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Introduction
Two decades earlier, some of the most seminal works in machine learning were done on 
training set selection [1, 2] under the banner of relevance reasoning. However, the better 
part of recent works have been exclusively towards feature selection [3, 4]. With increased 
processing power, run time of training is feasible even for datasets erstwhile considered 
large. Additionally, dimensionality (d) dominates dataset size (n) in the algorithmic com-
plexities of learning algorithms. In the training phase, less data points mean fewer gen-
eralization guarantees, however, as we are moving in the era of big data, even the fastest 
classification algorithms are taking un-feasible time to train models. When data sources 
are abundant, it is befitting to separate data based on relevance to the learning task. This 
has led to a renewed interest in the once famous problem statement of relevance reason-
ing [5, 6]. Reasoning on relevance to get improved scalability of classification algorithms 
is currently explored on graphical/network data [7] and learned models [8].
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One research area where training set selection has been given attention to is sup-
port vector machines (SVM). Generally, these selection methods can be divided into 
two types, primarily based on whether n is reduced or not. The first type of meth-
ods aims to modify the SVM formulation so that it can be applied to large datasets. 
Many approaches have worked successfully in the past, including sequential minimal 
optimization (SMO) [9, 10], which is an algorithm of solving the optimization prob-
lem associated with SVM in an efficient manner and genetic programming [11]. The 
first type of methods, however, do not benefit from reducing the size of training data 
because they only deal with data handling. Reduction of data size is the quintessen-
tial advantage of the second kind of methods [12–20]. These methods focus on seg-
regating the data points on relevance to the classification task. Computation time is 
reduced by actively reducing n. During the mid-2000s, handling data was the central 
theme of research instead of reducing it. Despite the apparent advantage of reduction 
of data, researchers made efforts for methods of the first type [9–11, 21] in compari-
son to the latter type. For instance, formulations implemented in LIBSVM [21], which 
is a widely used benchmark library for SVM methods, are of the first type of methods.

The few existing works of the second type are limited in one respect or another. 
For instance, speed-ups upto 15 times (for 0.5% sampling) are possible on cluster-
ing based SVM (CB-SVM) works by Yang et al. [20] Salvador,  Awad [12, 13], how-
ever, these are limited to linear kernels only. A geometric approach of minimum ball 
enclosing by Cervantes et  al. [14] requires two stages of SVM training, first on the 
cluster centers, and later on the de-clustered data. A similar method by Li et al. [15] 
suffers from a random selection of data. They have reported 92.0% prediction accu-
racy for a separable dataset for which LIBSVM reproduces 99.9%.

The presented approach also falls under the second type. As will be shown, the pre-
sented selection scheme is very deterministic in prediction accuracy. A model trained 
with the presented heuristic results in close or better prediction accuracy than that of 
full data training. One recurring problem with the second type of methods is ineffi-
cient space searching scalability [15–19]. It becomes worse for high dimensional data, 
where the heuristic takes more time than training itself. For instance, the training 
phase with the method proposed by Chau et al. [22] is 8 times slower compared to the 
original training of LIBSVM for a dataset with only nine features. On the contrary, 
a speed-up of about 10 times is demonstrated here for a dataset with a number of 
features more than 25,000. Inefficient space search is addressed by the use of state-of-
the-art approximate nearest neighbor (ANN) methods [23] which are highly scalable.

In LIBSVM, the SMO decomposition method of Fan et al. [10] is available for the 
classification task. Training set selection compares in principle to working set selec-
tion (WSS) in the context of SMO or similar decomposition methods. Furthermore, 
a shrinking technique is available for these formulations to remove bounded compo-
nents during iterations, effectively reducing the optimization problem [10]. As will 
be shown, data selection in the presented heuristic only depends on the underlying 
classification patterns, giving it an essential advantage of generic applicability to the 
majority of classification algorithms, including the SMO formulations of LIBSVM. 
For these reasons, the state-of-the-art shrinking heuristic of LIBSVM is compared to 
the presented heuristic.
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The presented heuristic augments clustering based approaches [12, 13, 20] by con-
structing an (approximate) information graph out of the clustered data. This graph acts 
as a proxy for reducing the training set. A novel edge weight scheme captures the under-
lying classification patterns in the graph. The graph is then pruned via filtering on the 
edge weights to select a relevant dataset that can be used for the training task. Further-
more, a graph coarsening approach is presented to break the selected/reduced set into 
further partitions that are independently available for training, leading to an approximate 
learning scheme. Both methods lead to a reduction in the number of training data points, 
which reduces complexity of the training algorithm, giving performance advantages.

Most of the existing methods of both types are limited to the SVM class of algorithms 
[9–21]. Generic applicability on a majority of classification algorithms is another advan-
tage of the presented heuristic. It gives an opportunity to use the heuristic as a pre-pro-
cessing tool, separate from the classification algorithm. Since the data points are selected 
based on their relevance to the classification task, the resulting reduced training set is 
much more balanced in size across the target classes. In other words, the formulation 
addresses the problem statement of class imbalance, which is a topic of current research 
in big data [24].

The remainder of this paper is organized as follows, the ‘Methodology’ section 
describes formulations of the proposed heuristic in detail. The heuristic is evaluated 
with a number of tests and datasets in the ‘Results’ section. Finally, the ‘Conclusions and 
future work’ section summarizes concluding remarks, and ideas for future work in the 
heuristic formulation.

Methodology
The heuristic procedure organically divides into the following steps:

•	 Step 1: Clustering step
•	 Step 2: Graph knitting scheme
•	 Step 3: Graph shedding scheme
•	 Step 4: Graph clubbing scheme
•	 Pre-processor for the testing phase

The training phase proceeds after the first four steps, whereas the testing phase follows 
the last step of the heuristic formulation. The clustering step is used to get a computa-
tionally feasible resolution of the underlying data. A weighted graph is constructed next 
in the graph knitting scheme, using a three parts algorithm and an edge weight scheme, 
which completely captures the classification patterns. Significant nodes of this graph 
with respect to the classification task are determined in the graph shedding step. The 
reduced dataset obtained after the graph shedding step is executed several times faster 
compared to the original dataset when used for the training phase. Finally, the graph 
clubbing step divides these nodes into partitions that can be trained independently using 
a directional aspect of the graph coarsening objective achieved via another three parts 
algorithm. The graph clubbing step results in a partitioned dataset which can be used 
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in two execution modes for the training phase, first in serial mode, and second in dis-
tributed mode. Due to an approximate scheme (explained later in the section ‘Graph 
clubbing scheme’), the serial execution is faster than that of the training on the reduced 
dataset. Distributed execution can be used to leverage worker threads/processes to get 
multiple times speed-up. Figure 1 summarizes the steps of the heuristic along with the 
resulting modifications on the dataset.

