
Graphical Flow‑based Spark Programming
Tanmaya Mahapatra*†  and Christian Prehofer†

Introduction
Within the advancements in information and communication technologies in the last
years, there are two significant trends. First, the number, usage and capabilities of the
end-user devices, such as smartphones, tablets, wearables, and sensors, are continu-
ally increasing. Second, end-user devices are becoming more and more connected to
each other and the Internet. With the advent of 5G networks, the vision of ubiquitous
connected physical objects, commonly referred to as the Internet of Things (IoT), has
become a reality. In the world of connected physical devices, there is a massive influx
of data, which is valuable for both real-time as well as historical analysis. Analysis
of the generated data in real-time is gaining prominence. Such analysis can lead to
valuable insights regarding individual preferences, group preferences and patterns of
end-users (e.g. mobility models), the state of engineering structures (e.g. as in struc-
tural health monitoring) and the future state of the physical environment (e.g. flood
prediction in rivers). These insights can, in turn, allow the creation of sophisticated,

Abstract 

Increased sensing data in the context of the Internet of Things (IoT) necessitates data
analytics. It is challenging to write applications for Big Data systems due to complex,
highly parallel software frameworks and systems. The inherent complexity in pro-
gramming Big Data applications is also due to the presence of a wide range of target
frameworks, with different data abstractions and APIs. The paper aims to reduce this
complexity and its ensued learning curve by enabling domain experts, that are not
necessarily skilled Big Data programmers, to develop data analytics applications via
domain-specific graphical tools. The approach follows the flow-based programming
paradigm used in IoT mashup tools. The paper contributes to these aspects by (i)
providing a thorough analysis and classification of the widely used Spark framework
and selecting suitable data abstractions and APIs for use in a graphical flow-based
programming paradigm and (ii) devising a novel, generic approach for programming
Spark from graphical flows that comprises early-stage validation and code generation
of Spark applications. Use cases for Spark have been prototyped and evaluated to dem-
onstrate code-abstraction, automatic data abstraction interconversion and automatic
generation of target Spark programs, which are the keys to lower the complexity and
its ensued learning curve involved in the development of Big Data applications.

Keywords:  Spark pipelines, IoT mashup tools, Graphical tools, Stream analytics, Flow-
based programming

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/
licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/zero/1.0/) applies
to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Mahapatra and Prehofer ﻿J Big Data (2020) 7:4
https://doi.org/10.1186/s40537-019-0273-5

*Correspondence:
tanmaya.mahapatra@tum.de
†Tanmaya Mahapatra
and Christian Prehofer
contributed equally to this
work
Lehrstuhl für Software und
Systems Engineering, Fakultät
für Informatik, Technische
Universität München,
Boltzmannstraße 03,
85748 Garching b. München,
Germany

http://orcid.org/0000-0002-7946-5497
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0273-5&domain=pdf

Page 2 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

high-impact applications. Traffic congestion can be avoided by using learned traffic
patterns. Damages to buildings and bridges can be better detected, and repairs can
be better planned by using structural health monitoring techniques. More accurate
prediction of floods can enhance the ways authorities and individuals react to them.

Data insights are crucial to develop high impact applications. These insights can guide
the development process to continually improve the quality of applications and contin-
uously cater to the ever-changing needs of the users, thereby leading to a significantly
higher rate of user satisfaction. In specific scenarios where the response of the system is
context dependent, continuously performing data analytics to guide the business logic
of an application is unavoidable. For example, consider an application responsible for
alerting and routing ambulances and fire brigades to different parts of the city: such an
application needs to perform data analytics continuously to provide effective responses.

Deriving insights from data collected is a separate challenge that falls primarily into
the topic of data analytics and machine learning. Traditional Data Science techniques
deal with deriving insights from datasets gathered using programs like R and Python.
Examples of Python libraries include NumPy [1], SciPy [2], Pandas [3], SciKit-Learn [4],
Keras [5] and others. The gathered data is cleaned up, subjected to a series of transfor-
mations, analysed and results are either visualised or saved in human readable formats.
Mostly, these are non-cluster based techniques relying on the computing power of a sin-
gle machine. There are two significant shortcomings with this style of data analytics:

1.	 It does not scale well to handle the processing of vast amounts of datasets (i.e. the
volume of data) generated from millions of IoT sensors.

2.	 It cannot support the processing of large datasets in real-time (i.e. the velocity of
data) to make a business decision, i.e. no support for stream analytics.

Therefore, in the past years, several sophisticated tools have emerged that focus on
manipulation and analysis of data of high volume, velocity and variety commonly
referred to as Big Data. Big Data analytics tools allow parallelised data analysis and learn
via machine learning algorithms operating on datasets that reside in large clusters of
commodity machines cost-effectively. Mostly, these are cluster-based data science tech-
niques. These tools are typically used to cater to different business needs like targeted
advertising, social network analysis etc. The term ‘Big Data’ in a technical sense refers to
a specific set of storage and query languages like HDFS [6], Hive [7], Pig [8] etc. These
tools have their semantics and lines of operation. Storing datasets and writing programs
to analyse them involves working with different APIs and libraries. Even though the Big
Data toolchains are designed for heavy real-time as well as historical data analytics, there
are certain limitations associated concerning their usage:

•	 Working with Big Data frameworks requires developing programs using several
libraries and APIs as well as working with different data abstraction formats.
Including a Big Data analytics method in a user application is not easy. Developers
need to write complicated code and include drivers for integration of the applica-
tion with Big Data systems. This approach makes the process quite cumbersome
and challenging to quickly prototype applications for performing exploratory data
researches because of a vast number of varied solutions available in the ecosystem.

Page 3 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

•	 The learning curve associated with it is steep and requires a considerable amount
of technical expertise to use it. There is no support for end-user programming
with Big Data, i.e. programming at a higher abstraction level.

•	 Deployment of Big Data programs on clusters for execution, fetching results back
for insights and management of clusters require a considerable amount of DevOps
training and expertise.

In the context of Spark For example, in Spark to create a machine learning (ML) model
and apply it on streaming data, Spark provides Spark Streaming and Spark Structured
Streaming libraries operating on DStreams and Streaming DataFrame data abstractions,
respectively. Similarly, for creating a ML model, we can either use the resilient distrib-
uted dataset (RDD) based Spark MLlib or the newer DataFrame based Spark ML library.
The choice of the streaming library would influence the choice of the machine learn-
ing library as well due to compatibility between the underlying data abstractions of the
libraries. Even in the case of compatible data abstractions, the conversion of data from
one data abstraction to another requires additional program codes and is far from being
a straightforward process. Additionally, the complexity of using the different APIs within
a library in a correct sequence, with appropriate data transformations between two API
calls and clearly defining all the vital components of a Spark program like initiating and
closing a Spark session make it non-trivial for a less skilled Big Data programmer to
quickly prototype Spark applications.

A promising solution is to enable domain experts, that are not necessarily program-
mers, to develop the Big Data applications by providing them with domain-specific
graphical tools. In the context of visual programming, two approaches are widely
used, i.e. block-based programming [9] and flow-based programming [10] with both
the approaches having their pros and cons, respectively [11, 12]. Nevertheless, as far as
programming-in-the-large [13] is concerned, such as complex heterogeneous systems
which can also accommodate the example of Big Data systems, flow-based programming
approaches are well suited [14–16] compared to their block-based counterparts [9].

Results
This paper focuses on enabling graphical Spark programming (version 2.2.0) at a
higher level with modular components via the flow-based programming paradigm.
The main challenge in this direction is the presence of a wide range of data abstrac-
tions and APIs in the Spark ecosystem. This paper caters to the research contribu-
tions by the following:

1.	 Providing a thorough analysis of the Spark ecosystem and selecting suitable data
abstractions for use in a graphical flow-based programming paradigm (discussed in
"Data abstractions and APIs in Spark" section).

2.	 Bundling selected Spark APIs as modular composable components (discussed in
"SparFlo: a subset of Spark APIs bundled as modular components" section).

3.	 Devising a novel, generic approach for programming Spark from graphical flows
using the distilled components, comprising early-stage validation with feedbacks and
code generation of Java Spark programs (discussed in "Conceptual approach for flow-
based Spark programming" section).

Page 4 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

The graphical programming concepts have been prototyped in aFlux [17–21], a JVM-
based mashup tool and has been evaluated in three use cases ("Experimental" section)
showcasing code-abstraction, automatic data abstraction interconversion and automatic
generation of target Spark programs. The graphical programming concepts discussed in
this paper is the first approach to support high-level Big Data application development
by making it independent of the target Big Data frameworks (discussed in "Discussion"
section). While this paper focuses solely on graphical Spark programming, preliminary
work concerning extensions to the conceptual approach to support additional target
frameworks like Apache Flink [22] has already been published [17].

Structure The rest of the paper is structured in the following way: "Background" sec-
tion summarises the background information and "Related work" section summarises
the state-of-the-art. "Towards flow-based Spark programming" section discusses the
challenges and design issues for supporting graphical flow-based Spark programming.
"Data abstractions and APIs in Spark" section summarises and compares the different
data abstractions; and classifies the various APIs found in the Spark ecosystem based
on their functionality and method signature. The selection of specific data abstractions
and Spark APIs for supporting flow-based Spark programming is also done here. "Con-
ceptual approach for flow-based Spark programming" section describes the conceptual
approach and discusses ‘SparFlo’, a library consisting of modular composable compo-
nents. The components bundle a set of Spark APIs which are executed in a specific order
to perform one data analytic operation. This uses only a subset of Spark APIs which
are compatible with the flow-based programming paradigm. "Experimental" section
describes the evaluation of the approach. This is followed by a discussion and compari-
son to existing works in "Discussion" section and concluding remarks in "Conclusion"
section.

Background
Apache Spark

Apache Spark [23] is a fast, scalable, fault-tolerant general-purpose distributed comput-
ing platform. It makes efficient use of memory and is generally faster than traditional
MapReduce programming model. It is yet another approach to cluster computing like
MapReduce [24], Message Passing Interface (MPI) [25] and others. Nevertheless, its
programming model has been designed to overcome the limitations of MapReduce [26].
It has excellent in-memory computation capabilities for scenarios which demand itera-
tive computations, e.g. application of machine learning (ML) techniques, which involves
the application of an algorithm repeatedly on the same dataset till optimum results are
obtained, interactive explorations which enable users to submit SQL like queries and
stream processing. In addition to this, Spark supports both batch as well as stream
analytics. It has evolved from a framework to an ecosystem, with several libraries built
around the core framework; Spark SQL [27] provides an SQL-like interface for data anal-
ysis, GraphX [28] can be used for graph computations, and different ML libraries [29] to
learn from datasets. Spark is implemented in Scala [30] but provides APIs in Scala, Java,
Python as well as R. It has become the most popular data analytics platform surpassing
traditional MapReduce style of doing distributed data analytics and has been adopted

Page 5 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

by big giants in the IT sector. For instance, there is a Spark cluster set-up in production
consisting of 8000 live nodes [31].

Fundamental concepts in Spark

Spark is under substantial research and development. With every release, new librar-
ies and new programming models are added to it. Nevertheless, they are all centred
around Spark Core. The different libraries cater to different aspects of Big Data analyt-
ics. The essential component in the Spark ecosystem is the Spark Core, which provides
basic functionalities for running Spark Jobs. Spark allows us to use different libraries,
and it is different from traditional Hadoop technologies. It overcomes one of the strong-
est shortcomings of MapReduce, i.e. a job’s results need to be saved before another job
can use them. Spark’s core concept is an in-memory execution model that enables cach-
ing a job result in memory instead of fetching it every time from the hard drive. Con-
sider an example [23] where we have stored the city map data as a graph. The vertices of
this graph represent points of interest on the map, and the edges represent the possible
routes between them along with the distance value. In order to locate a new spot on the
map for a new building such that it is as close as possible to all points in the graph, we
have to: (i) calculate the shortest path between all the vertices, (ii) find the farthest point
distance, i.e. maximum distance to any other vertices for every vertex and (iii) find the
vertex with minimum farthest point distance. In the case of a MapReduce solution, this
would require three steps where the result of every preceding step needs to be saved first
before it can be used in the following step. However, in Spark, these can all be computed
in-memory using the concept of caching. Here we summarise the fundamental concepts
of Spark as a distributed analytics engine that have been discussed.

Spark application program A Spark application can be programmed from a wide range
of programming languages like Java, Scala, Python and R. In case of programming from
Python, the Python source code itself is the Spark application program. However, in the
case of Java/Scala, the source code is compiled to generate a Java ARchive (JAR) file. This
JAR file is typically sent to a Spark cluster for execution and is traditionally known as the
‘Spark driver program’ or the ‘Spark application program’.

Resilient distributed dataset The most fundamental concept provided by Spark core
for running Spark jobs is the ‘resilient distributed dataset’ (RDD) [26, 32]. RDDs are a
read-only collection of objects which represent user input that has been partitioned over
machines in the cluster. It is possible to have multiple partitions on the same machine.
Each RDD contains the transformation(s) that will be applied to the data by worker pro-
cesses. When a machine containing a worker process fails, information present in RDDs
can be used by another worker machine to recompute the lost computation. RDDs are
computed from other RDDs by applying coarse-grained transformations [26] or by read-
ing user input from disk. RDDs are not required to be stored in physical memory as they
can be recomputed at any time. However, when necessary, users can persist data repre-
sented by an RDD in memory. For example, if there is a 384 MB file which needs to be
stored in a 3-node cluster set-up, HDFS automatically splits the file into 128 MB blocks
and places each part on a separate node of the cluster. If the file is needed to be used by
a Spark program, then the corresponding parts are loaded into the main memory of the
respective nodes, and an RDD is created. The RDD thus created contains a reference to

Page 6 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

each of the blocks loaded into RAM of different cluster nodes. RDD abstracts things so
that it becomes easy to work with a distributed collection and takes care of communica-
tion as well as node failure issues [23].

Spark program execution When a Spark application is submitted, a process called
‘Spark driver’ inspects the application and prepares an execution plan. Execution plan
consists of RDDs along with computations to be performed on them. Once the execution
plan is ready, worker processes/nodes are invoked to read data from external sources
and perform computations as scheduled by the ‘Job Scheduler’ process within Spark.
Spark driver program has full control over the resources required to orchestrate, control
the execution and manage the worker processes. Reading data from external sources and
actual computation occurs within the worker processes. Once the computations have
been performed, data could either be pushed out of the run-time environment of worker
processes into external receivers or brought into the driver process. Only computations
whose output is sent out of the Spark execution environment are scheduled for actual
execution. This style of evaluation strategy is known as ‘lazy evaluation’. The advantage
of lazy evaluation is that computations which do not end in sinks, i.e. push-data out, are
not executed thereby reducing computations.

Flow‑based programming

Flow-based programming (FBP) is a programming paradigm invented by Morrison in
the late 1960s which uses data processing pathways to design user applications [33]. It
defines user applications as networks of black-box processes communicating via data
chunks travelling across distinct pathways [10]. Conventional programming paradigm,
i.e. control-flow programming, typically concentrates on operations and gives secondary
preferences to data. In contrast to this, business applications generally are concerned
with how data is processed and handled, i.e. have stringent requirements on how the
data moves in the system. Consider a program which needs to be developed to read
records, and if these records match specific criteria, they are sent for further processing/
output or else they get discarded. A typical function written in control-flow program-
ming paradigm would concern itself with taking care of needed records and ignoring
other records. On the contrary, in strict flow-based programming paradigm, the pro-
gram should specify handling logic for both matchings as well as non-matching records.
Every function can be represented as a black box, i.e. a node while the parameters of
the function and its return value can be represented as ports of the node via which the
node consumes input and yields output. Connected pathways between such data pro-
cessing black-boxes form the core of the flow-based programming paradigm. Some
preliminary concepts fundamental to the flow-based programming paradigm include
nodes, ports, pathways, data, dataflow graph and execution of a graph. Nodes are data
processing ‘black-boxes’ which consume input and produce output only via ports. They
may be functional, i.e. produce the same output repeatedly if given the same input multi-
ple times. Ports are connection points between a node and data pathways. Pathways are
connections between an input port of a node to an output port of a node. Pathways have
a buffer limit and also support splitting into two different output ports or merging from
different input ports. Data is the processing as well as controlling item flowing through
the pathways from one node to another. Typically, a dataset is immutable. The directed

Page 7 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

graph formed by considering the connection between different nodes via valid pathways
is a dataflow graph. The execution of a graph typically begins from the node which loads
the data and pipes it into the pathway after processing it. These nodes are also called
‘source nodes’. They do not have an input port. The nodes where the execution finishes
are known as ‘sink nodes’. These nodes do not have an output port. The execution can
follow either a ‘pull’ or ‘push’ mechanism. In the ‘push’ mechanism, a node pipes its out-
put as soon as it is available while in the ‘pull’ mechanism a node typically pulls its input
from its preceding node when required. FBP is a particular case of dataflow program-
ming. The dataflow programming paradigm specifies that dataflow controls the execu-
tion pathway of a program [34]. The actor model [35] is a very dynamic form of dataflow
programming where the nodes can scale up when the situation demands and the buffer
capacity of pathways can be configured as per needs [34]. The actor model relies on mes-
sage passing to send data from one actor to another asynchronously. Every actor has a
unique address of the pathway leading to the receiving actor. A mailbox associated with
every actor (typically an ordered queue) stores received messages which are processed
concurrently by the receiving actor. It is an asynchronous dataflow mode with nodes, i.e.
individual actors, being strictly functional in design. aFlux, the flow-based programming
tool is based on the actor model, and the graphical Spark programming concepts have
been prototyped using it.

