjects were more likely to give integer value rating, thus the 
spikes at integer values.    

The plot of the average of ratings for each class by 32 individuals is given in Fig. 5. This 
graph also demonstrates a comparatively linear relationship between valence and liking, 
which can be explained as positive emotions generally result in a better liking rating as 
suggested in [31, 32]. It is observed that the sum total of “liking” is directly proportional 
to “valence” and decreases with subsequent video trials, and as such the “valence” also 
goes on decreasing. Other emotions rating do not show a clear pattern in Fig. 5, leading 
to the assumption that the other two emotions “arousal” and “dominance” are more of 
a personal preference and vary from one test subject to the next. By taking the average 

Fig. 1  Gaussian distribution of frequency ratings of valence, for all 32 × 40 trials
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Fig. 2  Gaussian distribution of frequency ratings of arousal, for all 32 × 40 trials

Fig. 3  Gaussian distribution of frequency ratings of dominance, for all 32 × 40 trials

Fig. 4  Gaussian distribution of frequency ratings of liking, for all 32 × 40 trials
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ratings for each video, based on the subjects’ emotion rating, a singular pie chart for 
each video is provided. Each pie chart suggested how much a video garnered positive or 
negative emotion, the pie chart was split into 25% portions, each extracted from a single 
emotion. A rating above 4.5 would give a positive emotion seen in blue, otherwise the 
emotion would be negative as seen in red, but each emotion and its counterpart contrib-
uted to the percentage of 25% [33].

Initially, while utilizing classic machine learning without PCA, we found that the 
results sub-optimal hovering in the range of 50 to 65%. As described earlier, such result 
is only slightly better than random chance, and since the designed system took in all 
40 of the channels of the epoch data as the features, the discrepancy and errors were 
more, as other channels did not change much throughout the 60 s videos. According 
to [34, 35], it is suggested that by using PCA they were able to find the channels that gave 
the best possible results, which also is aligned with the channels “F3, C3, F4, C4, AF3, 
PO4, CP1” as crucial in obtaining the best possible results. These channels indicated 
that the bottom left hemisphere of the brain was responsible for triggering emotional 
states. With these raw channel data values and their corresponding statistical measures 
like mean, mode, median, range, largest-smallest element within the segmented range, 
and variance, the machine learning models produced much better results, as the fea-
tures were more effective in expressing brain activity caused by emotions, illustrated 
in Tables 1, 2, 3, 4. The improved results hovered in the range of 55 to 75%. This was 
achieved by slicing the 60-s epoch data into 15-s epochs, which resulted in an improve-
ment in the accuracy of all models and as an added benefit, the precision and f1 score 
also achieved more promising results.

Some important result metrics that were tested throughout the experiment were accu-
racy, recall, precision and f1-score. Accuracy is defined as the ratio of the total number 

Fig. 5  Pie chart of emotional ratings of subjects watching video #1
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Table 1  Results of performance metrics for valence classification

Time Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%)

0 to 15 s SVM 54.53 55.52 92.91 69.27

LR 56.50 57.42 83.81 68.17

DT 52.98 55.93 69.40 61.97

KNN 53.90 57.93 62.12 59.95

LDA 55.00 64.48 65.77 65.30

15 to 30 s SVM 63.34 63.34 100 77.67

LR 62.17 63.42 96.67 76.60

DT 64.06 64.063 100% 78.09

KNN 55.55 63.67 71.21 67.24

LDA 57.34 67.72 69.79 68.72

30 to 45 s SVM 63.43 63.43 100 77.62

LR 63.12 64.05 96.67 77.05

DT 61.60 64.86 100 78.09

KNN 70.41 70.20 93.23 83.91

LDA 56.25 67.87 66.05 67.05

45 to 60 s SVM 63.59 63.35 99.50 77.73

LR 63.12 64.05 96.67 77.05

DT 64.60 64.66 100 78.09

KNN 57.68 64.04 77.49 70.11

LDA 56.25 68.85 64.18 66.34

Table 2  Results of performance metrics for arousal classification

Time Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%)

0 to 15 s SVM 56.86 56.86 98.91 72.87

LR 59.33 59.52 95.95 73.42

DT 55.48 57.49 83.24 68.07

KNN 52.95 59.95 63.15 61.05

LDA 55.62 55.77 97.12 70.45

15 to 30 s SVM 63.39 63.88 99.56 77.87

LR 64.54 64.53 99.26 78.19

DT 63.35 65.10 92.78 76.38

KNN 59.81 63.91 85.60 73.31

LDA 63.12 63.32 99.50 77.39

30 to 45 s SVM 73.75 73.77 99.50 84.73

LR 63.82 64.39 97.41 77.53

DT 64.06 64.06 100 78.09

KNN 58.88 63.73 83.02 72.11

LDA 63.28 63.46 99.26 77.42

45 to 60 s SVM 63.59 63.67 99.50 77.66

LR 64.82 64.49 77.05 77.95

DT 64.53 64.44 99.96 78.26

KNN 63.35 69.35 99.75 77.66

LDA 63.12 63.32 99.50 77.39
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Table 3  Results of performance metrics for dominance classification