Because of the multiple data partitions which translate into as many classifiers, there is 
a need to determine which classifier to choose for testing a data point. This is achieved 
by the pre-processor for the testing phase. Lastly, a network application is designed 
which distributes the obtained partitions in a load-balancing and a communication-free 
manner.

From a computational point of view, the run-time profile of the first four steps for a 
typical run case ( n ≈ 100k, d = 2, nc ≈ 350 ) is,

•	 Clustering step takes ≈ 750ms or > 98%
•	 Graph knitting scheme takes ≈ 10ms or 1%
•	 Graph shedding and graph clubbing schemes take ≈ 2ms ( < 1%)

On the other hand, the pre-processor for the testing phase takes ≈ 5% of the testing phase 
time. The clustering step is predominant over subsequent steps with a run-time complex-
ity in n, whereas that of all the other steps is in the order of number of clusters ( nc ). The 
input parameter to the clustering step, nc , controls the granularity of data representation. 
Typically, the ratio of n to nc , which is also known as nominal VC dimension, is 10 to 300, 
explaining the run-time dominance of the clustering step. The graph knitting scheme 
becomes the most computation-intensive among the subsequent steps, because it involves 

Fig. 1  Step 1 to 4 of the heuristic/procedure
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heavy space searching. It is to be noted that the run-time percentage profile can vary a lot 
depending on the nominal VC dimension or the input parameter nc..

Clustering step

The clustering step is used to lower the resolution of the underlying data. In principle, 
the presented heuristic does not require this step. However, it is not computationally 
feasible to execute the subsequent steps with a run-time complexity in n instead of nc . 
Additionally, it will also affect the generic applicability of the heuristic, which is dis-
cussed later in the ‘Graph shedding scheme’ step.

The step consists of a standard K-means++ [25] clustering algorithm, and a metric to 
store classification patterns of the original data. K-means++ provides improved initial 
seeding of clusters over the traditional K-means method. This choice leads to running 
the clustering algorithm for a nominal number of iterations, typically 5. In the current 
implementation, every cluster center maintains the target class through the weighted 
average calculation over all its data points. However, advanced metrics can be con-
structed to unearth more characteristics of patterns from the clustered data.

Although this step serves only for coarsening the data representation, it dominates 
the computation cost of the first four steps. Two state-of-the-art K-means++ imple-
mentations were tested, K-MeansRex [26] and the scalable mlpack package [27]. For a 
test run with data points in the range of 1 to 100k ( d = 2, nc = 100 ), K-means++ from 
mlpack was 1.82 times faster on average in execution than K-MeansRex’s implementa-
tion. Therefore, K-means++ from mlpack is chosen as the standard clustering algorithm 
in this work.

Given the vast research literature available for clustering methods, there are more 
advanced implementations available. One of such improvements would be the scalable 
K-means++ by Bahmani et al. [28], which is shown to be considerably faster than native 
K-means++. Another practical option is to exploit K-means implementations from a 
proven distributed computing platform [29].

Graph knitting scheme

From this step onwards, the presented heuristic digresses from most of the existing 
geometric approaches of the second type, primarily because of the choice of graph to 
represent the classification dataset, and the use of seminal works in neighbor search-
ing methods. First, the choice of a weighted graph opened the possibility of using well 
researched work on graph coarsening, which is the foundation of the graph clubbing 
step. Second, most of the existing approaches could not benefit from seminal works in 
the neighbor searching methods, which have contributed profoundly to the success of 
computer vision. The fast library for approximate nearest neighbors (FLANN) search 
engine [23] is used in this work.
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An information graph is constructed once a reasonable representation of the under-
lying data is obtained. Two major challenges include determination of neighbors, and 
capturing the classification patterns in edge weights. First, neighbors are determined 
such that the whole hypothesis is covered while passively enforcing regularity and 
planarity in the graph. The neighbors are determined in two steps, followed by a step 
that controls skewness of the graph. Second, a two-fold pattern capturing edge weight 
scheme is presented in Eq. 2.

The first challenge of neighbor determination is addressed in two stages, superficial 
neighbor search (SNS), and exclusive neighbor search (ENS), presented in Part I, and 
II, respectively. In the algorithm, the number of neighbors is nominally controlled by 
an input parameter nn, the number of desired neighbors. For every ith node, the vari-
able no_tot_neigh[i] in Line 1 of Part I is used to track the size of the neighbor list.

However, the neighbor list for the ith node can be terminated before adding nn 
neighbors by updating the variable neigh_list_finish[i] to TRUE in Line 4 of Part I. 
By limiting the number of neighbors in this way, construction of the graph can be 
controlled.

Part I is used to look for nn nearest neighbors, regardless of the target class. The 
algorithm takes an empty graph G(V ,φ) as input, which is formed with the set of 
the cluster centers V after the clustering step. This set is the search space passed to 
the FLANN space indexing utility in Line 8 and 9. The input constant R is explained 
later in Eq.  1. Objective of the part is to fill the graph G with EI set of edges. This 
is similar to the construction of a K-nearest neighbor graph (K-NNG). However, 
an input parameter, MAX_SAME_CLASS_NEIGH, is used to limit the number 
of same class neighbors in Line 13, so that the remainder of edges for the ith node, 
nn− no_tot_neigh[i] , are constructed for nodes with the opposite target class. Nodes 
for which all nn neighbors are found will vary depending on characteristics of the 
data. They will be excluded from the next parts. An additional computation of reach 
in Line 15 is maintained for every node. The metric presented in Eq. 1 is similar to the 
Hausdorff distance [19]. The distance utility of FLANN, in Line 10, is used to compute 
the summation in Eq. 1, whereas a scaling constant (R) controls the reach according 
to

where R is the scaling constant, ri is reach of the ith node, xi is the position of the ith 
node, xj is the position of the jth node, and Ni denotes the set of same class neighbors 
for the ith node.

