
A graphical heuristic for reduction
and partitioning of large datasets for scalable
supervised training
Sumedh Yadav1*  and Mathis Bode2

Introduction
Two decades earlier, some of the most seminal works in machine learning were done on
training set selection [1, 2] under the banner of relevance reasoning. However, the better
part of recent works have been exclusively towards feature selection [3, 4]. With increased
processing power, run time of training is feasible even for datasets erstwhile considered
large. Additionally, dimensionality (d) dominates dataset size (n) in the algorithmic com-
plexities of learning algorithms. In the training phase, less data points mean fewer gen-
eralization guarantees, however, as we are moving in the era of big data, even the fastest
classification algorithms are taking un-feasible time to train models. When data sources
are abundant, it is befitting to separate data based on relevance to the learning task. This
has led to a renewed interest in the once famous problem statement of relevance reason-
ing [5, 6]. Reasoning on relevance to get improved scalability of classification algorithms
is currently explored on graphical/network data [7] and learned models [8].

Abstract 

A scalable graphical method is presented for selecting and partitioning datasets for
the training phase of a classification task. For the heuristic, a clustering algorithm is
required to get its computation cost in a reasonable proportion to the task itself. This
step is succeeded by construction of an information graph of the underlying classifica-
tion patterns using approximate nearest neighbor methods. The presented method
consists of two approaches, one for reducing a given training set, and another for parti-
tioning the selected/reduced set. The heuristic targets large datasets, since the primary
goal is a significant reduction in training computation run-time without compromising
prediction accuracy. Test results show that both approaches significantly speed-up
the training task when compared against that of state-of-the-art shrinking heuristics
available in LIBSVM. Furthermore, the approaches closely follow or even outperform in
prediction accuracy. A network design is also presented for a partitioning based dis-
tributed training formulation. Added speed-up in training run-time is observed when
compared to that of serial implementation of the approaches.

Keywords:  Training set selection/reduction, Distributed machine learning,
Classification, Training set partition, Network architecture design, Data variety,
Class imbalance

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

METHODOLOGY

Yadav and Bode ﻿J Big Data (2019) 6:96
https://doi.org/10.1186/s40537-019-0259-3

*Correspondence:
sumedhyadav.iitkgp@gmail.com
1 Gstech Technology Pvt. Ltd.,
415, 2nd Floor, 16th Cross Road,
17th Main Road, HSR Layout
Sector 4, Bengaluru 560102, India
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0001-5630-356X
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0259-3&domain=pdf

Page 2 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

One research area where training set selection has been given attention to is sup-
port vector machines (SVM). Generally, these selection methods can be divided into
two types, primarily based on whether n is reduced or not. The first type of meth-
ods aims to modify the SVM formulation so that it can be applied to large datasets.
Many approaches have worked successfully in the past, including sequential minimal
optimization (SMO) [9, 10], which is an algorithm of solving the optimization prob-
lem associated with SVM in an efficient manner and genetic programming [11]. The
first type of methods, however, do not benefit from reducing the size of training data
because they only deal with data handling. Reduction of data size is the quintessen-
tial advantage of the second kind of methods [12–20]. These methods focus on seg-
regating the data points on relevance to the classification task. Computation time is
reduced by actively reducing n. During the mid-2000s, handling data was the central
theme of research instead of reducing it. Despite the apparent advantage of reduction
of data, researchers made efforts for methods of the first type [9–11, 21] in compari-
son to the latter type. For instance, formulations implemented in LIBSVM [21], which
is a widely used benchmark library for SVM methods, are of the first type of methods.

The few existing works of the second type are limited in one respect or another.
For instance, speed-ups upto 15 times (for 0.5% sampling) are possible on cluster-
ing based SVM (CB-SVM) works by Yang et al. [20] Salvador, Awad [12, 13], how-
ever, these are limited to linear kernels only. A geometric approach of minimum ball
enclosing by Cervantes et al. [14] requires two stages of SVM training, first on the
cluster centers, and later on the de-clustered data. A similar method by Li et al. [15]
suffers from a random selection of data. They have reported 92.0% prediction accu-
racy for a separable dataset for which LIBSVM reproduces 99.9%.

The presented approach also falls under the second type. As will be shown, the pre-
sented selection scheme is very deterministic in prediction accuracy. A model trained
with the presented heuristic results in close or better prediction accuracy than that of
full data training. One recurring problem with the second type of methods is ineffi-
cient space searching scalability [15–19]. It becomes worse for high dimensional data,
where the heuristic takes more time than training itself. For instance, the training
phase with the method proposed by Chau et al. [22] is 8 times slower compared to the
original training of LIBSVM for a dataset with only nine features. On the contrary,
a speed-up of about 10 times is demonstrated here for a dataset with a number of
features more than 25,000. Inefficient space search is addressed by the use of state-of-
the-art approximate nearest neighbor (ANN) methods [23] which are highly scalable.

In LIBSVM, the SMO decomposition method of Fan et al. [10] is available for the
classification task. Training set selection compares in principle to working set selec-
tion (WSS) in the context of SMO or similar decomposition methods. Furthermore,
a shrinking technique is available for these formulations to remove bounded compo-
nents during iterations, effectively reducing the optimization problem [10]. As will
be shown, data selection in the presented heuristic only depends on the underlying
classification patterns, giving it an essential advantage of generic applicability to the
majority of classification algorithms, including the SMO formulations of LIBSVM.
For these reasons, the state-of-the-art shrinking heuristic of LIBSVM is compared to
the presented heuristic.

Page 3 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

The presented heuristic augments clustering based approaches [12, 13, 20] by con-
structing an (approximate) information graph out of the clustered data. This graph acts
as a proxy for reducing the training set. A novel edge weight scheme captures the under-
lying classification patterns in the graph. The graph is then pruned via filtering on the
edge weights to select a relevant dataset that can be used for the training task. Further-
more, a graph coarsening approach is presented to break the selected/reduced set into
further partitions that are independently available for training, leading to an approximate
learning scheme. Both methods lead to a reduction in the number of training data points,
which reduces complexity of the training algorithm, giving performance advantages.

Most of the existing methods of both types are limited to the SVM class of algorithms
[9–21]. Generic applicability on a majority of classification algorithms is another advan-
tage of the presented heuristic. It gives an opportunity to use the heuristic as a pre-pro-
cessing tool, separate from the classification algorithm. Since the data points are selected
based on their relevance to the classification task, the resulting reduced training set is
much more balanced in size across the target classes. In other words, the formulation
addresses the problem statement of class imbalance, which is a topic of current research
in big data [24].

The remainder of this paper is organized as follows, the ‘Methodology’ section
describes formulations of the proposed heuristic in detail. The heuristic is evaluated
with a number of tests and datasets in the ‘Results’ section. Finally, the ‘Conclusions and
future work’ section summarizes concluding remarks, and ideas for future work in the
heuristic formulation.

Methodology
The heuristic procedure organically divides into the following steps:

•	 Step 1: Clustering step
•	 Step 2: Graph knitting scheme
•	 Step 3: Graph shedding scheme
•	 Step 4: Graph clubbing scheme
•	 Pre-processor for the testing phase

The training phase proceeds after the first four steps, whereas the testing phase follows
the last step of the heuristic formulation. The clustering step is used to get a computa-
tionally feasible resolution of the underlying data. A weighted graph is constructed next
in the graph knitting scheme, using a three parts algorithm and an edge weight scheme,
which completely captures the classification patterns. Significant nodes of this graph
with respect to the classification task are determined in the graph shedding step. The
reduced dataset obtained after the graph shedding step is executed several times faster
compared to the original dataset when used for the training phase. Finally, the graph
clubbing step divides these nodes into partitions that can be trained independently using
a directional aspect of the graph coarsening objective achieved via another three parts
algorithm. The graph clubbing step results in a partitioned dataset which can be used

Page 4 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

in two execution modes for the training phase, first in serial mode, and second in dis-
tributed mode. Due to an approximate scheme (explained later in the section ‘Graph
clubbing scheme’), the serial execution is faster than that of the training on the reduced
dataset. Distributed execution can be used to leverage worker threads/processes to get
multiple times speed-up. Figure 1 summarizes the steps of the heuristic along with the
resulting modifications on the dataset.

Because of the multiple data partitions which translate into as many classifiers, there is
a need to determine which classifier to choose for testing a data point. This is achieved
by the pre-processor for the testing phase. Lastly, a network application is designed
which distributes the obtained partitions in a load-balancing and a communication-free
manner.

From a computational point of view, the run-time profile of the first four steps for a
typical run case ( n ≈ 100k, d = 2, nc ≈ 350 ) is,

•	 Clustering step takes ≈ 750ms or > 98%
•	 Graph knitting scheme takes ≈ 10ms or 1%
•	 Graph shedding and graph clubbing schemes take ≈ 2ms ( < 1%)

On the other hand, the pre-processor for the testing phase takes ≈ 5% of the testing phase
time. The clustering step is predominant over subsequent steps with a run-time complex-
ity in n, whereas that of all the other steps is in the order of number of clusters ( nc ). The
input parameter to the clustering step, nc , controls the granularity of data representation.
Typically, the ratio of n to nc , which is also known as nominal VC dimension, is 10 to 300,
explaining the run-time dominance of the clustering step. The graph knitting scheme
becomes the most computation-intensive among the subsequent steps, because it involves

Fig. 1  Step 1 to 4 of the heuristic/procedure

Page 5 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

heavy space searching. It is to be noted that the run-time percentage profile can vary a lot
depending on the nominal VC dimension or the input parameter nc..

