
Enlarging smaller images before inputting
into convolutional neural network:
zero‑padding vs. interpolation
Mahdi Hashemi* 

Introduction
Convolutional neural network (CNN) has recently outperformed other neural network
architectures, machine learning, and image processing approaches in image classifica-
tion [6, 46, 50, 56, 58] due to its independence from hand-crafted visual features and
excellent abstract and semantic abilities [58]. CNN makes strong and mostly correct
assumptions about the nature of images, namely, locality of pixel dependencies and
stationarity of statistics. Therefore, in comparison with standard feed-forward neural

Abstract 

The input to a machine learning model is a one-dimensional feature vector. However,
in recent learning models, such as convolutional and recurrent neural networks, two-
and three-dimensional feature tensors can also be inputted to the model. During
training, the machine adjusts its internal parameters to project each feature tensor
close to its target. After training, the machine can be used to predict the target for
previously unseen feature tensors. What this study focuses on is the requirement that
feature tensors must be of the same size. In other words, the same number of features
must be present for each sample. This creates a barrier in processing images and texts,
as they usually have different sizes, and thus different numbers of features. In classifying
an image using a convolutional neural network (CNN), the input is a three-dimensional
tensor, where the value of each pixel in each channel is one feature. The three-dimen-
sional feature tensor must be the same size for all images. However, images are not
usually of the same size and so are not their corresponding feature tensors. Resizing
images to the same size without deforming patterns contained therein is a major
challenge. This study proposes zero-padding for resizing images to the same size and
compares it with the conventional approach of scaling images up (zooming in) using
interpolation. Our study showed that zero-padding had no effect on the classification
accuracy but considerably reduced the training time. The reason is that neighboring
zero input units (pixels) will not activate their corresponding convolutional unit in the
next layer. Therefore, the synaptic weights on outgoing links from input units do not
need to be updated if they contain a zero value. Theoretical justification along with
experimental endorsements are provided in this paper.

Keywords:  Image classification, Pattern recognition, Artificial neural networks,
Computer vision, Machine learning

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Hashemi ﻿J Big Data (2019) 6:98
https://doi.org/10.1186/s40537-019-0263-7

*Correspondence:
mhashem2@gmu.edu
Department of Information
Sciences and Technology,
George Mason University,
4400 University Dr, Fairfax, VA
22030, USA

http://orcid.org/0000-0003-0212-0228
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0263-7&domain=pdf

Page 2 of 13Hashemi ﻿J Big Data (2019) 6:98

networks, CNN has much fewer connections and parameters which makes it easier to
train.

A CNN consists of convolutional layers followed by fully-connected layers (Fig. 1). A
convolutional layer consists of a convolution filter, followed by a pooling filter and an
activation function. A convolution filter has a number (n) of filters, with the same win-
dow size (f), sweeping over the image with a stride of sf. Pooling summarizes the outputs
of neighboring groups of neurons in the same kernel map. A pooling layer has a window
with the size of p that sweeps over the image with a stride of sp. A common pooling
function is the maximum pooling function which outputs the maximum value in the
kernel map [25] and is utilized in our model. The last fully-connected layer in CNN has
as many neurons as the number of classes. Among the model’s hyperparameters are n, f,
sf, p, sp and the number of neurons in fully-connected layers.

The convolution filter and the pooling filter would slip outside the input image into
the void, when they attempt to center themselves at bordering pixels. There are two
strategies to solve this issue: (a) stopping the filter before it slips outside the image and
(b) padding the input image with zero pixels. The first approach comes at the cost of
under-scanning the bordering pixels because the filter will not get a chance to center
itself at the bordering pixels. The second approach is referred to as padding and is the
one applied in our model.

Since neural networks receive inputs of the same size, all images need to be resized
to a fixed size before inputting them to the CNN [14]. The larger the fixed size, the less
shrinking required. Less shrinking means less deformation of features and patterns
inside the image. This will mitigate the classification accuracy degradation due to defor-
mations. However, large images not only occupy more space in the memory but also
result in a larger neural network. Thus, increasing both the space and time complexity.
It is obvious now that choosing this fixed size for images is a matter of tradeoff between
computational efficiency and accuracy.