(1)ri = R×
∑

jǫNi

|xi − xj|,
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In order to capture the classification patterns completely, it is necessary to make edges 
along the hypothesis of the classification data. So, Part II extends neighbor searching 
exclusively for nodes of the opposite target class. The ith node is considered only if there 
is a remainder requirement of neighbors, nnr[i] , where nnr[i] = nn− no_tot_neigh[i] . 
Nodes of class 2 form the search space in Line 3, in which neighbors are searched for 
class 1 nodes. This step along with the vice-versa case forms one iteration of the ENS 
procedure. For each iteration, a search space of the opposite target class is constructed 
in Line 3.
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Inclusion of a neighbor after space searching in Line 5 is stringent compared 
to SNS. An input parameter, NEIGH_LIMIT and the computed reach are used to 
limit the availability of node j as prospect neighbor in Line 9. For every jth node 
added as a neighbor, the variable node_neigh[j] , initiated in Line 6, is incremented. 
Reach is used to further update the boolean neigh_list_finish[i] for node i, even if 
nn− no_tot_neigh[i] > 0 in Line 13. Such an ith node tends to be an internal node of a 
target class. In other words, reach only encourages the convex hull nodes of one class 
to choose neighbors with nodes of the opposite class, aiding in planar construction of 
the graph.

The node_neigh counter is required in Part II to avoid a node that might habitually 
come up as a prospect neighbor despite not being very representative of a target class. It 
otherwise leads to a skewed graph with respect to node degree. node_neigh in Line 3 of 
Part III is used to reduce the search space of every target class, controlling the skewness 
of the constructed graph.

The second challenge is to capture the classification patterns in edge weights, for 
which a two-fold edge weight scheme is designed. First, each node measures its internal 
pattern as the absolute difference from one of the two target classes. Second, every pair 
of nodes in an edge measures their external pattern by the relative difference of their 
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target classes. Individual contributions are added via the power scheme in Eq. 2 to weigh 
the edge according to

where wi,j is the weight of the (i, j)th edge, tc(i) denotes target class of the ith node, CI 
and CE are constants for internal and external classification patterns, respectively, and 
quantities in || are absolute values.

The use of a state-of-the-art implementation like FLANN for neighbor searching can-
not be overemphasized. For instance, in a typical run case ( nc > 300 and nn > 3 ), the 
approximate neighbor searching method of FLANN was ≈ 1 000 times faster when com-
pared to the exact algorithm for nearest neighbor searching, which involves computing 
distances with all the remaining nodes for every node, and then sorting them to deter-
mine the nearest neighbors. The run-time advantage is clear when comparing the com-
plexity of exact graph construction, O(n3log(n)) , to that of approximate methods offered 
by FLANN [23].

Graph shedding scheme

Once a weighted graph is obtained, an edge cut based filtering presented in Algorithm 2 
separates the training dataset into relevant and non-relevant. For every node, the neigh-
bor list is iterated to check for a significant edge in Line 5, and when found, that node 
is added to relevant_node_list in Line 11. This leads to a training set selection that the 
second type of approach aims to achieve. Note that the result of this step depends on the 
characteristics of the graph, such as how well connected the graph is, and how well the 
underlying classification patterns have been captured. Algorithm 1 with the edge weight 
scheme addresses these issues.

The role of nominal VC dimension drips down to the pruned graph as well. Since it 
controls the granularity of the underlying data, it also controls the granularity of data 
selection. That gives the heuristic an essential advantage in terms of limiting data shrink-
age while selecting the relevant data points. Because the selection is done via clusters, 

(2)wi,j = C
1−|tc(i)|
I + C

1−|tc(j)|
I + C

|tc(i)−tc(j)|
E ,
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and the ratio of n to nc is typically > 10 , many data points that are not very close to the 
hypothesis boundary of the classification patterns are also selected. That gives an extra 
buffer of data points upon which another selection method of both types applies. The 
majority of classification algorithms, for example neural methods, gaussian processes et 
cetera, can use the heuristic. Until this step, the presented heuristic’s aim matches with 
the existing approaches of the first and second type. For comparison purposes, the heu-
ristic until this step (including) is referred to as GSH for the remainder of this work. 
Edge cut for GSH is referred to as GS edge cut.

Graph clubbing scheme

Formulation

This step extends the problem statement of training set selection to further break-
ing the reduced training set into few partitions or critical chunks, each of which can 
be trained independently, by virtue of Part  I to  III of Algorithm 3. The main aim is to 
design an approximate formulation that is theoretically faster, even for serial execu-
tion. The algorithm divides the training set into few partitions such that the number of 
computations are reduced significantly in the training phase. Consider that the order of 
complexity of most of the classification algorithms is higher than linear, that is a > 1 
if O(na) is the complexity. The graph clubbing scheme doesn’t change the order, how-
ever it results in significant reduction in total computations. For example, for a classifi-
cation algorithm with O(n2) complexity, if C × n2 , where C is a constant, is the original 
number of computations; then after data reduction by the graph clubbing scheme, there 
are four equal sized partitions/critical chunks. Now the number of computations is 
C × (4 × (n4 )

2) = C × n2

4  or a quarter of the original number.
Independence during the training phase of each obtained partition is mainly accom-

plished because of the directional aspect of the algorithm, which is achieved via the edge 
weight scheme. The directional aspect is responsible for two objectives, namely obtain-
ing equally-sized partitions, and ensuring orthogonality of the hypothesis boundary with 
neighboring partitions’ boundary. Two ways in which the edge weight scheme is lever-
aged for the directional aspect is in the priority aspect of the partial weighted matching 
(PWM) algorithm, Part  I, and the reassessment aspect of the coarsening formulation, 
Part II. The graph clubbing algorithm, Part III, ties Part I, and II in an iterative scheme. 
Each of such obtained partitions can now be trained independently, giving further lever-
age for a nominal number of worker processes.

The partial weighted matching (PWM), Part  I, is designed for the weighted graph 
obtained from the graph knitting step. The obtained matching is partial because edges 
weighing less than EDGE_CUT (input parameter) are filtered out in Line 4. So only cluster 
points closer to the hypothesis boundary are chosen for training. Sorting in Line 6, before 
ordered matching in Line 9, adds the weighted aspect to the matching. It enables the heavi-
est edges to be picked earliest for contraction, subtly addressing both main objectives of 
the directional aspect. Since the heaviest edges cover the classification patterns, prioritized 
selection of them results in uniform size of partitions. Prioritized selection also means that 
the most significant patterns are given preference, which conversely means the least sig-
nificant patterns are avoided. So the hypothesis boundary, along which the least significant 
patterns reside, is orthogonal to the contracted edges, where the most significant patterns 
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reside. Higher prediction accuracies are obtained because of the preference of contraction 
of the heaviest edges.