IoT mashups and mashup tools

A mashup application is a composite application developed through the agglomeration
of reusable components. The individual components are known as ‘mashup components’,
and they form the building blocks of the mashup application. The specification of con-
trol-flow between these mashup components forms the mashup logic. As control flows
from one component to the next, it typically involves potential data mediation before
the data received from the preceding component can be used, as well as the execution
of business logic, defined within the component. This process, performed sequentially
from the first to the last component of the flow, defines the business logic of the applica-
tion. Graphical programming tools which permit the creation of such mashup applica-
tions are called mashup tools, and they follow the FBP paradigm. Current mashup tools
do not support Big Data programming [36]. A detailed article on mashups and mashup
tools has been published [37].

Related work
We did not find any flow-based programming tool or other research works which sup-
port generic high-level programming for Big Data systems independent of the under-
lying Big Data framework and execution engine. However, there are many different
solutions to reduce the challenges involved in using specific Big Data frameworks. Here
we summarise the current works and solutions aimed at supporting high-level graphical
programming of Big Data applications.

The QualiMaster infrastructure configuration (QM‑IConf) tool

The QM-IConf tool [38] supports model-based development of Big Data stream-
ing applications. It introduces a high-level programming concept on top of Apache

Page 8 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

Storm [39]. It features a graphical-flow based modelling of the streaming application in
the form of a dataflow graph where vertices are stream operators, and edges represent
valid dataflow paths. A valid dataflow path from vertex v1 to v2 ensures that v2 can con-
sume the data produced by v1. The dataflow model consisting of data sources, sinks and
operators, is translated into an executable Storm code. Nevertheless, it does not validate
its claimed generic modelling approach against other streaming frameworks like Flink
or Spark Streaming. Additionally, it supports only a specific subset of stream analytics
operators to be used in the pipeline.

Lemonade

Lemonade (Live Exploration and Mining Of a Non-trivial Amount of Data from Every-
where) is a platform designed to support framing of graphical data analytics pipeline and
to translate the graphical flow into a runnable Spark program [40]. It translates visual
flows into Spark application in Python programming language and provides visualisation
of the datasets produced from running application. It consists of front-end where the user
can develop Spark flows using dragging and dropping graphical components and wiring
them to form a flow. A JSON object is prepared from the graphical flow and is trans-
lated into a Spark application such that each graphical component is a Spark method call.
The main disadvantage is that it provides graphical components for producing applica-
tions using Python APIs of Spark MLlib library only. It does not support framing applica-
tions for stream processing or other libraries of the Spark ecosystem. Additionally, the
code generation method is not generic, uses hard-coded method call code snippets and
appends them in a Python script. The tool can specify to ingest data already existing on
the Big Data cluster only and not from live sources. To summarise, it is a visual program-
ming tool for Spark machine learning restricted to specific APIs and use cases.

QryGraph

QryGraph [41] is a web-based tool which allows the user to create graphical Pig queries
in the form of flow along with simultaneous syntax checking to support batch processing
of datasets stored on HDFS. In QryGraph, a Pig query is represented as a dataflow graph
with vertices representing data sources, sinks and transformers while edges represent
valid dataflow pathways. It also allows the user to deploy the created job and manage its
life-cycle.

Nussknacker

It is an open-source tool which supports model-based development of Flink appli-
cations. It also supports deployment and monitoring of Flink jobs [42]. First, a devel-
oper needs to define the data model of an application specific to a use case inside the
‘Nussknacker engine’. The engine is responsible for transforming the graphical model
created on the front-end into a Flink job. It uses the data model and its associated code-
generation together with the front-end graphical model created by a user to generate
the final Flink program. The code generation technique specific to a model should be
defined beforehand. Finally, users with no prior knowledge and expertise in Flink can
use GUI to design a Flink job as a graphical flow, generate the actual Flink program,
deploy it to a cluster and monitor its output.

Page 9 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

Apache Beam

Apache Beam [43] is a unified programming model and provides a portable API layer to
develop Big Data batch as well as streaming applications. The programming model uses
the concept of a pipeline to represent an application. In essence, a pipeline models an
application as a dataflow graph consisting of sources, sinks and operators to do the data
processing. An additional feature is that every pipeline ends with a runner configura-
tion which can be specific to target Big Data Frameworks like Apache Spark, Apache
Flink etc. The programming model translates the pipelines into a native Big Data job and
executes it in the target environment, i.e. the same beam program can be deployed on
Spark, Flink, Apex [44] etc. clusters. The beam programming model supports operators
necessary for batch and stream operations, and if a target framework supports a corre-
sponding feature, then a beam application can be run in that specific environment.

Other solutions

Apache Zeppelin provides an interactive environment for using Spark instead of writ-
ing a complete Spark application. Zeppelin manages a Spark session within its run-time
environment and interacts with Spark in interactive mode [45] while consuming code
snippets in Python/R. Nevertheless, to successfully interact with Spark, Zeppelin still
requires programming skills from users since it requires a compilable code.

Another existing solution is Azure, a private cloud computing service offered by
Microsoft, which also offers Spark as a service. Users can configure a Spark cluster with-
out requiring any manual installation. Here, Spark can be used to run interactive que-
ries, visualise data and run machine learning algorithms [46]. Nevertheless, it expects
the user to have programming expertise.

Apache NiFi [47], a tool for creating data pipelines in the form of visual flows, sup-
ports integration with Big Data execution engines represented by a GUI component
called a processor. Nevertheless, this processor needs to contain the Big Data application
code. From the perspective of an end-user, NiFi does not reduce the programming chal-
lenges associated with Big Data, although automation via data pipelines is undoubtedly
provided.

"Discussion" section gives a detailed comparison of our approach for high-level graph-
ical programming concepts for Spark with existing solutions.

Towards flow‑based Spark programming
The graphical Spark programming concepts, i.e. a user designs a flow by dragging and
dropping graphical components and the system generates a complete Spark application
for the user typically lowers the learning curve associated in using as well as adopting
Spark. However, in order to support such a scenario, there are several challenges which
need to be addressed by the conceptual approach: (i) diverse data-representational
styles, APIs and libraries centred around Spark make it challenging to extract a com-
mon programming approach, i.e. using similar data structures and APIs to load, trans-
form and pass datasets, with which to access the functionalities of Spark and formulate
an approach to use it from a flow-based programming paradigm. Selection of compat-
ible APIs and bundling them together as modular components is the first step which has
been done and (ii) reconciling the difference in the programming paradigm of Spark and

Page 10 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

flow-based mashup tools can be a challenge. Spark relies on lazy evaluation, where com-
putations are materialised if their output is necessary, while flow-based programming
has a component triggered, then proceeds to execution, and finally passes their output to
the next component upon completion. To program Spark from flow-based programming
tools, this difference has been addressed by introducing additional auxiliary components
in the programming tool level called ‘bridge’ components ("Supporting sequenced Spark
transformations in flow based programming paradigm" section) and starting the code
generation process at the last component of the user flow.

In addition to the challenges, there are several design issues for graphical flow-based
Spark programming (the first two design issues are the results of the first challenge while
the last design issue is due to the second challenge enumerated above):

Design of a modular Spark component

A modular component is the basic unit of composition in a graphical flow. A typical
Spark application consists of different Spark APIs invoked in a specific sequence to
represent the business logic. Therefore, it makes perfect sense to model the graphical
programming concepts on the same lines, i.e. represent Spark APIs via modular-GUI
components which the user can drag and connect. The flow thus created essentially rep-
resents a sequence with which the Spark APIs are invoked to meet the business logic of
the user.

Modularity

By modularity, we mean that the components are designed so that their functionality is
independent of each other and contain the necessary code to execute only one aspect of
the desired functionality, i.e. one specific data analytic operation—high-cohesion with
loose coupling of components. [48, 49].

The first concern in this regard is deciding the granularity level of such a Spark com-
ponent to make it modular in its design. Spark APIs essentially accomplish one small
task within the Spark engine like converting data from one form to another. Hence, to
perform a small operation like reading datasets from a streaming source, the developer
has to invoke many different APIs. Hence, a modular Spark component should ideally
make use of multiple Spark APIs invoked in a specific order to perform one fundamen-
tal data analytics operation. The second concern is with respect to abstraction-level. A
typical Spark application has many aspects which do not directly correspond to the busi-
ness logic but are vital for running of the application. For instance, the ‘application con-
text’ which is a programming handle to identify a running Spark application, essentially
manages the communication between Spark driver program and worker nodes during
execution. While programming the application context, a developer configures it with
various options like providing a name for the Spark application, deciding whether the
application runs in a distributed mode or not and specifying the address of the Spark
cluster manager. It is also interesting to mention that for batch processing where the
computations typically finish, the application context must have an end statement while
this is not true for streaming applications as they typically run indefinitely. Hence, por-
tions of a Spark application not contributing to the business logic of the application, i.e.

Page 11 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

loading, transformation or display of datasets, should not be represented as components
but abstracted from the user.

Data transformation approach

Data transformations in Spark can be achieved via RDD based operations or the newer
declarative APIs which operate on a higher level of data abstractions over RDD. The
RDD based data transformations require the developer to write their own custom data
transformation functions while the APIs are kind of pre-defined transformation func-
tions which can be invoked directly on datasets. In traditional Spark application devel-
opment, developers typically use a mix and match of both techniques. However, from a
graphical programming perspective, use of API based data transformation is more rea-
sonable as a graphical flow can be represented as a flow between different APIs con-
nected by the end-user to achieve the desired result.

Design of the translator model

The translator model which takes the graphical flow and auto-generates the Spark appli-
cation program should parse the auxiliary components ("Supporting sequenced Spark
transformations in flow based programming paradigm" section) properly as they do
not represent any Spark API but are used to bridge the difference in the computational
model. Furthermore, it should ensure that the flow created by the user will yield a com-
pilable Spark program. For this, it should provide early feedback to the user in case of
improper usage of components in a flow. In this way, the errors arising out of the wrong
formulation of a Spark flow are handled at the mashup tool level. Once the translator
model accepts the Spark flow, it should result in a compilable Spark program. Addition-
ally, the translator model should be generic and extensible to support inclusion of addi-
tional APIs, libraries and features of Spark in future.

Data abstractions and APIs in Spark
In this section, various transformations, data abstractions and APIs supported by Spark
are discussed in detail to give an understanding of how Spark is used from a developer’s
perspective.

Data abstractions in Spark

Spark supports two kinds of transformations among different libraries in its ecosys-
tem. First, it supports high-level operators which apply user-defined methods to data,
e.g. the map operator. The user-defined operation has to be provided by the developer.
Newer libraries of Spark have moved away from this paradigm and instead offer fine-
grained operations where the operation logic is pre-fixed yet parametrisable by the pro-
grammer. Spark has introduced several data abstractions like RDD [50], DStream [51],
DataFrame [23, 27, 52] and Streaming DataFrame [53] to manage and organise user data
within its run-time environment and several libraries have introduced data abstractions
customised for different cases. Table 1 summarises the libraries and the data abstrac-
tions each library requires for interaction. The term ‘data abstraction’ and the term
‘data interface’ convey the same concept and meaning. For the rest of the paper, we
use the term ‘data abstraction’ for maintaining homogeneity and clarity in discussions.

Page 12 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

Fine-grained operations are possible through the declarative APIs of Spark, i.e. all APIs
of libraries listed in Table 1, that are based on the Spark core library.

The resilient distributed dataset (RDD) abstraction It is the key data abstraction for
in-memory processing and fault-tolerance of the engine, which is used heavily for batch
processing. Higher level constructs are supplied with user-defined functions (UDFs)
applied to the data in a parallel fashion. UDFs have to adhere to strong type checking
requirements.

DStream data abstraction Spark streaming is an extension of Spark Core which pro-
vides stream processing of live data. Data can be read from streaming sources like
Kafka [54], Twitter, Flume etc. and processed in real-time using high-level functions like
map, reduce, join, window etc. The final processed output can be saved either to file sys-
tems, HDFS or even databases. Internally, Spark Streaming divides the live stream of
input data into batches/chunks and feeds to the core Spark engine for processing, the
output from the Spark engine is again in the form of batches of processed output. Spark
Streaming provides a high level abstraction called ‘discretised stream’ or ‘DStream’ [51,
55] to represent a continuous stream of data. DStreams can be created from input data
streams like Kafka, Twitter etc. or by applying high-level operations on other DStreams.
DStream, the basic abstraction provided by Spark Streaming is internally a continu-
ous series of RDDs, Spark’s immutable distributed dataset abstraction. Any operation
applied on a DStream is translated to operations on RDDs. It is interesting to note that
all these RDD operations and transformations are abstracted from the developer while
using the DStream abstraction and its associated operations; instead, the developer is
provided with a high-level API for convenience. DStream collects data streamed over
a user-defined interval and combines them with the rest of the data received so far to
create a micro-batch. This approach hides the process of combining data. Spark Stream-
ing operations can be performed on a DStream abstraction or an RDD abstraction, as
DStream can be operated on by converting it to RDD. While this library is not a true
stream processing library (it internally uses micro-batches to represent a stream), the
most important aspect is its compatibility with Spark MLlib [29] library which makes it
possible to apply machine learning models learned offline, on streaming data.

DataFrame data abstraction The DataFrame API [52, 56], introduced by the Spark
SQL library, is a declarative programming paradigm for batch processing built using the
DataFrame abstraction. This data abstraction treats data as a big table with named col-
umns, similar to real-world semi-structured data (e.g. Excel file). DataFrame API pro-
vides a declarative interface, with which data and parameters required for processing

Table 1  Spark libraries and their supported data abstractions, as in [18, 57]

Data abstraction
Library

RDD DStream DataFrame S. DataFrame

Spark Core Yes – – –

Spark Streaming – Yes – –

Spark SQL – – Yes –

Spark MLlib Yes – – –

Spark ML – – Yes –

Spark Structured Streaming – – – Yes

Page 13 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

can be supplied. Data is read into the environment using user-defined schema, and
DataFrame is created as a handle to trace the data as the schema changes in the course
of transformations. The actual implementation of the operations performed on the data
to produce the desired transformation is abstracted from the user. Spark ML is accessed
using the DataFrame API.