Images larger than the fixed size (in one dimension or both) could be resized down
to the desired fixed size using two approaches: cropping their border pixels or scaling
them down using interpolation. Both approaches are lossy. While cropping poses the

Fig. 1  A typical architecture for CNN

Page 3 of 13Hashemi ﻿J Big Data (2019) 6:98

risk of missing the features or patterns that appear in border areas, scaling poses the
risk of deforming features or patterns across the image. Since deforming patterns is less
risky than losing them, scaling is the reasonable choice to resize larger images down to
the desired fixed size. Resizing smaller images up to the fixed size is the focus of this
study. Zero-padding is proposed for this purpose and compared with the conventional
approach of scaling images up (zooming in) using interpolation.

Related works
Despite their emergence in the late 1980s, CNNs were still dormant in visual tasks until
the mid-2000s. The increase in computing power, large amounts of labeled data, and
algorithmic innovations brought CNNs to the forefront of visual tasks. CNNs overcome
the formidable tasks of feature extraction and transformation, as well as pattern analysis
and classification, by exploiting multiple layers of nonlinear information processing [15].

Krizhevsky et al. [25] used a CNN to classify 1.2 million images into 1000 classes in the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012. They won this chal-
lenge with record-breaking results and marked the most significant advance for image
classification tasks. Ever since, CNNs have dominated the image classification compo-
nent of subsequent versions of the ILSVRC [17, 39, 41, 46, 58].

Zeiler and Fergus [58] used a multilayered deconvolutional network [59] to under-
stand the intermediate feature extraction layers of the network. They used this in a diag-
nostic role to derive ways to improve CNN architecture and performance. Their model
outperformed Krizhevsky et al. [25] on the ImageNet classification benchmark and
won the ILSVRC 2013 [39]. Their model also achieved the best published results on the
CALTECH-101 [7] and CALTECH-256 data sets [13].

A CNN architecture, called Inception, was introduced by Szegedy et al. [46]. Goog-
LeNet model consisting of 22 layers, inspired by the Inception architecture, won both
the ImageNet classification and detection challenges in 2014 [39]. Such a large network
with a large number of parameters is not only computationally burdensome to train, but
also susceptible to overfitting. To overcome these challenges, they reduced the number
of connections in their network based on Hebbian principles to create a sparsely con-
nected convolutional architecture, rather than a fully connected one. More specifically,
they used 1 × 1 convolutions as dimension-reduction blocks prior to 3 × 3 and 5 × 5 con-
volutions. This allowed them to increase the network size without exponentially increas-
ing the computational cost. Simonyan and Zisserman [41] also used a deep CNN with
19 layers in the ILSVRC 2014 classification contest [39]. Instead of the Inception model,
arguing that it is too complex, they used smaller-sized convolutional filters (3 × 3) across
the CNN and kept the parameters constant.

The winner of the ILSVRC 2015 [39] was a CNN with 152 layers, developed by He
et al. [17]. They applied a residual learning framework to overcome the difficulty of train-
ing their deep network. To make it easier to optimize and train, they allowed errors to be
propagated directly to the preceding units. This was realized by forcing the layers of the
network to learn residual functions with reference to their preceding layer inputs rather
than learning unreferenced functions. They also found that optimized residual modules
worked more optimally than their initial residual module configurations. Table 1 lists
other recent attempts to improve different aspects of CNNs.

Page 4 of 13Hashemi ﻿J Big Data (2019) 6:98

Table 1  Some recent attempts to improve different aspects of CNNs

Network architecture Convolutional layers Network in network Lin et al. [30]

Inception and improved
Inception models

Szegedy et al. [46, 47]

Doubly convolution Zhai et al. [60]

Pooling layers Lp pooling Sermanet et al. [40]

Stochastic pooling Zeiler and Fergus [57]

Fractional max pooling Graham [11]

Mixed pooling Yu et al. [55]

Gated pooling Lee et al. [28]

Tree pooling Lee et al. [28]

Spectral pooling Rippel et al. [38]

Spatial pyramid pooling Grauman and Darrell [12],
He et al. [18], Lazebnik
et al. [27], Yang et al. [54]

Multiscale orderless
pooling

Gong et al. [9]

Transformation invariant
pooling

Laptev et al. [26]

Nonlinear activation
functions

Rectified linear unit (ReLU) Nair and Hinton [35]

Leaky rectified linear unit
(LReLU)

Maas et al. [32]

Parametric rectified linear
unit (PReLU)

He et al. [19]

Adaptive piecewise linear
(APL) activation func-
tions

Agostinelli et al. [1]

Randomized rectified
linear unit (RReLU)