The coarsening formulation of Part  II applies the directional aspect, as edge contrac-
tion occurs in this part. It is to be noted that the coarsening formulation is different in aim 
to otherwise researched formulations. Most of the popular formulations are intended for 
reducing communication cost or preserving the global structure while getting a low-cost 
representation of data [30]. Furthermore, unlike Kernighan-Lin and other matching based 
coarsening objectives, the presented optimization objective is deterministic in execution.

In the part, reassessment of target class and edge list for newly contracted nodes in Lines 
6 and 10, respectively, augments the standard coarsening step in Line 3. By using different 
values of CI and CE for initial versus reassessment edge weights, the precedence of the kind 
of edges is established in the matching scheme. Original heavy edges are prioritized over re-
assessed edges of newly contracted edges, achieving the orthogonality property. Transition 
of coarsening from original edges to newly contracted nodes can be captured by the virtue 
of drastic decrease in graph cost metric, presented in Eq. 3,

where cost(G) is cost of the graph G, e is an edge, E ′ denotes the subset of E (set of all 
edges) such that {e | eǫE and > EDGE_CUT} , and we is the weight of edge e.

One technical choice is to use MIN(i, j) in Line 4 for identifying the new node that is a 
result of the contraction of edge between nodes i and j.

(3)cost(G) =
∑

eǫE′

we,
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Part I and II are executed in the iterations of Part  III in Lines 5 and 6, respectively. 
In Line 7, kink detection in graph cost is used as a termination condition of the itera-
tive algorithm. However, a variable for the number of coarsening iterations, i.e. MAX_
NUM_OF_COARSENING_ITER in Line 4, is used in the majority of tests. This step 
concludes the formulation of the heuristic. It is referred to as GCH for the remainder of 
this work. Similarly, edge cut is referred to as GC edge cut.

The implementation of few optimizations improved the run-time. First, the starting 
nodes in Line 2, Part I, are the ones that are identified relevant in GSH. After each itera-
tion, half of the nodes that belong to contracted edges are reduced in the update of rel-
evant nodes list ( relevant_nodes_list in Algorithm 2). As a result, the complexity of the 
matching algorithm reduces with the coarsening iterations. Second, the neighbor list of 
a node is sorted. As a result, edge contraction computation is linear (in complexity) to 
nn. It is computationally canonical to the sorted union of two lists. Lastly, usual numeri-
cal optimizations, such as masking to avoid dynamic memory allocations, and indexing 
(at the expense of memory) for O(1) searching are used.
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Network design

An event-driven, multi-process algorithm is designed to distribute the partitions 
obtained after GCH in a communication-free manner. In the network applica-
tion, processes assume a (single) master or (multiple) worker role. Part  I and  II of 
Algorithm 4, respectively, describe master’s and worker’s side of the event-handling 
design.

For the master process which executes Part  I, one partition from the list of parti-
tions, parts_list[] , is communicated to the requesting worker process (the one which 
issues the DATA_REQUEST event in Line 3 of Part II) by trigger of the DATA event 
in Line 6. The worker process, upon receiving the event DATA, proceeds to training 
with the received data partition in Line 5 of Part II. After collecting acknowledge-
ments of the completion of training of all data partitions in Line 9, the master pro-
cess terminates every worker by issuing TERM_TRAIN event. The design implements 
a round-robin scheme, which balances load of the network queries. That is accom-
plished by having a queue data structure for recording DATA_REQUEST events in 
Line 3. It is to be noted that conflict of two simultaneous entries is resolved by time 
stamps, making the queue fair with respect to a worker’s request.
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Instead of directly using TCP channels for message communication, the distrib-
uted messaging API ZeroMQ [31] is used. It provides essential safety and liveness 
properties on network channels. However, apart from message guarantees such as 
the liveness and safety property of ‘once only message delivery’, ZeroMQ is rudimen-
tary compared to higher level message passing libraries. This gives an opportunity 
to design and optimize various aspects of the architecture. One such aspect is the 
messaging protocol. A couple of messaging protocols are designed as shown in Fig. 2. 
Protocol 2 implements a single float/double entry (in character array or CA) messag-
ing scheme, whereas protocol 1 first requires marshaling all entries of a data point 
before messaging it.

Another aspect that was tested is connection time of the network. Connection time 
is measured on the master process, and included the following steps:

•	 Start of TCP channels (wrapped in the API)
•	 Initialize a hash table
•	 Receive connection request from all worker processes
•	 Send connection confirmation to all worker processes

The connection procedure requires step 2 for maintaining worker processes’ informa-
tion, giving an opportunity to optimize the step as required. A light-weight hash table 
( ≈ 0.6 MB) and hash key is designed which generates unique keys. The design helps to 
reduce the overhead of starting and running the multi-process application.

Pre‑processor for the testing phase

Unlike the application of GSH, which results in a single training set, multiple data 
partitions are obtained after GCH, and the training set is the union of these parti-
tions. It means that there would be as many classifiers as the number of partitions. 
Hence, it is needed to determine which classifier to choose for predicting a point 

Fig. 2  Messaging protocols. Protocol 2, i.e. single entry versus Protocol 1, i.e. marshaling protocol is 
presented for data of the ith point
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from the testing dataset, VT  . Algorithm 5, nearest hypothesis search (NHS), is used 
for this task. A search space is formed consisting of nodes of the coarsened graph in 
Line 1. ANN search for the nearest hypothesis follows in Line 5.

Once the nearest hypothesis is determined, prediction of the target class for testing 
data points follows. This added step before the testing phase only takes about 5–7% of 
the run-time of the testing phase for the SVM class of algorithms, as will be shown in the 
‘Results’ section.

Results
Results are presented in two major parts, first with tests on parameter space of the heu-
ristic, and second for gauging performance of the heuristic. All the tests were conducted 
on a variety of datasets.
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Parameter space of heuristic

In this set of tests, the focus is on working details, and exemplifying steps of the heuris-
tic. Datasets similar to that shown in Fig. 3, with parameters summarized in Table 1, are 
extensively used.