Streaming DataFrame data abstraction Spark Structured Streaming is a fault-tolerant
stream processing engine built on top of the Spark SQL engine. The Spark SQL engine
is responsible for running the streaming query incrementally and continuously updat-
ing the result as new streaming data arrive. Structured Streaming queries are executed
in small micro-batches internally. The Spark Structured Streaming library provides real-
time stream processing using Streaming DataFrame APIs, an extension of DataFrame
APIs. The Streaming DataFrame API can be used to express all sorts of streaming aggre-
gations, event-time windows etc. The critical idea in Structured Streaming abstraction
is that live data stream is treated as a table which continuously grows, and newly arriv-
ing data is appended to it. The processing model is very similar to the batch process-
ing model as the streaming logic is applied as a batch-query and Spark applies it as an
incremental query on top of the unbounded table. In this data abstraction, for the input
data stream, an unbounded table called ‘input table’ is created and new data is appended
to it continuously as new rows of data. A ‘trigger time’ is defined at which the new rows
of data is appended to the input table, i.e. the input table grows at the re-occurrence of
the trigger time. A query run on the input table generates a ‘result table’. Hence, at every
trigger, not only the input table grows but also the result table, thereby changing the out-
put result set continuously. The mode of updating output supported are of three types:
(i) complete mode: the entire updated result table is written as output, (ii) append mode:
only the newly added rows to the result table since the last point of trigger are written as
output and (iii) update mode: only the rows that were updated in the result table since
the last point of trigger are written as output. The update mode differs from the com-
plete mode as this outputs only the rows that were changed since the last point of trigger.

It is interesting to note that this data abstraction is incompatible with the Spark ML
library because the incremental processing programming model of Spark Structured
Streaming programming is not compatible with the Spark ML processing model, where
repeated iterations are carried out on entire datasets.

Comparing different Spark data abstractions

Spark libraries have been built on different abstractions and support various data
abstractions for interaction, as listed in Table 1. The core abstraction is RDD; the other
libraries have added layers of abstraction on top of this core abstraction. Interoperability
between libraries is supported in several cases, as illustrated in Table 2. There are cases
where interoperability between different Spark libraries is not possible. For example,
Spark Structured Streaming library cannot be used with the DataFrame APIs of Spark
ML library. This poses a severe limitation to apply machine learning models on stream-
ing data. On the other hand, Spark Streaming and Spark ML are naturally inter-opera-
ble because both are built on RDD abstraction. However, to apply a machine learning
model on streaming data created using the Spark ML, we have to do several internal
conversions. First, the streaming data represented in DStream data abstraction needs to

Page 14 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

be converted to RDD, which is supported as indicated in Table 2. Then, the RDD data
abstraction is converted into DataFrame so that the machine learning model can be
applied as Spark ML uses DataFrame data abstraction. Spark ML introduces the concept
of Pipelines. A Pipeline is a model to pack the stages of the machine learning process
and produce a reusable machine learning model. Reusable models can be persisted and
deployed on demand. The inherent RDDs in the streaming data represented via DStream
data abstraction can be accessed either through the ‘Transform’ or ‘ForEachRDD’
method. Out of the two available methods, the ‘Transform’ method applies the user-
defined transformation on RDDs and produces new DStream which is not our desired
intention as we want a DataFrame to apply the machine learning model created from
the Spark ML library. The ‘ForEachRDD’ is an action method that applies user-defined
transformation and does not return anything as its purpose is to push data out of the
run-time environment and can be used for this purpose. Abstracting the process of cre-
ating DataFrames from DStream using ’ForEachRDD’ function can be abstracted from
the user to automate such interconversion of data abstractions wherever necessary.

Spark APIs

Developers typically use a user-facing method invocation to achieve data transforma-
tions. These developer-facing methods are called as APIs. Spark has easy-to-use APIs
which are intuitive and expressive for operating on large datasets, available in a wide
range of programming languages like Scala, Java, Python and R. There are three sets of
APIs in Spark which have been discussed below.

APIs using RDD-based data transformations As defined earlier, an RDD is an immu-
table distributed dataset partitioned across various nodes in the cluster which can be
operated in parallel. The operations can be controlled with low-level APIs offering either
transformations or actions. In the earlier days, Spark had low-level APIs solely making
use of RDD-based data transformations. These low-level RDD-based APIs are typically
used in scenarios where [58]: (i) low-level transformations, actions and control of dataset
are necessary, (ii) the dataset to be analysed is unstructured, i.e. cannot be represented
in relational format and (iii) data manipulation via functional programming constructs
is preferred. It is interesting to mention that even now in Spark with the coming of new
data abstractions and APIs based on them, the low-level RDD-based APIs have not lost
their importance. RDDs stand as a pillar of interoperability between other data abstrac-
tions since they are built on top of RDDs. The user can easily move data between Data-
Frames/Datasets and RDDs via simple method calls.

DataFrame-based APIs DataFrame is also an immutable distributed dataset col-
lection just like RDDs. However, here data is organised into columns just like in

Table 2  Interoperability between different Spark data abstractions, as in [18, 57]

Target abstraction
Source abstraction

RDD DStream DataFrame S. DataFrame

RDD – No Yes No

DStream Yes – No No

DataFrame Yes No – No

Streaming DataFrame No No No –

Page 15 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

relational databases; which makes large scale processing of data easier by providing
higher levels of abstractions and domain-specific language APIs across a wide range
of programming languages.

Dataset-based APIs In newer versions of Spark, DataFrame APIs have been merged
with Dataset APIs to provide unifying data processing capabilities across various
libraries. As a result of this unification, developers need to learn a few concepts and
work with a single high-level API. From Spark 2.0 onwards, Dataset has two distinct
API characteristics: (i) a strongly-typed API and (ii) an untyped API.

From a programming perspective, DataFrame is a collection of generic objects,
i.e. Dataset [row], where ‘row’ is a generic untyped Java virtual machine (JVM)
object. In contrast to this, Dataset is a collection of strongly-typed JVM objects, i.e.
Dataset [T], where ‘T’ is a defined class in Java/Scala. The unified API has several
benefits [58]:

1.	 Static-typing and run-time safety: If we consider ‘static-typing and runtime safety’ to
be a spectrum then string SQL query is the least restrictive while Dataset is the most
restrictive in SparkSQL. To explain the previous statement, we consider an example.
For instance, we cannot detect any syntax errors in a SparkSQL string query until
runtime whereas in DataFrame and Dataset they can be detected during compile
time. If a function in DataFrame is invoked which is not part of the API, the compiler
detects this. Nevertheless, accessing and using a non-existent column name does
not get detected until run time. On the other extreme side of the spectrum, is the
Dataset, the most restrictive because all Dataset APIs are expressed as lambda func-
tions and JVM typed objects. Any mismatch of the typed parameters gets detected
at compile time. Here, even analysis errors can be detected at compile time, thereby
saving development time.

2.	 Ease of use: Although Dataset/DataFrames render a structure which may limit or
restrict what can be done with the data, it introduces a rich semantics and an easy
set of domain-specific operations that can be expressed as high-level constructs.
For example, it’s much simpler to perform aggregations, selections, summations etc.
operations by accessing a Dataset typed object’s attributes than using RDD. Express-
ing computation in a domain specific API is more natural than with relation algebra
type expressions offered in RDDs.

When to use DataFrame/Dataset If we require to have a rich semantics, high-level
abstractions over datasets and easy to use domain-specific APIs, then DataFrame or
Dataset APIs form a right candidature. Additionally, a higher degree of type-safety at
compile time, high-level expressions, columnar access of data, unification and sim-
plification of APIs across Spark libraries then DataFrame or Dataset APIs is a natu-
ral choice. Nevertheless, we can always use DataFrames and change back to RDDs
whenever we need fine-grained control.

Selection of APIs for flow‑based Spark programming

For supporting flow-based Spark Programming, the DataFrame APIs of Spark have
been selected. The reasons for this are:

Page 16 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

1.	 The RDD based APIs require user-defined functions to bring about data transforma-
tion, which is impractical to be used from an end-user tool. Additionally, it intro-
duces substantial type checking requirements to be enforced manually for correct
Spark programming.

2.	 Dataset APIs though offer the best in terms of detecting syntax errors and analyti-
cal errors at compile time; nevertheless, they depend on Dataset [T], where T is a
predefined Java class. It is challenging to predefine classes for all possible kinds of
datasets. Restricting this to specific use-cases would render the approach inflexible,
non-generic and inextensible.

3.	 The DataFrame API provides columnar access to data, renders custom view on a
dataset, introduces easy to use domain specific APIs, offers a vibrant abstraction and
at the same time detects syntax errors during compile time. This fits the use-case of
the flow-based programming model, i.e. mashup tools. The only missing feature is
the detection of analytical errors during compile time, i.e. accessing a non-existent
column in a DataFrame. This is reasonably easy to implement generically and has
been described in "Conceptual approach for flow-based Spark programming" sec-
tion.

Classification of Spark APIs

The various APIs found in different libraries of Spark have different method signa-
tures and perform either data loading, data transformation or data writing out of
Spark runtime environment. In this section, we classify the Spark APIs based on
their functionality, i.e. input, transformation and action. Further, we sub-classify the
transformation APIs based on their method signatures. This is useful to create generic
invocation statements to invoke the standalone method implementation of the APIs
belonging to the same API category and operating on the same data abstraction. This
is pivotal to make the code generation process generic and make it independent from
the Spark APIs as all APIs belonging to the same category and used in a graphical flow
can be invoked in a similar generic way.

RDDs support only two kinds of operations [50] i.e. (i) transformations which help in
data transformation and create a new dataset from an existing one, (ii) actions which
return the result of data transformation after running computations to the Spark driver
program. It is interesting to note that there is no notion to classify read operations,
i.e. operations which read data into the Spark runtime environment. This is primarily
because of Spark’s lazy evaluation strategy. All transformation functions are evaluated
in a lazy fashion, i.e. they remember the transformations applied on a file and are com-
puted when the results are needed starting from reading the file. Since all APIs invariably
work with RDDs internally irrespective of the higher data abstraction used. Therefore,
all Spark APIs fall broadly into two categories, i.e. either ‘transformation’ or ‘action’.

A typical Spark follows the model of reading data, analysing it and finally giving out
the result. Here, we have classified various APIs of different Spark libraries using the
notion of this logical data flow model. Accordingly, we have three categories, as dis-
cussed below.

Page 17 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

Input A Spark application begins with identifying data sources and ingesting them
into its run-time environment. APIs to read data from sources such as file systems and
streaming sources are available out of the box. ‘SparkSession’ class is the entry point
to programming Spark with the Dataset or DataFrame APIs. This class provides two
methods:

1.	 read () : returns a ‘DataFrameReader’ It creates a DataFrame.
2.	 readStream() : returns a ‘DataStreamReader’ It creates a Streaming DataFrame.

The ‘DataFrameReader’ class provides methods to read datasets from external envi-
ronments and represent them in DataFrame format. The various read methods (APIs)
offered by this class fall into the ‘input’ category as per the classification done in this
work. The ‘DataStreamReader’ class provides methods to read streaming datasets from
external environments.

Similarly, the ‘StreamingContext’ is the main entry point for using the streaming func-
tionality of Spark, i.e. working with DStreams. It provides methods (APIs) to create
streams and work with them.

Transformation ‘Transformation’ APIs transform user data within the run-time
environment. Some data transformation APIs act on one data source while there are
transformation APIs that act on two data sources. Additionally, there are other trans-
formation APIs which prepare objects required by other data transformation APIs. The
transformation APIs available in Spark have been classified into different sub-categories
based on the number of data-sources they require as input to operate.

Type A: These APIs operate on one data abstraction and produce a new data abstrac-
tion They may or may not take additional parameters. The different types of transfor-
mations supported by Spark SQL, Spark ML and Spark Structured Streaming libraries
include: (i) Static DataFrame Operations APIs of Spark SQL to produce a new Data-
Frame as per user-specified criteria, (ii) ML Transformers of Spark ML transform one
dataset to another, (iii) Streaming Aggregations of Spark Structured Streaming add col-
umn to produce new Streaming DataFrame.

Type B: These APIs operate on two data abstractions and produce a new data abstrac-
tion If we need to operate on more than two data abstractions, then the APIs need to
be invoked iteratively. Examples include: (i) DataFrame Join APIs of Spark SQL which
produce a new DataFrame by joining two static DataFrames, (ii) DStream Join APIs of
Spark Streaming which produce a new DStream by joining two DStreams, (iii) Stream-
ing DataFrame Join APIs of Spark Structured Streaming which produce a new streaming
DataFrame by joining two streaming DataFrames, (iv) Streaming and Static DataFrame
Join APIs of Spark Structured Streaming which produce a new streaming DataFrame by
joining streaming DataFrame and static DataFrame.

Type C: Spark libraries support APIs that take one data abstraction in addition to other
user-defined object parameters and produce an object such as a machine learning model
or a pipeline model or maybe even a new data abstraction. Such a reusable object can be
applied on other data frames that match the schema of the dataset using which the re-
usable object was prepared. Example APIs include ML Estimators, ML Pipeline Model,

Page 18 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

ML Train-Validation Split Model and ML Cross-Validation Model provided by Spark ML.
The general method signature of different types of transformation APIs is given below:

data abstraction df1.API() // Type A
data abstraction df1.API(user params) // Type A

data abstraction df1.API(data abstraction df2) //Type B
data abstraction df1.API(data abstraction df2, object userParams) // Type C

Type D: Other Spark APIs which do not follow the above method signature patterns
have been classified as Type D.

Action These are APIs which trigger input APIs and transformation APIs associated
with the data source and cause it to materialise. The lazy evaluation strategy of Spark
requires action APIs for data transformations to materialise in the run time environ-
ment. Action APIs typically write to file systems or streaming sinks, i.e. push result out
of the Spark run-time environment. Examples include (i) Spark Session Writer API of
Spark SQL writes a static DataFrame to file system, (ii) Spark Session Stream Writer of
Spark SQL writes a streaming DataFrame to a streaming sink like Kafka, (iii) ML Writer
of Spark ML persists a ML model to the file system.

Which type of APIs are supported in the conceptual approach? The APIs have been
categorised into either input, transformation—Type A, transformation—Type B, trans-
formation—Type C and action. The underlying method signatures are similar for all
APIs which fall in the same category except for transformation—Type D. Hence, the
standalone method implementation of these APIs can be invoked by generic statements
which correspond to the API category and the data abstraction used by the API. Every
modular Spark component uses a generic method invocation statement for its stan-
dalone method invocation as listed in Table 3 and explained in "Generation of Spark
driver program" section.

APIs not having common method signatures and which cannot be classified have been
categorised as Type D. The standalone method implementation of such APIs cannot be
invoked by a generic invocation statement and are not supported in this work.

Conceptual approach for flow‑based Spark programming
The conceptual approach for programming Spark via graphical flows is presented in two
parts:

Modelling of graphical Spark flows One of the primary assumptions is that end-users
would typically follow the logical data flow model of reading, transforming and writing
data out while specifying a Spark application. This idea is used to guide the user and
enforce the sequence of connecting components such that every flow results into a com-
pilable Spark driver program. The flow is captured and represented as a directed acy-
clic graph (DAG) [59], where the start vertex represents data read operations, branches
are pathways for data transformations, and end vertices represent data write operations.
Any vertex in a branch must be compatible with the schema produced by its immediate
predecessor. Modelling of loops in the graphical flow is not supported because the data
abstraction output from each component is immutable. Since Spark data abstractions
like DataFrame, DStreams etc. are abstractions over RDD, so they are immutable like
RDDs. The DAG can have multiple start vertices, since users can read datasets from two

Page 19 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

different IoT data sources, merge them and, then, run analytics on them. In short, the
DAG stores the type of graphical components used by the user and also their positional
information, both of which are necessary to generate a Spark application.

Method implementations of Spark operations that take a data abstraction schema as
well as user parameters as input are maintained which make use of one or more Spark
APIs to do the data transformation and return a modified data abstraction schema
as the output. Every vertex in the DAG typically corresponds to one Spark operation
and, thus, to one stand-alone method implementation.

It is interesting to mention here that, since the programming style, as well as the
execution model of a Spark application, is different from those of actor-based data-
flow models, which follow the flow-based programming paradigm and asynchronous
message passing, additional auxiliary graphical components have been introduced to
express a Spark program from mashup tools. These are typically used for enforcing
a strict sequence of operations, e.g. when defining the order in pipeline operations
of machine learning APIs or for bridging datasets, like in join or merge operations.
These need to be preserved in the DAG as well. These vertices enforce a strict path-
way of data transformation by overriding the asynchronous dataflow model and do
not correspond to any Spark operation. Additionally, the code generation begins
lazily, i.e. when the end vertex of the DAG is traversed.