Clustering step

The clustering step is used to lower the resolution of the underlying data. In principle,
the presented heuristic does not require this step. However, it is not computationally
feasible to execute the subsequent steps with a run-time complexity in n instead of nc .
Additionally, it will also affect the generic applicability of the heuristic, which is dis-
cussed later in the ‘Graph shedding scheme’ step.

The step consists of a standard K-means++ [25] clustering algorithm, and a metric to
store classification patterns of the original data. K-means++ provides improved initial
seeding of clusters over the traditional K-means method. This choice leads to running
the clustering algorithm for a nominal number of iterations, typically 5. In the current
implementation, every cluster center maintains the target class through the weighted
average calculation over all its data points. However, advanced metrics can be con-
structed to unearth more characteristics of patterns from the clustered data.

Although this step serves only for coarsening the data representation, it dominates
the computation cost of the first four steps. Two state-of-the-art K-means++ imple-
mentations were tested, K-MeansRex [26] and the scalable mlpack package [27]. For a
test run with data points in the range of 1 to 100k ( d = 2, nc = 100 ), K-means++ from
mlpack was 1.82 times faster on average in execution than K-MeansRex’s implementa-
tion. Therefore, K-means++ from mlpack is chosen as the standard clustering algorithm
in this work.

Given the vast research literature available for clustering methods, there are more
advanced implementations available. One of such improvements would be the scalable
K-means++ by Bahmani et al. [28], which is shown to be considerably faster than native
K-means++. Another practical option is to exploit K-means implementations from a
proven distributed computing platform [29].

Graph knitting scheme

From this step onwards, the presented heuristic digresses from most of the existing
geometric approaches of the second type, primarily because of the choice of graph to
represent the classification dataset, and the use of seminal works in neighbor search-
ing methods. First, the choice of a weighted graph opened the possibility of using well
researched work on graph coarsening, which is the foundation of the graph clubbing
step. Second, most of the existing approaches could not benefit from seminal works in
the neighbor searching methods, which have contributed profoundly to the success of
computer vision. The fast library for approximate nearest neighbors (FLANN) search
engine [23] is used in this work.

Page 6 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

An information graph is constructed once a reasonable representation of the under-
lying data is obtained. Two major challenges include determination of neighbors, and
capturing the classification patterns in edge weights. First, neighbors are determined
such that the whole hypothesis is covered while passively enforcing regularity and
planarity in the graph. The neighbors are determined in two steps, followed by a step
that controls skewness of the graph. Second, a two-fold pattern capturing edge weight
scheme is presented in Eq. 2.

The first challenge of neighbor determination is addressed in two stages, superficial
neighbor search (SNS), and exclusive neighbor search (ENS), presented in Part I, and
II, respectively. In the algorithm, the number of neighbors is nominally controlled by
an input parameter nn, the number of desired neighbors. For every ith node, the vari-
able no_tot_neigh[i] in Line 1 of Part I is used to track the size of the neighbor list.

However, the neighbor list for the ith node can be terminated before adding nn
neighbors by updating the variable neigh_list_finish[i] to TRUE in Line 4 of Part I.
By limiting the number of neighbors in this way, construction of the graph can be
controlled.

Part I is used to look for nn nearest neighbors, regardless of the target class. The
algorithm takes an empty graph G(V ,φ) as input, which is formed with the set of
the cluster centers V after the clustering step. This set is the search space passed to
the FLANN space indexing utility in Line 8 and 9. The input constant R is explained
later in Eq. 1. Objective of the part is to fill the graph G with EI set of edges. This
is similar to the construction of a K-nearest neighbor graph (K-NNG). However,
an input parameter, MAX_SAME_CLASS_NEIGH, is used to limit the number
of same class neighbors in Line 13, so that the remainder of edges for the ith node,
nn− no_tot_neigh[i] , are constructed for nodes with the opposite target class. Nodes
for which all nn neighbors are found will vary depending on characteristics of the
data. They will be excluded from the next parts. An additional computation of reach
in Line 15 is maintained for every node. The metric presented in Eq. 1 is similar to the
Hausdorff distance [19]. The distance utility of FLANN, in Line 10, is used to compute
the summation in Eq. 1, whereas a scaling constant (R) controls the reach according
to

where R is the scaling constant, ri is reach of the ith node, xi is the position of the ith
node, xj is the position of the jth node, and Ni denotes the set of same class neighbors
for the ith node.

(1)ri = R×
∑

jǫNi

|xi − xj|,

Page 7 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

In order to capture the classification patterns completely, it is necessary to make edges
along the hypothesis of the classification data. So, Part II extends neighbor searching
exclusively for nodes of the opposite target class. The ith node is considered only if there
is a remainder requirement of neighbors, nnr[i] , where nnr[i] = nn− no_tot_neigh[i] .
Nodes of class 2 form the search space in Line 3, in which neighbors are searched for
class 1 nodes. This step along with the vice-versa case forms one iteration of the ENS
procedure. For each iteration, a search space of the opposite target class is constructed
in Line 3.

Page 8 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

Inclusion of a neighbor after space searching in Line 5 is stringent compared
to SNS. An input parameter, NEIGH_LIMIT and the computed reach are used to
limit the availability of node j as prospect neighbor in Line 9. For every jth node
added as a neighbor, the variable node_neigh[j] , initiated in Line 6, is incremented.
Reach is used to further update the boolean neigh_list_finish[i] for node i, even if
nn− no_tot_neigh[i] > 0 in Line 13. Such an ith node tends to be an internal node of a
target class. In other words, reach only encourages the convex hull nodes of one class
to choose neighbors with nodes of the opposite class, aiding in planar construction of
the graph.

The node_neigh counter is required in Part II to avoid a node that might habitually
come up as a prospect neighbor despite not being very representative of a target class. It
otherwise leads to a skewed graph with respect to node degree. node_neigh in Line 3 of
Part III is used to reduce the search space of every target class, controlling the skewness
of the constructed graph.

The second challenge is to capture the classification patterns in edge weights, for
which a two-fold edge weight scheme is designed. First, each node measures its internal
pattern as the absolute difference from one of the two target classes. Second, every pair
of nodes in an edge measures their external pattern by the relative difference of their

Page 9 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

target classes. Individual contributions are added via the power scheme in Eq. 2 to weigh
the edge according to

where wi,j is the weight of the (i, j)th edge, tc(i) denotes target class of the ith node, CI
and CE are constants for internal and external classification patterns, respectively, and
quantities in || are absolute values.

The use of a state-of-the-art implementation like FLANN for neighbor searching can-
not be overemphasized. For instance, in a typical run case ( nc > 300 and nn > 3 ), the
approximate neighbor searching method of FLANN was ≈ 1 000 times faster when com-
pared to the exact algorithm for nearest neighbor searching, which involves computing
distances with all the remaining nodes for every node, and then sorting them to deter-
mine the nearest neighbors. The run-time advantage is clear when comparing the com-
plexity of exact graph construction, O(n3log(n)) , to that of approximate methods offered
by FLANN [23].

Graph shedding scheme

Once a weighted graph is obtained, an edge cut based filtering presented in Algorithm 2
separates the training dataset into relevant and non-relevant. For every node, the neigh-
bor list is iterated to check for a significant edge in Line 5, and when found, that node
is added to relevant_node_list in Line 11. This leads to a training set selection that the
second type of approach aims to achieve. Note that the result of this step depends on the
characteristics of the graph, such as how well connected the graph is, and how well the
underlying classification patterns have been captured. Algorithm 1 with the edge weight
scheme addresses these issues.

The role of nominal VC dimension drips down to the pruned graph as well. Since it
controls the granularity of the underlying data, it also controls the granularity of data
selection. That gives the heuristic an essential advantage in terms of limiting data shrink-
age while selecting the relevant data points. Because the selection is done via clusters,

(2)wi,j = C
1−|tc(i)|
I + C

1−|tc(j)|
I + C

|tc(i)−tc(j)|
E ,

Page 10 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

and the ratio of n to nc is typically > 10 , many data points that are not very close to the
hypothesis boundary of the classification patterns are also selected. That gives an extra
buffer of data points upon which another selection method of both types applies. The
majority of classification algorithms, for example neural methods, gaussian processes et
cetera, can use the heuristic. Until this step, the presented heuristic’s aim matches with
the existing approaches of the first and second type. For comparison purposes, the heu-
ristic until this step (including) is referred to as GSH for the remainder of this work.
Edge cut for GSH is referred to as GS edge cut.