Node reach and ENS

Tests in this section present heuristic tools that capture original classification data 
into the weighted graph. These tools are designed to handle real datasets, which vary 
diversely in characteristics. A mix of real and synthetic datasets that mimic varying 
characteristics is considered.

A timeline of the ENS procedure with nn = 4 is presented in Fig. 4. It is based on the 
dataset of Table  1. However, class 2 data points were intentionally translated to cre-
ate separation, which is very typical for real data. It is evident that the connectivity of 
the graph increases with more iterations. Skewness control of the constructed graph, 

Table 1  Dataset along with steps parameters

Parameter of Parameter Value

Dataset n 30 000

d 2

Step 1 nc 300

Step 2 CI e
1.0

CE e
4.0

Step 3 GS edge cut 3.01

Step 4 GC edge cut 3.20

a b

c
Fig. 4  Exclusive neighbor search. Number of ENS iterations are 0, 2, and 4 in a–c, respectively. Zoomed view 
of dataset in Fig. 2
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explained in Part III of Algorithm 1, was carried out at end of the iterations of the ENS 
procedure, resulting in reduction of available nodes for search as shown in Table 2.

A second way to control connectivity is fine tuning of the reach equation, presented in 
Eq. 1. In the next test, the scaling constant R is varied, and results are presented in Fig. 5. 
Three cases are shown in succession, under-reach (a), ideal-reach (b), and over-reach (c). 
Even in the overreach case, inner nodes are not able to make opposite class neighbors, 
enforcing planar construction of the graph.

The ENS procedure was next run on a real dataset, called cuff-less blood pressure esti-
mation dataset, from the UCI machine learning repository [32, 33]. It is a three attribute, 
12 000 instances, real, multivariate dataset. Results are presented in Fig. 6, with subfig-
ure (a) showing the dataset, (b) showing cluster centers, whereas (c) and (d) showing 
the constructed graph without and with ENS procedure, respectively. The latter graph 
is connected because necessary edges are present between opposite class nodes, cover-
ing the entire hypothesis. Class imbalance is analysed next, and results are presented in 
Table 3. Column 2 shows the number of data points for each class originally, and Col-
umn 3 shows the number of data points after ENS, as presented in the graph of Fig. 6d. 
Imbalance of target classes, quantified by standard deviation (SD), is significantly 
reduced after ENS.

Table 2  Search space reduction

# iterations # class 1 nodes # class 2 nodes

0 143 157

2 143 157

4 139 153

r = 0.074793

r = 0.081545

r = 0.102286

r = 0.138619

r = 0.149585

r = 0.16309

r = 0.204573

r = 0.277238

r = 0.179503

r = 0.195708

r = 0.245487

r = 0.332686

a b

c
Fig. 5  Reach controlled graph knitting. Scaling constant R is 0.5, 1.0, and 1.25 in a–c, respectively. Zoomed 
view of dataset in Fig. 2
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GSH

The aim of this test is to exemplify the twofold edge weight scheme, shown in Eq. 2. It 
shows the role of edge weights in the outcome of GSH, summarized in Fig. 7. As clas-
sification patterns in the underlying data gets more confused in succession in Subfigures 
(a) and (c), more edges are weighted significantly, resulting in the selection of a bigger 
training set by GSH.

GCH

This test exemplifies the formulation of the graph clubbing scheme. Although the edge 
weight scheme is important in the application of GSH, it is primarily designed to play a 
crucial role in the priority/directional aspect of the coarsening objective. Constants for 
initial edge weights were such that CE was kept significantly higher than CI , as shown in 
Table 4. Two cases of re-assessments were considered, namely case I and case II.

Since initial constants were kept significantly higher than their re-assessment coun-
terparts, original nodes were contracted first in both cases, as can be seen in Fig.  8a, 
b. Transition to contraction of re-assessed type nodes is reflected in the graph cost 
characteristic in Fig. 9 for case I. After the 2nd iteration, the slope magnitude decreases 
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Fig. 6  Graph knitting procedure. Scaled UCI dataset, clustered data, constructed graph with no and 1 ENS 
iteration in a–d, respectively. Dashed edges in d are formed after ENS procedure

Table 3  Class imbalance

Procedure # class 1 points # class 2 points SD

None 1743 10,256 4256.5

GSH 1661 2001 170.0
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significantly because of contraction of all original nodes that have significantly higher 
edge weights dictated by heavier initial constants. Edge contraction continues to aggres-
sively club the graph for case I, including the re-assessed nodes. This results in fewer 
partitions compared to case II in Fig. 8b. Clubbing is almost shut off in case II because of 
trivial re-assessment constants. Note that in general, the more coarsening iterations, the 
fewer partitions.
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Fig. 7  Reduction of training set. Classification data is more confused in (c) compared to (a). b, d show cluster 
nodes that were selected for (a) and (c) cases, respectively

Table 4  Pattern measure constants of Step 2

Parameter Initial Re-assessment

Case I Case II

CI e e
1.5 1

CE e
5 1 1
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Performance evaluations

Several tests were conducted to evaluate performance of the presented methods, includ-
ing GSH, serial GCH, and distributed GCH. In addition, the network architecture for 
distributed GCH is evaluated.

Dataset I was a synthetically constructed two-dimensional, near-linearly separable 
dataset with parameters shown in Table 5. Dataset II was a similar dataset, but in place 
of a (nearly) straight-separating hyperplane, a spherical separating hyperplane of radius 
0.2 was employed. Otherwise, it uses the same parameters as Dataset I. A dataset from 
the UCI machine learning repository, called skin segmentation dataset [33, 34], is the 
next dataset, called Dataset III for the remainder. This classification dataset has four 
numeric features, and ≈ 245k observation instances. The nominal VC dimension is 245. 
Table 6 summarizes other relevant parameters.
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Fig. 8  Partitioning of training set. Number of coarsening iterations is 2 and 10 for (a) and (b), respectively. In 
each subfigure, the first plot is for the re-assessment case I, whereas the overlaying plot with shifted origin is 
for case II
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An unstructured text dataset from the zenodo public repository is referred to as Data-
set IV. This e-commerce dataset consists of the title and description of products for four 
categories, out of which two categories, electronics and clothing are considered, and fea-
ture extraction methods including term frequency-inverse document frequency (tf-idf ) 
and word2vec [35] were applied. Parameters of the dataset and steps, along with feature 
engineering details, are summarized in Table  7. Lastly, an image dataset consisting of 

