
Unsupervised software defect prediction
using median absolute deviation threshold
based spectral classifier on signed Laplacian
matrix
Aris Marjuni1,2, Teguh B. Adji1* and Ridi Ferdiana1

Abstract 

Area of interest:  The trend of current software inevitably leads to the big data era.
There are much of large software developed from hundreds to thousands of modules.
In software development projects, finding the defect proneness manually on each
module in large software dataset is probably inefficient in resources. In this task, the
use of a software defect prediction model becomes a popular solution with much
more cost-effective rather than manual reviews. This study presents a specific machine
learning algorithm, which is the spectral classifier, to develop a software defect predic-
tion model using unsupervised learning approach.

Background and objective:  The spectral classifier has been successfully used in
software defect prediction because of its reliability to consider the similarities between
software entities. However, there are conditional issues when it uses the zero value as
partitioning threshold. The classifier will produce the predominantly cluster when the
eigenvector values are mostly positives. Besides, it will also generate low clusters com-
pactness when the eigenvector contains outliers. The objective of this study is mainly
to propose an alternative partitioning threshold in dealing with the zero threshold
issues. Generally, the proposed method is expected to improve the spectral classifier
based software defect prediction performances.

Methods:  This study proposes the median absolute deviation threshold based spec-
tral classifier to carry out the zero value threshold issues. The proposed method consid-
ers the eigenvector values dispersion measure as the new partitioning threshold, rather
than using a central tendency measure (e.g., zero, mean, median). The baseline method
of this study is the zero value threshold based spectral classifier. Both methods are
performed on the signed Laplacian matrix to meet the non-negative Laplacian graph
assumption. For classification, the heuristic row sum method is used to assign the
entity class as the prediction label.

Results and conclusion:  In terms of clustering, the proposed method can produce
better cluster memberships that affect the cluster compactness and the classifier
performances improvement. The cluster compactness average of both the proposed
and baseline methods are 1.4 DBI and 1.8 DBI, respectively. In classification perfor-
mance, the proposed method performs better accuracy with lower error rates than

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Marjuni et al. J Big Data (2019) 6:87
https://doi.org/10.1186/s40537-019-0250-z

*Correspondence:
adji@ugm.ac.id
1 Department of Electrical
and Information Engineering,
Faculty of Engineering,
Universitas Gadjah Mada, Jl.
Grafika No. 2, Kampus UGM,
Yogyakarta 55281, Indonesia
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0250-z&domain=pdf

Page 2 of 20Marjuni et al. J Big Data (2019) 6:87

the baseline method. The proposed method also has high precision but low in the
recall, which means that the proposed method can detect the software defect more
precisely, although in the small number in detection. The proposed method has the
accuracy, precision, recall, and error rates with average values of 0.79, 0.84, 0.72, and
0.21, respectively. While the baseline method has the accuracy, precision, recall, and
error rates with average values of 0.74, 0.74, 0.89, and 0.26, respectively. Based on those
results, the proposed method able to provide a viable solution to address the zero
threshold issues in the spectral classifier. Hence, this study concludes that the use of
the median absolute deviation threshold can improve the spectral based unsupervised
software defect prediction method.

Keywords:  Unsupervised software defect prediction, Spectral classifier, Signed
Laplacian matrix, Zero thresholding, Median absolute deviation thresholding

Introduction
Software defect prediction model generally needs a prior software project repository
dataset to train the model [1, 2]. Based on the dataset availability, there are two most
common model development approaches. The first one is a supervised approach,
where the software defect prediction model is developed from the training dataset
and evaluated using the testing dataset. The second one is an unsupervised approach,
where the software defect prediction model is developed using the current testing
dataset without training dataset.

In the supervised approach, there are two types of defect prediction models, namely
within project defect prediction and cross project defect prediction [3]. The within
project defect prediction model uses a training dataset from the same prior soft-
ware projects to develop a model. The homogeneity between the training and testing
datasets in this model could produce the best performance compared to the other
approaches. However, there is a difficulty to implement this model on a new software
project. Because, a new software project does not have a prior training datasets [3, 4].
The cross project defect prediction model is then used to deal with this issue, where
training dataset is taken from the other different software projects to develop a model
[4–6]. However, taking similar training datasets from the other software projects is
not an easy way because of the heterogeneity between the source and the target pro-
jects [3, 7, 8]. If there are no lacks in the training dataset availability, the supervised
approach is the main alternative in the software prediction model development. Oth-
erwise, the unsupervised approach offers an alternative solution to address the train-
ing dataset availability issue [9, 10].

In the unsupervised approach, the predicted model can be developed directly using
the current software dataset with no need training datasets [11]. This dataset contains
a set of unlabeled software entities. The unsupervised approach relies on the cluster-
ing techniques to group the unlabeled dataset into the non-overlapped clusters, which
are defective and non-defective [12]. All entities in each cluster are then labeled using
a classifier [3, 13]. The use of the unsupervised software defect prediction has been
studied using many methods. Zhong et al. [14] compared the k-means algorithm with
the natural-gas algorithms to evaluate the clustering performance. Based on the mean
square error values, the natural gas algorithm outperformed the k-means algorithm.

Page 3 of 20Marjuni et al. J Big Data (2019) 6:87

However, this method requires a software expert to decide whether the software
belongs to either defective or clean class.