The captured DAG is passed to a code generator, which first generates the necessary
code skeleton for initialising a Spark session and then closes the session at the end of
the application, to create the runnable Spark application. For the actual business logic
of the flow, it wires the method implementations of Spark operations by providing
the data abstraction schema and user parameters as inputs. The only requirements
for this wiring process are that the data abstraction provided as an input is the same
as the data abstraction of the output of the previous method, and the data abstraction
schema must be compatible. By compatibility, it is meant that the data abstraction
schema from one operation, for instance, a DataFrame, has the necessary columns
which the receiving operation would make use of and the receiver expects the schema
using the correct data abstraction, i.e. DataFrame.

Suitable data abstraction For expressing a Spark program, the most suitable data
abstractions, i.e. DataFrame (including Streaming DataFrame) and DStream were
selected. Users would typically drag different graphical components and wire them
together in the form of a flow. The chosen declarative APIs require some input and
produce predictable outputs. Hence, these are an ideal choice as wiring components.
From the tool’s perspective, the input is a compatible schema, and the output is a
corresponding altered schema. In contrast to this, supporting data-transformations
based on RDDs making use of user-defined functions (UDFs) would impose chal-
lenges that are difficult to solve generically. As every UDF has tight type require-
ments, this would introduce type validation problems from a tool’s perspective.

Then, the scope of the graphical components has been defined. The graphical
components do not represent a single Spark API but rather a set of APIs invoked
in specific order to perform a specific data-analytic operation. Since representing
every Spark API via a graphical component would involve wiring a large number of

Page 20 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

components for a Spark program, the aforementioned design attempts to balance a
programming tool’s usefulness and usability.

Composing a graphical Spark flow

This section discusses how the conceptual approach works in details, i.e. how to
compose a graphical Spark flow, its validation to ensure such a flow generates a com-
pilable Spark program. However, an important question arises here: What kind of
graphical components would support such an application model and how to develop
such components?. Figure 1 shows the high-level application model from a develop-
er’s perspective. It is evident from the figure that while the user focuses on joining
various graphical components to specify the data transformation logic, the developer
sees the same components as a bundled set of Spark APIs. These graphical modular
components internally correspond to the fundamental execution component used in
a mashup tool, for instance, these correspond to actors in aFlux which when instan-
tiated invoke the set of Spark APIs and result in the generation of a complete Spark
application program (aka Spark driver program).

The approach can be broadly classified into three essential parts dealing specifically
with: (i) components, (ii) flow validation and (iii) application generation.

Components

A ‘component’ is a basic unit of Spark flow composition. As discussed earlier, a compo-
nent encapsulates a set of Spark APIs invoked in a specific order to perform a specific
data analytics operation, e.g. reading data from a file or a streaming source like Kafka
etc. A component is a critical element in the design since each component is a handle for
the end-user to communicate the business logic as well as configuration information to
the back-end. At the same time, a component serves to enforce the flow compositional

Read
Data

Component

T1
Component

T2
Component

Write
Data

Component

Component: basic unit
of execution in a mashup
tool

Read
Data

Transform
1

Transform
2

Write
Data

Graphical Spark Flow

Read
1 2

Start
Spark
Session

End
Spark
Session

Spark Driver Program

Communication
between components

Abstracted from
end-user.
Necessary part of
Spark Driver Prog.

Abstracted from
end-user.
Necessary part of
Spark Driver Prog.

Data analytics operations

view

view for
creating
artefacts

Mashup Tool
Frontend:
GUI

Mashup Tool
Backend:
Execution
Environment

Components
contribute
to creation of
a Spark driver
program

Components
encapsulate

data analytics
operation

Execution: Translation &
Code Generation

Artefacts have:
1. Backend execution component
2. Corresponding frontend GUI composable component

Fig. 1  Developer’s perspective for building Spark components for mashup tools, as in [57]

Page 21 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

rules so that the final resultant flow always produces a compilable and runnable Spark
application. For supporting graphical Spark programming, these components have been
classified into different categories, as explained below. These components are developed
by the developer of the graphical flow-based programming tool and used by the user of
such tools to program Spark graphically.

Categorisation of components: To support generic modelling of graphical Spark flows
in mashup tools, we identified the different classes of APIs that exist within Spark in
"Classification of Spark APIs" section. Accordingly, different categories of components
are supported for graphical flow-based Spark programming. One specific challenge is
dealing with multiple incoming connections to a component in a mashup tool. Since in
flow-based programming paradigm [10] of mashup tools, every component executes on
receiving a message from its preceding component and the order of messages is not pre-
served. However, in a Spark flow, some components which may receive more than one
incoming connections require preservation of the order of messages received. For such
scenarios, special components called bridge components have been designed to express
the Spark sequenced operations in a flow-based programming paradigm.

There are basically five component types namely input, transformation, bridge, action
and executor. Components of these types form the vertices in the DAG. Input compo-
nents have no incoming connections, and they read data from external sources into the
run-time environment. From the user’s perspective, these start a Big-Data processing
flow, i.e. they are the first components in flow, and other components consume their
output.

From the mashup tool’s perspective, they introduce the schema to be used by succeed-
ing components in the flow. Transformation components are intermediate components
and represent operations on ingested data; they consume as well as produce an output
schema. Transformation APIs in Spark are designed to accept, at most, two compatible
schema variants, which means they can accept, at the most, two incoming connections;
they must also have at least one outgoing connection. Bridge components do not con-
sume or produce schema. Accordingly, they do not correspond to any method imple-
mentation of Spark operation but are used to express the Spark sequenced operations
("Supporting sequenced Spark transformations in flow based programming paradigm"
section) in a flow-based programming paradigm. For example, they can impose order in
processing data coming from preceding transformations. There are two classes of Bridge
components, namely ‘Class A’ and ‘Class B’. Class A components are used to distinguish
two incoming connections by annotating the connections with meta-data before being
passed on to the next component. Class B components impose order from among any
number of independent incoming transformation connections and assemble them into
a sequence by preserving order. Action components allow the user to save the trans-
formed data to external file systems or to stream it out to message distribution systems.
Finally, an executor component collects all the incoming connections from multiple
action components and adds abstractions related to the Spark driver program. This has
all the data required to generate a Spark application after the executor component has
been triggered.

Key attributes of a component: A component, which is the basic unit of a Spark flow
has the following attributes:

Page 22 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

(i)	(Data abstraction) colour
	 denotes the data abstraction the component uses internally. It is used to identify the

data abstractions of the encapsulated APIs within the components. Since different
data abstractions are supported, a flow should consist of only components of the
same colour to produce a compilable and runnable Spark application ("Compo-
nents" section).

(ii)	 Component category
	 contains the unique category to which a component belongs, i.e. either input, action,

transformation or bridge etc.
(iii)	Unique name
	 is used to identify the component when captured from a front-end user flow and

converted into an internal model for Spark application generation.
(iv)	Configuration panel
	 allows users to supply the necessary parameter for its optimal functioning.
(v)	 Internal logic
	 refers to the core functionality of the component, i.e. how it takes the user-supplied

parameters, generates an invocation statement to invoke the standalone method
implementation of the underlying Spark APIs, prepares and sends a message to the
next connected component in the flow.

Every Spark component can be viewed from two different perspectives, i.e. one from
the end-user perspective of using it in a graphical flow representing a Big Data analytics
operation along with a configuration panel and other as a component instantiated as an
executable-unit in the run-time with pre-programmed attributes and embedded logic.
Figure 2 shows the composition of a Spark flow using the modular components. From
the Figure, it can be seen that the user specifies configuration via a configuration panel
and specifies its incoming as well as outgoing connections. With that, the component
receives messages from its predecessors and parses the messages. It adds its positional
hierarchy data and sends the complete information to its successors and its specific
information to be stored in the internal state. The positional hierarchy is also known as
sequences in flow-based programming paradigm [10] which are to enforce the correct

Info.Config
Properties

Component

Component
1

Component
2

Message

Component
n

Message

on the Front-end

1. Processed by
the component

Message received
from preceding
components

Message sent
to succeeding
 component

2. Prepared by the
component

Fig. 2  Composition of a Spark flow using the modular components, as in [57]

Page 23 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

sequence of execution of components in a flow. In this context, the positional hierarchy
determines if a specific component can be used in a specific position in a flow.

Hence, every component interacts with the end-user designing the flow and also con-
tributes to creating an internal model of the user flow. All the components in a Spark
flow are validated based on their position in the flow, i.e. if they are allowed in a specific
position in the flow, compatibility of the data abstractions and if the input schema is com-
patible with them. For validation, the meta-data storing the category of every Spark com-
ponent and its list of permissible predecessors is maintained. If the validation is passed,
then, an internal model of the user flow is created from which the generation of a run-
nable Spark application proceeds.

Compositional rules: Based on the classification of components, a Spark flow needs to
adhere to the following rules to generate a compilable and runnable Spark application:

1.	 Flow is unidirectional. Every branch in a flow begins with an input component, fol-
lowed by one or more transformation components which must lead to one and only
one action component.

2.	 Every flow must end with only one executor component, and each action component
in the flow must be connected to the executor component.

3.	 Transformation components, which require incoming connections in a specific
order, must be preceded directly by bridge component(s).

4.	 A component accepts an incoming connection(s) if and only if the schema derived
from the incoming connection(s) is valid against schema checks. This means that a
named column operated upon in a component is part of its incoming schema.

5.	 Each component internally uses one Spark data abstraction, which is represented by a
uniform colour code. A flow composed of different coloured components, except for
the executor component, is not accepted. This is done to support easy validation of a
flow. For instance, in a streaming use case using DStream data abstraction, when we
require to use DataFrame APIs for specific functionality like applying a ML model on
streaming data which require interconversion of data abstraction, then the component
houses the interconversion algorithms internally but presents the use case context-spe-
cific data abstraction for validation, i.e. DStream, since the flow starts with a data loader
component for loading datasets from a streaming source using DStream abstraction.

Composability of components: Composability is a system design principle which deals with
the interrelation between different components of a system [60]. A system is said to be com-
posable when its different components can be assembled in various configurations to satisfy
a user requirement [61]. The decisive criteria for components of a system to be composable
are that they should be independent or self-contained and stateless [62]. A composable sys-
tem is more natural to validate because of its consistency to achieve a certain goal [62].

In the context of this work, we have outlined that the components designed are
modular, i.e. self-contained and work on taking a data abstraction schema as input
and produce a modified schema of data abstraction as output, i.e. stateless. The graph-
ical components when composed following the compositional rules enumerated above,
such that they pass the flow validation to yield a compilable and runnable Spark pro-
gram, are said to be composable.

Page 24 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

Every Spark component has a unique internal name and an associated standalone
method implementation for an analytic operation. Meta-data of this information are
maintained at the tool level. The code-generator receives the DAG as input and gener-
ates the required static code, e.g. starting a Spark session, inclusion of Java packages.
Then, it checks the vertex in the DAG and determines its category. If it is an input or
transformation vertex, then it uses the vertex’s internal name to determine its associ-
ated method implementation. It calls the method via Java Reflection, passing the data
abstraction schema and the vertex’s user-supplied configuration values as parameters.
This process is done iteratively for all vertices in the DAG until the code generator
reaches the end vertices, which indicate actions and terminate the flow. Here, it calls
the appropriate method to publish the data and closes the Spark session. The result-
ing Java file is compiled into a runnable Spark application and deployed on a cluster.

Validation of a Spark flow

Validation of a user created graphical Spark flow is the first step before generating the
Spark application program. It is to ensure that the components used in the flow use the
compatible data abstraction and their positional hierarchy in the flow, i.e. a compo-
nent can consume the output produced by its predecessor, ensures the generation of a
compilable and runnable Spark application. By validation of a flow, it is meant:

•	 The flow first loads the datasets then has transformation components, and the last
components are the action components to return the output.

•	 The transformation components used after loading of datasets do not make use of
any named column name which is missing in the schema of the loaded dataset, i.e.

Read
start vertex Select Display Execute

end vertex

Read
start vertex Select Display Execute

end vertex

Read
start vertex Select Display Execute

end vertex

Read
from
CSV

Select
Fields Display Spark

Execute

Properties
1. Data Abstraction = DataFrame
2. Category = Input

Properties
1. Data Abstraction = DataFrame
2. Category = Transformation

Properties
1. Data Abstraction = DataFrame
2. Category = Action

Properties
1. Category = Execute

Read
start vertex Select Display Execute

end vertex

Read
start vertex Select Display Execute

end vertex

Step 1

Step 2

Step 3

Step 4

Checks for Step 1:
1. Is category == input?
2. Note the schema input and output.
3. Note the data abstraction used.

Checks for Step 2:
1. Is category == action/transformation?
2. Is the data abstraction == data abstraction
 of predecessor?

 input for this vertex compatible?

Checks for Step 3:
1. Is category == action/transformation?
2. Is the data abstraction == data abstraction
 of predecessor?

 input for this vertex compatible?
4. If action component, note the output message.

Checks for Step 4:
1. Is category == execute?
2. Consume all the incoming msg from action vertex.

DAG

User Flow

Input/
Output

Input/
Output

in
validation

Input/
Output

Transform.

Transform.

Transform.
in

validation

Legend

Fig. 3  Validation of a Spark flow

Page 25 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

the first transformation component can consume the schema produced by its data
loader component.

•	 The schema of the dataset modified by a transformation component can indeed be
processed by the succeeding transformation component/action component.

•	 The components use a uniform data abstraction of Spark.

If the validation fails, then the user must correct the flow and re-deploy it. If a flow
successfully passes the validation phase, it is sent to the next stage: i.e. representing
the flow in an internal model to be used for Spark driver program generation. Figure 3
shows the validation for a flow which reads a CSV file, selects some fields and displays
the results. Algorithm 1 shows the flow validation steps.

Algorithm 1: validation steps of a Spark flow

1 The user flow is checked for no cycles and represented as a topologically sorted DAG. If cycles are present,
then the validation fails.

2 For the start vertex v1 , the following operations are performed:

 – Note the data abstraction: vda1 .

 – Check the category: If vcat1 = input , where cat ∈ {input , action, transformation, executor , bridge} , then the
validation fails.

 – Note the input and output schema: vsin1 and vsout1  , where
sin = sout ∈ {DataFrame,DStream, StreamingDataFrame}.

 – Mark current vertex as ‘visited’.

3 Traverse the next unvisited vertex except the end vertex. Perform the following checks:

 – Check the compatibility of data abstraction with its immediate predecessor’s: if vdai = vdai−1 , then the
validation fails.

 – Check the category: If vcati = transformation or vcati = action , then the validation fails.

 – If vcati = transformation and it specifies ordering of data-flow then a counter is started, i.e. count = 1

 – Process the next connected vertex together with current vertex, increase the counter, i.e.
count = count + 1.

 – If vcati+1 �= bridge , then the validation fails.

 – Mark current vertex as ‘visited’.

 – Check compatibility with predecessor’s schema: If vsouti−1 �= v
sin
i  , then the validation fails.

 – Note the output schema: vsouti .

 – Mark current vertex as ‘visited’.

4 For the end vertex vn:

 – Check the category: If vcatn = executor , then the validation fails.

 – Check category of its connected predecessor: If vcatn−1 �= action , then the validation fails.

Generation of the internal model

Once the validation process has been successful, the flow is deployed in the runtime
environment; therefore an execution unit of the implementing tool is instantiated for
every graphical component used in the flow, and the execution follows starts from the
first component of the flow. In the runtime environment, as the components execute, a
DAG is regenerated. However, this DAG not only captures the user flow, but additional
information is attached to every vertex during its creation, similar to the intermediate
code generation step in case of compilers [59].

Page 26 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

Message passing The components on execution rely on message passing. This message
contains how to invoke the corresponding component’s standalone method implemen-
tation of Spark APIs and the list of user parameters that should be passed while invoking
it. The message also helps all successors to know the output of their predecessor and in
turn create their invocation statements, append to the message and pass it on. There-
fore, every vertex during its execution creates a message for all its connected successors,
which has two distinct parts:

Message part 1: (contains the generic method invocation statement): The component
in its ‘internal logic’ has the necessary code to check the category of the component.
Accordingly, Java statements to invoke the standalone method implementation of the
encapsulated Spark APIs via reflection [63, 64] are added for every vertex. These Java
statements form the main methods in Spark Driver program. The structure of Java
statements for different components is pre-determined based on the category of the
component, i.e. whether they represent input, transformation, or action components
("Classification of Spark APIs" section) and the data abstraction used, i.e. DataFrame,
DStream or Streaming DataFrame. These Java statements form the first part of the
message.
Message part 2: (contains the list of user-supplied parameters for the component):
The component checks the user-supplied parameters and creates a property file [65]
to store them. It uses the unique name of the component, as every component has
one as its essential attributes, and the property name to create a tag for every user
parameter. This assumes the following form: <uniqueName-fieldName=user-sup-
plied values>. The first component creates the property file, and other components
in the flow use the same file to append their values. The second message contains the
path of the property file and its unique tag to access its user-supplied parameters.