Table 5  Dataset I and II along with steps parameters

Parameter of Parameter Value

Dataset Range of # data points

 Testing 3–600k

 Training 1–200k

 d 2

Step 1 # clustering iterations 5

Range of nc 10–400

Step 2 nn 4

# ENS iterations 0

R 0.0–2.0

Step 3 GS edge cut 3.01

Step 4 # coarsening iterations 10

GC edge cut 3.10

Table 6  Dataset III along with steps parameters

Parameter of Parameter Value

Dataset Range of # data points

 Testing 122,529

 Training 122,528

 d 3

Step 1 # clustering iterations 5

nc 500

Step 2 nn 5

# ENS iterations 0

R 1.0

Step 3 GS edge cut 3.01

Table 7  Dataset IV, and test 1 and 2 parameters

Parameter of Parameter Test 1 Test 2

Dataset # of data points 19,226 9613

Feature extraction tf-idf word2vec

Training/total ratio 0.75 0.75

Classification algorithm Tensorflow CNN LIBSVM

Step 2 CI e
1.0

e
1.0

CE e
3.0

e
4.0

Step 3 GS edge cut 400.01 3.50
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two categories, apparels and speakers, from the zenodo public repository is referred to 
as Dataset V, on which a VGG16 [36] neural network is applied to get features vectors. 
Other parameters for this dataset are summarized by Table 8.

Note that the computation setup was kept consistent. Programming language of all 
codes for which computation time was measured is C/C++. That includes every step of 
the presented heuristic, and the classification algorithms. Lastly, time stamping was car-
ried out on an otherwise idle system.

GSH

The main aim of the following set of tests is to compare the training phase using GSH 
against the state-of-the-art shrinking heuristics of LIBSVM. Classification algorithms 
used in these tests were all variants of LIBSVM’s SMO implementation [10], which is a 
method of the second type.

Two testing variables are evaluated. First, computation run-time of GSH along with 
the classification algorithm on reduced training data is compared against that of the 
same classification algorithm but augmented with the shrinking heuristic. Second, 

Table 8  Dataset V, and test 3 parameters

Parameter of Parameter Test 3

Dataset # of data points 6668

Feature extraction VGG16

Training/total ratio 0.75

# features 25 088

Classification algorithm LIBSVM

Step 1 nc 166

Step 2 CI e
1.0

CE e
4.0

Step 3 GS edge cut 7.01

LIBSVM Training time (sec) 328.39

GSH/Speed-up 70.51/4.7

LIBSVM Prediction accuracy (%) 99.16

GSH 99.16
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Fig. 10  C-SVM with linear kernel
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the prediction accuracy of the learned models obtained from both the above setups is 
compared.

Results are presented in the following way. Each of Figs. 10, 11, 12, 13, 14, 15, 16, 17 
and 18 is for a SVM classifier, that includes C-SVM and nu-SVM with linear, polyno-
mial, and rbf kernels. Subfigure (a) is used to present computation run-time results, 
and (b) is used for prediction accuracy comparison. Training dataset size was geo-
metrically varied from 1k to 200k, and testing dataset size was kept three times that 
of the training. Accordingly, the parameter nc was varied geometrically in the range 
given in Table 5. Note that training time is included in ‘LIBSVM shrinking heuristic’ 
and ‘GSH’ plots in Subfigure (a), but is not explicitly written for convenience. So the 
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Fig. 11  C-SVM with polynomial kernel

1k 20k 50k 100k 200k
Number of training data points

0

200

400

600

800

C
om

pu
ta
ti
on

ti
m
e
(s
ec
on

ds
)

LIBSVM shrinking heuristic
GSH
SVM training (post GSH)

3k 60k 150k 300k 600k
Number of testing data points

98.25

98.50

98.75

99.00

99.25

99.50

A
cc
ur
ac
y
(%

)

LIBSVM shrinking heuristic
GSH

a b
Fig. 12  nu-SVM with linear kernel
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‘GSH’ plots include the run-time of Step 1 to 3 of the heuristic along with the training 
phase. A third line-plot denoted ‘SVM training (post GSH)’ is presented in Subfigure 
(a) to separate computation run-time of GSH from subsequent training.

C-SVM with linear kernel was the first classification algorithm tested, as presented 
in Fig. 10. The GSH scales even for a low number of points ( ≈ 10k ), as shown in Sub-
figure (a), however, scaling becomes more evident with more training data points. 
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Furthermore, it is visible that GSH took a small fraction of total time, as indicated 
by the separation between the second and third line plot. It highlights the scalability 
issue of the SVM formulation. In Subfigure (b), the prediction accuracy of reduced 
training closely follows that of full training, clearly visible after ≈ 20k testing data 
points.

C-SVM with polynomial kernel was the second classifier tested, as presented in Fig. 11. 
Observations here follow that of the earlier case. Although, one noticeable difference is a 
better run-time profile compared to the previous case. This is because of the higher run-
time complexity of the polynomial kernel classifier compared to that of the linear kernel 
presented in Fig. 10.

For the second SMO implementation, nu-SVM, Figs. 12, and 13 summarize linear 
and polynomial kernel cases, respectively. Note that the training phase with nu-SVM 
in Figs. 12a and 13a is significantly slower compared to C-SVM in Figs 10a and 11a. 
Furthermore, it is observed that reduced training can result in improved prediction 
accuracy, as can be seen in Fig. 13b. For the polynomial kernel, GSH performed better 
than native training by about 6%.

The next set of two tests emphasize the consistent observation of better prediction 
accuracy observed for GSH. Given that sampling is a part of GSH, two sampling meth-
ods, simple random sampling (SRS) and reservoir sampling (RS) (in the context of big 
data tool Apache Hadoop [37]), as commonly used in the field of big data, are considered.

In the first test, the sampling size for the two methods is kept the same as the reduced 
training set size obtained after GSH. Findings are reported in terms of the difference in 
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prediction accuracy from LIBSVM, and presented in Fig. 14. It can be seen that GSH 
exhibits near 0% accuracy difference compared to other approaches. This consistent 
observation is attributed to the edge weight scheme (applied in the graph knitting step 
or Step 2) which captures all the classification patterns. In a sampling method of any 
type, some data points which are important with respect to the classification task are 
bound to be lost because of the involved stochastics.