National Data Science Bowl
|Kaggle [36]

Exponential linear unit
(ELU)

Clevert et al. [4]

S-shaped rectified linear
unit (SReLU)

Jin et al. [23]

Maxout activations Goodfellow et al. [10]

Probout activations Springenberg and Ried-
miller [42]

Loss function Softmax loss Liu et al. [31]

Contrastive and triplet
losses

Liu et al. [31]

Large margin loss Liu et al. [31]

L2-SVM loss Collobert and Bengio [5],
Nagi et al. [34]

Regularization mecha-
nisms

Dropout Hinton et al. [21], Srivastava
et al. [43]

Fast dropout Wang and Manning [51]

Adaptive dropout Ba and Frey [2]

Multinomial dropout and
evolutional dropout

Li et al. [29]

Spatial dropout Tompson et al. [48]

Nested dropout Rippel et al. [37]

Max pooling dropout Wu and Gu [53]

DropConnect Wan et al. [49]

Page 5 of 13Hashemi ﻿J Big Data (2019) 6:98

Since the emergence of CNNs and their staggering success in image classification,
many attempts have been made by researchers to improve their accuracy and time per-
formance. These improvements have targeted different aspects of CNNs, including net-
work architecture, activation functions, regularization mechanisms, and optimization
techniques among others. However, one aspect that has not witnessed much attention
is the strict requirement of CNNs in receiving images of the same size. In other words,
resizing all images to a fixed size is a prerequisite for classifying them using CNN. While
interpolation has been widely and traditionally used to scale all the images to the same
size, alternative options for doing so has not been sufficiently explored. Therefore, this
study is devoted to this aspect of CNNs.

Zero‑padding vs. scaling up using interpolation
As shown in Fig. 2, there are two approaches to resize smaller images up to the fixed
size: zero-padding and scaling them up (zooming in) using interpolation. Zero-padding
has two advantages in comparison with scaling. The first advantage is that while scal-
ing carries the risk of deforming the patterns in the image, padding does not. The sec-
ond advantage of zero-padding is that it speeds up the calculations, in comparison with

Table 1  (continued)

Optimization techniques Enhanced initialization
schemes

Xavier initialization Glorot and Bengio [8]

Theoretically derived
adaptable initialization

He et al. [19]

Standard fixed initializa-
tion

Krizhevsky et al. [25]

Layer sequential unit vari-
ance initialization

Mishkin and Matas [33]

Skip connections Highway networks Srivastava et al. [44, 45]

Residual networks He et al. [17]

Improved residual net-
works

He et al. [20]

Densely connected con-
volutional networks

Huang et al. [22]

Fig. 2  A small image (a) resized to 200 × 200 pixels using zero-padding (b) and interpolation (c)

Page 6 of 13Hashemi ﻿J Big Data (2019) 6:98

scaling, resulting in better computational efficiency. The reason is that neighboring zero
input units (pixels) will not activate their corresponding convolutional unit in the next
layer. Therefore, the synaptic weights on outgoing links from input units do not need to
be updated if they contain a zero value. This is similar to a dropout that only concerns
border pixels in the input layer. This advantage will be lost if smaller images are enlarged
by increasing their resolution (scaling) rather than zero-padding.

In the following we invalidate two plausible disadvantages of zero-padding in compari-
son with scaling:

•	 Since smaller images are enlarged by adding zero-value pixels around their borders,
the CNN will not sufficiently learn to extract features from the border areas, as well
as it learns to do so in central areas. In other words, the synaptic weights on links
from the border pixels to the first convolutional layer will not have the opportunity
to be sufficiently trained because the input value for border pixels is zero for many
images. This assumption is not true as the weight sharing property of CNN uses the
same synaptic weights over all convolution windows. Figure 3 depicts the convolu-
tion window that sweeps across the image and the fact that the synaptic weights (a,
b, c, d, e, f, g, h, and i) are the same for all convolution windows. In other words, the
CNN’s power in extracting features from the border areas of an image is equal to its
power in extracting features from the central areas.