The component combines both message parts and stores them in the vertex of the DAG,
and it also sends as a message to all its successors. The successor components use this
information to create their message, store it, as well as append their message to the original
message and pass it on. The last component which is the ‘executor’ component adds Java
statements to create a Spark session within which other Spark operations can be invoked
and also create a generic statement to access the user-supplied parameters from the prop-
erty file. Lastly, it assembles all the Java statements of all the components of the flow to
create a combined list of Java statements to invoke the generic method implementation
of the Spark operations represented by the individual components in the flow. Figures 4,
5, 6 illustrate the steps of the internal model generation of a Spark flow. The example uses
a flow which reads data from a CSV file, selects some fields of data and displays them. In
Fig. 6, the final assembled list of Java statements is shown in the form of a green-coloured
box which is the internal model representation of the user created Spark flow.

Generation of Spark driver program

During the creation of internal model representation of a user flow, each component
used in the flow creates an invocation statement to invoke its corresponding generic
method implementation by passing the user supplied configuration as parameters. After

Page 27 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

Read
start vertex Select Display Execute

leaf node

Read
from
CSV

Select
Fields Display Spark

Execute

Properties
1. Data Abstraction = DataFrame
2. Category = Input

Properties
1. Data Abstraction = DataFrame
2. Category = Transformation

Properties
1. Data Abstraction = DataFrame
2. Category = Action

Properties
1. Category = Execute

Read
start vertex Select Display Execute

end vertex

Step 1

Internal Model Generation Steps:
1. A Java statement for each vertex is introduced in the internal model.
 These Java statements form the main method in Spark Driver program.
 Structure of Java statements for different components are
 pre-determined based on their category and the data abstraction of the
 encapsulated Spark APIs.
2. The user supplied parameters are stored in a

3. It prepares and sends a message to its successor
 combining 1 and 2.
4. The next vertex creates & appends its statement (1 & 2).
5. The process continues till the end vertex is reached.

DAG

User Flow

Message Part 1
1. Identify the Spark
component category.
2. Prepare invocation
statement for this
method.

// prepare Java statement for reading into a DataFrame
 if (componentCategory . equals ("ReadDataFrame ") {
statement = " Dataset <Row> "+ nameInDag+" = "+nameInDag+ " _readDataFrame
(sparkSession , "+" \" "+nameInDag+" \" "+" , featureProp) " ;
 }

Message Part 2
1. Identify the user
supplied parameters.
2. Add the params. to a
common property file
with unique tag names.

Common Property File: All vertices append their user
parameters here.

FileToDataFrame1-

Generic invocation statement for invoking
a wrapper method

Fig. 4  Internal model representation of a Spark flow: part 1

Internal Model Generation Steps:
1. A Java statement for each vertex is introduced in the internal model.
 These Java statements form the main method in Spark Driver program.
 Structure of Java statements for different components are
 pre-determined based on their category and the data abstraction of the
 encapsulated Spark APIs.

 unique tag names.
3. It prepares and sends a message to its successor
 combining 1 and 2.
4. The next vertex creates & appends its statement (1 & 2).
5. The process continues till the end vertex is reached.

Common Property File: All vertices append their
user parameters here.

FileToDataFrame1-

Read
start vertex Select Display Execute

end vertexStep 3

Message Part 1
1. Identify the Spark
component type.
2. Prepare invocation
statement for this
method.

// prepare Java statement for transforming a DataFrame
if (componentCategory . equals (" TransformDataFrame ") {
statement = " Dataset <Row> "+ nameInDag+" = "+nameInDag+ " _transformDataFrame (
sparkSession , "+" \" "+nameInDag+" \" "+" , featureProp , "+parents . get (0) +") " ;
}

Message Part 2
1. Identify the user
supplied parameters.
2. Add the params. to a
common property file
with unique tag names.

// prepare Java statement for action on a DataFrame
if (componentCategory . equals (" ActiononDataFrame ") {
statement = nameInDag+" _actionOnDataFrame (sparkSession ,

"+" \" "+nameInDag+" \" "+ " , featureProp , "+parents . get (0) +") " ;

}

Message Part 1
1. Identify the Spark
component type.
2. Prepare invocation
statement for this
method.

Message Part 2
1. Identify the user
supplied parameters.
2. Add the params. to a
common property file
with unique tag names.

Read
start vertex Select Display Execute

end vertexStep 2

Generic invocation statement for invoking
a wrapper method

Generic invocation statement for invoking
a wrapper method

Fig. 5  Internal model representation of a Spark flow: part 2

the preparation of the internal model of a Spark flow, it can be used to generate a com-
plete Spark driver program. In the internal model, each vertex has contributed a Java
statement, and all these have been assembled by the last vertex of the DAG, i.e. which

Page 28 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

corresponds to the execute component of the user flow. This collection of statements
become the statements within the main method of the Spark driver program. API based
code generator is supplied with these prepared statements for producing a Spark applica-
tion in Java programming language [66].

To make the code generation process as generic as possible, generic method imple-
mentations making use of one or more Spark APIs are maintained. These are called as
‘wrapper methods’. All such ‘wrapper methods’ are bundled into a library called ‘Splux’.
Each component used by the user in a flow on instantiation parses the user supplied con-
figuration values and appends them to a property file and prepares an invocation state-
ment to invoke the corresponding wrapper method in Splux. The collection of all such
invocation statements contributed by various components of the flow are used in the
main method of the Spark driver program which essentially invokes the wrapper method
during execution passing it the user supplied configuration values as parameters. The
invocation statement for every component is pre-determined based on the category of
the component, i.e. whether they represent input, transformation, or action components
("Classification of Spark APIs" section) and the data abstraction used, i.e. DataFrame,

Fig. 6  Internal model representation of a Spark flow: part 3

Table 3  Example: mapping of component category → Spark API type, as in [57]

SN Component class Component category Spark API classification

1 ReadDataFrame Input Input

2 ReadDStream Input Input

3 TransformDataFrame Transformation Transformation Type A

4 TransformDStream Transformation Transformation Type A

5 TransformDataFrames Transformation Transformation Type B

6 ActionOnDataFrame Action Action

Page 29 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

DStream or Streaming DataFrame, thereby forming the ‘component class’ (Table 3). The
wrapper methods contained in Splux are invoked via reflection. From an implementation
perspective, JavaPoet [67], an API based code generator, is used to assemble the reflec-
tion statements to generate a Spark driver program.

SparFlo: a subset of Spark APIs bundled as modular components

Spark offers many different libraries in its ecosystem accessible either via the RDD-based
programming approach or invocation via APIs working on different data abstractions like
DataFrame, DStreams etc. The manual development of Spark application involves inter-
action with these elements. To support the development of Spark applications via graphi-
cal flow-based programming, more abstraction is necessary. With the approach described
in the paper, a subset of Spark APIs operating on DataFrame and DStream abstractions
have been selected which are compatible with the flow-based programming paradigm.

‘SparFlo’ is a library consisting of modular ("Towards flow-based Spark programming"
section) composable ("Components" section) components. The components in SparFlo
bundle a set of Spark APIs from the selected subset of Spark APIs which are executed
in a specific order to perform one data analytic operation. By modularity, we mean that
every component representing a set of Spark APIs has everything necessary within it to
achieve the desired functionality and is independent of other components, i.e. in this con-
text perform one data analytics operation by taking only some user-supplied parameter
as input for customisation of the data analytics operation. These modular components
are composable when composed confirming to the flow compositional rules discussed in
"Components" section. The components of SparFlo can then be expressed as composi-
tional units in a mashup tool, for instance, they have been expressed as actors in aFlux.

Additional compositional units are sometimes necessary to develop graphical flow-based
Spark programs using the SparFlo components. This happens when the execution semantics
of the implementing graphical flow-based tool follows a non-sequential execution model, for
instance, bridge components have been developed to express pipelined operations during a
machine learning model creation in aFlux ("Supporting sequenced Spark transformations
in flow based programming paradigm" section). Such additional compositional units do not
form part of SparFlo but are implementation specific. This is because if the implementing
tool follows a sequential flow-based programming paradigm, then additional compositional
units may not be necessary. In short, SparFlo is a component library using a subset of Spark
APIs which can be easily integrated into graphical tools based on the flow-based programming
paradigm.. Figure 7 illustrates the elements and characteristics of SparFlo.

Extensibility: Inclusion of new/forthcoming Spark APIs A new/forthcoming Spark API
can be modelled as a SparFlo component to be used in a flow-based tool like aFlux and
auto-generate a runnable Spark program using the approach described in "Conceptual
approach for flow-based Spark programming" section, if and only if:

•	 The new Spark transformation is accessible via an untyped API.
•	 It must use either the DataFrame, DStream or Streaming DataFrame data abstrac-

tion.

Page 30 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

For example, to model a new component called ‘StreamDFRunningAverage’ in Spar-
Flo and implement it in aFlux which supports running average computations in Spark
Structured Streaming, the following analysis, divided into two broad categories, are to be
undertaken from a developer’s perspective:

API analysis: Analysis of the APIs to support such a transformation component, i.e. if
it has an untyped API and its internal data-abstraction is either DataFrame, DStream
or Streaming DataFrame. In this case, this transformation uses Streaming DataFrame
and has an untyped API.
Component analysis: To support a new component, its category needs to be deter-
mined, i.e. whether its an input, transformation or action component. In this case,
it is a transformation component. A list of valid predecessors and successors for
the transformation component needs to be determined for supporting validation
when the component is used in a flow.

 After the analysis, the development activities for supporting the component within
aFlux are again divided into two categories as below:

Development of a wrapper method: Once the Spark APIs for transformation have
been identified, the Splux library containing generic method implementation of all
Spark APIs needs to be extended. A new generic method implementation for the
new Spark API to execute running average operation on streaming data in Spark
run-time environment should be added which can be invoked by reflection tech-
nique during auto-generation of Spark driver program in aFlux.
Component development: In the case of aFlux, a new actor representing the
transformation component needs to be implemented with the following structural
definitions:

1. GUI components following actor semantics
2. Modular in design
3. Flow-based programming paradigm
4. User connects several components to create an application

Comp.
1

Comp.
2

Comp.
3

aFlux: Mashup tool: used by end-user

Spark Framework

SparFlo: uses a subset of Spark APIs

Spark

DStream ModelRDD Frame

DStreamData
Frame

1. Selected Spark APIs modelled as modular composable
 components
2. Selected Data abstractions only i.e. No RDD support
3. User connects these components to create a Spark app.
4. Abstracts the complexities of Spark from end-user
5. Independent of the semantics of the mashup tool

G
ra

p
h

ic
al

 F
lo

w
-b

as
ed

 P
ro

g
ra

m
m

in
g

M
an

u
al

 P
ro

g
ra

m
m

in
g

M
as

h
u

p
 T

o
o

l
M

o
d

u
la

r
C

o
m

p
o

sa
b

le
 C

o
m

p
o

n
en

ts
R

D
D

 &
 A

P
I b

as
ed

D

at
a

T
ra

n
sf

o
rm

at
io

n

Fig. 7  SparFlo: A library of modular composable components using a subset of Spark APIs, as in [57]

Page 31 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

•	 Component category: This component belongs to transformation category of
aFlux components as defined in "Composing a graphical Spark flow" section. The
category helps decide the positional hierarchy of the component in a flow which
is required for validation of the flow. Since this is a transformation component
hence, this can neither be the first component nor the last component in a flow.

•	 Colour: The component should have the colour code representing the data-
abstraction it uses internally. Here, it’s colour code should permit the user to
know that it uses Streaming DataFrame internally.

•	 Mapping to API type: This component uses Spark APIs which belong to ‘Transfor-
mation Type A’ class of APIs. Hence, its mapping to API type is ‘TransformData-
Frame’ as indicated in Table 3 which would determine its generic invocation state-
ment used in the internal model to invoke its corresponding wrapper method.

•	 Cardinality of incoming connections: The number of incoming connections for
this component is one. In case, it is more than one; then an internal timer needs
to be implemented to wait for all messages from the component’s predecessors
to arrive before starting the execution.

•	 Message/schema checks: The component which is an executable-unit must
include checks to ascertain the schema received as a message from its predecessor
is valid, and it can work upon it to bring about a successful transformation.

•	 Representation in the internal model: Since ‘StreamDFRunningAverage’ is a
transformation component, hence it must contribute to the internal model by
producing a unique name and adding the generic Java statement to invoke its
wrapper method via reflection.

•	 User configurable properties: All configurable parameters of the API are made
available to the user for customisation.

With this approach, any new API of Spark fulfilling the conditions listed can be added
to SparFlo and programmed in mashup tools via the approach described to auto-gen-
erate a compilable and runnable Spark driver program.

Implementation

Based on this conceptual approach, Spark SQL, Spark ML, Spark Structured Stream-
ing components have been prototyped in aFlux based on the DataFrame data
abstraction and Spark Streaming components based on the DStream data abstrac-
tion. Special components called ‘bridge’ components have been built to support
SparFlo modular, composable components. Additionally, from an implementation
perspective, the component’s have specific key properties which are vital for their
functioning.

Supporting sequenced Spark transformations in flow based programming paradigm

In a flow-based programming paradigm, the control flows from one component to
another from start to end as connected in the flow. In an actor-model based flow
programming paradigm, each component reacts on receipt of a message in its mail-
box and passing its output to the next connected component. The messages received

Page 32 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

by a component in its mailbox are processed one at a time. This form of execution-
style is not conducive to support specific Spark operations which must be executed
in a sequence. Each actor has one only mailbox, and all messages from other con-
nected components arrive in the same mailbox, and all messages are processed with
equal priority in the order of their arrival. Special handling is required in case of
multiple incoming connections from components belonging to the same component
category which require ordering. Special components called ‘bridge components’ are
used to order the arrival of messages in an actor’s mailbox so that they are processed
in a sequence amicable to the way Spark APIs are invoked when used via manual
programming. The bridge components are of two kinds:

Class A: These components are used to annotate the messages coming from two
different pathways to indicate the order of processing. A typical example is join-
ing data from two branches, which introduce two incoming connections with an
equal or different priority. Spark join operations are similar to SQL joins where
only in the case of an inner join, the two data sources have equal priority, i.e.
applying join on dataset 1 with dataset 2 or vice-versa always yields the same
result. However, in case of an outer join, the position in the join is necessary for
the operation, i.e. the order of processing is vital to perform either join on data-
set 1 with dataset 2 or vice-versa. The ‘PrepareJoin’ component collects messages
from two incoming connections and annotates them with the order of processing
before passing it on to the component where the actual join operation is per-
formed i.e. the ‘JoinDF’ component.
Class B: These components impose order in the execution of many transforma-
tion connections and assemble them into a sequenced operation. A typical sce-
nario would be the creation of a machine learning model which follows a specific
sequence of operations. Accordingly, the ‘PreparePipeline’ component accepts
incoming connections and arranges them in a specific order as specified by the
end-user.

Figure 8 illustrates the working of the two different kinds of bridge components.