Graph clubbing scheme

Formulation

This step extends the problem statement of training set selection to further break-
ing the reduced training set into few partitions or critical chunks, each of which can
be trained independently, by virtue of Part I to III of Algorithm 3. The main aim is to
design an approximate formulation that is theoretically faster, even for serial execu-
tion. The algorithm divides the training set into few partitions such that the number of
computations are reduced significantly in the training phase. Consider that the order of
complexity of most of the classification algorithms is higher than linear, that is a > 1
if O(na) is the complexity. The graph clubbing scheme doesn’t change the order, how-
ever it results in significant reduction in total computations. For example, for a classifi-
cation algorithm with O(n2) complexity, if C × n2 , where C is a constant, is the original
number of computations; then after data reduction by the graph clubbing scheme, there
are four equal sized partitions/critical chunks. Now the number of computations is
C × (4 × (n4)

2) = C × n2

4 or a quarter of the original number.
Independence during the training phase of each obtained partition is mainly accom-

plished because of the directional aspect of the algorithm, which is achieved via the edge
weight scheme. The directional aspect is responsible for two objectives, namely obtain-
ing equally-sized partitions, and ensuring orthogonality of the hypothesis boundary with
neighboring partitions’ boundary. Two ways in which the edge weight scheme is lever-
aged for the directional aspect is in the priority aspect of the partial weighted matching
(PWM) algorithm, Part I, and the reassessment aspect of the coarsening formulation,
Part II. The graph clubbing algorithm, Part III, ties Part I, and II in an iterative scheme.
Each of such obtained partitions can now be trained independently, giving further lever-
age for a nominal number of worker processes.

The partial weighted matching (PWM), Part I, is designed for the weighted graph
obtained from the graph knitting step. The obtained matching is partial because edges
weighing less than EDGE_CUT (input parameter) are filtered out in Line 4. So only cluster
points closer to the hypothesis boundary are chosen for training. Sorting in Line 6, before
ordered matching in Line 9, adds the weighted aspect to the matching. It enables the heavi-
est edges to be picked earliest for contraction, subtly addressing both main objectives of
the directional aspect. Since the heaviest edges cover the classification patterns, prioritized
selection of them results in uniform size of partitions. Prioritized selection also means that
the most significant patterns are given preference, which conversely means the least sig-
nificant patterns are avoided. So the hypothesis boundary, along which the least significant
patterns reside, is orthogonal to the contracted edges, where the most significant patterns

Page 11 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

reside. Higher prediction accuracies are obtained because of the preference of contraction
of the heaviest edges.

The coarsening formulation of Part II applies the directional aspect, as edge contrac-
tion occurs in this part. It is to be noted that the coarsening formulation is different in aim
to otherwise researched formulations. Most of the popular formulations are intended for
reducing communication cost or preserving the global structure while getting a low-cost
representation of data [30]. Furthermore, unlike Kernighan-Lin and other matching based
coarsening objectives, the presented optimization objective is deterministic in execution.

In the part, reassessment of target class and edge list for newly contracted nodes in Lines
6 and 10, respectively, augments the standard coarsening step in Line 3. By using different
values of CI and CE for initial versus reassessment edge weights, the precedence of the kind
of edges is established in the matching scheme. Original heavy edges are prioritized over re-
assessed edges of newly contracted edges, achieving the orthogonality property. Transition
of coarsening from original edges to newly contracted nodes can be captured by the virtue
of drastic decrease in graph cost metric, presented in Eq. 3,

where cost(G) is cost of the graph G, e is an edge, E ′ denotes the subset of E (set of all
edges) such that {e | eǫE and > EDGE_CUT} , and we is the weight of edge e.

One technical choice is to use MIN(i, j) in Line 4 for identifying the new node that is a
result of the contraction of edge between nodes i and j.

(3)cost(G) =
∑

eǫE′

we,

Page 12 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

Part I and II are executed in the iterations of Part III in Lines 5 and 6, respectively.
In Line 7, kink detection in graph cost is used as a termination condition of the itera-
tive algorithm. However, a variable for the number of coarsening iterations, i.e. MAX_
NUM_OF_COARSENING_ITER in Line 4, is used in the majority of tests. This step
concludes the formulation of the heuristic. It is referred to as GCH for the remainder of
this work. Similarly, edge cut is referred to as GC edge cut.

The implementation of few optimizations improved the run-time. First, the starting
nodes in Line 2, Part I, are the ones that are identified relevant in GSH. After each itera-
tion, half of the nodes that belong to contracted edges are reduced in the update of rel-
evant nodes list ( relevant_nodes_list in Algorithm 2). As a result, the complexity of the
matching algorithm reduces with the coarsening iterations. Second, the neighbor list of
a node is sorted. As a result, edge contraction computation is linear (in complexity) to
nn. It is computationally canonical to the sorted union of two lists. Lastly, usual numeri-
cal optimizations, such as masking to avoid dynamic memory allocations, and indexing
(at the expense of memory) for O(1) searching are used.

Page 13 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

Network design

An event-driven, multi-process algorithm is designed to distribute the partitions
obtained after GCH in a communication-free manner. In the network applica-
tion, processes assume a (single) master or (multiple) worker role. Part I and II of
Algorithm 4, respectively, describe master’s and worker’s side of the event-handling
design.

For the master process which executes Part I, one partition from the list of parti-
tions, parts_list[] , is communicated to the requesting worker process (the one which
issues the DATA_REQUEST event in Line 3 of Part II) by trigger of the DATA event
in Line 6. The worker process, upon receiving the event DATA, proceeds to training
with the received data partition in Line 5 of Part II. After collecting acknowledge-
ments of the completion of training of all data partitions in Line 9, the master pro-
cess terminates every worker by issuing TERM_TRAIN event. The design implements
a round-robin scheme, which balances load of the network queries. That is accom-
plished by having a queue data structure for recording DATA_REQUEST events in
Line 3. It is to be noted that conflict of two simultaneous entries is resolved by time
stamps, making the queue fair with respect to a worker’s request.

Page 14 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

Instead of directly using TCP channels for message communication, the distrib-
uted messaging API ZeroMQ [31] is used. It provides essential safety and liveness
properties on network channels. However, apart from message guarantees such as
the liveness and safety property of ‘once only message delivery’, ZeroMQ is rudimen-
tary compared to higher level message passing libraries. This gives an opportunity
to design and optimize various aspects of the architecture. One such aspect is the
messaging protocol. A couple of messaging protocols are designed as shown in Fig. 2.
Protocol 2 implements a single float/double entry (in character array or CA) messag-
ing scheme, whereas protocol 1 first requires marshaling all entries of a data point
before messaging it.

Another aspect that was tested is connection time of the network. Connection time
is measured on the master process, and included the following steps:

•	 Start of TCP channels (wrapped in the API)
•	 Initialize a hash table
•	 Receive connection request from all worker processes
•	 Send connection confirmation to all worker processes

The connection procedure requires step 2 for maintaining worker processes’ informa-
tion, giving an opportunity to optimize the step as required. A light-weight hash table
( ≈ 0.6 MB) and hash key is designed which generates unique keys. The design helps to
reduce the overhead of starting and running the multi-process application.

Pre‑processor for the testing phase

Unlike the application of GSH, which results in a single training set, multiple data
partitions are obtained after GCH, and the training set is the union of these parti-
tions. It means that there would be as many classifiers as the number of partitions.
Hence, it is needed to determine which classifier to choose for predicting a point

Fig. 2  Messaging protocols. Protocol 2, i.e. single entry versus Protocol 1, i.e. marshaling protocol is
presented for data of the ith point

Page 15 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

from the testing dataset, VT  . Algorithm 5, nearest hypothesis search (NHS), is used
for this task. A search space is formed consisting of nodes of the coarsened graph in
Line 1. ANN search for the nearest hypothesis follows in Line 5.

Once the nearest hypothesis is determined, prediction of the target class for testing
data points follows. This added step before the testing phase only takes about 5–7% of
the run-time of the testing phase for the SVM class of algorithms, as will be shown in the
‘Results’ section.

Results
Results are presented in two major parts, first with tests on parameter space of the heu-
ristic, and second for gauging performance of the heuristic. All the tests were conducted
on a variety of datasets.

0.0 0.2 0.4 0.6 0.8 1.0
Feature 1

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
2

Class 1
Class 2

Fig. 3  Near linearly-separable dataset

Page 16 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

Parameter space of heuristic

In this set of tests, the focus is on working details, and exemplifying steps of the heuris-
tic. Datasets similar to that shown in Fig. 3, with parameters summarized in Table 1, are
extensively used.

Node reach and ENS

Tests in this section present heuristic tools that capture original classification data
into the weighted graph. These tools are designed to handle real datasets, which vary
diversely in characteristics. A mix of real and synthetic datasets that mimic varying
characteristics is considered.

A timeline of the ENS procedure with nn = 4 is presented in Fig. 4. It is based on the
dataset of Table 1. However, class 2 data points were intentionally translated to cre-
ate separation, which is very typical for real data. It is evident that the connectivity of
the graph increases with more iterations. Skewness control of the constructed graph,

Table 1  Dataset along with steps parameters

Parameter of Parameter Value

Dataset n 30 000

d 2

Step 1 nc 300

Step 2 CI e
1.0

CE e
4.0

Step 3 GS edge cut 3.01

Step 4 GC edge cut 3.20

a b

c
Fig. 4  Exclusive neighbor search. Number of ENS iterations are 0, 2, and 4 in a–c, respectively. Zoomed view
of dataset in Fig. 2

Page 17 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

explained in Part III of Algorithm 1, was carried out at end of the iterations of the ENS
procedure, resulting in reduction of available nodes for search as shown in Table 2.