•	 The forged zero-value pixels around smaller images will adversely disturb the optimi-
zation of synaptic weights. This assumption is not true because zero-value pixels will
not activate during forward and backward propagation. In other words, zero-value
input units will not contribute to the forward pass and their corresponding synaptic
weights will not be updated during the backpropagation. Following is the mathemati-
cal proof:

Proof  In the backpropagation algorithm [3, 16, 52], the architecture of the network
is fixed and its synaptic weights (W) are computed so as to minimize a cost function
defined as:

where N is the number of training samples and ε(i) is a function of the network’s output
( ̂y(i) ) and the desired output (y(i)) for the i-th training sample. We can iteratively find
the synaptic weight vectors that minimize the perceptron cost function using the gradi-
ent descent scheme [3, 16, 52]. In each iteration, the weight vector (including the thresh-
old) of the j-th node in the r-th layer ( wr

j  ) is modified through Eq. 2:

The modification term in Eq. 2 ( �w
r
j  ) is computed through Eq. 3 according to the gradi-

ent descent scheme, where α is referred to as the training rate:

(1)J (w) =

N
∑

i=1

ε(i)

(2)w
r
j (new) = w

r
j (old)+�w

r
j

Page 7 of 13Hashemi ﻿J Big Data (2019) 6:98

By substituting the cost function from Eq. 1 in Eq. 3 and applying the chain rule in dif-
ferentiation, we obtain:

where vrj (i) is the value at the jth node in the rth layer before the activation function is
applied to it. By defining δrj (i) =

∂ε(i)
∂vrj (i)

 in the above equation, we obtain:

(3)�w
r
j = −α

∂J (w)

∂wr
j

(4)�w
r
j = −α

∂
∑N

i=1
ε(i)

∂wr
j

= −α

N
∑

i=1

∂ε(i)

∂wr
j

= −α

N
∑

i=1

∂ε(i)

∂vrj (i)

∂vrj (i)

∂wr
j

Fig. 3  Synaptic weights (a, b, c, d, e, f, g, h, and i) are the same for all convolution windows in CNN

Page 8 of 13Hashemi ﻿J Big Data (2019) 6:98

We can calculate
∂vrj (i)

∂wr
j

 using Eq. 6 as follows:

where kr-1 is the number of nodes in the (r − 1)th layer and ŷr−1(i) is the output vector
of the (r − 1)th layer for the ith training sample. By substituting Eq. 6 in Eq. 5 we obtain:

Considering that wr
j in the above equation is the weight vector of the jth node in the rth

layer, we can calculate wr
jk , the synaptic weight from the kth node at the (r − 1)th layer to

the jth node at the rth layer, as:

We needed to prove that the synaptic weights from a node in the first layer to another
node in the second layer will not be updated if the value of the node in the first layer is
zero. This is equivalent to proving that �wr

jk is zero if ŷr−1

k (i) is zero. Equation 8 proves
this, because if we replace ŷr−1

k (i) with zero in Eq. 8, it will result in zero for �wr
jk . This

proof is independent from the choice of the activation functions or the cost function,
ε(i). � �

In the next section, two experiments are conducted with publicly available datasets to
verify the faster training of zero-padding in comparison with scaling up smaller images
using interpolation to the desired fixed size.

Experiments
CNN setup

AlexNet [25], an 8-layer deep architecture for CNN, is applied here. This architecture
entails 5 convolutional layers followed by 3 fully-connected layers, as shown in Fig. 4.
The following settings are considered for the convolutional layers: f1 = 11 × 11 × 3, s1 = 4,
n1 = 96, f2 = 5 × 5 × 96, s2 = 1, n2 = 256, f3 = 3 × 3 × 256, s3 = 1, n3 = 384, f4 = 3 × 3 × 384,

(5)�w
r
j = −α

N
∑

i=1

δrj (i)
∂vrj (i)

∂wr
j

(6)
∂vrj (i)

∂wr
j

=













∂vrj (i)

∂wr
j1

.

.

.
∂vrj (i)

∂wr
jkr−1













=







ŷr−1

1
(i)
.
.
.

ŷr−1

kr−1
(i)






= ŷr−1(i)

(7)�w
r
j = −α

N
∑

i=1

δrj (i)ŷ
r−1(i)

(8)�wr
jk = −α

N
∑

i=1

δrj (i)ŷ
r−1

k (i)

Page 9 of 13Hashemi ﻿J Big Data (2019) 6:98

s4 = 1, n4 = 384, f5 = 3 × 3 × 384, s5 = 1, n5 = 256, where fm, sm, and nm denote the size,
stride, and number of filters of the m-th layer respectively. The first two fully-connected
layers have 4096 neurons each and the third fully-connected layer has as many neurons
as the number of classes.