Component
1

Component
2

Component
3

Prepare
Pipeline

Position
1

Position
3

Position
2

Bridge Class B

Ordered List < C1,C3,C2 >

a

Bridge Class A

T1

T2

Prepare
Join

Prepare
Join

Join
DF

Position
1

Bridge Class ATransformation
Components

Joins T2 with T1

Position
2

b
Fig. 8  Bridge components: working details, as in [57]

Page 33 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

Components: key properties

A component which is internally instantiated into an actor has some properties
defined by the developer in addition to encapsulating a data analytics operation in
the form of a set of Spark APIs. These properties are necessary for correct working
of components. These are not visible to the user of the components while designing a
graphical Spark flow. These properties include:

Category: Every component belongs to a category as defined in "Composing a
graphical Spark flow" section which defines its positional hierarchy in a Spark
flow. For example, incoming connections to a component belonging to action
category can only come from components belonging to either transformation or
input category.
Mapping to API type: Every component maintains a mapping between its category
and the type of Spark API it represents as listed in Table 3. This is also known as
the class of the component. This is essential in the creation of the internal model
representation of a user flow i.e. creation of invocation statements which follow
a generic style specific to every Spark API type. Spark APIs belonging to input,
action, transformation—Type A, transformation—Type B and transformation—
Type C have a corresponding class of implementing components. Since Spark
APIs belonging to transformation—Type D do not have common method signa-
ture and therefore difficult to frame generic invocation statements without com-
promising the generalisability of the approach are not supported. Therefore, no
component class maps to transformation—Type D of Spark APIs.
Cardinality of incoming connections: The cardinality of incoming connections for
every component is a feature inherited from the component category. Those com-
ponents which accept more than one incoming connections must implement a timer
to wait for all the incoming messages to arrive before starting their execution since
actor model relies on asynchronous message handling. Some of the components
require proper ordering of messages before processing them. For instance, the ‘Pre-
parePipeline’ component of bridge class B category which accepts more than one
incoming connection during its execution implements a timer to wait for all incom-
ing messages to arrive before processing them.
List of valid predecessors: Every component has a list of predecessors making use
of the same data abstraction of Spark. This is vital to enforce the flow compositional
rules while using a component i.e. deciding the correctness of its positional hierarchy
in a flow. The ‘list of valid predecessors’ ensure that the component can accept the
schema of its preceding component and its output produces a schema acceptable for
its successor components in the flow.
Message content: The message received by every component from its predecessor
must be complete and sufficient for its processing needs. For instance, the ‘Prepare-
Pipeline’ component needs the positional hierarchy of all its predecessors before
starting its execution. Hence, all valid predecessors of ‘PreparePipeline’ component
must include this vital information in its output message.

Page 34 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

Message/schema checks: Since, the message received by every component is a modi-
fied schema therefore a component must perform some schema checks to ensure it
is indeed correct and processing it will not lead to generation of a message incom-
patible with its successors or lead to execution failures. Essential conditions for the
incoming schema/message must be defined within each component in accordance
to the specifications of the Spark API which the component is representing. For
instance, the ‘FeatureAssembler’ component makes use of the ‘VectorAssembler’ API
from Spark ML library. VectorAssembler combines two or more features of numeric
SQL data-types i.e. either an integer, a double or a float to produce a new field of vec-
tor data type. This attribute does not apply to bridge components as they typically
impose ordering of connections and do not alter and produce schema.
Contribution to internal model: Contribution to internal model from a compo-
nent occurs in the form of adding an invocation statement to invoke the standalone
method implementation of the data analytic operation it represents. Apart from
bridge components, every other component contributes to the internal model.

Experimental
The evaluation scenario has been designed to capture the modularity of the approach,
code-abstraction from end-user, automatic handling of Spark session initialization code,
interconversion of data between different data abstractions of Spark as well as ease of
creating quick Spark jobs by providing high-level abstraction via graphical flow-based
programming. Here, an example of taxi fleet management with three use cases has been
considered: (i) producing a machine-learning model to learn traffic conditions, (ii)
applying the model to streaming data to make decisions, (iii) performing aggregations
on streaming data. In all three use cases, the case of manually programming them in Java
has been compared with the specification of graphical flows using Spark components of
aFlux.

Evaluation scenario The dataset in a traffic scenario consists of information that was
published by a vehicle at the beginning of a new trip. The dataset contains three ele-
ments: time-stamp, latitude and longitude. The time-stamp records the time at which
a new trip commenced; latitude and longitude identify the geographic coordinates
from where the new trip commenced. The goal is to devise a machine-learning based
rush-hour fleet management solution to reduce waiting time for customers using
Spark. Machine learning is employed to partition the city into sectors using historical
data. Thus, the model prepared remains on the disk, which is then applied to real-time
streaming data. Finally, stream aggregations, such as window count and running count
based on event time, are applied to streaming data to receive real-time updates. The idea
is to demonstrate how users can develop Spark applications for three different Spark
libraries via aFlux vis-a-vis programming the same solution manually. Development of a
Spark application consists of identifying relevant Spark libraries and using relevant APIs
to build the solution. For example, a KMeans Algorithm is a good choice for identifying
the trip start hotspots.

In the dataset, <latitude,longitude> can be used as features for training a KMeans algo-
rithm. The model trained on historical data should be applied to real-time data. The Pipeline

Page 35 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

API from the Spark ML library is a good choice for building a re-usable model which can
persist on external file systems. Since Spark ML is built on the Spark SQL engine, using Data-
Frame API is the natural choice for this application. Spark libraries, which handle stream-
ing data, support applying persisting models on real-time data and support event-time based
window aggregations on streaming data. Spark Structured Streaming is a good choice for
performing aggregations as it supports event-time based windowed processing. However, the
programming model of Spark Structured Streaming is not compatible with Spark machine
learning libraries. Hence, Spark Streaming must be used to apply the created model to real-
time data and Spark Structured Streaming must be used to perform aggregations.

Therefore, we selected: (i) Spark ML for developing re-usable K-Means Model, (ii)
Spark Streaming for applying the model on real-time data and (iii) Spark Structured
Streaming: for applying aggregations on real-time data.

Use Case 1: Batch processing: producing a machine learning model

To understand the approach and how it provides advantages, we begin by devising a
Spark application via a manual programming approach first. The relevant Spark libraries
for building an application which produces a machine learning model from datasets have
been identified and has been described in the following section.

Approach: Manual programming via Java

The Spark application built using Spark ML chiefly consists of the following stages:

UC1-S1 creating application context: A batch processing Spark application begins
by first initialising a Spark session. The Spark session is the handle for Spark driver
to orchestrate different tasks of the application like reading datasets, analysing them
and returning results of analytics etc. Once the Spark session has been created, data
is read into the Spark run-time environment using the session handle.
UC1-S2 reading datasets: Data is read using Reader function of the SparkSession.
DataFrame API views data as a table. Hence, the schema must be supplied to it. Data
in CSV format is read in this particular example.
UC1-S3 data transformations: Next, ML algorithms are applied as data transforma-
tions to produce a KMeans model fitted on the dataset. First, the data is prepared
for processing. ‘latitude’ and ‘longitude’ are selected as features for the training of the
KMeans algorithm. VectorAssembler API creates a field of Vector Data type out of one
or more fields present in the DataFrame. Pipeline API is used to prepare a data ana-
lytics sequence: VectorAssembler for data preparation followed by KMeans for data
analysis. The name ‘features’ has been chosen as the name for feature Vector and ‘pre-
diction’ as the name for the field produced by the KMeans algorithm. PipelineModel
writer API has been used to persist the model on the file system for later application.
UC1-S4 invocation of actions: The next thing is to display the transformed data.
Transformation on the dataset has been invoked using transform API. This trans-
formation is executed only when an action API is invoked on the transformed Data-
Frame. Show API has been used to display the transformed data on the console.
UC1-S5 terminating application context: Lastly, the Spark driver is terminated by
invoking stop functionality of Spark session.

Page 36 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

Approach: Graphical Programming via aFlux

The approach via aFlux enables the user to create the same Spark program by con-
necting graphical components, leading to auto-generation of the Spark driver pro-
gram. Figure 9 illustrates an aFlux flow for producing a machine learning model using
Spark ML library of Spark. The components used are: (i) the ‘FiletoDataFrame’ com-
ponent, which has only one output port and no input port. This component belongs
to input category and encapsulates input category of Spark APIs as classified in "Clas-
sification of Spark APIs" section, (ii) the ‘FeatureAssembler’ component which has
one input as well as one output port. This belongs to transformation category and
encapsulates transformation—Type B category of Spark APIs, (iii) the ‘KMeansClus-
ter’ component, which has one input as well as one output port. This belongs to trans-
formation category and encapsulates transformation—Type A category of Spark APIs,
(iv) the ‘PreparePipeline’ component which has two input ports and one output port.
This belongs to bridge category and does not encapsulate any Spark APIs, (v) the ‘Pro-
duce Model’ component, which has two input and one output port. This belongs to
transformation category and encapsulates transformation—Type C category of Spark
APIs, (vi) the ‘ShowDF’ component, which has only one input port and no output
port. This component belongs to action category and encapsulates action category
of Spark APIs and (vii) the ‘Spark Execute’ component to mark the end of the flow
to begin flow validation and code generation. The wiring of components is in corre-
spondence to the stages described in manual programming:

UC1-S1 creating application context: The last aFlux component ‘Spark Execute’
marks the end of the graphical flow. Its encounter in the flow conveys special mean-
ing to the translator, i.e. to generate the Spark session initialisation, as well as the
termination codes necessary for the Spark application.
UC1-S2 reading datasets: The first aFlux component in the flow, i.e. ‘FiletoData-
Frame’ has a configuration panel where the user can specify the file type, its location,

1

1

2

3

2
3

UC1-SC1
UC1-SC5

UC1-SC2

UC1-SC4

UC1-SC3

UC1-SC3

UC1-SC3

UC1-SC3

Fig. 9  Spark flow in aFlux for producing machine learning model, as in [57]

Page 37 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

and what fields to read. This component abstracts away the code necessary to read
the file and to convert it to a DataFrame.
UC1-S3 data transformations: The ‘FeatureAssembler’ and ‘KMeansCluster’ com-
ponents can be used to prepare data and apply a machine learning algorithm on the
prepared data. The component ‘FiletoDataFrame’ has been wired up with the ‘Feature-
Assembler’ component which in turn has been wired up with ‘KMeansCluster’. Since
a pipeline needs to be prepared with these components, they both have been wired to
‘PreparePipeline’ component. In the configuration panel of both ‘FeatureAssembler’ and
‘KMeansCluster’, their respective position in the pipeline must be specified. Figure 9
illustrates the configuration panels of ‘FeatureAssembler’ and ‘KMeansCluster’. Finally,
the model is prepared with the ‘Produce Model’ component, and the result is saved.
UC1-S4 invocation of actions: To display the dataset that was transformed by the
‘ProduceModel’, it is connected to the ‘ShowDF’, which is an action component.
UC1-S5 terminating application context: The ‘Spark Execute’ component takes care
of both the creation and the termination of the application context.

What has been evaluated?

Abstraction: The graphical flow-based Spark programming offers a high-level of
abstraction and shields the user from the underlying code of Spark, i.e. users do not
have to write any Spark code to prototype a Spark application. Additionally, the auto-
generation of Spark session initialisation code which is vital for the execution of a
Spark program but is unnecessary from a program’s problem-solving perspectives
thereby allowing the user to concentrate on the concrete problem and achieves a
high-level graphical programming paradigm.
Easy parametrisation: Every component used in the flow provides easy customisation via
user-supplied parameters from the component’s configuration panel, as shown in Fig. 9.
Modularity: Representation of different Spark APIs as modular components help the
user to compartmentalise a problem and select specific components to meet those
goals since every component caters an independent functionality. The only require-
ment is that it should be compatible with the predecessor’s output.
Flow validation: When the flow is composed by observing the compositional rules
discussed in "Components" section, the flow is validated for correctness, i.e. if such a
flow would generate a compilable and runnable Spark program and the user is noti-
fied of errors if any. Moreover, all components using a particular data abstraction
use the same colour code which helps the user in composing a flow. The only visible
check from the user side is to ensure the correct positional hierarchy of components
in the flow, i.e. the flow begins by an input component, followed by transformation
and action/output components.

Use Case 2: Stream processing: applying a machine learning model

For the second use case, i.e. stream processing, using Spark Streaming is not straightfor-
ward since the Spark Streaming library is built on the Spark Core and data abstraction
provided is DStreams. Since Spark core, treats all data as unstructured, working with this
involves many steps of data abstraction format conversions.

Page 38 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

Approach: Manual programming via Java

The Spark application built using Spark Streaming chiefly consists of the following
stages:

UC2-S1 creating application context: The first step with any Spark application is to
create an application context. A Spark Streaming context is created, which requires a
duration of micro-batch as one of its input.
UC2-S2 reading datasets: After the creating of a streaming application context, data
is read from a compatible input source like Kafka. Kafka records published with topic
‘trip-data’ are read in the form of < key, value > pairs into JavaPairDstream data
abstraction.
UC2-S3 data transformations: For performing data transformation, i.e. applying
a model produced using Pipeline API on DStream data abstraction is not possible
without suitable data abstraction interconversion. Hence, we convert DStreams col-
lected over the micro-batch duration into RDD. Each RDD is transformed into Data-
Frame, and the created machine-learning model from the first use case is applied.
UC2-S4 invocation of actions: Action step involves pushing data out of Spark run-
time environment, i.e. push back results to Kafka. Spark Streaming does not support
in-built Kafka listener. ‘ForEachPartition’ method can be used to push data out of
each partition.
UC2-S5 terminating application context: Streaming applications run indefinitely, and
the Spark Driver is programmed to keep the context alive for an indefinite period by
invoking ‘awaitTermination()’ method on the stream context created at the start of
the application.

Approach: Graphical programming via aFlux

Figure 10 illustrates an aFlux flow for applying a machine learning model on real-time
datasets. The components used are: (i) the ‘KafkatoDStream’ component, which has
only one output port and no input port. This component belongs to input category and

1

1

UC2-SC1
UC2-SC5

UC2-SC2

UC2-SC3

UC2-SC4

Fig. 10  Spark flow in aFlux for applying model to Streaming data, as in [57]

Page 39 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

encapsulates input category of Spark APIs as classified in "Classification of Spark APIs"
section, (ii) the ‘Apply Model on DStream’ component which has one input as well as
one output port. This belongs to transformation category and encapsulates transforma-
tion—Type A category of Spark APIs, (iii) the ‘DStreamToKafka’ component which has
only one input port and no output port. This component belongs to action category and
encapsulates action category of Spark APIs and (iv) the ‘Spark Execute’ component to
mark the end of the flow to begin flow validation and code generation. The wiring of
components corresponds with the stages described in manual programming:

UC2-S1 creating application context: The ‘Spark Execute’ component creates a spark
session, and this is abstracted from the user.
UC2-S2 reading datasets: The first component, ‘KafkatoDStream’ reads data from
Kafka and has the necessary conversion code to transform the data into DStream.
UC2-S3 data transformations: The second component, ‘Apply Model on DStream’,
takes the path of a previously created machine learning model and applies it to
the input DStream data-set. This component abstracts the process of converting
DStream to RDD and then to DataFrame to apply the saved model.
UC2-S4 invocation of actions: The transformed data must be pushed back to Kafka.
Producing Kafka records from modified DataFrame is accomplished by the ‘DStream-
ToKafka’ component. It does the automatic conversion of data from DStreams to
< key, value > format for Kafka.
UC2-S5 terminating application context: The ‘Spark Execute’ component takes care
of both the creation and termination of the application context.

What has been evaluated?

Auto-conversion between different data abstractions: The second component, ‘Apply
Model on DStream’ in the flow does auto-conversion of data abstractions transpar-
ently from the user. Spark ML is built on the Spark SQL engine and hence uses Data-
Frame APIs. The machine learning model created is using DataFrame data abstrac-
tion. In stream processing, the data abstraction used is DStreams. Hence, these
components transparently read the DStream data from the previous component,
convert it into RDD and then invoke the saved ML model on it. After applying the
ML model, the resultant-set is again converted back from RDD to DStream and sent
as the output to the next component, i.e. ‘DStreamToKafka’ which takes the DStream
input and outputs to Kafka. The auto-conversion process is not trivial as the data
from DStream has to be converted to RDD after which user-defined functions are
necessary to ensure that the dataset has all required columns on which a particular
ML model can be applied or to select exact columns to apply the ML model suc-
cessfully. After application of the ML model, user-defined functions are necessary
to convert it back to DStream data abstraction. This process cannot be automated as
the fields of a dataset to be selected to apply the ML model have to be checked and
selected manually. Furthermore, using RDD necessitates the usage of custom trans-
formation functions. This is done on a case-to-case basis for specific components
requiring interoperability with other data abstractions and is left to the developer of
the component to provide.