Catal et al. [15] applied x-means clustering algorithm to obtain defective and non-
defective clusters using selected software metrics as the partitioning threshold. Those
metrics are lines of code, cyclomatic complexity, operator, and operand. The software
entity is predicted as defective if the metric values are higher than the threshold,
and conversely. Bishnu et al. [16] proposed the quadtree based k-means algorithm
and compare it to some clustering algorithms. The error rates of their proposed
algorithm are reasonably comparable to the k-means, Naive Bayes, and Linear Dis-
criminant Analysis. Abaei et al. [17] proposed the self-organizing map algorithm for
software defect clustering. In the classes labeling, they used a similar threshold met-
rics that have been used in the x-means clustering algorithm, which is proposed by
Catal et al. [15]. Their experimental results show that their algorithm outperformed
both the Catal et al. [15] and Bishnu et al. [16] algorithms. Nam et al. [18] proposed
the median-based partitioning threshold for clustering. All entities with higher val-
ues than the median are placed in one cluster, otherwise those entities are placed in
the other cluster. The top half of the cluster members are then classified as defective,
while the bottom half of the cluster members are classified as non-defective. Their
proposed method has better performances compared to the Bayesian network, J48
decision tree, logistic model tree, logistic regression, Naive Bayes, random forest, and
support vector machine algorithms.

Zhang et al. [3] applied the spectral graph to develop unsupervised based spectral
classifier algorithm. The set of software entities and its connectivities represent the
nodes and edges of the spectral graph, respectively. They used zero value threshold
to obtain the predicted defective and clean clusters. For labeling all cluster members,
they used the heuristic row sums criterion. Their experimental results show that the
spectral classifier outperformed the random forest, logistic regression, Naive Bayes,
and logistic model tree algorithms. Their proposed method is improved by Marjuni
et al. [13] to ensure the use of spectral classifier requirements, especially in the non-
negative Laplacian graph matrix. They applied the absolute of adjacency matrix to
construct the signed Laplacian graph matrix. Their experiment shows that the use of
signed Laplacian on spectral classifier can improve both the cluster compactness and
classification.

Based on the preliminary experiment in this study, there are two conditional issues in
the use of zero value threshold for spectral clustering. In case the eigenvector’s values
are mostly positives, then all of the entities will be placed predominantly into one cluster.
The other case is if the eigenvector’s values have balanced positives and negatives, then
about half of all the entities will be predicted in the defective cluster. This kind of result
might never occur in software project development. Second, the eigenvector’s values
sometimes come with outliers, as shown in Fig. 1. In the clustering process, this outli-
ers issue may reduce the cluster compactness because of the wide distance between the
eigenvector to the threshold. This study is motivated to address those issues by consider-
ing the characteristic of eigenvector values dispersion for partitioning. In this study, the
median absolute deviation is chosen as the partitioning threshold to represent the eigen-
vector values dispersion. That means that the partitioning process will use the dispersion

Page 4 of 20Marjuni et al. J Big Data (2019) 6:87

measure belonging to the eigenvector position rather than using the central tendency
measure (e.g., zero, mean, or median). Thus, the objective of this study is specifically to
address the partitioning issues in spectral clustering such that could improve the spec-
tral classifier based on the zero value threshold.

This paper is presented in several sections, as follows. "Introduction" section describes
the background, issues, and motivation of this study. "Related works" section presents
the current studies related to the use of spectral clustering and classifier in unsupervised
based software defect prediction. "Basic theories" section presents a brief of median
absolute deviation and signed Laplacian based spectral clustering as the basic theories
of this study. "Methods" section presents the median absolute based spectral classifier as
the proposed method and also the zero threshold based spectral classifier as the baseline
of this study. "Experimental setup" section presents the dataset preparation, experimen-
tal design, performance evaluation, and validation method. The experimental results and
discussion of this study are presented in "Results and discussion" section. Finally, "Con-
clusion" section summarizes the conclusions and future work of this study.

Related works
The unsupervised approach is usually used to avoid the limitation in the availability of the
training datasets. A prediction model in this approach is commonly built using clustering
methods. In this study, spectral clustering is chosen as the main study because it has the
advantage to consider the similarities between entities. As a graph based clustering, spec-
tral clustering also has better performance than distance based clustering methods [3, 4].

Zhang et al. [3] initially proposed the spectral classifier in unsupervised software defect
prediction to address the heterogeneity issue of the dataset in cross project software defect
prediction. The negative similarities of the adjacency matrix are transformed into zeros to
ensure the non-negative Laplacian matrix assumption. The Laplacian matrix is then decom-
posed to obtain the eigenvalues and eigenvectors. The second smallest eigenvalue and its
eigenvector are then selected to construct the clusters by comparing the eigenvector value
with the zero value threshold [19]. All entities with the eigenvector value greater than zero
are grouped in the predicted defective cluster. Otherwise, these entities are grouped in the

Fig. 1  Eigenvectors distribution. The eigenvectors distributions in a are obtained from signed Laplacian
matrix decomposition of all datasets using Eq. 10. These eigenvectors distributions show that almost
eigenvectors come with outliers. b shows the example of eigenvector distribution with MAD of CM1 dataset

Page 5 of 20Marjuni et al. J Big Data (2019) 6:87

predicted non-defective cluster. The heuristic row sum criterion is then used to predict the
label class of all the cluster members. The software entity is predicted as defective if its row
sum greater than the row sum average of its cluster. Overall, their algorithm outperformed
the k-means, partition around medoids, fuzzy C-means, and natural-gas algorithms.

However, there is a slight issue in the adjacency matrix construction. The adjacency matrix
is a matrix that is used to represent the similarities between the pair of entities. This adja-
cency matrix can contain positive, zero, or negative values. If the adjacency matrix contains
negative values, then this matrix might not be able to produce the non-negative Laplacian
matrix, and the Laplacian matrix in spectral classifier becomes undefined. To address this
issue, Marjuni et al. [13] proposed the signed Laplacian based spectral classifier. They per-
formed an absolute transformation on the adjacency matrix to fulfill the non-negative Lapla-
cian matrix assumption. Similar to the spectral classifier proposed by Zhang et al. [3], they
also used the zero value thresholding for clustering and the heuristic row sum criterion for
labeling. Their experimental results show that the use of signed Laplacian matrix can pro-
duce more cluster memberships, and affects to the classifier performances improvement.