The last fully-connected layer is followed by an n-way softmax function which pro-
duces a probability distribution over the n class labels. The softmax function in the final
layer, softmax(zi)  = exp(zi)/Ʃj exp(zj), transforms the values (xi) to normalized exponen-
tial probabilities whose summation is one (i.e. Ʃc pc = 1). This provision (Ʃc pc = 1) is a
prerequisite for the application of cross-entropy loss function. The cross-entropy loss
function is computed as: − Ʃc yc log(pc), where c represents a class (or neuron) in the final
layer, yc stands for the desired output value (0 or 1) at that neuron, and pc for the pre-
dicted probability at that neuron. The Adam optimization algorithm [24] is used to train
the network. It is an extension to the stochastic gradient descent (SGD) approach. As
opposed to SGD’s single and fixed learning rates for all synaptic weight updates, Adam
continually adjusts individual adaptive learning rates for each synaptic weight based on
estimates of first and second moments of the gradients. We initialized the learning rate
at 0.0001 and the exponential decay rate for the first and second moment estimates at 0.9
and 0.999 respectively. These values are suggested by Kingma and Ba [24].

Pooling function is in charge of summarizing the outputs of neighboring groups of
neurons in the same kernel map. A size of 3 × 3 and stride of 2 are considered for pool-
ing layers, proposed by Zeiler and Fergus [57] and Krizhevsky et al. [25]. Larger pool-
ing regions are too noisy during training and smaller regions cause over-fitting [57]. The
stride being smaller than the size of the pooling region causes the pooling regions to
overlap. Overlapping pooling can improve the generalization accuracy by reducing over-
fitting [25]. Pooling layers in our network follow the first, second, and fifth convolutional
layers. Maximum pooling function, which is conventionally used in AlexNet [25], out-
puts the maximum value in the kernel map. It is also applied in our model.

Rectified Linear Unit (ReLU) [21, 35], defined as the positive part of its argument:
ReLU(z) = max(0,z), is a piecewise linear function. It is commonly used as activation
function at all layers, except the last one, where a softmax function is preferred to pro-
duce a probability distribution over the class labels.

Fig. 4  AlexNet architecture in our application

Page 10 of 13Hashemi ﻿J Big Data (2019) 6:98

Datasets

Two datasets from http://www.image​-net.org are used here: Tiny Imagenet (Stanford
CS231N) and Visual Domain Decathlon (PASCAL in Detail Workshop Challenge).
Tiny Imagenet is similar to the classification in the full ImageNet challenge (ILSVRC)
but with a smaller dataset. Tiny Imagenet contains 200 classes. Each class has 500 train-
ing images and 50 validation images. The test set contains 10,000 images. All images are
64 × 64 colored ones. Visual Domain Decathlon contains 1000 classes. Each class has
1250 training images and 50 validation images. The test set contains 50,000 images. All
images are colored and image sizes range from 72 × 72 to 72 × 1125. The average num-
ber of pixels in an image is 7155 and the median is 6912.

Results and discussion
The experiments were implemented in TensorFlow package in Python and run on a
2.60 GHz Intel Xeon CPU E5-2670M, 20 M cash size, and 350G RAM. All images are
resized to 224 × 224 pixels. Without extra preprocessing, the image pixels are only
divided by 255 so that they are in the range 0 to 1. In each experiment, 20% of images
are held out for testing. A tenfold cross validation is performed using the remaining 80%
of labeled images to find the optimal number of training epochs. The stop epoch is the
smallest epoch whose tenfold cross-validation accuracy falls within one standard devia-
tion of the best. After finding the optimal stop epoch, the machine is trained using the
entire 80% of the data and then tested using the 20% of the data which were primarily
held out of the ten-fold cross-validation.

The classification accuracy was not impacted by the choice of the approach for resizing
small images up to the fixed size. Zero-padding reduced the training time per epoch by
3% on average for the first dataset and 11% for the second dataset. This is an experimen-
tal endorsement of the theoretical justification presented for this approach in the previ-
ous section.

A more detail investigation showed that the reduction in training time is proportional
to: (a) the number of images which at least one of their dimensions is smaller than the
fixed size and (b) the amount of zero-padding required to get the smaller images up
to the fixed size. These two factors are mainly responsible for the larger training time
reduction in the second dataset.