Page 40 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

Use Case 3: Performing streaming aggregations

In the third use case, stream aggregations are performed based on event-time and win-
dowed over a given duration. Data is read from Kafka and results are pushed back again
to Kafka.

Approach: Manual programming via Java

The Spark application built using Spark Structured Streaming chiefly consists of the fol-
lowing stages:

UC3-S1 creating application context: A Spark session for streaming application is
created in the same way as discussed in earlier use cases.
UC3-S2 reading datasets: Data is read from Kafka. Spark Structured Streaming
library comes with a built-in Kafka reader which reads Kafka messages in JSON for-
mat, maps them to the schema supplied and creates a DataFrame abstraction where
entire value part of the record is treated as a string. After this, an unbounded table is
created for performing aggregations on the data.
UC3-S3 data transformations: Windowed stream aggregations based on event time
is performed on the streaming data with watermark for handling late arrival of data.
UC3-S4 invocation of actions: Spark Structured Streaming associates a stream-
ing query with DataFrames. Only those transformation paths that have an associ-
ated streaming query directly or in their path will be included in the execution plan,
i.e. data transformations applied onto, and hence results need to be pushed back to
Kafka.
UC3-S5 terminating application context: In the last step, the ‘awaitTermination()’
method is invoked on the streaming query so that it runs indefinitely.

Approach: Graphical programming via aFlux

Figure 11 illustrates an aFlux flow for performing streaming aggregations on real-time
datasets. The components used are: (i) the ‘KafkaToStreamDF’ component, which has

2

2

1

1

UC3-SC1
UC3-SC5

UC3-SC2 UC3-SC3
UC3-SC4

Fig. 11  Spark flow in aFlux for streaming aggregations, as in [57]

Page 41 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

only one output port and no input port. This component belongs to input category and
encapsulates input category of Spark APIs as classified in "Classification of Spark APIs"
section, (ii) the ‘StreamDFWindowCount’ component which has one input as well as
one output port. This belongs to transformation category and encapsulates transforma-
tion—Type A category of Spark APIs, (iii) the ‘StreamDFtoKafka’ component which has
only one input port and no output port. This component belongs to action category and
encapsulates action category of Spark APIs and (iv) the ‘Spark Execute’ component to
mark the end of the flow to begin flow validation and code generation. The wiring of
components corresponds with the stages described in manual programming:

UC3-S1 creating application context: The ‘Spark Execute’ marks the end of the
graphical flow. Its encounter in the flow conveys special meaning to the translator,
i.e. to generate the Spark session initialisation, as well as the termination codes nec-
essary for the Spark application.
UC3-S2 reading datasets: The ‘KafkaToStreamDF’ component is used to read stream-
ing messages from Kafka. It reads < key, value > from Kafka and converts it into
streaming DataFrame automatically.
UC3-S3 data transformations: Spark Structured Streaming library offers differ-
ent aggregations on streaming data. Graphical components to perform window
based count and running count operations via the ‘StreamDFWindowCount’ and
‘StreamDFRunningCount’ respectively have been implemented. The second compo-
nent, i.e. the ‘StreamDFWindowCount’, takes the kind of window-aggregation to be
performed as user-input and applies it to the incoming data-set.
UC3-S4 invocation of actions: The result is automatically converted to < key, value >
format and pushed to Kafka by the ‘StreamDFtoKafka’ component.
UC3-S5 terminating application context: The ‘Spark Execute’ component takes care
of both the creation and the termination of the application context.

 The action component used in all three use cases of graphical Spark programming has
no output port functionality but is connected to the ‘Spark Execute’ component to mark
the end of the flow.

Discussion
Table 4 summarises the comparison of the conceptual approach discussed in this paper
with existing solutions offering similar abstraction over Big Data application develop-
ment. In particular, we compare and contrast the following criteria:

Interaction endpoint For high-level Big Data programming, the tool or approach
should offer an endpoint to interact, which can accommodate even less skilled Big Data
programmers. A graphical programming interface following the flow-based program-
ming paradigm or the block-based programming paradigm, support for customisa-
tion and auto-generation of native Big Data code would be ideal. The second column in
Table 4 lists this criterion. All tools except Apache Beam and Apache Zeppelin provide
a graphical interface to design an application. The beam is a high-level unified program-
ming model which has its APIs to write a Big Data application. The application writ-
ten using Beam’s APIs can be executed in a wide range of target frameworks like Spark,

Page 42 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

Flink, Apex, MapReduce, IBM Streams etc. [68]. It is not a graphical tool rather a set of
unified APIs which is difficult for less skilled Big Data programmers to use. Similarly,
Apache Zeppelin has an interpreter which can take SQL queries or python code snippets
and run them against many target environments, including Spark and Flink. In contrast
to this, the conceptual approach discussed here, prototyped in aFlux, is a graphical flow-
based programming tool which supports customisation of components used in a graphi-
cal flow, operates at a high-level over the target Big Data frameworks, abstracts code
usage in terms of input during flow design and automates code generation for the user.

Supported target frameworks The second criterion for comparison is the target Big
Data framework over which the tool provides a high-level abstraction and if the solution
is tied to this particular framework or can be extended. The third column in Table 4 lists
this criterion. Tools like Lemonade, QryGraph, Nussknacker, QM-IConf are tied to one
specific Big data framework and the approach used is not extensible. Zeppelin’s inter-
preter is extensible to frameworks which support SQL based querying or Scala APIs.
Apache NiFi is not a Big Data programming tool. It is used to design dataflow pipelines
via flow-based programming paradigm. Nevertheless, it has operators/nodes to be used
in a flow which can interface it with Big Data applications like Spark and Flink to read
data from or send data to. However, to use such interfacing, the developer should write
the Spark/Flink application separately and connect it via the data interface operator.
Apache Beam’s unified API abstracts a large number of Big Data execution engines, i.e. a
program developed using Beam’s unified API can be executed in several different execu-
tion environments with minimal changes [68]. Microsoft Azure is a graphical flow-based

Table 4  Comparison of high-level Spark programming with existing solutions, as in [57]

Tools Interaction
endpoint

Target framework High-level
programming

Code-
snippet input
not required

Generate
Big Data
program

Lemonade Flow-based GUI
tool

Spark ML (via
Python APIs)

✓ ✓ ✓

Apache Zeppelin Interactive shell Multi-language
back-end includ-
ing Spark and
Flink

✗ ✗ ✗

Apache NiFi Flow-based GUI
tool

Interfaces with
Spark and Flink

✓ ✗ ✗

Apache Beam Flow-based pro-
gramming API

Unified Program-
ming model for
Big Data systems
including Spark
and Flink

✗ ✗ ✗

Microsoft Azure Flow-based GUI
tool

Includes Spark ✓ ✗ ✗

QryGraph Flow-based GUI
tool

Pig ✓ ✓ ✓

Nussknacker Flow-based GUI
tool

Flink ✓ ✓ ✓

QM-IConf Flow-based GUI
tool

Storm ✓ ✓ ✓

Our approach
prototyped in
aFlux

Flow-based GUI
tool

Spark, Flink [17].
Extensible

✓ ✓ ✓

Page 43 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

platform used heavily for designing Big Data and machine learning applications. The
manner in which the graphical flow is translated and run in native Big Data environ-
ments is unknown as it is a proprietary tool. However, when a user needs explicitly to
use a Big Data target framework, for example, Spark, then the user needs to provide
Spark code-snippets, and the platform supports graphical connection to a Spark cluster
to send the code snippet for execution and fetch the output. In contrast to this, the con-
ceptual approach developed in this paper, prototyped in aFlux, currently supports Spark.
It has been extended to other frameworks like Flink [17].

Level of abstraction A third criterion to compare is to understand the abstraction
level a tool offers over a Big Data framework for reducing its complexity, i.e. is the pro-
gramming done at a high-level over the target APIs. The fourth column in Table 4 lists
this criterion. All of the existing tools, including the conceptual approach discussed
here, provide an abstraction over their supported Big Data frameworks. Apache Beam
requires to manually program using its provided APIs and therefore cannot be con-
sidered as a high-level programming tool. Nevertheless, it abstracts the complexity of
several Big Data frameworks while simultaneously introducing its usage complexity.
Similarly, Zeppelin does not provide real high-level programming, but it offers interac-
tion with underlying systems via small code-snippets and not complete programs.

Usage of code-snippets input during application development Another interesting fea-
ture to compare is if the tool explicitly requires the user to input code-snippets while
developing a Big Data application via graphical flows. The code-snippets are either used
for connecting different components used in a flow or for customisation of a compo-
nent’s functionality. This introduces additional complexity and makes it difficult for less
skilled Big Data programmers to use the tool. The fifth column in Table 4 lists this cri-
terion. Tools like Lemonade, QryGraph, Nussknacker, QM-IConf and the conceptual
approach discussed here provide a graphical flow-based application development envi-
ronment without any code-snippet usage. On the other hand, Zeppelin requires code
snippets provided, and they are run in an interactive mode. Apache NiFi does not need
code snippets in a flow, but when interfacing with Spark or Flink program is needed,
the program must be developed by the user. Apache Beam mandates manual program-
ming using its own set of high-level APIs. Microsoft Azure, in general, does not require
code-snippets, but when working with Spark, explicit code-snippets are required as
input from the user. Code Generation It is also interesting to compare and contrast if
the tools generate the complete native Big Data program from the graphical flow created
by the user. The sixth column in Table 4 lists this criterion. All tools except Apache Zep-
pelin, Apache NiFi, Apache Beam and Microsoft Azure generate a native Big Data pro-
gram. Apache Zeppelin makes use of code snippets and is an interactive shell. Apache
NiFi runs the flow in its execution environment without generating any final code for the
user to inspect. Apache Beam requires the user to program manually using its own set of
APIs. Microsoft Azure is a proprietary platform and runs the user flow in its execution
environment without any code generation. Tools like QryGraph, Lemonade, QM-IConf,
Nussknacker and the conceptual approach discussed in this paper generate target Big
Data program from the user flow.

Page 44 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

Conclusion
The Big Data ecosystem has a steep learning curve owing to complexity in the pro-
gramming models of the underlying frameworks, different data abstractions supported
in them coupled with the presence of redundancy-abundant APIs. There is no support
for end-user programming in the ecosystem, which restricts its widespread applica-
tion among domain-experts who are not programmers. In this context, the main idea
of the paper was to provide domain-experts with flow-based graphical tools for high-
level programming of Spark applications. The work involved (i) an analysis of the Spark
framework to select the most suitable data abstractions for use in a graphical flow-based
programming paradigm. From the available data abstractions of Spark, DStream and
DataFrame (including Streaming DataFrame), were selected. The conceptual approach
described here supports only the transformations accessible via untyped, i.e. DataFrame
APIs and using the aforementioned data abstractions. Any transformation making use
of RDD based approach involving user-defined data transformation is not supported. In
this context, a classification of APIs present in different Spark libraries was done to cre-
ate generic invocation statements to invoke the standalone method of the selected APIs,
(ii) SparFlo, a library consisting of modular, composable components was created. The
components in SparFlo bundle a set of Spark APIs from the selected subset of Spark
APIs which are executed in a specific order to perform one data analytic operation.
These modular components are composable, following the flow compositional rules and
(iii) a generic approach for Spark programming via graphical flows involving validation
of flows and auto-generation of Spark programs created using SparFlo components has
been proposed, prototyped and evaluated via three use cases. The graphical program-
ming concepts described in this paper have been successfully extended to support other
Big Data frameworks like Flink [17]. We are currently working to support graphical
flow-based machine learning programming based on frameworks like TensorFlow [69],
Torch [70], Caffe [71], Mahout [72] and Singa [73].

Abbreviations
IoT: Internet of Things; MPI: Message Passing Interface; ML: machine learning; JAR: Java ARchive; RDD: resilient distributed
dataset; FBP: flow-based programming; UDF: user-defined functions; JVM: Java Virtual Machine; DAG: directed acyclic
graph; QM-IConf: The QualiMaster Infrastructure Configuration tool; Lemonade: Live Exploration and Mining Of a Non-
trivial Amount of Data from Everywhere.

Acknowledgements
The authors are grateful to Shilpa Ghanashyam Gore who actively contributed to the development of Spark plug-ins for
aFlux.

Authors’ contributions
Both authors read and approved the final manuscript.

Funding
This work was supported by the German Research Foundation (DFG) and the Technical University of Munich within the
Open Access Publishing Funding Programme.

Availability of data and materials
Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Ethics approval and consent to participate
This paper uses figures, tables and text from the PhD dissertation titled “High-level Graphical Programming for Big Data
Applications” of Tanmaya Mahapatra to be published in Technical University of Munich, 2019. All relevant inclusions from
the dissertation have been cited appropriately.

Competing interests
The authors declare that they have no competing interests.

Page 45 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

Received: 18 July 2019 Accepted: 18 November 2019

References
	1.	 SciPy.org: NumPy. https​://www.numpy​.org. Accessed 27 May 2019.
	2.	 SciPy.org: SciPy library. https​://www.scipy​.org. Accessed 27 May 2019.
	3.	 pandas: Python Data Analysis Library. https​://panda​s.pydat​a.org. Accessed 27 May 2019.
	4.	 scikit-learn: Machine learning in Python. https​://sciki​t-learn​.org/stabl​e/. Accessed 27 May 2019.
	5.	 Keras: Keras: The Python deep learning library. https​://keras​.io. Accessed 27 May 2019.
	6.	 Apache: HDFS Architecture Guide. 2018. https​://hadoo​p.apach​e.org/docs/r1.2.1/hdfs_desig​n.html. Accessed 26 Nov

2018.
	7.	 Apache: The Apache Hive data warehouse software. 2008. https​://hive.apach​e.org. Accessed 27 May 2019.
	8.	 Apache: Pig. 2019. https​://pig.apach​e.org/. Accessed 27 May 2019.
	9.	 Holwerda R, Hermans F. A usability analysis of blocks-based programming editors using cognitive dimensions. In:

2018 IEEE symposium on visual languages and human-centric computing (VL/HCC); 2018, pp. 217–25. https​://doi.
org/10.1109/VLHCC​.2018.85064​83.

	10.	 Morrison JP. Flow-based programming, 2nd Edition: a new approach to application development. Paramount:
CreateSpace; 2010.

	11.	 Bau D, Gray J, Kelleher C, Sheldon J, Turbak F. Learnable programming: blocks and beyond. Commun ACM.
2017;60(6):72–80. https​://doi.org/10.1145/30154​55.

	12.	 Mason D, Dave K. Block-based versus flow-based programming for naive programmers. In: 2017 IEEE blocks and
beyond workshop (BB). 2017, pp 25–8. https​://doi.org/10.1109/BLOCK​S.2017.81204​05.

	13.	 DeRemer F, Kron HH. Programming-in-the-large versus programming-in-the-small. IEEE Trans Softw Eng.
1976;SE–2(2):80–6.

	14.	 Cunniff N, Taylor RP. Empirical studies of programmers: second workshop. chap. Graphical vs. textual representation:
an empirical study of novices’ program comprehension. Norwood: Ablex Publishing Corp.; 1987, pp. 114–31. http://
dl.acm.org/citat​ion.cfm?id=54968​.54976​.

	15.	 Gorlick M, Quilici A. Visual programming-in-the-large versus visual programming-in-the-small. In: Proceedings of
1994 IEEE symposium on visual languages; 1994, pp. 137–44. https​://doi.org/10.1109/VL.1994.36363​1.

	16.	 Whitley KN, Novick LR, Fisher D. Evidence in favor of visual representation for the dataflow paradigm: an experiment
testing labview’s comprehensibility. Int J Hum Comput Stud. 2006;64(4):281–303. https​://doi.org/10.1016/j.ijhcs​
.2005.06.005.

	17.	 Mahapatra T, Gerostathopoulos I, Fernández FA. Prehofer, C.: Designing Flink Pipelines in IoT Mashup Tools
2018;2316(03), 41–53. http://ceur-ws.org/Vol-2316/paper​3.pdf.

	18.	 Mahapatra T, Gerostathopoulos I, Prehofer C, Gore SG. Graphical Spark Programming in IoT Mashup Tools. In: 2018
fifth international conference on Internet of Things: systems, management and security; 2018, pp. 163–70. https​://
doi.org/10.1109/IoTSM​S.2018.85546​65.