In the second test, GSH was applied on the sampled data from the SRS method, for 
which the sampling fraction was varied from 0.2 to 0.8 for a set of two datasizes, 30 146 
and 14 142. The cases are referred to as 1 and 2, respectively, in the computation time 
results presented in Fig. 15, which are averaged over 10 runs. Table 9 summarizes the 
prediction accuracy discrepancies of the sampling method from LIBSVM in Column 
2, and that of GSH from the sampling method in Column 3. With only compromising 
1/3rd to 1/2 confidence in the prediction accuracies, as evident by comparing Column 4 
and 5, compound performance gains shown in Fig. 15 can be leveraged.

Dataset I was used in all the tests until now, and near-perfect accuracy plots support that 
it is an ideal dataset. A more realistic case, Dataset II, was considered for Figs. 16, 17 and 18.

Again, C-SVM with linear kernel was the first classification algorithm tested, as pre-
sented in Fig.  16. However, prediction accuracies are in a lower range than before, 
as shown in Subfigure (b). Nevertheless, both setups are practically identical in pre-
diction accuracy. Similar run-time improvements are observed in Subfigure (a). For 
nu-SVM with linear kernel, presented in Fig. 17, scaling observations are similar to 
the corresponding Fig. 12, which used Dataset I. Note that the prediction accuracies 
are only about 50%, which is the expected value for random selection between two 
target classes. However, note that the main argument here is not the absolute predic-
tion accuracy, rather the closeness of it for both setups. To improve the prediction 

Table 9  Results on prediction accuracy

Case Average prediction accuracy ( |%|) Average SD

LIBSVM-SRS SRS-GSH LIBSVM-SRS SRS-GSH

1 0.006 0.002 0.007 0.003

2 0.087 0.024 0.066 0.028
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Fig. 19  Fraction of LIBSVM training time. a–c is for C-SVM, whereas d–f is for nu-SVM with linear, polynomial, 
and rbf kernels, respectively
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accuracy, results were obtained for a radial basis function (rbf ) kernel, which is widely 
considered a robust kernel type in SVM classifiers, and are presented in Fig. 18. This 
resulted in slower learning, as observed in Subfigure (a), but near perfect prediction 
accuracy, as shown in Subfigure (b).

The next set of tests was conducted on Dataset III, for evaluating the performance 
of the heuristic on real data, and barplots in Figure 19 are used to present the find-
ings. Computation run-time was scaled to accommodate different classification algo-
rithms, namely C-SVM and nu-SVM with linear, polynomial, and rbf kernels. For all 
six cases, reported prediction accuracy is low, as shown in Table 10, but close for both 
setups. Scaling improvements are consistent to the previous reportings for Dataset I 
and II.

The next set of two tests was conducted on Dataset IV, for evaluating the performance 
of the heuristic on high-dimensional real data where various feature extraction methods 
including term frequency-inverse document frequency (tf-idf ) and word2vec [35], clas-
sification algorithms including CNN from Tensorflow [38] and LIBSVM, dataset size, 
and dimensions were varied, as summarized in Table 7.

In the first test, use of tf-idf to compute feature vectors resulted in dimensions more 
than 10k, and the classification algorithm was CNN from Tensorflow [39]. Dataset size 

Table 10  Prediction accuracy (%)

Classification algorithm LIBSVM GSH

 C-SVM

 Linear 58 58

 Polynomial 58 58

 Radial 59 59

nnnu-SVM

 Linear 52 58

 Polynomial 58 57

 Radial 55 48

Table 11  Test parameters and results

Fraction of # 
data points

 # features  nc Training time (seconds) Prediction accuracy 
(%)

Tensorflow GSH (/speed-up) Tensorflow GSH

0.2 10,621 96 2603.82 1201.11 /2.2 98.54 98.45

0.5 15,613 240 11,851.98 1664.38 /7.1 99.13 99.13

Table 12  Test parameters and results

word2vec input 
dimension

Training time (seconds) Prediction accuracy (%)

LIBSVM GSH (/speed-up) LIBSVM GSH

500 100.88 12.06 /8.3 98.04 98.79

1000 201.33 21.64 /9.3 98.12 98.91
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was the variable, and results are presented in Table 11, from which scaling advantages of 
GSH without change in prediction accuracy are apparent. In the second test, a state-of-
the-art feature extraction method, word2vec, was applied to generate the vectors for a 
set of two dimensions, 500 and 1 000, which were then used to train a LIBSVM classifier 
with linear kernel. It is apparent from the results presented in Table 12 that a speed-up 
of ≈ 10 can be achieved with 0.77% improvement in average prediction accuracy.

Similar to the previous two tests, the last test was conducted on Dataset V, where the 
feature extraction method of VGG16 [36] and LIBSVM classifier with linear kernel was 
used, along with other parameters summarized in Table 8. Results are presented in the 
last four rows of the table, which shows that a speed-up of 4.7 times can be achieved 
over more than 25k features without compromising any prediction accuracy.

Overall, scalability improvements are observed consistently over a number of classi-
fiers for Dataset I to V. Furthermore, the prediction accuracy either closely follows origi-
nal training or even outperforms it in a few instances.

Serial GCH

The next set of tests are aimed to compare run-time of serial GCH to that of GSH. More 
precisely, serial execution of GCH, which represents approximate learning, is fared 
against (reduced training data) GSH learning. In GCH, the graph clubbing step was an 
added cost over GSH, so the ‘GCH’ plots include the run-time of Step 1 to 4 of the heu-
ristic along with serial execution of the training phase for the obtained partitions (after 
Step 4). Results are presented for Dataset I.

The number of iterations was set 10, and used as the termination condition for the 
graph clubbing algorithm. The pre-processor was used, and the collected prediction 
accuracies were weight-averaged over all reported partitions. Edge weight constants 
given in Table 13 were used throughout.

Table 13  Pattern measure constants (of Step 2) for GCH

Parameter Initial Re-assessment
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Only GSH and GCH are compared along with respective line-plots of subsequent 
training for all the classifiers, as presented in Figs. 22 and 23. However, for the first 
classifier, C-SVM with linear kernel, shown in Fig.  20, computation run-time of 
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Fig. 21  Partitions after GCH
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Fig. 22  C-SVM with polynomial kernel
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Fig. 23  nu-SVM with polynomial kernel
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LIBSVM with shrinking heuristic is also plotted. An accuracy plot, Subfigure (b), and 
a plot for the number of partitions in Fig. 21 are also presented.