A second way to control connectivity is fine tuning of the reach equation, presented in
Eq. 1. In the next test, the scaling constant R is varied, and results are presented in Fig. 5.
Three cases are shown in succession, under-reach (a), ideal-reach (b), and over-reach (c).
Even in the overreach case, inner nodes are not able to make opposite class neighbors,
enforcing planar construction of the graph.

The ENS procedure was next run on a real dataset, called cuff-less blood pressure esti-
mation dataset, from the UCI machine learning repository [32, 33]. It is a three attribute,
12 000 instances, real, multivariate dataset. Results are presented in Fig. 6, with subfig-
ure (a) showing the dataset, (b) showing cluster centers, whereas (c) and (d) showing
the constructed graph without and with ENS procedure, respectively. The latter graph
is connected because necessary edges are present between opposite class nodes, cover-
ing the entire hypothesis. Class imbalance is analysed next, and results are presented in
Table 3. Column 2 shows the number of data points for each class originally, and Col-
umn 3 shows the number of data points after ENS, as presented in the graph of Fig. 6d.
Imbalance of target classes, quantified by standard deviation (SD), is significantly
reduced after ENS.

Table 2  Search space reduction

iterations # class 1 nodes # class 2 nodes

0 143 157

2 143 157

4 139 153

r = 0.074793

r = 0.081545

r = 0.102286

r = 0.138619

r = 0.149585

r = 0.16309

r = 0.204573

r = 0.277238

r = 0.179503

r = 0.195708

r = 0.245487

r = 0.332686

a b

c
Fig. 5  Reach controlled graph knitting. Scaling constant R is 0.5, 1.0, and 1.25 in a–c, respectively. Zoomed
view of dataset in Fig. 2

Page 18 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

GSH

The aim of this test is to exemplify the twofold edge weight scheme, shown in Eq. 2. It
shows the role of edge weights in the outcome of GSH, summarized in Fig. 7. As clas-
sification patterns in the underlying data gets more confused in succession in Subfigures
(a) and (c), more edges are weighted significantly, resulting in the selection of a bigger
training set by GSH.

GCH

This test exemplifies the formulation of the graph clubbing scheme. Although the edge
weight scheme is important in the application of GSH, it is primarily designed to play a
crucial role in the priority/directional aspect of the coarsening objective. Constants for
initial edge weights were such that CE was kept significantly higher than CI , as shown in
Table 4. Two cases of re-assessments were considered, namely case I and case II.

Since initial constants were kept significantly higher than their re-assessment coun-
terparts, original nodes were contracted first in both cases, as can be seen in Fig. 8a,
b. Transition to contraction of re-assessed type nodes is reflected in the graph cost
characteristic in Fig. 9 for case I. After the 2nd iteration, the slope magnitude decreases

Feature 1 0
2

4
6

8
10

Fea
tur

e 2

0
2

4
6

8
10

Feature
3

0

2

4

6

8

10

Class 1
Class 2

Feature 1 0
2

4
6

8
10

Fea
tur

e 2

0
2

4
6

8
10

Feature
3

0

2

4

6

8

10

Class 1
Class 2

a b

c d
Fig. 6  Graph knitting procedure. Scaled UCI dataset, clustered data, constructed graph with no and 1 ENS
iteration in a–d, respectively. Dashed edges in d are formed after ENS procedure

Table 3  Class imbalance

Procedure # class 1 points # class 2 points SD

None 1743 10,256 4256.5

GSH 1661 2001 170.0

Page 19 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

significantly because of contraction of all original nodes that have significantly higher
edge weights dictated by heavier initial constants. Edge contraction continues to aggres-
sively club the graph for case I, including the re-assessed nodes. This results in fewer
partitions compared to case II in Fig. 8b. Clubbing is almost shut off in case II because of
trivial re-assessment constants. Note that in general, the more coarsening iterations, the
fewer partitions.

0.0 0.2 0.4 0.6 0.8 1.0
Feature 1

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
2

Class 1
Class 2

0.0 0.2 0.4 0.6 0.8 1.0
Feature 1

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
2

Relevant node
Non-relevant node

0.0 0.2 0.4 0.6 0.8 1.0
Feature 1

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
2

Class 1
Class 2

0.0 0.2 0.4 0.6 0.8 1.0
Feature 1

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
2

Relevant node
Non-relevant node

a b

c d
Fig. 7  Reduction of training set. Classification data is more confused in (c) compared to (a). b, d show cluster
nodes that were selected for (a) and (c) cases, respectively

Table 4  Pattern measure constants of Step 2

Parameter Initial Re-assessment

Case I Case II

CI e e
1.5 1

CE e
5 1 1

Page 20 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

Performance evaluations

Several tests were conducted to evaluate performance of the presented methods, includ-
ing GSH, serial GCH, and distributed GCH. In addition, the network architecture for
distributed GCH is evaluated.

Dataset I was a synthetically constructed two-dimensional, near-linearly separable
dataset with parameters shown in Table 5. Dataset II was a similar dataset, but in place
of a (nearly) straight-separating hyperplane, a spherical separating hyperplane of radius
0.2 was employed. Otherwise, it uses the same parameters as Dataset I. A dataset from
the UCI machine learning repository, called skin segmentation dataset [33, 34], is the
next dataset, called Dataset III for the remainder. This classification dataset has four
numeric features, and ≈ 245k observation instances. The nominal VC dimension is 245.
Table 6 summarizes other relevant parameters.

0.0 0.2 0.4 0.6 0.8 1.0
Feature 1

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
2

0.0 0.2 0.4 0.6 0.8 1.0
Feature 1

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
2

a b
Fig. 8  Partitioning of training set. Number of coarsening iterations is 2 and 10 for (a) and (b), respectively. In
each subfigure, the first plot is for the re-assessment case I, whereas the overlaying plot with shifted origin is
for case II

0 2 4 6 8 10
Number of iterations

104

105

co
st
(G

)

Fig. 9  Graph cost function with coarsening iterations

Page 21 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

An unstructured text dataset from the zenodo public repository is referred to as Data-
set IV. This e-commerce dataset consists of the title and description of products for four
categories, out of which two categories, electronics and clothing are considered, and fea-
ture extraction methods including term frequency-inverse document frequency (tf-idf)
and word2vec [35] were applied. Parameters of the dataset and steps, along with feature
engineering details, are summarized in Table 7. Lastly, an image dataset consisting of

Table 5  Dataset I and II along with steps parameters

Parameter of Parameter Value

Dataset Range of # data points

 Testing 3–600k

 Training 1–200k

 d 2

Step 1 # clustering iterations 5

Range of nc 10–400

Step 2 nn 4

ENS iterations 0

R 0.0–2.0

Step 3 GS edge cut 3.01

Step 4 # coarsening iterations 10

GC edge cut 3.10

Table 6  Dataset III along with steps parameters

Parameter of Parameter Value

Dataset Range of # data points

 Testing 122,529

 Training 122,528

 d 3

Step 1 # clustering iterations 5

nc 500

Step 2 nn 5

ENS iterations 0

R 1.0

Step 3 GS edge cut 3.01

Table 7  Dataset IV, and test 1 and 2 parameters

Parameter of Parameter Test 1 Test 2

Dataset # of data points 19,226 9613

Feature extraction tf-idf word2vec

Training/total ratio 0.75 0.75

Classification algorithm Tensorflow CNN LIBSVM

Step 2 CI e
1.0

e
1.0

CE e
3.0

e
4.0

Step 3 GS edge cut 400.01 3.50

Page 22 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

two categories, apparels and speakers, from the zenodo public repository is referred to
as Dataset V, on which a VGG16 [36] neural network is applied to get features vectors.
Other parameters for this dataset are summarized by Table 8.

Note that the computation setup was kept consistent. Programming language of all
codes for which computation time was measured is C/C++. That includes every step of
the presented heuristic, and the classification algorithms. Lastly, time stamping was car-
ried out on an otherwise idle system.

GSH

The main aim of the following set of tests is to compare the training phase using GSH
against the state-of-the-art shrinking heuristics of LIBSVM. Classification algorithms
used in these tests were all variants of LIBSVM’s SMO implementation [10], which is a
method of the second type.

Two testing variables are evaluated. First, computation run-time of GSH along with
the classification algorithm on reduced training data is compared against that of the
same classification algorithm but augmented with the shrinking heuristic. Second,

Table 8  Dataset V, and test 3 parameters

Parameter of Parameter Test 3

Dataset # of data points 6668

Feature extraction VGG16

Training/total ratio 0.75

features 25 088

Classification algorithm LIBSVM

Step 1 nc 166

Step 2 CI e
1.0

CE e
4.0

Step 3 GS edge cut 7.01

LIBSVM Training time (sec) 328.39

GSH/Speed-up 70.51/4.7

LIBSVM Prediction accuracy (%) 99.16

GSH 99.16

1k 20k 50k 100k 200k

Number of training data points

0

5

10

15

20

25

C
om

pu
ta
ti
on

ti
m
e
(s
ec
on

ds
)

LIBSVM shrinking heuristic
GSH
SVM training (post GSH)

3k 60k 150k 300k 600k

Number of testing data points

98.0

98.5

99.0

99.5

A
cc
ur
ac
y
(%

)

LIBSVM shrinking heuristic
GSH

a b
Fig. 10  C-SVM with linear kernel

Page 23 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

the prediction accuracy of the learned models obtained from both the above setups is
compared.