There are some advantages of the use of signed Laplacian matrix in spectral cluster-
ing. First, the signed Laplacian matrix is positive semidefinite and fulfills the non-negative
assumption of the Laplacian matrix. Second, the cluster memberships become increase
because there are additional numbers of similarities obtained from negative similarities in
the adjacency matrix. The increasing of the cluster memberships will affect the cluster com-
pactness improvement [12, 13, 18, 20–23].

Basic theories
The goal of this study is to improve the spectral classifier performance on signed Laplacian
matrix by considering the eigenvector’s values dispersion as the partitioning threshold. This
dispersion is measured by the median absolute deviation, which is also known as a posi-
tional characteristic of data distribution.

Median absolute deviation

Median absolute deviation (MAD) is used for dispersion measurement corresponds to the
absolute deviation from median [24–28]. This measure is robust against data outliers and
suitable for both nonparametric estimator location and scale [29–32]. The MAD value of
the sample dataset is obtained as follows.

Given x = (x1, x2, . . . , xn) is an univariate vector of ordered increasingly quantitative
dataset with size of n, and x̃ is the median of x. The MAD value of x is computed in Eq. 1 as
follows:

The median x̃ is calculated in Eq. 2 with odd and even cases in the number of data size
of n:

where xn is a data value of nth term, and satisfies the probabilities in Eq. 3, as follows:

(1)MAD = median | xi − x̃ |, for xi ∈ x.

(2)x̃ =





x� n+1
2

�, if n is odd

x
[n2]

+x
[n2+1]

2
, if n is even

,

Page 6 of 20Marjuni et al. J Big Data (2019) 6:87

It means that the median x̃ is the middle value of x, where a half of the values of x
are greater than x̃ and a half of the values of x are less than x̃ . If |xi − x̃| is a deviation
between the data point and the median that are: |x1 − x̃| , |x2 − x̃| , …, |xn − x̃| , then the
median of |xi − x̃| in Eq. 1 also satisfies the probabilities in Eq. 4, as follows:

The median value represents the measure of the central tendency of the dataset that
computes the rank of the data observations. Whilst the MAD value represents the meas-
ure of dataset dispersion through the location of item data to its medians. This charac-
teristic makes the MAD more resistant to outliers than the median value itself [33].

There are two steps for determining the MAD value. First, computing the median of
the dataset. Second, computing the median of the absolute distances between the
instance values from the median. For example, given a set of a quantitative dataset of
A = {42, 25, 75, 40, 20} , and B = {42, 25, 75, 40, 20, 200} . The ordered sets of A and B are
A = {20, 25, 40, 42, 75} , and B = {20, 25, 40, 42, 75, 200} . The size of set A is nA = 5 (odd),
while the size of set B is nB = 6 (even). The median of A is x̃A = x[5+1

2

] = x[3] , that is

x̃A = 40. Similarly, the median of B is x̃B =
x
[6
2
]
+x

[6
2
+1])

2
=

x[3]+x[4]
2

= 40+42
2

 , that is
x̃B = 41. The absolute distances between the instances and its median of A and B,
namely DA and DB , are DA = {20, 15, 0, 2, 35} and DB = {21, 16, 1, 1, 34, 159} , respec-
tively. The ordered of DA and DB are DA = {0, 2, 15, 20, 35} and DB = {1, 1, 16, 21, 34, 159} .
Hence, the MAD of A and B are MADA = 15 and MADB = 18.5, respectively.

Signed Laplacian based spectral clustering

In software defect prediction, the terminology of a graph can be used to represent a
software entities dataset. Software entities reflect the graph nodes, while the similarities
between software entities reflect the graph edges. The software entities and their simi-
larities are used to construct the adjacency matrix as graph representation. The adja-
cency matrix is then used to define the non-negative Laplacian graph matrix. In spectral
classifier, the Laplacian graph matrix is decomposed to obtain the eigenvalues and eigen-
vector that are used for clustering process [29, 34]. This study uses the signed Laplacian
graph matrix to apply the spectral classifier in unsupervised software defect prediction.

Given a software dataset D = {x}nij that contains n entities with m metrics. An adja-
cency matrix W of D is defined as a matrix of similarities between entities as follows:

(3)P(x ≤ x̃) ≥ 1/2 and P(x ≥ x̃) ≥ 1/2.

(4)P(|xi − x̃| ≤ x̃) ≥ 1/2 and P(|xi − x̃| ≥ x̃) ≥ 1/2.

(5)

W =



w11 w12 . . . w1n

w21 w22 . . . w2n

.

wn1 wn2 . . . wnn




= xi · xj

=

m�

k=1

aik .akj

,

Page 7 of 20Marjuni et al. J Big Data (2019) 6:87

where xi and xj are the metric vectors of software entities i and j, respectively; aik is the
kth metric value for the ith software entity; and m is the total number of metrics. The
element w11 ∈ W can be positive, negative, or zero [20, 33]. This adjacency matrix is then
used to construct the Laplacian matrix. In the signed graph, the Laplacian matrix must
fulfill the positive semi-definite requirement [35]. In this study, the adjacency matrix W
in Eq. 5 is transformed into its absolute to ensure the requirement, that is:

The signed Laplacian matrix is then defined as the following terms. For each entity i, let
di

−1/2 denotes the signed degree of entity ith for wij ∈ W  , which is defined as:

and let D−1/2 denotes the normalized diagonal matrix of signed degree di
−1/2 , which is

defined as:

and also let I denotes the unity matrix with size of n. The signed Laplacian matrix is then
defined as:

The signed Laplacian matrix Lsym is then decomposed to get its spectrum that are both
the eigenvalues and eigenvectors. A non-zero vector v of size n is an eigenvector of a
signed Laplacian matrix Lsym of size n if there is an eigenvalues � such that satisfies the
following linear equation:

In spectral clustering, the second smallest eigenvalue (e.g., �1 ) and the associated eigen-
vector (e.g., v1i ) are then selected to generate clusters [19, 35].