Conclusions and future directions
Since the emergence of CNNs and their staggering success in image classification, many
attempts have been made by researchers to improve their accuracy and time perfor-
mance. These improvements have targeted different aspects of CNNs, including network
architecture, activation functions, regularization mechanisms, and optimization tech-
niques among others. However, one aspect that has not witnessed much attention is the
strict requirement of CNNs in receiving images of the same size. In other words, resizing
all images to a fixed size is a prerequisite for classifying them using CNN. While inter-
polation has been widely and traditionally used to scale all the images to the same size,
alternative options for doing so has not been sufficiently explored. With that in mind,
this study proposed zero-padding around smaller images, as opposed to interpolation,
to resize them up to the fixed size. Zero-padding has no effect on the classification

http://www.image-net.org

Page 11 of 13Hashemi ﻿J Big Data (2019) 6:98

accuracy but considerably reduces the training time. The reason is that neighboring zero
input units (pixels) will not activate their corresponding convolutional unit in the next
layer. Therefore, the synaptic weights on outgoing links from input units do not need to
be updated if they contain a zero value. While zero-padding and interpolation bypass
the problem of multi-resolution image classification by resizing smaller images to a fixed
size, our future work focuses on classifying multi-resolution images without resizing
them. This will require some reforms in CNN itself.

Abbreviations
CNN: convolutional neural network; ILSVRC: ImageNet Large Scale Visual Recognition Challenge; ReLU: rectified linear
unit; LReLU: leaky rectified linear unit; PReLU: parametric rectified linear unit; APL: adaptive piecewise linear; RReLU: ran-
domized rectified linear unit; ELU: exponential linear unit; SReLU: s-shaped rectified linear unit; SGD: stochastic gradient
descent.

Acknowledgements
Not applicable.

Authors’ contributions
The author read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The author declares no competing interests.

Received: 3 July 2019 Accepted: 4 November 2019

References
	1.	 Agostinelli F, Hoffman M, Sadowski P, Baldi, P. Learning activation functions to improve deep neural networks. 2014.

arXiv preprint, arXiv​:1412.6830.
	2.	 Ba J, Frey B. Adaptive dropout for training deep neural networks. In: Burges CJ, Bottou L, Welling M, Ghahramani

Z, Weinberger KQ, editors. Advances in neural information processing systems, vol. 26. Red Hook: Curran; 2013. p.
3084–92.

	3.	 Bishop CM. Neural networks for pattern recognition. Oxford: Oxford University Press; 1995.
	4.	 Clevert D-A, Unterthiner T, Hochreiter S. Fast and accurate deep network learning by exponential linear units (ELUs).

In: Proceedings of the 4th international conference on learning representations. 2016. p. 1–14.
	5.	 Collobert R, Bengio S. A gentle Hessian for efficient gradient descent. In: Proceedings of the IEEE international

conference on acoustics, speech, and signal processing. 2004. p. 517–20.
	6.	 Farfade SS, Saberian MJ, Li L-J. Multi-view face detection using deep convolutional neural networks. In: 5th interna-

tional conference on multimedia retrieval. New York: ACM. 2015. p. 643–50.
	7.	 Fei-Fei L, Fergus R, Perona P. One-shot learning of object categories. IEEE Trans Pattern Anal Mach Intell.

2006;28(4):594–611.
	8.	 Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the

13th international conference on artificial intelligence and statistics. 2010. p. 249–56.
	9.	 Gong Y, Wang L, Guo R, Lazebnik S. Multi-scale orderless pooling of deep convolutional activation features. In:

Proceedings of the European conference on computer vision. Berlin: Springer; 2014. p. 392–407.
	10.	 Goodfellow IJ, Warde-Farley D, Mirza M, Courville A, Bengio Y. Maxout networks. In: Proceedings of the 30th interna-

tional conference machine learning. 2013. p. 1319–27.
	11.	 Graham B. Fractional max-pooling. 2014. arXiv preprint, arXiv​:1412.6071.
	12.	 Grauman K, Darrell T. The pyramid match kernel: discriminative classification with sets of image features. In: Proceed-

ings of the IEEE international conference on computer vision. Red Hook: Curran; 2005. p. 1458–65.
	13.	 Griffin G, Holub A, Perona P. Caltech-256 object category dataset. Pasadena: California University of Technology;

2007.
	14.	 Hashemi M. Web page classification: a survey of perspectives, gaps, and future directions. Multimed Tools Appl.