Results are presented in the following way. Each of Figs. 10, 11, 12, 13, 14, 15, 16, 17
and 18 is for a SVM classifier, that includes C-SVM and nu-SVM with linear, polyno-
mial, and rbf kernels. Subfigure (a) is used to present computation run-time results,
and (b) is used for prediction accuracy comparison. Training dataset size was geo-
metrically varied from 1k to 200k, and testing dataset size was kept three times that
of the training. Accordingly, the parameter nc was varied geometrically in the range
given in Table 5. Note that training time is included in ‘LIBSVM shrinking heuristic’
and ‘GSH’ plots in Subfigure (a), but is not explicitly written for convenience. So the

1k 20k 50k 100k 200k

Number of training data points

0

20

40

60

C
om

pu
ta
ti
on

ti
m
e
(s
ec
on

ds
)

LIBSVM shrinking heuristic
GSH
SVM training (post GSH)

3k 60k 150k 300k 600k

Number of testing data points

95

96

97

98

99

A
cc
ur
ac
y
(%

)

LIBSVM shrinking heuristic
GSH

a b
Fig. 11  C-SVM with polynomial kernel

1k 20k 50k 100k 200k
Number of training data points

0

200

400

600

800

C
om

pu
ta
ti
on

ti
m
e
(s
ec
on

ds
)

LIBSVM shrinking heuristic
GSH
SVM training (post GSH)

3k 60k 150k 300k 600k
Number of testing data points

98.25

98.50

98.75

99.00

99.25

99.50

A
cc
ur
ac
y
(%

)

LIBSVM shrinking heuristic
GSH

a b
Fig. 12  nu-SVM with linear kernel

1k 20k 50k 100k 200k

Number of training data points

0

200

400

600

800

C
om

pu
ta
ti
on

ti
m
e
(s
ec
on

ds
)

LIBSVM shrinking heuristic
GSH
SVM training (post GSH)

3k 60k 150k 300k 600k

Number of testing data points

92

94

96

98

A
cc
ur
ac
y
(%

)

LIBSVM shrinking heuristic
GSH

a b
Fig. 13  nu-SVM with polynomial kernel

Page 24 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

‘GSH’ plots include the run-time of Step 1 to 3 of the heuristic along with the training
phase. A third line-plot denoted ‘SVM training (post GSH)’ is presented in Subfigure
(a) to separate computation run-time of GSH from subsequent training.

C-SVM with linear kernel was the first classification algorithm tested, as presented
in Fig. 10. The GSH scales even for a low number of points ( ≈ 10k ), as shown in Sub-
figure (a), however, scaling becomes more evident with more training data points.

1k 5k 10k 15k 21k
Number of testing data points

0.0

1.0

2.0

3.0

D
iff
er
en

ce
in

ac
cu

ra
cy

(%
) RS

SRS
GSH

Fig. 14  Difference in prediction accuracies from LIBSVM for the approaches

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sampling fraction

0.0

0.2

0.4

0.6

0.8

C
om

pu
ta
ti
on

ti
m
e
(s
ec
on

ds
) SRS on case 1

GSH on case 1
SRS on case 2
GSH on case 2

Fig. 15  Compound performance gains from applying GSH after SRS

1k 20k 50k 100k 200k
Number of training data points

0

20

40

60

80

100

C
om

pu
ta
ti
on

ti
m
e
(s
ec
on

ds
)

LIBSVM shrinking heuristic
GSH
SVM training (post GSH)

3k 60k 150k 300k 600k
Number of testing data points

87.4

87.6

87.8

88.0

A
cc
ur
ac
y
(%

)

LIBSVM shrinking heuristic
GSH

a b
Fig. 16  C-SVM with linear kernel

Page 25 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

Furthermore, it is visible that GSH took a small fraction of total time, as indicated
by the separation between the second and third line plot. It highlights the scalability
issue of the SVM formulation. In Subfigure (b), the prediction accuracy of reduced
training closely follows that of full training, clearly visible after ≈ 20k testing data
points.

C-SVM with polynomial kernel was the second classifier tested, as presented in Fig. 11.
Observations here follow that of the earlier case. Although, one noticeable difference is a
better run-time profile compared to the previous case. This is because of the higher run-
time complexity of the polynomial kernel classifier compared to that of the linear kernel
presented in Fig. 10.

For the second SMO implementation, nu-SVM, Figs. 12, and 13 summarize linear
and polynomial kernel cases, respectively. Note that the training phase with nu-SVM
in Figs. 12a and 13a is significantly slower compared to C-SVM in Figs 10a and 11a.
Furthermore, it is observed that reduced training can result in improved prediction
accuracy, as can be seen in Fig. 13b. For the polynomial kernel, GSH performed better
than native training by about 6%.

The next set of two tests emphasize the consistent observation of better prediction
accuracy observed for GSH. Given that sampling is a part of GSH, two sampling meth-
ods, simple random sampling (SRS) and reservoir sampling (RS) (in the context of big
data tool Apache Hadoop [37]), as commonly used in the field of big data, are considered.

In the first test, the sampling size for the two methods is kept the same as the reduced
training set size obtained after GSH. Findings are reported in terms of the difference in

1k 20k 50k 100k 200k

Number of training data points

0

20

40

60

C
om

pu
ta
ti
on

ti
m
e
(s
ec
on

ds
)

LIBSVM shrinking heuristic
GSH
SVM training (post GSH)

3k 60k 150k 300k 600k

Number of testing data points

35

40

45

50

A
cc
ur
ac
y
(%

)

LIBSVM shrinking heuristic
GSH

a b
Fig. 17  nu-SVM with linear kernel

1k 20k 50k 100k 200k
Number of training data points

0

100

200

300

400

500

C
om

pu
ta
ti
on

ti
m
e
(s
ec
on

ds
)

LIBSVM shrinking heuristic
GSH
SVM training (post GSH)

3k 60k 150k 300k 600k
Number of testing data points

98.5

99.0

99.5

100.0

A
cc
ur
ac
y
(%

)

LIBSVM shrinking heuristic
GSH

a b
Fig. 18  nu-SVM with rbf kernel

Page 26 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

prediction accuracy from LIBSVM, and presented in Fig. 14. It can be seen that GSH
exhibits near 0% accuracy difference compared to other approaches. This consistent
observation is attributed to the edge weight scheme (applied in the graph knitting step
or Step 2) which captures all the classification patterns. In a sampling method of any
type, some data points which are important with respect to the classification task are
bound to be lost because of the involved stochastics.

In the second test, GSH was applied on the sampled data from the SRS method, for
which the sampling fraction was varied from 0.2 to 0.8 for a set of two datasizes, 30 146
and 14 142. The cases are referred to as 1 and 2, respectively, in the computation time
results presented in Fig. 15, which are averaged over 10 runs. Table 9 summarizes the
prediction accuracy discrepancies of the sampling method from LIBSVM in Column
2, and that of GSH from the sampling method in Column 3. With only compromising
1/3rd to 1/2 confidence in the prediction accuracies, as evident by comparing Column 4
and 5, compound performance gains shown in Fig. 15 can be leveraged.

Dataset I was used in all the tests until now, and near-perfect accuracy plots support that
it is an ideal dataset. A more realistic case, Dataset II, was considered for Figs. 16, 17 and 18.

Again, C-SVM with linear kernel was the first classification algorithm tested, as pre-
sented in Fig. 16. However, prediction accuracies are in a lower range than before,
as shown in Subfigure (b). Nevertheless, both setups are practically identical in pre-
diction accuracy. Similar run-time improvements are observed in Subfigure (a). For
nu-SVM with linear kernel, presented in Fig. 17, scaling observations are similar to
the corresponding Fig. 12, which used Dataset I. Note that the prediction accuracies
are only about 50%, which is the expected value for random selection between two
target classes. However, note that the main argument here is not the absolute predic-
tion accuracy, rather the closeness of it for both setups. To improve the prediction

Table 9  Results on prediction accuracy

Case Average prediction accuracy ( |%|) Average SD

LIBSVM-SRS SRS-GSH LIBSVM-SRS SRS-GSH

1 0.006 0.002 0.007 0.003

2 0.087 0.024 0.066 0.028

a b c d e f
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
C
om

pu
ta
ti
on

ti
m
e
(f
ra
ct
io
n) GSH

SVM training (post GSH)

Fig. 19  Fraction of LIBSVM training time. a–c is for C-SVM, whereas d–f is for nu-SVM with linear, polynomial,
and rbf kernels, respectively

Page 27 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

accuracy, results were obtained for a radial basis function (rbf) kernel, which is widely
considered a robust kernel type in SVM classifiers, and are presented in Fig. 18. This
resulted in slower learning, as observed in Subfigure (a), but near perfect prediction
accuracy, as shown in Subfigure (b).

The next set of tests was conducted on Dataset III, for evaluating the performance
of the heuristic on real data, and barplots in Figure 19 are used to present the find-
ings. Computation run-time was scaled to accommodate different classification algo-
rithms, namely C-SVM and nu-SVM with linear, polynomial, and rbf kernels. For all
six cases, reported prediction accuracy is low, as shown in Table 10, but close for both
setups. Scaling improvements are consistent to the previous reportings for Dataset I
and II.