	19.	 Mahapatra T, Prehofer C. aFlux: Flow-based programming for Big Data. 2019. https​://aflux​.org. Accessed 20 June
2019.

	20.	 Mahapatra T, Prehofer C, Gerostathopoulos I, Varsamidakis I. Stream analytics in IoT mashup tools. In: 2018 IEEE sym-
posium on visual languages and human-centric computing (VL/HCC). 2018, pp 227–31. https​://doi.org/10.1109/
VLHCC​.2018.85065​48.

	21.	 Mahapatra T, Prehofer C. aFlux: Graphical flow-based data analytics. Softw Impacts. 2019;2:100007. https​://doi.
org/10.1016/j.simpa​.2019.10000​7

	22.	 Friedman E, Tzoumas K. Introduction to Apache Flink. Newton: O’Reilly; 2016.
	23.	 Zecevic P, Bonaci M. Spark in action. 1st ed. Greenwich: Manning Publications Co.; 2016.
	24.	 Dean J, Ghemawat S. Mapreduce: Simplified data processing on large clusters. In: Proceedings of the 6th Confer-

ence on Symposium on Opearting Systems Design & Implementation, Volume 6, Berkeley: OSDI’04. USENIX Associa-
tion; 2004, pp. 10. http://dl.acm.org/citat​ion.cfm?id=12512​54.12512​64.

	25.	 Forum MP. Mpi: A message-passing interface standard. Knoxville: Tech. rep.; 1994. http://dl.acm.org/citat​ion.
cfm?id=18631​03.18631​13

	26.	 Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: Cluster computing with working sets. In: E.M.
Nahum, D. Xu (eds.) HotCloud. USENIX Association. 2010. https​://www.useni​x.org/confe​rence​/hotcl​oud-10/spark​
-clust​er-compu​ting-worki​ng-sets.

	27.	 Armbrust M, Xin RS, Lian C, Huai Y, Liu D, Bradley JK, Meng X, Kaftan T, Franklin MJ, Ghodsi A, Zaharia M. Spark sql:
relational data processing in spark. In: Sellis TK, Davidson SB, Ives ZG, eds. SIGMOD conference. ACM; 2015, pp.
1383–94. https​://doi.org/10.1145/27233​72.27427​97.

	28.	 Apache: GraphX: GraphX is Apache Spark’s API for graphs and graph-parallel computation. https​://spark​.apach​
e.org/graph​x/. Accessed 27 May 2019.

	29.	 Meng X, Bradley J, Yavuz B, Sparks E, Venkataraman S, Liu D, Freeman J, Tsai D, Amde M, Owen S, Xin D, Xin R, Franklin
MJ, Zadeh R, Zaharia M, Talwalkar A. Mllib: Machine learning in apache spark. J Mach Learn Res. 2016;17(34):1–7.
http://jmlr.org/paper​s/v17/15-237.html.

	30.	 Scala: The scala programming language. https​://www.scala​-lang.org. Accessed 05 June 2019.
	31.	 Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J, Venkataraman S, Franklin MJ, Ghodsi

A, Gonzalez J, Shenker S, Stoica I. Apache Spark: a Unified engine for Big Data processing. Commun ACM.
2016;59(11):56–65. https​://doi.org/10.1145/29346​64.

	32.	 Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin MJ, Shenker S, Stoica I. Resilient distrib-
uted datasets: A fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX

https://www.numpy.org
https://www.scipy.org
https://pandas.pydata.org
https://scikit-learn.org/stable/
https://keras.io
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hive.apache.org
https://pig.apache.org/
https://doi.org/10.1109/VLHCC.2018.8506483
https://doi.org/10.1109/VLHCC.2018.8506483
https://doi.org/10.1145/3015455
https://doi.org/10.1109/BLOCKS.2017.8120405
http://dl.acm.org/citation.cfm?id=54968.54976
http://dl.acm.org/citation.cfm?id=54968.54976
https://doi.org/10.1109/VL.1994.363631
https://doi.org/10.1016/j.ijhcs.2005.06.005
https://doi.org/10.1016/j.ijhcs.2005.06.005
http://ceur-ws.org/Vol-2316/paper3.pdf
https://doi.org/10.1109/IoTSMS.2018.8554665
https://doi.org/10.1109/IoTSMS.2018.8554665
https://aflux.org
https://doi.org/10.1109/VLHCC.2018.8506548
https://doi.org/10.1109/VLHCC.2018.8506548
https://doi.org/10.1016/j.simpa.2019.100007
https://doi.org/10.1016/j.simpa.2019.100007
http://dl.acm.org/citation.cfm?id=1251254.1251264
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://doi.org/10.1145/2723372.2742797
https://spark.apache.org/graphx/
https://spark.apache.org/graphx/
http://jmlr.org/papers/v17/15-237.html
https://www.scala-lang.org
https://doi.org/10.1145/2934664

Page 46 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

conference on networked systems design and implementation, NSDI’12. USENIX Association, Berkeley; 2012, pp. 2.
http://dl.acm.org/citat​ion.cfm?id=22282​98.22283​01.

	33.	 Morrison JP. Flow-based programming. In: Proceedings 1st international workshop on software engineering for
parallel and distributed systems. 1994, pp 25–9.

	34.	 Carkci M. Dataflow and reactive programming systems: a practical guide. 1st ed. Scotts Valley: CreateSpace Inde-
pendent Publishing Platform; 2014.

	35.	 Agha G. Actors: a model of concurrent computation in distributed systems. Cambridge: MIT Press; 1986.
	36.	 Mahapatra T, Gerostathopoulos I, Prehofer C. Towards integration of Big Data analytics in Internet of Things Mashup

tools. In: Proceedings of the seventh international workshop on the Web of Things, WoT ’16. New York: ACM; 2016,
pp. 11–6. https​://doi.org/10.1145/30179​95.30179​98.

	37.	 Mahapatra T, Prehofer C. Service mashups and developer support. Dig Mobil Platf Ecosyst. 2016;. https​://doi.
org/10.14459​/2016m​d1324​021.

	38.	 Eichelberger H, Qin C, Schmid K. Experiences with the model-based generation of big data pipelines. In: Mitschang
B, Nicklas D, Leymann F, Schöning H, Herschel M, Teubner J, Härder T, Kopp O, Wieland M, editors. Datenbanksys-
teme für business, technologie und web (BTW 2017)—workshopband. Bonn: Gesellschaft für Informatik e.V; 2017. p.
49–56.

	39.	 Apache: Apache Storm. https​://storm​.apach​e.org. Accessed 27 May 2019.
	40.	 Santos Wd, Avelar GP, Ribeiro MH, Guedes D, Meira W Jr. Scalable and efficient data analytics and mining with lem-

onade. Proc VLDB Endow. 2018;11(12):2070–3. https​://doi.org/10.14778​/32298​63.32362​62.
	41.	 Schmid S, Gerostathopoulos I, Prehofer C. Qrygraph: a graphical tool for big data analytics. In: SMC’16. 2016.
	42.	 Touk: Nussknacker. streaming processes diagrams. https​://touk.githu​b.io/nussk​nacke​r/. Accessed 27 May 2019.
	43.	 Apache: Apache Beam: An advanced unified programming model. https​://beam.apach​e.org. Accessed 27 May

2019.
	44.	 Apache: Apache Apex: Enterprise-grade unified stream and batch processing engine. https​://apex.apach​e.org.

Accessed 27 May 2019.
	45.	 Zeppelin Apache. https​://zeppe​lin.apach​e.org/docs/0.7.0/. Accessed 22 June 2018.
	46.	 Microsoft: Microsoft Azure. https​://docs.micro​soft.com/en-us/azure​/hdins​ight/. Accessed 22 June 2018.
	47.	 Apache: NiFi. https​://nifi.apach​e.org/docs.html. Accessed 05 Sept 2018.
	48.	 Baldwin CY, Clark KB. Modularity in the design of complex engineering systems. Berlin: Springer; 2006. p. 175–205.

https​://doi.org/10.1007/3-540-32834​-3_9.
	49.	 Johansson P, Holmberg H. On the modularity of a system. 2010.
	50.	 Apache Spark: RDD Programming Guide. 2019. https​://spark​.apach​e.org/docs/lates​t/rdd-progr​ammin​g-guide​.html.

Accessed 16 May 2019.
	51.	 Zaharia M, Das T, Li H, Hunter T, Shenker S, Stoica I. Discretized streams: Fault-tolerant streaming computation at

scale. In: M. Kaminsky, M. Dahlin, eds. SOSP. ACM; 2013, pp. 423–38. http://dblp.uni-trier​.de/db/conf/sosp/sosp2​013.
html#Zahar​iaDLH​SS13.

	52.	 Apache Spark: Spark SQL, DataFrames and datasets guide. https​://spark​.apach​e.org/docs/lates​t/sql-progr​ammin​
g-guide​.html. Accessed 24 Apr 2018.

	53.	 Apache: Spark Structured Streaming Programming Guide. 2018. https​://spark​.apach​e.org/docs/lates​t/struc​tured​
-strea​ming-progr​ammin​g-guide​.html. Accessed 12 Dec 2018.

	54.	 Apache Kafka: A distributed streaming platform. 2018. https​://kafka​.apach​e.org. Accessed 24 Apr 2019.
	55.	 Zaharia M, Das T, Li H, Shenker S, Stoica I. Discretized streams: An efficient and fault-tolerant model for stream

processing on large clusters. In: Proceedings of the 4th USENIX Conference on Hot Topics in Cloud Ccomputing,
HotCloud’12. USENIX Association, Berkeley; 2012, pp. 10. http://dl.acm.org/citat​ion.cfm?id=23427​63.23427​73.

	56.	 Armbrust M, Xin RS, Lian C, Huai Y, Liu D, Bradley JK, Meng X, Kaftan T, Franklin MJ, Ghodsi A, Zaharia M. Spark sql:
Relational data processing in spark. In: Proceedings of the 2015 ACM SIGMOD international conference on manage-
ment of data, SIGMOD ’15. New York: ACM; 2015, pp. 1383–94. https​://doi.org/10.1145/27233​72.27427​97.

	57.	 Mahapatra T. High-level graphical programming for Big Data applications. Dissertation, Technische Universität
München, München; 2019. http://media​tum.ub.tum.de/?id=15249​77

	58.	 Damji J. A Tale of three Spark APIs. https​://datab​ricks​.com/blog/2016/07/14/a-tale-of-three​-apach​e-spark​-apis-rdds-
dataf​rames​-and-datas​ets.html. Accessed 24 Dec 2018.

	59.	 Aho AV, Sethi R, Ullman JD. Compilers: principles, techniques, and tools. Addison-Wesley series in computer science
/ World student series edition. Addison-Wesley; 1986. http://www.world​cat.org/oclc/12285​707.

	60.	 Wikipedia: Composability. https​://en.wikip​edia.org/wiki/Compo​sabil​ity. Accessed 27 May 2019.
	61.	 Attiogbé C, André P, Ardourel G. Checking component composability. In: Löwe W, Südholt M, editors. Software

composition. Berlin: Springer; 2006. p. 18–33.
	62.	 Neumann P. Principled assuredly trustworthy compusable architectures. DARPA final report, SRI Project P11459,

December 2004.
	63.	 Li Y, Tan T, Xue J. Understanding and analyzing java reflection. ACM Trans Softw Eng Methodol. 2019;28(2):7:1–50.

https​://doi.org/10.1145/32957​39.
	64.	 Livshits B, Whaley J, Lam MS. Reflection analysis for java. In: Proceedings of the third Asian conference on program-

ming languages and systems, APLAS’05. Berlin: Springer; 2005, pp. 139–60. https​://doi.org/10.1007/11575​467_11.
	65.	 Wikipedia: .properties article. https​://en.wikip​edia.org/wiki/.prope​rties​. Accessed 27 May 2019.
	66.	 Stahl T, Voelter M, Czarnecki K. Model-driven software development: technology, engineering, management. New

York: Wiley; 2006.
	67.	 JavaPoet. https​://githu​b.com/squar​e/javap​oet/blob/maste​r/READM​E.md. Accessed 24 Apr 2018.
	68.	 Apache: Beam capability matrix. https​://beam.apach​e.org/docum​entat​ion/runne​rs/capab​ility​-matri​x/. Accessed 05

June 2019.
	69.	 TensorFlow: An open source machine learning library for research and production. 2015. https​://www.tenso​rflow​

.org. Accessed 20 June 2019.
	70.	 Torch: A scientific computing framework for LUAJIT. 2002. http://torch​.ch. Accessed 20 June 2019.

http://dl.acm.org/citation.cfm?id=2228298.2228301
https://doi.org/10.1145/3017995.3017998
https://doi.org/10.14459/2016md1324021
https://doi.org/10.14459/2016md1324021
https://storm.apache.org
https://doi.org/10.14778/3229863.3236262
https://touk.github.io/nussknacker/
https://beam.apache.org
https://apex.apache.org
https://zeppelin.apache.org/docs/0.7.0/
https://docs.microsoft.com/en-us/azure/hdinsight/
https://nifi.apache.org/docs.html
https://doi.org/10.1007/3-540-32834-3_9
https://spark.apache.org/docs/latest/rdd-programming-guide.html
http://dblp.uni-trier.de/db/conf/sosp/sosp2013.html#ZahariaDLHSS13
http://dblp.uni-trier.de/db/conf/sosp/sosp2013.html#ZahariaDLHSS13
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://kafka.apache.org
http://dl.acm.org/citation.cfm?id=2342763.2342773
https://doi.org/10.1145/2723372.2742797
http://mediatum.ub.tum.de/?id=1524977
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html
http://www.worldcat.org/oclc/12285707
https://en.wikipedia.org/wiki/Composability
https://doi.org/10.1145/3295739
https://doi.org/10.1007/11575467_11
https://en.wikipedia.org/wiki/.properties
https://github.com/square/javapoet/blob/master/README.md
https://beam.apache.org/documentation/runners/capability-matrix/
https://www.tensorflow.org
https://www.tensorflow.org
http://torch.ch

Page 47 of 47Mahapatra and Prehofer ﻿J Big Data (2020) 7:4

	71.	 Caffe: Deep learning framework. 2017. https​://caffe​.berke​leyvi​sion.org. Accessed 20 June 2019.
	72.	 Apache: Mahout: For Creating Scalable performant machine learning applications. 2009. https​://mahou​t.apach​

e.org. Accessed 20 June 2019.
	73.	 Apache: Singa. 2015. https​://singa​.incub​ator.apach​e.org. Accessed 20 June 2019.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://caffe.berkeleyvision.org
https://mahout.apache.org
https://mahout.apache.org
https://singa.incubator.apache.org

	Graphical Flow-based Spark Programming
	Abstract
	Introduction
	Results
	Background
	Apache Spark
	Fundamental concepts in Spark

	Flow-based programming
	IoT mashups and mashup tools

	Related work
	The QualiMaster infrastructure configuration (QM-IConf) tool
	Lemonade
	QryGraph
	Nussknacker
	Apache Beam
	Other solutions

	Towards flow-based Spark programming
	Design of a modular Spark component
	Modularity

	Data transformation approach
	Design of the translator model

	Data abstractions and APIs in Spark
	Data abstractions in Spark
	Comparing different Spark data abstractions
	Spark APIs
	Selection of APIs for flow-based Spark programming
	Classification of Spark APIs

	Conceptual approach for flow-based Spark programming
	Composing a graphical Spark flow
	Components
	Validation of a Spark flow
	Generation of the internal model
	Generation of Spark driver program

	SparFlo: a subset of Spark APIs bundled as modular components
	Implementation
	Supporting sequenced Spark transformations in flow based programming paradigm
	Components: key properties

	Experimental
	Use Case 1: Batch processing: producing a machine learning model
	Approach: Manual programming via Java
	Approach: Graphical Programming via aFlux

	Use Case 2: Stream processing: applying a machine learning model
	Approach: Manual programming via Java
	Approach: Graphical programming via aFlux

	Use Case 3: Performing streaming aggregations
	Approach: Manual programming via Java
	Approach: Graphical programming via aFlux

	Discussion
	Conclusion
	Acknowledgements
	References