Methods
Proposed method

In this study, the MAD value of the eigenvector dispersion is proposed as the partition
threshold to generate the predicted defective and clean clusters. All software entities with
eigenvector’s value greater than the MAD value are grouped into the predicted defective
cluster. Otherwise, these entities are grouped into the predicted clean cluster. This cluster
membership is formulated as follows.

Suppose v1i is the eigenvector, which is associated to the second smallest eigenvalue �1
of the signed Laplacian matrix (i.e., obtained in Eq. 10), and MADi is the median abso-
lute deviation of eigenvector v1i (i.e., computed using Eq. 1). The cluster membership of
entity xi , namely ĉi , is then defined as:

(6)W = |W |.

(7)di
−1/2

=

n∑

j=1

|wij|

−1/2

,

(8)D
−1/2

= diag(d
−1/2

1 , d
−1/2

2 , . . . , d
−1/2

n),

(9)Lsym = I − D
−1/2

WD
−1/2

.

(10)Lsymv = �v.

(11)ĉi =

{
1, for v1i > MADi

0, otherwise
.

Page 8 of 20Marjuni et al. J Big Data (2019) 6:87

All entities with ĉi = 1 are placed as a member of the predicted defective cluster, namely
Cd . Conversely, all entities with ĉi = 0 are placed as a member of the predicted clean
cluster, namely Cc.

Finally, each member in all of the predicted clusters will be labeled as defective or clean.
The labeling method is adopted from the heuristic method using row sum criteria, which
is proposed by Zhang et al. [3]. If the row sum of an entity greater than the average row
sum of its cluster, the class of this entity will be labeled as defective, otherwise it will be
labeled as clean. This criterion is formulated as follows. Suppose Ci is a predicted cluster
of ith with i = 1, 2, . . . , k . In this study, the k value is 2 ( k = 2 ) because there are only two
predicted clusters that are defective and clean clusters. Suppose rxi =

∑m
j=1 xij is the row

sum of entity xi ∈ Ci with m attributes. Suppose rci =
1
n

∑n
i=1 rxi is the average row sum of

cluster ith . The label of entity xi , namely ci , is defined as:

All entities with ci = 1 will be labeled as defective. Conversely, all entities with ci = 0 will
be labeled as clean. The brief of this proposed method is summarized in Algorithm 1.

Algorithm 1 MAD threshold based spectral classifier.
Step 1. Normalize dataset using z-score transformation.

Step 2. Construct the adjacency matrix W .

Step 3. Transform the adjacency matrix into its absolute (i.e., W = |W |).

Step 4. Construct the signed Laplacian matrix Lsym.

Step 5. Decompose Lsym and select the second smallest eigenvalue with the associated eigenvectors.

Step 6. Compute the MAD threshold on the eigenvector.

Step 7. Perform clustering using MAD threshold.

Step 8. Labeling all entities in each cluster.

Baseline method

This study uses the zero threshold based spectral classifier [13] as the baseline method. All
issues addressed in this study come from the baseline method. Thus, the proposed method
in this study is generally designed to improve the performance of the baseline method. The
baseline method algorithm is similar to the proposed method algorithm, with a slight dif-
ference in the partitioning threshold. In the baseline method, the cluster membership of
entity xi , namely ĉi , is defined as:

All entities with ĉi = 1 are placed as a member of the predicted defective cluster, namely
Cd . Conversely, all entities with ĉi = 0 are placed as a member of the predicted clean
cluster, namely Cc . Algorithm 2 summarizes the algorithm of the baseline method.

(12)ci =

{
1, for rxi > rci
0, otherwise

.

(13)ĉi =

{
1, for v1i > 0

0, otherwise
.

Page 9 of 20Marjuni et al. J Big Data (2019) 6:87

Algorithm 2 Zero threshold based spectral classifier.
Step 1. Normalize dataset using z-score transformation.

Step 2. Construct the adjacency matrix W .

Step 3. Transform the adjacency matrix into its absolute (i.e., W = |W |).

Step 4. Construct the signed Laplacian matrix Lsym.

Step 5. Decompose Lsym and select the second smallest eigenvalue with the associated eigenvectors.

Step 6. Perform clustering using zero threshold.

Step 7. Labeling all entities in each cluster.

Experimental setup
This experimental setup is prepared to conduct the experiments on both the proposed
and baseline methods through Algorithm 1 and Algorithm 2, respectively. This experi-
mental setup includes the dataset preparation, experimental design, performance evalu-
ation, and validation method.

Dataset preparation

This experiment uses ten of the NASA Metrics Data Program (MDP) public dataset
repositories that have been commonly used to study the software defect prediction.
Table 1 summarizes those datasets. Each dataset consists of hundreds to thousands of
program module entities [36, 37] with different numbers in the defect proportions. The
original NASA MDP dataset repositories may need to be cleaned to remove the data
redundancy and inconsistency to get more feasible for analyzing purposes [3, 38]. All

Table 1  NASA MDP datasets

Dataset name Dataset description Programming
language

Number
of instance

Defect ratio (%)

CM1 Spacecraft instrument C 327 12.8

KC3 Storage management for ground data Java 194 18.6

MC1 Zero gravity experiment related to combus-
tion

C and C++ 1988 2.3

MC2 Video guidance system C 125 35.2

MW1 Zero gravity experiment related to combus-
tion

C 253 10.7

PC1 Flight software from an earth orbiting satel-
lite

C 705 8.7

PC2 Dynamic simulator for attitude control
systems

C 745 2.1

PC3 Flight software for earth orbiting satellite C 1077 12.4

PC4 Flight software for earth orbiting satellite C 1287 13.8

PC5 Flight software for earth orbiting satellite C++ 1711 27.5

Page 10 of 20Marjuni et al. J Big Data (2019) 6:87

public datasets in this study are online available, which are provided by Klainfo [39] and
Shepperd et al. [40].