The next set of two tests was conducted on Dataset IV, for evaluating the performance
of the heuristic on high-dimensional real data where various feature extraction methods
including term frequency-inverse document frequency (tf-idf) and word2vec [35], clas-
sification algorithms including CNN from Tensorflow [38] and LIBSVM, dataset size,
and dimensions were varied, as summarized in Table 7.

In the first test, use of tf-idf to compute feature vectors resulted in dimensions more
than 10k, and the classification algorithm was CNN from Tensorflow [39]. Dataset size

Table 10  Prediction accuracy (%)

Classification algorithm LIBSVM GSH

 C-SVM

 Linear 58 58

 Polynomial 58 58

 Radial 59 59

nnnu-SVM

 Linear 52 58

 Polynomial 58 57

 Radial 55 48

Table 11  Test parameters and results

Fraction of #
data points

 # features nc Training time (seconds) Prediction accuracy
(%)

Tensorflow GSH (/speed-up) Tensorflow GSH

0.2 10,621 96 2603.82 1201.11 /2.2 98.54 98.45

0.5 15,613 240 11,851.98 1664.38 /7.1 99.13 99.13

Table 12  Test parameters and results

word2vec input
dimension

Training time (seconds) Prediction accuracy (%)

LIBSVM GSH (/speed-up) LIBSVM GSH

500 100.88 12.06 /8.3 98.04 98.79

1000 201.33 21.64 /9.3 98.12 98.91

Page 28 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

was the variable, and results are presented in Table 11, from which scaling advantages of
GSH without change in prediction accuracy are apparent. In the second test, a state-of-
the-art feature extraction method, word2vec, was applied to generate the vectors for a
set of two dimensions, 500 and 1 000, which were then used to train a LIBSVM classifier
with linear kernel. It is apparent from the results presented in Table 12 that a speed-up
of ≈ 10 can be achieved with 0.77% improvement in average prediction accuracy.

Similar to the previous two tests, the last test was conducted on Dataset V, where the
feature extraction method of VGG16 [36] and LIBSVM classifier with linear kernel was
used, along with other parameters summarized in Table 8. Results are presented in the
last four rows of the table, which shows that a speed-up of 4.7 times can be achieved
over more than 25k features without compromising any prediction accuracy.

Overall, scalability improvements are observed consistently over a number of classi-
fiers for Dataset I to V. Furthermore, the prediction accuracy either closely follows origi-
nal training or even outperforms it in a few instances.

Serial GCH

The next set of tests are aimed to compare run-time of serial GCH to that of GSH. More
precisely, serial execution of GCH, which represents approximate learning, is fared
against (reduced training data) GSH learning. In GCH, the graph clubbing step was an
added cost over GSH, so the ‘GCH’ plots include the run-time of Step 1 to 4 of the heu-
ristic along with serial execution of the training phase for the obtained partitions (after
Step 4). Results are presented for Dataset I.

The number of iterations was set 10, and used as the termination condition for the
graph clubbing algorithm. The pre-processor was used, and the collected prediction
accuracies were weight-averaged over all reported partitions. Edge weight constants
given in Table 13 were used throughout.

Table 13  Pattern measure constants (of Step 2) for GCH

Parameter Initial Re-assessment

CI e e
1.5

CE e
5 1

1k 20k 50k 100k 200k

Number of training data points

0

5

10

15

20

25

C
om

pu
ta
ti
on

ti
m
e
(s
ec
on

ds
)

LIBSVM shrinking heuristic
serial GCH
GSH

3k 60k 150k 300k 600k

Number of testing data points

95

96

97

98

99

A
cc
ur
ac
y
(%

)

LIBSVM shrinking heuristic
serial GCH

a b
Fig. 20  C-SVM with linear kernel

Page 29 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

Only GSH and GCH are compared along with respective line-plots of subsequent
training for all the classifiers, as presented in Figs. 22 and 23. However, for the first
classifier, C-SVM with linear kernel, shown in Fig. 20, computation run-time of

1k 20k 50k 100k 200k
Number of training data points

0

1

2

3

4

5

N
um

be
r
of

cr
it
ic
al

ch
un

ks

Fig. 21  Partitions after GCH

1k 20k 50k 100k 140k
Number of training data points

0

2

4

6

8

10

12

14

C
om

pu
ta
ti
on

ti
m
e
(s
ec
on

ds
) serial GCH

SVM training (post GCH)
GSH
SVM training (post GSH)

Fig. 22  C-SVM with polynomial kernel

1k 20k 50k 100k 200k
Number of training data points

0

2

4

6

8

C
om

pu
ta
ti
on

ti
m
e
(s
ec
on

ds
)

serial GCH
SVM training (post GCH)
GSH
SVM training (post GSH)

Fig. 23  nu-SVM with polynomial kernel

Page 30 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

LIBSVM with shrinking heuristic is also plotted. An accuracy plot, Subfigure (b), and
a plot for the number of partitions in Fig. 21 are also presented.

In Fig. 20a, a clear scalability hierarchy is observed, with serial GCH > GSH > LIBSVM
shrinking heuristic. In the accuracy plot, shown in Subfigure (b), approximate learning
closely follows native learning for more than 8k training data points. However, for fewer
points, the accuracy of the model trained after GCH, which is ≈ 95%, is not as good as
native training at 99% . 2 to 5 partitions were obtained as shown in Fig. 21. For polyno-
mial kernel classifiers, presented in Figs. 22 and 23, scaling advantages with serial GCH
compared to GSH are observed even for fewer data points ( ≈ 5k).

Distributed GCH

The main aim here was to demonstrate run-time advantages with worker processes
for the communication-free training scheme discussed earlier. The plots here differ
from ‘serial GCH’ plots only by the mode of execution of the training phase, that is,
obtained partitions are distributed to worker processes as per the network design or
Algorithm IV. The scheme only aims for coarse grain parallelization, such that indi-
vidual data chunks/partitions can be distributed to worker processes.

0 50k 100k 150k 200k

Number of training data points

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
om

pu
ta
ti
on

ti
m
e
(f
ra
ct
io
n)

workers : 2
workers : 3
workers : 4

1k 20k 50k 100k 200k

Number of training data points

0

2

4

6

8

N
um

be
r
of

cr
it
ic
al

ch
un

ks

a b
Fig. 24  Scalability with workers (a), and obtained partitions (b)

1k 10k 100k 200k
Number of training data points

0

1k

2k

3k

4k

5k

6k

7k

8k

A
ve
ra
ge

da
ta

po
in
ts

pe
r
ch

un
k

Fig. 25  Mean size of partitions with SD errorbars

Page 31 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

Results are presented in Fig. 24 for C-SVM with a polynomial kernel classifier on
Dataset I. The distribution invariantly depends on the number of obtained partitions.
Therefore, scaling results in Subfigure (a) cannot be interpreted without the plot for
the number of partitions, which is shown in Subfigure (b).

Significant improvements are observed with more workers. However, sub-optimal
distribution with number of workers more than 2 can be seen in Fig. 25. Mean num-
ber of data points per chunk/partition is plotted as a function of the number of total
data points. Using the number of partitions/chunks from Fig. 24b, it is straightfor-
ward to interpret the monotonic increase of the plot. In a hypothetical case where the
partitions are all equally-sized, SD would be zero. However, as the number of total
data points increases, error bars for SD are observed to be commensurate to the mean
number of data points. Unequal size of partitions is the apparent reason for the sub-
optimal distribution. Overall, Table 14 summarizes the performance gains for all the
approaches, namely GSH, serial GCH and distributed GCH, relative to the shrinking
heuristic available in LIBSVM for C-SVM with a polynomial kernel on Dataset I.

Table 14  Scaling improvements of the heuristic approaches

 # of training
points

Shrinking heuristic GSH serial GCH dist. GCH dist. GCH

of LIBSVM (w/2 proc.) (w/4 proc.)

(seconds) (× of serial GCH)

1000 0.0078 0.0076 0.0073 1.5 3.0

4543 0.0604 0.0339 0.0290 1.7 2.3

9686 0.1957 0.0981 0.0631 1.3 1.6

20,647 0.7422 0.2515 0.1359 1.8 2.2

93,823 9.6774 2.3658 1.0003 1.8 3.6

136,984 20.4771 3.9556 1.9835 1.5 2.0

1 2 3 4 5 6 7
Number of workers

0.08

0.10

0.12

0.14

0.16

C
on

ne
ct
io
n
ti
m
e
(s
ec
on

ds
)

Fig. 26  Performance of the designed connection procedure

Page 32 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

Network design

The main motivation for this set of tests was to evaluate various implementation
aspects of the network that implemented distributed GCH. The first aspect is the
connection time of the distributed application. Fig. 26 shows connection time meas-
urements with the number of workers.

Apparently, the connection time is very small ( ≈ 120ms ) when compared to the
run-time of the training phase. The connection procedure was replicated on another
distributed messaging API, MPICH3.3 [40], and the connection time with ZeroMQ
was observed to be 1.53 times faster than with MPICH3.3.