2019. https​://doi.org/10.1007/s1104​2-019-08373​-8.
	15.	 Hashemi M, Hall M. Detecting and classifying online dark visual propaganda. Image Vis Comput. 2019;89(1):95–105.
	16.	 Haykin SS. Neural networks: a comprehensive foundation. 2nd ed. Upper Saddle River: Prentice Hall; 1999.
	17.	 He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-level performance on imagenet classi-

fication. In: Proceedings of the IEEE international conference on computer vision. Red Hook: Retrieved from Curran;
2015. p. 1026–34.

http://arxiv.org/abs/1412.6830
http://arxiv.org/abs/1412.6071
https://doi.org/10.1007/s11042-019-08373-8

Page 12 of 13Hashemi ﻿J Big Data (2019) 6:98

	18.	 He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE
Trans Pattern Anal Mach Intell. 2015;37(9):1904–16.

	19.	 He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the ieee conference on
computer vision and pattern recognition. 2016. p. 770–8.

	20.	 He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. European conference on computer vision.
Cham: Springer; 2016. p. 630–45.

	21.	 Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR. Improving neural networks by preventing co-
adaptation of feature detectors. 2012. arXiv preprint, arXiv​:1207.0580.

	22.	 Huang G, Liu Z, Maaten LV, Weinberger KQ. Densely connected convolutional networks. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2017. p. 4700–8.

	23.	 Jin X, Xu C, Feng J, Wei Y, Xiong J, Yan S. Deep learning with s-shaped rectified linear activation units. In: 13th AAAI
conference on artificial intelligence. 2016.

	24.	 Kingma DP, Ba J. Adam: a method for stochastic optimization. 2014. arXiv preprint, arXiv​:1412.6980.
	25.	 Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Advances

in Neural information processing systems. 2012. p. 1097–105.
	26.	 Laptev D, Savinov N, Buhmann JM, Pollefeys M. TI-POOLING: transformation-invariant pooling for feature learning in

convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2016. p. 289–97.

	27.	 Lazebnik S, Schmid C, Ponce J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene
categories. In: Proceedings of the IEEE conference on computer vision and pattern recognition. Red Hook: Curran;
2006. p. 2169–78.

	28.	 Lee C-Y, Gallagher PW, Tu Z. Generalizing pooling functions in convolutional neural networks: mixed, gated, and
tree. In: Proceedings of the 19th international conference on artificial intelligence and statistics. 2016. p. 464–72.

	29.	 Li Z, Gong B, Yang T. Improved dropout for shallow and deep learning. In: Lee D, Sugiyama M, Luxburg UV, Guyon I,
Garnett R, editors. Advances in neural information processing systems. 2016. p. 2523–31.

	30.	 Lin M, Chen Q, Yan S. Network in network. 2013. arXiv preprint, arXiv​:1312.4400.
	31.	 Liu W, Wen Y, Yu Z, Yang M. Large-margin softmax loss for convolutional neural networks. In: Proceedings of the 33rd

international conference machine learning, vol. 2. 2016. p. 507–16.
	32.	 Maas AL, Hannun AY, Ng AY. Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the

30th international conference machine learning, vol. 30. 2013. p. 1–8.
	33.	 Mishkin D, Matas J. All you need is a good init. In Proceedings of the 4th international conference on learning repre-

sentations. 2016. p. 1–13.
	34.	 Nagi J, Caro GA, Giusti A, Nagi F, Gambardella LM. Convolutional neural support vector machines: hybrid visual

pattern classifiers for multi-robot systems. In: Proceedings of the 11th international conference on machine learning
and applications. Los Alamitos: IEEE; 2012. p. 27–32.

	35.	 Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: The 27th international confer-
ence on machine learning. 2010. p. 807–14.

	36.	 National Data Science Bowl | Kaggle. 2016. https​://www.kaggl​e.com/c/datas​cienc​ebowl​.
	37.	 Rippel O, Gelbart M, Adams R. Learning ordered representations with nested dropout. In: Proceedings of the 30th

international conference on machine learning. 2014. p. 1746–54.
	38.	 Rippel O, Snoek J, Adams RP. Spectral representations for convolutional neural networks. In: Cortes C, Lawrence ND,

Lee DD, Sugiyama M, Garnett R, editors. Advances in neural information processing systems, vol. 28. Red Hook: Cur-
ran; 2015. p. 2449–57.

	39.	 Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC. Ima-
geNet large scale visual recognition challenge. Int J Comput Vis. 2015;115(3):211–52.