Data preprocessing

As shown in Algorithm 1 and Algorithm 2, the preprocessing step using z-score trans-
formation is added in both algorithms. The transformation aims to standardize the met-
ric values so that all metrics have the same value scale on the model development. The
z-score transformation is formulated in Eq. 14.

where yi is the metric vector of i, ȳi is the mean of yi , si is the standard deviation of yi ,
and ýi is the normalized value of yi.

Experiment design

Both of the proposed and baseline methods in this study have two main processes that
are clustering and labeling, as shown in Algorithm 1 and Algorithm 2. Before carrying
out those main processes, the data preprocessing is performed to improve the dataset
quality for analysis purpose. In this preprocessing, the dataset is standardized by the
z-score transformation in Eq. 14 to improve the data normalization and features scaling.
The main experiments are then sequentially taken as follows.

•	 Clustering: The clustering process is partitioning process to generate the defect and
clean clusters. The clustering performance is evaluated using Davies Bouldin Index
(DBI) that is computed using Eq. 15. The DBI is a universal measure that is usually
used to validate any clustering performance as the internal validation.

•	 Labeling: The labeling process is classification process to obtain the predicted class of
all entities in each cluster using the row sum criterion in Eq. 12. The labeling perfor-
mance is evaluated using some measures, such as precision, recall, accuracy, AUC,
and error rates that are computed using Eqs. 17–21, respectively.

The study is conducted using Matlab software to evaluate both Algorithm 1 and Algo-
rithm 2 with the prepared datasets.

Performance evaluations

For clustering performance, the clustering algorithm is evaluated using an internal vali-
dation that is measured by the DBI, as follows:

where k is the number of all clusters, and DBij is calculated as follows:

(14)ýi =
yi − ȳi

si
,

(15)DBI =
1

k

k∑

i=1

max
j �=i

DBij ,

(16)DBij =
σµi + σµj

δ(µi,µj)
,

Page 11 of 20Marjuni et al. J Big Data (2019) 6:87

where µi is the cluster mean of Ci , µj is the mean of cluster Cj , δ(µi,µj) is the distance
between cluster mean of µi and µj , while σµi and σµj are the standard deviation of clus-
ter Ci and Cj , respectively. The smaller DBI indicates the better clustering, which means
the predicted clusters are well partitioned because of the distance between each cluster
means is large [20, 33, 36].

For labeling performance, the predicted labels are compared to the actual labels
using confusion matrix for labeling performance evaluation [41]. The confusion
matrix presents the number of predicted labels in columns and the number of actual
labels in rows [16, 33], as shown in Table 2, which is constructed by these following
elements:

•	 True negative (TN): The number of clean entities that the classifier predicts as clean.
•	 False positive (FP): The number of clean entities that classifier predicts as defective.
•	 False negative (FN): The number of defective entities that classifier predicts as clean.
•	 True positive (TP): The number of defective entities that the classifier predicts as

defective.

The prediction performance measurements [33, 41–43] are then computed using the
confusion matrix elements, as follows:

•	 Precision (PRE), which is measured by the fraction of true positive with all predicted
defective entities.

•	 Recall (REC), which is measured by the fraction of true positive with all actual defec-
tive entities. This metric is also called as true positive rate (TPR).

•	 Accuracy (ACC), which is measured by the fraction of all correct predicted entities
with all total entities.

•	 Area under curve (AUC), which is measured by the area under curve of ROC (the
receiver operating characteristics). The ROC itself is constructed by the curves of
true positive rate across false positive rate. The true positive rate (TPR) and false pos-
itive rate (FPR) are computed using Eqs. 18 and 20, respectively [20].

(17)PRE =
TP

TP+ FP

(18)REC =
TP

TP+ FN

(19)ACC =
TP+ TN

TP+ FP+ FN+ TN

Table 2  Confusion matrix

Actual Predicted

False (clean) True (defective)

False (clean) True negative (TN) False positive (FP)

True (defective) False negative (FN) True positive (TP)

Page 12 of 20Marjuni et al. J Big Data (2019) 6:87

•	 Error rates (ERR) or misclassified error, which is measured by the fraction all incor-
rect predicted entities with all total entities.

Validation method

Validation method is performed by comparing the proposed method performances to
the baseline method. The significance of performance differences between the proposed
and baseline methods are validated using the Wilcoxon signed-rank test [44, 45] at the
95% level of confidence. The Wilcoxon signed-rank is a nonparametric statistical test.
Thus it does not need any assumptions about the dataset distribution. The validation
test uses the null hypothesis H0 based on the median difference between pairs of data
samples. This hypothesis is then tested using the p value for a decision making whether
the null hypothesis is accepted or rejected [36, 46]. The p value is a probability associated
with the critical value that a Type I error (false positive) is allowed. These are the follow-
ing hypotheses for this study.

•	 H0(1) : There is no difference in cluster compactness between the proposed and base-
line methods.

•	 H0(2) : There is no difference in precision performance between the proposed and
baseline methods.

•	 H0(3) : There is no difference in recall performance between the proposed and base-
line methods.

•	 H0(4) : There is no difference in accuracy performance between the proposed and
baseline methods.

•	 H0(5) : There is no difference in error rates between the proposed and baseline meth-
ods.

•	 H0(6) : There is no difference in AUC performance between the proposed and base-
line methods.

All of the null hypotheses will be tested separately using the two-tailed Wilcoxon signed-
rank test at the 95% level of confidence (i.e., p <0.05). If the p value is less than 0.05, then
the null hypothesis is rejected, and the performances of both methods are significantly
different. Otherwise, the null hypothesis is accepted.