In Fig. 20a, a clear scalability hierarchy is observed, with serial GCH > GSH > LIBSVM 
shrinking heuristic. In the accuracy plot, shown in Subfigure (b), approximate learning 
closely follows native learning for more than 8k training data points. However, for fewer 
points, the accuracy of the model trained after GCH, which is ≈ 95%, is not as good as 
native training at 99% . 2 to 5 partitions were obtained as shown in Fig. 21. For polyno-
mial kernel classifiers, presented in Figs. 22 and 23, scaling advantages with serial GCH 
compared to GSH are observed even for fewer data points ( ≈ 5k).

Distributed GCH

The main aim here was to demonstrate run-time advantages with worker processes 
for the communication-free training scheme discussed earlier. The plots here differ 
from ‘serial GCH’ plots only by the mode of execution of the training phase, that is, 
obtained partitions are distributed to worker processes as per the network design or 
Algorithm IV. The scheme only aims for coarse grain parallelization, such that indi-
vidual data chunks/partitions can be distributed to worker processes.
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Fig. 24  Scalability with workers (a), and obtained partitions (b)
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Results are presented in Fig.  24 for C-SVM with a polynomial kernel classifier on 
Dataset I. The distribution invariantly depends on the number of obtained partitions. 
Therefore, scaling results in Subfigure (a) cannot be interpreted without the plot for 
the number of partitions, which is shown in Subfigure (b).

Significant improvements are observed with more workers. However, sub-optimal 
distribution with number of workers more than 2 can be seen in Fig. 25. Mean num-
ber of data points per chunk/partition is plotted as a function of the number of total 
data points. Using the number of partitions/chunks from Fig.  24b, it is straightfor-
ward to interpret the monotonic increase of the plot. In a hypothetical case where the 
partitions are all equally-sized, SD would be zero. However, as the number of total 
data points increases, error bars for SD are observed to be commensurate to the mean 
number of data points. Unequal size of partitions is the apparent reason for the sub-
optimal distribution. Overall, Table 14 summarizes the performance gains for all the 
approaches, namely GSH, serial GCH and distributed GCH, relative to the shrinking 
heuristic available in LIBSVM for C-SVM with a polynomial kernel on Dataset I.

Table 14  Scaling improvements of the heuristic approaches

 # of training 
points

Shrinking heuristic  GSH  serial GCH dist. GCH dist. GCH

of LIBSVM (w/2 proc.) (w/4 proc.)

(seconds) (× of serial GCH)

1000 0.0078 0.0076 0.0073 1.5 3.0

4543 0.0604 0.0339 0.0290 1.7 2.3

9686 0.1957 0.0981 0.0631 1.3 1.6

20,647 0.7422 0.2515 0.1359 1.8 2.2

93,823 9.6774 2.3658 1.0003 1.8 3.6

136,984 20.4771 3.9556 1.9835 1.5 2.0
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Fig. 26  Performance of the designed connection procedure
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Network design

The main motivation for this set of tests was to evaluate various implementation 
aspects of the network that implemented distributed GCH. The first aspect is the 
connection time of the distributed application. Fig. 26 shows connection time meas-
urements with the number of workers.

Apparently, the connection time is very small ( ≈ 120ms ) when compared to the 
run-time of the training phase. The connection procedure was replicated on another 
distributed messaging API, MPICH3.3 [40], and the connection time with ZeroMQ 
was observed to be 1.53 times faster than with MPICH3.3.

The next aspect of the network is the messaging protocols. The primary motiva-
tion behind the protocol design is to utilize the shape of the ith data point, that has 
an n-dimensional feature vector ( xi ), and a 1-dimensional target class value (tc(i)) . 
Two of such protocols as previously discussed were fared in run-time. A couple of 
opposing factors are at play between these protocols. Data marshaling is an extra step 
in protocol 1 (before actual messaging) when compared to protocol 2. On the other 
hand, message count/traffic increases (multiple times governed by the dimensionality 
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Fig. 27  Evaluation of messaging protocols. Protocol 1 is used in this work
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of data) in protocol 2 compared to protocol 1. Overall, protocol 1 performed bet-
ter as can be been in Fig. 27. Although increased marshaling may probably result in 
even better scaling, a larger memory footprint on the channel is un-advisable as it can 
result in an overflow scenario.

Messaging efficiency was tested in the context of prediction/testing phase of the 
distributed implementation. Reported in Fig. 28, it is very efficient at ≈ 1% of the pre-
diction time. It is found to be even more efficient at ≈ 0.5% for the training phase. 
Pre-processing run-time is at ≈ 7%, as can be seen in Fig. 28.

Note that external libraries are used in the formulation, including a clustering 
method, an approximate nearest neighbor implementation, two messaging APIs, and 
many classification algorithms. The heuristic execution is not very sensitive to the 
parameters of these external implementations. For instance, only 3–5 iterations of 
clustering were needed, input parameters for approximate nearest neighbor and clas-
sification algorithms were kept at default. However, the heuristic is sensitive to the 
parameters which are part of the heuristic steps.

Conclusions and future work
In this work, an algorithm with an edge weight scheme is designed to construct a 
weighted graph that effectively captures the classification patterns of the training data-
set. Another graph coarsening algorithm with a directional aspect is formulated that 
divides the reduced dataset into partitions that can be trained independently using a 
novel communication-free network.

GSH provides an evident serial scalability advantage, and generic applicability holds for 
every classifier. Then, approximate learning is the reason behind serial GCH’s added run-
time advantage over GSH. Finally, distribution of chunks/partitions (after GCH) of the 
training set to worker processes results in further run-time improvements in distributed 
GCH. Overall, for all the approaches, namely GSH, serial, and distributed GCH, scaling 
benefits against full data training with classification algorithms from LIBSVM and Tensor-
flow are accompanied by no compromise in prediction accuracy.

Unequal coarsening and control over the number of partitions still needs to be further 
investigated in the current implementation of GCH in two possible areas,

•	 First is the directional aspect of the objective. That is, if the partitioning was better 
directed, better orthogonality between the contour of the underlying classification pat-
terns and of partition boundaries shall be obtained in the approximate procedure. The 
two-fold pattern measure scheme should be designed to get the desired control over the 
direction of coarsening.

•	 Modifying the objective function of the current graph coarsening scheme with parts of 
traditional coarsening objectives. Since they directly add size difference as a cost, it will 
address the unequal coarsening problem in the presented objective. Furthermore, the 
number of partitions is directly controlled in these objectives.
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