Time Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%)

0 to 15 s SVM 64.53 64.52 100 78.09

LR 64.30 64.42 97.00 77.42

DT 50.62 68.73 37.50 47.87

KNN 59.33 67.93 70.02 69.47

LDA 57.81 57.48 99.09 72.78

15 to 30 s SVM 67.65 67.65 100 80.07

LR 68.36 69.56 96.95 81.01

DT 65.01 70.58 85.54 77.30

KNN 63.59 70.20 83.05 76.86

LDA 67.5 67.77 99.06 80.05

30 to 45 s SVM 67.18 67.72 99.55 77.66

LR 68.08 69.66 96.85 80.85

DT 67.84 71.20 97.50 79.99

KNN 62.64 69.85 81.69 75.31

LDA 66.56 67.35 98.96 79.88

45 to 60 s SVM 66.25 67.30 100 79.62

LR 67.73 69.47 94.94 80.22

DT 71.73 69.73 98.40 82.17

KNN 63.12 68.03 86.45 76.14

LDA 66.67 67.40 98.34 79.99

Table 4  Results of performance metrics for liking classification

Time Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%)

0 to 15 s SVM 64.37 64.37 96.96 78.27

LR 66.43 66.56 98.56 80.42

DT 61.12 66.40 85.00 72.80

KNN 62.24 67.96 81.36 74.06

LDA 64.45 64..56 99.51 78.95

15 to 30 s SVM 67.76 67.76 100 80.44

LR 68.32 69.33 96.77 81.71

DT 68.05 68.07 100 81.01

KNN 65.48 69.25 88.54 77.76

LDA 67.03 67.29 99.06 80.15

30 to 45 s SVM 71.51 70.45 99.76 83.48

LR 69.54 69.08 99.30 81.48

DT 68.08 68.08 100 81.01

KNN 74.28 77.49 98.05 86.57

LDA 67.50 67.50 99.53 80.45

45 to 60 s SVM 67.18 68.18 100 80.07

LR 68.08 68.05 98.95 80.85

DT 67.78 68.09 99.30 80.79

KNN 63.12 68.03 86.45 76.16

LDA 67.34 67.34 99.76 80.40
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of correct predictions achieved by a model to the measure of total predictions done, 
regardless of correct or incorrect predictions. Precision is given as

where TP stands for true positives, i.e. how many true correct predictions were actually 
done and FP stands for false positives, i.e. how many predictions were incorrectly classi-
fied as belonging to that class, which could also be explained as the incorrectly predicted 
positives measure. The recall score is given as follows

Also called as sensitivity, or the true positive rate ratio of correct predictions to the total 
number of positives examples. The last measure is F1 score which combines precision 
and recall, a good F1 score suggests a low false positives and low false negatives. A per-
fect F1 score will be 1 while the model is a total failure at 0. The formulae for F1 score is 
given as follows

Thus higher the percent values for the performance metrics indicates a better model. 
The performance measures increase as long as the number of the samples that are cho-
sen are correctly classified rise as well. Here in this research we are looking for a high 
accuracy and F1 score, which can help others know which algorithms would be the best 
for experimenting on human subjects. Tables 1, 2, 3, 4 present the performance meas-
ures obtained after running each binary classifier through four segments of the 60 s 
of the music video. Through general observation, the initial time from 0 to 15 s for all 
binary classification models experienced a lower accuracy range of 50 to 66% followed 
by 15 to 30 s then by 45 to 60 s, and finally 30 to 45 s. An in-depth analysis of Table 1, 2, 
3, 4 demonstrates that segmenting the data is useful in obtaining better results as well 
as in finding out which sections of the recorded data have the most brain activity cor-
responding to the emotions. Of all the results, Table 4 represents better results. KNN 
resulted in an accuracy of 74.25% as the best possible result obtained among all model 
and their parameters. Grid search was able to converge with the best parameters being 
leaf size: 1, n nearest neighbor: 10, weights: distance. The recall, precision, and F1 score 
for theses parameters were much larger with the recall score being 86.57%. Similarly for 
SVM, which achieved an accuracy of 71.51% and the F1 score of 83.48% in the same split 
of epoch data, the best possible parameters were found to be a polynomial kernel with 
degree at 3 and gamma at 0.16. In all Tables 1, 2, 3, 4, the best parameters were achieved 
by grid search. Logistic Regression converged with penalty being l1 and the inverse 
regularization strength was found to be 1. Decision trees also performed well, with a 
maximum accuracy reaching 68% and an F1 score being 77%. For decision trees the best 
accuracy and recall was max depth being 3 and the minimum split samples were 10. An 
important point to be noted is that the recall scores are high ranging from 85 to 100% 
due to correctly predicted emotion among the positive and negative emotional states, 

(14)Precision =
TP

TP + FP

(15)Recall =
TP

TP + FN

(16)F1 = 2 ∗
precision ∗ recall

precision+ recall
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however all F1 scores suffered a low precision suggesting that among all the subjects 
who had a positive emotion, the number of subjects that were correctly labeled with a 
positive emotion was less ranging from the low 60 s to the low 70 s.