Results and discussion
This experiment is conducted to evaluate the performances of the proposed method and
comparing those performances to the baseline. The proposed and baseline methods are
summarized in Algorithm 1 and Algorithm 2, respectively. As explained in "Experimen-
tal setup" section, both the proposed and baseline methods are performed on the signed
Laplacian matrix, which is constructed by Eq. 6.

(20)FPR =
FP

FP+ TN

(21)ERR =
FP+ FN

TP+ FP+ FN+ TN
= 1− ACC

Page 13 of 20Marjuni et al. J Big Data (2019) 6:87

The data preprocessing, which follows step 1 in Algorithm 1 and Algorithm 2, is per-
formed to standardize the dataset on the same scale. The clustering process of both the
proposed and baseline algorithm follows step 2 to step 7 in Algorithm 1 and step 2 to
step 6 in Algorithm 2. Step 2 and step 3 are constructing the adjacency matrix and the
absolute of adjacency matrix using Eqs. 5 and 6, respectively. Step 4 is constructing the
signed Laplacian matrix in Eq. 9 from the absolute of adjacency matrix in step 3. The
signed Laplacian matrix is then decomposed to get the eigenvalues and eigenvectors
using Eq. 10 correspond to the step 5. Figure 1a shows the eigenvectors distribution for
all datasets. Almost all of the eigenvectors come with outliers in their distribution. If the
zero value threshold is used to generate clusters on those eigenvectors, it may produce
clusters with low compactness in cluster memberships.

In this study, the proposed method considers the eigenvector’s values dispersion meas-
ure using the MAD value to determine the new threshold. The MAD value is computed
using Eq. 1. Figure 1b illustrates the comparison example between the eigenvector dis-
persion and its MAD on CM1 dataset. It shows that the MAD value overcomes the out-
liers in the eigenvector dispersion. The MAD value represents the eigenvector values
position and does not reflect the changes of the eigenvector values. Table 3 presents the
dispersion measures of eigenvectors for all datasets, such as range, interquartile range,
standard deviation, and MAD.

The next step is the partitioning process to generate defective and clean clusters. The
second smallest eigenvalue of the Laplacian matrix is chosen to define the selected
eigenvector for the partitioning process. Besides, the partitioning process also needs
a partitioning threshold. The proposed method uses the median absolute deviation of
the selected eigenvector, while the baseline method used the zero value as the partition
thresholds. The MAD value of the selected eigenvector is computed using Eq. 1, corre-
sponds the step 6 in Algorithm 1. Both of these thresholds are then used to generate the
clusters, corresponds the step 7 in Algorithm 1 and step 6 in Algorithm 2, respectively.
The cluster memberships of both proposed and baseline methods follow Eqs. 11 and 13,
respectively.

In the proposed method, the defective cluster is constructed to group all entities
which its eigenvalue greater than the MAD threshold—otherwise, the clean cluster is

Table 3  Eigenvector dispersion measures

Dataset name Range value Interquartile range Standard
deviation

Median
absolute
deviation

CM1 0.247 0.085 0.054 0.028

KC3 0.278 0.119 0.070 0.054

MC1 0.313 0.020 0.022 0.013

MC2 0.369 0.127 0.088 0.060

MW1 0.311 0.091 0.062 0.035

PC1 0.197 0.063 0.037 0.030

PC2 0.252 0.052 0.036 0.027

PC3 0.255 0.071 0.041 0.035

PC4 0.142 0.090 0.027 0.018

PC5 0.104 0.042 0.024 0.021

Page 14 of 20Marjuni et al. J Big Data (2019) 6:87

constructed to group all entities which its eigenvector less or equals than the MAD
threshold. In the baseline method, the defective cluster is constructed to group all enti-
ties which its eigenvalue greater than zero—otherwise, the clean cluster is constructed
to group all entities which its eigenvector less or equals than zero. Table 4 shows the dis-
tribution of cluster memberships using both proposed and baseline methods.

The proposed method detects 26.90% of all entities as defective (i.e., in the defec-
tive cluster) and 73.10% of all entities as clean (i.e., in the defective cluster). Whereas,
the baseline method detects 45.12% of all entities as defective and 54.88% of all entities
as clean. Based on these results and compared to the number of defective in Table 1,
the proposed method can produce clusters with better cluster memberships than the

Table 4  Clusters membership and performance

Dc is the predicted defective cluster; Cc is the predicted clean cluster

The italicized values indicate the better performance

Dataset name Zero threshold based spectral clustering MAD threshold based spectral
clustering

Cluster memberships
(%)

Compactness
(DBI)

Cluster memberships
(%)

Compactness
(DBI)

Dc Cc Dc Cc

CM1 44.34 55.66 1.3 28.75 71.25 1.1

KC3 44.85 55.15 1.4 21.50 78.50 1.2

MC1 32.80 67.20 2.0 24.60 75.40 1.8

MC2 48.00 52.00 1.9 21.60 78.40 1.1

MW1 45.45 54.55 1.4 30.83 69.17 1.0

PC1 48.23 51.77 1.9 31.49 68.51 1.3

PC2 45.23 54.77 2.2 19.06 80.94 1.5

PC3 48.47 51.53 2.4 30.16 69.84 1.4

PC4 46.23 53.77 1.8 29.91 70.09 1.2

PC5 47.63 52.37 2.1 31.09 68.91 1.9

Average 45.12 54.88 1.8 26.90 73.10 1.4

Fig. 2  Predicted clusters result. a, b illustrate an example of the cluster memberships of CM1 dataset, which
are constructed using the zero threshold based spectral clustering and MAD threshold based spectral
clustering, respectively. Related to Table 4, the use of MAD as partitioning threshold can increase the number
of predicted cluster memberships

Page 15 of 20Marjuni et al. J Big Data (2019) 6:87

baseline. The proposed method groups the entities based on their eigenvector positions
that are measured by its distance to the median. Whereas, the zero threshold groups the
entities based on their eigenvector difference values with the zero. Figure 2 shows the
example of the cluster memberships on CM1 dataset that are produced by both the pro-
posed and baseline methods.