	40.	 Sermanet P, Chintala S, LeCun Y. Convolutional neural networks applied to house numbers digit classification. In:
Proceedings of the 21st international conference on pattern recognition. Red Hook: Curran; 2012. p. 3288–91.

	41.	 Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. arXiv preprint,
arXiv​:1409.1556.

	42.	 Springenberg JT, Riedmiller M. Improving deep neural networks with probabilistic maxout units. 2013. arXiv pre-
print, arXiv​:1312.6116.

	43.	 Srivastava NG, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from
overfitting. J Mach Learn Res. 2014;15(1):1929–58.

	44.	 Srivastava RK, Greff K, Schmidhuber J. Training very deep networks. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M,
Garnett R, editors. Advances in neural information processing systems, vol. 28. Red Hook: Curran; 2015. p. 2377–85.

	45.	 Srivastava RK, Greff K, Schmidhuber J. Highway networks. 2015. arXiv preprint, arXiv​:1505.00387​.
	46.	 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with

convolutions. In: IEEE conference on computer vision and pattern recognition. New York: IEEE; 2015. p. 1–9.
	47.	 Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception architecture for computer vision. In:

Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. p. 2818–26.
	48.	 Tompson J, Goroshin R, Jain A, LeCun Y, Bregler C. Efficient object localization using convolutional networks. In:

Proceedings of the IEEE conference on computer vision and pattern recognition. Los Alamitos: IEEE; 2015. p. 648–56.
	49.	 Wan L, Zeiler M, Zhang S, Cun YL, Fergus R. Regularization of neural networks using Dropconnect. In: Proceedings of

the 30th international conference machine learning. 2013. p. 1058–66.
	50.	 Wang M, Liu X, Wu X. Visual classification by l1-hypergraph modeling. IEEE Trans Knowl Data Eng.

2015;27(9):2564–74.
	51.	 Wang S, Manning C. Fast dropout training. In: Proceedings of the 30th international conference on machine learn-

ing. 2013. p. 118–26.
	52.	 Werbos PJ. Beyond regression: new tools for prediction and analysis in the behavioral sciences. Cambridge: Ph.D.

Thesis, Harvard University; 1974.

http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.4400
https://www.kaggle.com/c/datasciencebowl
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1312.6116
http://arxiv.org/abs/1505.00387

Page 13 of 13Hashemi ﻿J Big Data (2019) 6:98

	53.	 Wu H, Gu X. Max-pooling dropout for regularization of convolutional neural networks. In: Proceedings of the 22nd
international conference neural information processing. Berlin: Springer; 2015. p. 46–53.

	54.	 Yang J, Yu K, Gong Y, Huang TS. Linear spatial pyramid matching using sparse coding for image classification. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, vol. 1. Red Hook: Curran; 2009. p.
1794–801.

	55.	 Yu D, Wang H, Chen P, Wei Z. Mixed pooling for convolutional neural networks. In: Proceedings of the 9th interna-
tional conference on rough sets and knowledge technology. Berlin: Springer; 2014. p. 364–75.

	56.	 Yu J, Tao D, Wang M. Adaptive hypergraph learning and its application in image classification. IEEE Trans Image
Process. 2012;21(7):3262–72.

	57.	 Zeiler MD, Fergus R. Stochastic pooling for regularization of deep convolutional neural networks. 2013. arXiv pre-
print, arXiv​:1301.3557.

	58.	 Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In: European conference on computer
vision. Berlin: Springer; 2014. p. 818–33.

	59.	 Zeiler MD, Taylor GW, Fergus R. Adaptive deconvolutional networks for mid and high level feature learning. In:
Proceedings of the IEEE international conference on computer vision, vol. 1. Red Hook: Curran; 2011. p. 2018–25.

	60.	 Zhai S, Cheng Y, Zhang ZM, Lu W. Doubly convolutional neural networks. In: Lee D, Sugiyama M, Luxburg UV, Guyon
I, Garnett R, editors. Advances in neural information processing systems. vol. 29. 2016. p. 1082–90.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1301.3557

	Enlarging smaller images before inputting into convolutional neural network: zero-padding vs. interpolation
	Abstract
	Introduction
	Related works
	Zero-padding vs. scaling up using interpolation
	Experiments
	CNN setup
	Datasets

	Results and discussion
	Conclusions and future directions
	Acknowledgements
	References