The next aspect of the network is the messaging protocols. The primary motiva-
tion behind the protocol design is to utilize the shape of the ith data point, that has
an n-dimensional feature vector ( xi ), and a 1-dimensional target class value (tc(i)) .
Two of such protocols as previously discussed were fared in run-time. A couple of
opposing factors are at play between these protocols. Data marshaling is an extra step
in protocol 1 (before actual messaging) when compared to protocol 2. On the other
hand, message count/traffic increases (multiple times governed by the dimensionality

0 5M 10M 15M 20M
Number of communicated data points

0

4

8

12

16

C
om

pu
ta
ti
on

ti
m
e
(s
ec
on

ds
) Protocol 2

Protocol 1

Fig. 27  Evaluation of messaging protocols. Protocol 1 is used in this work

0 1M 2M 3M 4M 5M 6M
Number of testing data points

0

2

4

6

8

T
es
ti
ng

ru
n-
ti
m
e
(%

)

Messaging
Pre-processing

Fig. 28  Messaging and pre-processing. Run-time of message communications and pre-processing
measured in percentage of the testing phase

Page 33 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

of data) in protocol 2 compared to protocol 1. Overall, protocol 1 performed bet-
ter as can be been in Fig. 27. Although increased marshaling may probably result in
even better scaling, a larger memory footprint on the channel is un-advisable as it can
result in an overflow scenario.

Messaging efficiency was tested in the context of prediction/testing phase of the
distributed implementation. Reported in Fig. 28, it is very efficient at ≈ 1% of the pre-
diction time. It is found to be even more efficient at ≈ 0.5% for the training phase.
Pre-processing run-time is at ≈ 7%, as can be seen in Fig. 28.

Note that external libraries are used in the formulation, including a clustering
method, an approximate nearest neighbor implementation, two messaging APIs, and
many classification algorithms. The heuristic execution is not very sensitive to the
parameters of these external implementations. For instance, only 3–5 iterations of
clustering were needed, input parameters for approximate nearest neighbor and clas-
sification algorithms were kept at default. However, the heuristic is sensitive to the
parameters which are part of the heuristic steps.

Conclusions and future work
In this work, an algorithm with an edge weight scheme is designed to construct a
weighted graph that effectively captures the classification patterns of the training data-
set. Another graph coarsening algorithm with a directional aspect is formulated that
divides the reduced dataset into partitions that can be trained independently using a
novel communication-free network.

GSH provides an evident serial scalability advantage, and generic applicability holds for
every classifier. Then, approximate learning is the reason behind serial GCH’s added run-
time advantage over GSH. Finally, distribution of chunks/partitions (after GCH) of the
training set to worker processes results in further run-time improvements in distributed
GCH. Overall, for all the approaches, namely GSH, serial, and distributed GCH, scaling
benefits against full data training with classification algorithms from LIBSVM and Tensor-
flow are accompanied by no compromise in prediction accuracy.

Unequal coarsening and control over the number of partitions still needs to be further
investigated in the current implementation of GCH in two possible areas,

•	 First is the directional aspect of the objective. That is, if the partitioning was better
directed, better orthogonality between the contour of the underlying classification pat-
terns and of partition boundaries shall be obtained in the approximate procedure. The
two-fold pattern measure scheme should be designed to get the desired control over the
direction of coarsening.

•	 Modifying the objective function of the current graph coarsening scheme with parts of
traditional coarsening objectives. Since they directly add size difference as a cost, it will
address the unequal coarsening problem in the presented objective. Furthermore, the
number of partitions is directly controlled in these objectives.

Page 34 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

Abbreviations
WSS: working set selection; SMO: sequential minimal optimization; VC dimension: Vapnik Chervonenkis dimension; ANN:
approximate nearest neighbors; SD: standard deviation; K-NNG: K-nearest neighbors graph; SNS: superficial neighbor
search; ENS: exclusive neighbor search; GSH: graph shedding heuristic; GCH: graph clubbing heuristic; NHS: nearest
hypothesis search; SRS: simple random sampling; RS: reservoir sampling; n: number of data points; d: number of features;
nc: number of initial clusters (input parameter); wi,j: weight of (i, j) edge; tc(i): target class of the ith node; CI: constant for
internal classification pattern; CE: constant for external classification pattern; R: reach constant (input parameter); ri: reach
of the ith node; xi: position of the ith node; xj: position of the jth node; Ni: set of neighbors of ith node; cost(G): cost of
graph G; e: an edge; E

′
: subset of E (set of all edges) such that {e | e ǫ E and > GC edge cut }; we: weight of an edge e.

Acknowledgements
SY acknowledges Gautam Kumar’s contributions in the project.

Authors’ contributions
This work is joint research of SY and MB. SY did all implementation, and run all test cases. All authors read and approved
the final manuscript.

Funding
Not applicable.

Availability of data and materials
Dataset I and II used during the current study are available from the corresponding author on a reasonable request.
Furthermore, two real datasets used are available in the UCI machine learning repository, https​://archi​ve.ics.uci.edu/ml/
datas​ets/skin+segme​ntati​on. https​://archi​ve.ics.uci.edu/ml/datas​ets/Cuff-Less+Blood​+Press​ure+Estim​ation​. Dataset
IV and V are available in the zenodo public repository, https​://doi.org/10.5281/zenod​o.33558​23. https​://doi.org/10.5281/
zenod​o.33569​17, respectively. Other resources with respect to the manuscript are shared at https​://sumed​hyada​v.githu​
b.io/graph​_heu/. Tests were performed with following computing specfications: Operating system(s): Ubuntu 16.04
LTS. Programming language: C/C++, python (for visualization). Visualization tools: matplotlib and networkx modules in
python. External Libraries: FLANN (1.8.4), mlpack (3.0.4), LIBSVM (3.23), Tensorflow (1.12.0), Keras (2.2.4). Version require-
ments: g++ 5.4.0, Python 2.7.12, matplotlib 1.5.1, networkx 2.2, numpy 1.15.4.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Gstech Technology Pvt. Ltd., 415, 2nd Floor, 16th Cross Road, 17th Main Road, HSR Layout Sector 4, Bengaluru 560102,
India. 2 Institute for Combustion Technology, RWTH Aachen University, Templergraben 64, 52056 Aachen, Germany.

Received: 5 June 2019 Accepted: 12 October 2019

References
	1.	 Levy AY, Fikes RE, Sagiv Y. Speeding up inferences using relevance reasoning: a formalism and algorithms. Artif Intell.

1997;97:83–136. https​://doi.org/10.1016/S0004​-3702(97)00049​-0.
	2.	 Blum AL, Langley P. Selection of relevant features and examples in machine learning. Artif Intell. 1997;97:245–71.

https​://doi.org/10.1016/S0004​-3702(97)00063​-5.
	3.	 Weng J, Young DS. Some dimension reduction strategies for the analysis of survey data. J Big Data. 2017;4(1):43.

https​://doi.org/10.1186/s4053​7-017-0103-6.
	4.	 Guyon I, Gunn S, Nikravesh M, Zadeh LA. Feature extraction: foundations and applications. In: Studies in fuzziness

and soft computing, vol 207. Berlin Heidelberg: Springer, Springer-Verlag; 2008. https​://doi.org/10.1007/978-3-540-
35488​-8.

	5.	 Fayed H. A data reduction approach using hyperspherical sectors for support vector machine. In: DSIT ’18:Proceed-
ings of the 2018 international conference on data science and information technology, Singapore, Singapore. ACM,
New York, NY, USA; 2018. https​://doi.org/10.1145/32392​83.32393​17.

	6.	 Coleman C, Mussmann S, Mirzasoleiman B, Bailis P, Liang P, Leskovec J, Zadaria M. Select via vroxy: efficient data
selection for training deep networks; 2019. https​://openr​eview​.net/forum​?id=ryzHX​nR5Y7​. Accessed on 1 Feb 2019.

	7.	 Loukas A, Vandergheynst P. Spectrally approximating large graphs with smaller graphs; 2018. CoRR arXiv​:1802.07510​.
	8.	 Weinberg AI, Last M. Selecting a representative decision tree from an ensemble of decision-tree models for fast big

data classification. J Big Data. 2019;6(1):23. https​://doi.org/10.1186/s4053​7-019-0186-3.
	9.	 Chen PH, Fan RE, Lin CJ. A study on smo-type decomposition methods for support vector machines. Trans Neural

Netw. 2006;17:893–908. https​://doi.org/10.1109/TNN.2006.87597​3.
	10.	 Fan RE, Chen PH, Lin CJ. Working set selection using second order information for training support vector machines.

J Mach Learn Res. 2005;6:1889–918.
	11.	 Nalepa J, Kawulok M. A memetic algorithm to select training data for support vector machines. In: GECCO ’14:Pro-

ceedings of the 2014 annual conference on genetic and evolutionary computation, Vancouver, BC, Canada. ACM,
New York, NY, USA; 2014. https​://doi.org/10.1145/25767​68.25983​70.