The clustering performances of both methods are evaluated using the cluster com-
pactness, which is measured by the DBI in Eq. 15. Table 4 shows the DBI values, where
the proposed method outperforms the baseline for all datasets. The cluster compact-
ness averages of both the proposed and baseline methods are 1.4 DBI and 1.8 DBI,
respectively. This achievement corresponds with the increase in the number of cluster
membership as referred on Table 4. The clustering performance difference between the
proposed and baseline methods is validated using the two-tailed Wilcoxon signed-rank
test at 95% level of confidence. The observed p value of this test is 0.001. Hence, the null
hypothesis H0(1) is rejected. This significance test concludes that the proposed method
can produce better cluster compactness than the baseline method.

Following Algorithm 1 and Algorithm 2, the last step is labeling all cluster members
as defective or clean classes. The label of each entity is obtained using the heuristic row
sum criterion in Eq. 12 by comparing the row sum of the entity with the average row
sum of its cluster. The classifier performances are then evaluated using precision, recall,
accuracy, AUC, and also error rates, which are computed using Eq. 17–21, respectively.
Table 5 shows all of these performances using both the proposed and baseline methods.

In precision performance, Table 5 shows that the proposed method can improve the
precision of the baseline. The precisions averages of both methods are 0.84 and 0.74,
respectively. While Fig. 3a illustrates the precision performance comparison between
the proposed and baseline methods for all datasets. The precision performance differ-
ence has been validated using the two-tailed Wilcoxon signed-rank test at the 95% level
of confidence. The observed p value is 0.005 and the null hypothesis H0(2) is rejected.
Hence, the precisions of both methods are significantly different. Table 5 also shows
that the proposed method outperforms the baseline in the CM1, MC1, MW1, PC1,

Table 5  Performance comparison between zero and MAD threshold based spectral
classifiers

The italicized values indicate the better performance

Dataset name Zero threshold based spectral classifier MAD threshold based spectral classifier

PRE REC ACC​ AUC​ ERR PRE REC ACC​ AUC​ ERR

CM1 0.72 0.92 0.71 0.68 0.29 0.81 0.71 0.76 0.76 0.24

KC3 0.78 0.88 0.75 0.75 0.25 0.72 0.61 0.71 0.80 0.29

MC1 0.76 0.94 0.78 0.67 0.22 0.98 0.94 0.94 0.74 0.06

MC2 0.74 0.71 0.68 0.75 0.32 0.60 0.57 0.67 0.82 0.33

MW1 0.69 0.95 0.69 0.70 0.31 0.84 0.58 0.71 0.74 0.29

PC1 0.73 0.94 0.75 0.78 0.25 0.83 0.64 0.80 0.77 0.20

PC2 0.72 0.89 0.77 0.76 0.23 0.97 0.63 0.84 0.74 0.16

PC3 0.72 0.92 0.79 0.77 0.21 0.85 0.86 0.80 0.77 0.20

PC4 0.79 0.90 0.72 0.67 0.28 0.87 0.80 0.73 0.77 0.27

PC5 0.78 0.81 0.78 0.74 0.22 0.88 0.87 0.94 0.74 0.06

Average 0.74 0.89 0.74 0.73 0.26 0.84 0.72 0.79 0.77 0.21

Page 16 of 20Marjuni et al. J Big Data (2019) 6:87

PC2, PC3, PC4, and PC5 datasets. However, the proposed method underperformed
in the KC3 and MC2 datasets. Related to the eigenvector’s values dispersion measure
in Table 3, the KC3 and MC2 datasets have higher dispersion measures than the other
datasets, especially in the interquartile range, standard deviation, and MAD values. Sta-
tistically, those eigenvector’s dispersion measures affect the entities distribution. For
example, the interquartile range represents the range of the middle half of the eigenvec-
tor’s values distribution. The higher interquartile range indicates that the eigenvector’s
values spread out from the central tendency point (e.g., median). Hence, the number of
both defective and clean entities in the middle-half of the eigenvector’s values distribu-
tion becomes increasing. Consequently, the precision of the proposed method becomes
decreasing in the KC3 and MC2 datasets and underperformed the baseline method.

In contrary to precision, the proposed method underperformed the baseline in the
recall performance. As shown in Table 5, the recall values of the proposed method are
smaller than the recall values of the baseline method. The recall averages of both meth-
ods are 0.72 and 0.89, respectively. Figure 3b illustrates the recall performance compari-
son between the proposed and baseline methods for all datasets. The recall performance
difference is proven significant by the two-tailed Wilcoxon signed-rank test at the 95%
level of confidence. The observed p value is 0.01 and the null hypothesis H0(3) is rejected.
Hence, the recall performance of the proposed method is significantly different from the
baseline method. Table 5 also shows that recall of the proposed method outperforms
the baseline only in the PC5 dataset. Related to the eigenvector’s values dispersion of
this dataset in Table 3, the PC5 dataset has the lowest range of eigenvector values than
the other datasets. It means that the difference value between the maximum and mini-
mum of the eigenvectors in the PC5 dataset is too small. Hence, almost entities spread

Fig. 3  Performance comparison. a–d illustrate the performance comparison between the zero threshold
based spectral classifier and MAD threshold based spectral classifier in precision, recall, accuracy, and error
rates

Page 17 of 20Marjuni et al. J Big Data (2019) 6:87

around the central tendency point, including both the defective and clean entities. Con-
sequently, the ratio of the correct predicted defective to all the actual defective entities
(i.e., recall) in the PC5 dataset becomes increasing.