Through careful observation, it is observed that KNN, SVM, LR, and LDA performed 
nearly the same, with the exception that LR and LDA were more consistent with their 
results and did not vary much with partitioning the data. Segmenting the data and using 
PCA did help accomplish higher accuracy as without either, each machine learning 
model performed better than a random selection. However, if we were to choose the 
best model, Logistic regression had the best overall performance. It is interesting to note 
that classification of “valence” and “arousal” was more difficult than “dominance” and 
“liking”, which is aligned with the literature [36, 37] (Figs. 6, 7).

Discussions

The motivation behind performing the comparative analysis was to check if it is possi-
ble to find a correct combination of features, parameters, and pre-processing techniques 
that can achieve comparable results with more complex techniques. However, as illus-
trated in the experiments, this may not always be the case. More complicated machine 
learning techniques based on signal processing methods achieve better results. How-
ever, the results achieved a maximum of 86% F1-score with an execution time of 2 min 
for each binary class classification for the entire 60 s trial, running on a workstation with 
Intel(R) i7 7700 CPU at 2.81 GHz. In Tables 1, 2, 3, 4, Naive Bayes results are not pro-
vided as the results were lower than our baseline being completely random selection. 
SVM performed the better for liking and arousal. The grid search for optimal parameters 
on SVM resulted in a polynomial kernel, gamma value 0.01 and the marginal separation 

Fig. 6  Pie chart of emotional ratings of subjects watching video #1
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parameter “C” was 10. KNN performed the best in liking and valence. Grid search for 
KNN converged with the algorithm as the number of neighbors k was 8 and Manhattan 
distance was used over euclidean and Jaccard distance. Logistic regression gave better 
results in all cases only when “C” was 0.1 and only when the penalty used was l1. Deci-
sion trees did better in dominance classification although grid search resulted in max 
depth of only 4. Since the classification model did not converge for LDA, meaning that 
for each instant different parameters gave similarly less results. This can be attributed to 
LDA being used mostly for document text classification, and thus here, cannot project 
the data in a linear feature space. This indicates that the data is not linearly separable The 
results produced were seen to be much better by 22% in terms of accuracy than Pasin 
Israsen at el.  [38], which suggests that our preprocessing method was much better in 
extracting features than suggested in [38].

For future work, we plan on incorporating signal-processing techniques to further 
improve the accuracy. Such techniques include Fast Fourier Transform, or wavelet trans-
form to convert the time series domain to frequency domain. Improvements in accuracy or 
in efficiency could possibly be achieved with more data i.e by integrating more data sets like 

Fig. 7  Distribution of total summation of ratings taken from 32 subjects for each of the 40 videos, where the 
different colors representing the 4 binary classes
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SEED in combination with DEAP   [39]. Introduction of complex Deep or Convolutional 
Neural Networks may provide an added boost to accuracy as manual selection of features 
is time-consuming and may not necessarily be the best approach. As neural networks auto 
tune the features to provide the best results, the performance measures are expected to be 
significantly more.

Conclusion
The main goal was to discover how neurophysiological mechanisms are able to drive an 
individuals to experience emotion, and figure out which portions of the brain carry data 
related to different emotions. This was achieved by performing classic machine leaning 
techniques of SVM, Naive Bayes, Decision Trees, Logistic regression, KNN and LDA, each 
of which achieved an accuracy of between 55 and 75% and an F1 score ranging from 70 
to 86%. The classification techniques did not significantly outperform one another; how-
ever, the best result was achieved during KNN classification for “Liking”. in terms of highest 
accuracy achieved the order of classification algorithms in descending order is: KNN, SVM, 
Decision trees, Logistic Regression, and LDA. The statistical features of the channels and 
raw channel data corresponding to the back left hemisphere of the brain was seen to have 
more activity and thus, dimensional reduction was done alongside partitioning the epoch 
channel data of 60 s into four 15-s chunks to get the best possible selection features, achiev-
ing an improved accuracy. Furthermore PySpark proved useful for distributing the work-
load of hyper parameter tuning. The experiments could further be scaled to account for 
more emotions or for a combination of emotions without compromising F1 and accuracy.

The experimentation suggests that classic machine learning algorithms achieve reason-
able results and identify information regarding important epoch channels that are responsi-
ble for emotional states.
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