	12.	 Salvador S, Chan P. Determining the number of clusters/segments in hierarchical clustering/segmentation algo-
rithms. In: ICTAI ’04:Proceedings of the 16th IEEE international conference on tools with artificial intelligence. IEEE
Computer Society, Washington, DC, USA; 2004. https​://doi.org/10.1109/ICTAI​.2004.50.

https://archive.ics.uci.edu/ml/datasets/skin+segmentation
https://archive.ics.uci.edu/ml/datasets/skin+segmentation
https://archive.ics.uci.edu/ml/datasets/Cuff-Less+Blood+Pressure+Estimation
https://doi.org/10.5281/zenodo.3355823
https://doi.org/10.5281/zenodo.3356917
https://doi.org/10.5281/zenodo.3356917
https://sumedhyadav.github.io/graph_heu/
https://sumedhyadav.github.io/graph_heu/
https://doi.org/10.1016/S0004-3702(97)00049-0
https://doi.org/10.1016/S0004-3702(97)00063-5
https://doi.org/10.1186/s40537-017-0103-6
https://doi.org/10.1007/978-3-540-35488-8
https://doi.org/10.1007/978-3-540-35488-8
https://doi.org/10.1145/3239283.3239317
https://openreview.net/forum?id=ryzHXnR5Y7
http://arxiv.org/abs/1802.07510
https://doi.org/10.1186/s40537-019-0186-3
https://doi.org/10.1109/TNN.2006.875973
https://doi.org/10.1145/2576768.2598370
https://doi.org/10.1109/ICTAI.2004.50

Page 35 of 35Yadav and Bode ﻿J Big Data (2019) 6:96

	13.	 Awad M, Khan L, Bastani F, Yen IL. An effective support vector machines (SVMs) performance using hierarchical
clustering. In:16th IEEE international conference on tools with artificial intelligence, p. 663-7; 2004. https​://doi.
org/10.1109/ICTAI​.2004.26.

	14.	 Cervantes J, Li X, Yu W, Li K. Support vector machine classification for large data sets via minimum enclosing ball
clustering. Neurocomputing. 2008;71:611–9. https​://doi.org/10.1016/j.neuco​m.2007.07.028.

	15.	 Li X, Cervantes J, Yu W. Two-stage svm classification for large data sets via randomly reducing and recovering
training data. In: IEEE international conference on systems, man and cybernetics, October 2007; 2007. https​://doi.
org/10.1109/ICSMC​.2007.44138​14.

	16.	 Wang J, Neskovic P, Cooper LN. A minimum sphere covering approach to pattern classification. In: ICPR’06:18th
international conference on pattern recognition. 2006, 3:433-6; 2006. https​://doi.org/10.1109/ICPR.2006.102.

	17.	 Mavroforakis ME, Theodoridis S. A geometric approach to support vector machine (SVM) classification. Trans Neural
Netw. 2006;17:671–82. https​://doi.org/10.1109/TNN.2006.87328​1.

	18.	 Fung G, Mangasarian OL. Data selection for support vector machine classifiers. In: KDD ’00:Proceedings of the Sixth
ACM SIGKDD international conference on knowledge discovery and data mining. Boston, Massachusetts, USA. ACM,
New York, NY, USA; 2000. https​://doi.org/10.1145/34709​0.34710​5.

	19.	 Wang J, Neskovic P, Cooper LN. Training data selection for support vector machines. In: ICNC’05:Proceedings of the
first international conference on advances in natural computation—Volume Part I, Changsha, China. Springer-
Verlag, Berlin, Heidelberg, Germany; 2005. https​://doi.org/10.1007/11539​087_71.

	20.	 Yu H, Yang J, Han J. Classifying large data sets using SVMs with hierarchical clusters. In: KDD ’03:Proceedings of the
ninth ACM SIGKDD international conference on knowledge discovery and data mining, Washington, DC, USA. ACM,
New York, NY, USA; 2003. https​://doi.org/10.1145/95675​0.95678​6.

	21.	 Chang CC, Lin CJ. LIBSVM: a Library for support vector machines. ACM Trans Intell Syst Technol. 2011;2:27. https​://
doi.org/10.1145/19611​89.19611​99.

	22.	 Chau LA, Li X, Yu W. Convex and concave hulls for classification with support vector machine. Neurocomputing.
2013;122:198–209. https​://doi.org/10.1016/j.neuco​m.2013.05.040.

	23.	 Muja M, Lowe DG. Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans Pattern Anal Mach
Intell. 2014;36:2227–40. https​://doi.org/10.1109/TPAMI​.2014.23213​76.

	24.	 Leevy JL, Khoshgoftaar TM, Bauder RA, Seliya N. A survey on addressing high-class imbalance in big data. J Big Data.
2018;5(1):42. https​://doi.org/10.1186/s4053​7-018-0151-6.

	25.	 Arthur D, Vassilvitskii S. K-means++: The advantages of careful seeding. In: SODA ’07:Proceedings of the eighteenth
annual ACM-SIAM symposium on discrete algorithms. New Orleans, Louisiana. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA; 2007.

	26.	 Hughes M. KmeansRex : Fast, vectorized C++ implementation of K-Means using the Eigen matrix template library;
2018. https​://githu​b.com/micha​elchu​ghes/KMean​sRex. Accessed on 1 Dec 2018.

	27.	 Curtin RR, Edel M, Lozhnikov M, Mentekidis Y, Ghaisas S, Zhang S. mlpack 3: a fast, flexible machine learning library. J
Open Source Softw. 2018;3:726. https​://doi.org/10.21105​/joss.00726​.

	28.	 Bahmani B, Moseley B, Vattani A, Kumar R, Vassilvitskii S. Scalable K-means++. Proc VLDB Endow. 2012;5:622–33.
https​://doi.org/10.14778​/21809​12.21809​15.

	29.	 Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J, Venkataraman S, Franklin MJ, Ghodsi A,
Gonzalez J, Shenker S, Stoica I. Apache Spark: a unified engine for big data processing. Commun ACM. 2016;59:56–
65. https​://doi.org/10.1145/29346​64.

	30.	 Dhillon IS, Guan Y, Kulis B. Weighted graph cuts without eigenvectors a multilevel approach. IEEE Trans Pattern Anal
Mach Intell. 2007;29:1944–57. https​://doi.org/10.1109/TPAMI​.2007.1115.

	31.	 Akgul F. ZeroMQ. Birmingham: Packt Publishing; 2013.
	32.	 Kachuee M, Kiani M, Mohammadzade H, Shabany M. Cuff-less high-accuracy calibration-free blood pressure

estimation using pulse transit time dataset; 2015. https​://archi​ve.ics.uci.edu/ml/datas​ets/Cuff-Less+Blood​+Press​
ure+Estim​ation​. Accessed 1 Dec 2018.

	33.	 Dua D, Graff C. UCI machine learning repository; 2019. http://archi​ve.ics.uci.edu/ml. Accessed 1 Dec 2018.
	34.	 Bhatt R, Dhall A. Skin segmentation dataset; 2012. http://archi​ve.ics.uci.edu/ml/datas​ets/skin+segme​ntati​on.

Accessed 1 Dec 2018.
	35.	 Řehůřek R, Sojka P. Software Framework for Topic Modelling with Large Corpora. Proceedings of the LREC 2010

Workshop on New Challenges for NLP Frameworks 45-50; 2010. http://is.muni.cz/publi​catio​n/88489​3/en. Accessed
28 July 2019.

	36.	 Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition; 2014. CoRR arXiv​
:1409.1556.

	37.	 Shvachko K, Kuang H, Radia S, Chansler R. The Hadoop Distributed File System, Proceedings of the 2010 IEEE 26th
symposium on mass storage systems and technologies (MSST) MSST ’10:1-10; 2010. https​://doi.org/10.1109/
MSST.2010.54969​72.

	38.	 Abadi M et al.. TensorFlow: Large-scale machine learning on heterogeneous systems; 2015. https​://www.tenso​rflow​
.org/. Accessed 27 July 2019.

	39.	 François C et al. Keras; 2015. https​://keras​.io. Accessed 27 July 2019.
	40.	 MPICH3.3. A high performance and widely portable implementation of the message passing interface (MPI) stand-

ard; 2018. https​://www.mpich​.org/. Accessed 1 Feb 2019.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ICTAI.2004.26
https://doi.org/10.1109/ICTAI.2004.26
https://doi.org/10.1016/j.neucom.2007.07.028
https://doi.org/10.1109/ICSMC.2007.4413814
https://doi.org/10.1109/ICSMC.2007.4413814
https://doi.org/10.1109/ICPR.2006.102
https://doi.org/10.1109/TNN.2006.873281
https://doi.org/10.1145/347090.347105
https://doi.org/10.1007/11539087_71
https://doi.org/10.1145/956750.956786
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1016/j.neucom.2013.05.040
https://doi.org/10.1109/TPAMI.2014.2321376
https://doi.org/10.1186/s40537-018-0151-6
https://github.com/michaelchughes/KMeansRex
https://doi.org/10.21105/joss.00726
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.1145/2934664
https://doi.org/10.1109/TPAMI.2007.1115
https://archive.ics.uci.edu/ml/datasets/Cuff-Less+Blood+Pressure+Estimation
https://archive.ics.uci.edu/ml/datasets/Cuff-Less+Blood+Pressure+Estimation
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml/datasets/skin+segmentation
http://is.muni.cz/publication/884893/en
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1109/MSST.2010.5496972
https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io
https://www.mpich.org/

	A graphical heuristic for reduction and partitioning of large datasets for scalable supervised training
	Abstract
	Introduction
	Methodology
	Clustering step
	Graph knitting scheme
	Graph shedding scheme
	Graph clubbing scheme
	Formulation
	Network design

	Pre-processor for the testing phase

	Results
	Parameter space of heuristic
	Node reach and ENS
	GSH
	GCH

	Performance evaluations
	GSH
	Serial GCH
	Distributed GCH
	Network design

	Conclusions and future work
	Acknowledgements
	References