Based on the precision and recall, there is a trade-off performance between the pro-
posed and baseline methods. The proposed method has high in precision but low in the
recall, while the baseline method has low in precision but high in the recall. This trade-
off indicates that the proposed method can predict more precisely the actual defective,
although in the small number. Whereas the baseline method can predict more defective
entities, but not all of the predicted defectives are actual defectives.

In terms of accuracy, Table 5 shows that the proposed method outperforms the base-
line in almost all of datasets, but underperformed in the KC3 and MC2 datasets. These
lower accuracies in those two datasets might be caused by the high dispersion measures
in the interquartile range, standard deviation, and MAD, as shown in Table 3. Overall,
the accuracy averages of both the proposed and baseline methods are 0.79 and 0.74,
respectively. Hence, the error rate of both the proposed and baseline methods are 0.21
and 0.26, respectively. It means that 79% of all entities are classified correctly using the
proposed method with the misclassified rates of 21%, while the baseline method can
classify 74% of all entities correctly with the misclassified rates of 26%. Those accura-
cies and error rates indicate that the proposed method can predict the defective enti-
ties more accurate than the baseline. The performance comparison of accuracy and
error rates between the proposed and baseline methods for all datasets are illustrated in
Fig. 3c, d, respectively. The accuracy performance and error rates differences are proven
significant by the Wilcoxon test at the 95% level of confidence. The observed p value of
accuracy performance test is 0.03, and the null hypothesis H0(4) is rejected. While the
error rates difference test gives observed p value of this test is 0.04, and the null hypoth-
esis H0(5) is rejected.

Fig. 4  AUC curve of CM1 dataset. a, b illustrate the AUC curves of CM1 dataset using the zero threshold
based spectral classifier and MAD threshold based spectral classifier, respectively. The AUC is the area under
the ROC that is constructed using the true positive rate (TPR) or recall across the false positive rate (FPR),
which are computed by Eqs. 18 and 20, respectively

Page 18 of 20Marjuni et al. J Big Data (2019) 6:87

In terms of AUC, Table 5 shows that the proposed method outperforms the baseline in
almost all of datasets. The AUC averages of both methods are 0.77 and 0.73, respectively.
It means that the abilities to distinguish the defective and clean classes of both methods
are 77% and 73%, respectively. The AUC performance difference is proven significant by
the two-tailed Wilcoxon signed-rank test at the 95% level of confidence. The observed
p value of this test is 0.01, and the null hypothesis H0(6) is rejected. Figure 4 illustrates
the example of the AUC curve for the CM1 dataset. The AUC itself is the area under the
ROC that is constructed using the true positive rate (TPR) across the false positive rate
(FPR), which are computed by Eqs. 18 and 20, respectively.

Conclusion
The median absolute deviation threshold has been presented in this paper to address
the zero threshold issues in the spectral classifier based unsupervised software defect
prediction. The median absolute deviation, as a dispersion measure, is proposed as the
partitioning threshold to reduce the predominantly cluster issue when the eigenvec-
tor values of spectral graph matrix are mostly positives. The median absolute deviation
threshold is also designed to address the eigenvector values outliers issue. Thus, the
objective of this study is generally to improve the performances of zero value threshold
based spectral classifier in unsupervised software defect prediction through the median
absolute deviation threshold based spectral classifier.

Experimental results show that the proposed method can improve both clustering and
classification. The proposed method produces better cluster memberships and increase
cluster compactness. Which means there is an improvement in the numbers of entities
that are separated correctly into the predicted clusters. This resulting clusters affect the
classification performance improvement. The accuracy and misclassified rates of the
median absolute deviation threshold based spectral classifier outperformed the zero
threshold value based spectral classifier. In the AUC performance, the median absolute
deviation threshold based spectral classifier also performs better in the ability to dis-
tinguish the defective and clean classes. In the precision and recall performances, the
median absolute deviation threshold based spectral classifier high in precision although
low in the recall. Based on those achievements, this study concludes that the median
absolute deviation threshold based spectral classifier not only able to overcome the
zero value threshold issues in the spectral classifier. But, it can also improve the zero
value threshold based spectral classifier performances. The median absolute deviation
threshold based spectral classifier method is an unsupervised approach with no need of
training dataset. Thus, there is a significant potential to generalize the proposed method
on the new software projects or an established software project with lacks in training
dataset.

This study only deals with the zero threshold issues in the spectral classifier based
unsupervised software defect prediction and does not perform any feature analyses,
such as feature selection, auto-correlation analysis, or multi-collinearity analysis. As well
known, feature analyses are essential to obtain the only relevant features in the classifier
model development. Hence, for future work, the feature analyses would be considered to
optimize the achievement of this study.

Page 19 of 20Marjuni et al. J Big Data (2019) 6:87

Abbreviations
MAD: median absolute deviation; MDP: metrics data program; DBI: Davies Bouldin index; DB: Davies Bouldin; TP: true
positive; TN: true negative; FP: false positive; FN: false negative; PRE: precision; REC: recall; TPR: true positive rates; FPR:
false positive rates; ACC​: accuracy; ERR: error rates; AUC​: area under curve; ROC: receiver operating characteristics.

Acknowledgements
Not applicable.

Authors’ contributions
All authors contributed both the concepts and contents of this study. AM provided the manuscript under supervised by
TBA and RF. All authors also performed discussion intensively for contents improvement. All authors read and approved
the final manuscript.

Funding
Not applicable.

Availability of datasets
The datasets used in this paper are publicly online available as described in "Dataset preparation" section.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Electrical and Information Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No.
2, Kampus UGM, Yogyakarta 55281, Indonesia. 2 Department of Informatics Engineering, Faculty of Computer Science,
Universitas Dian Nuswantoro, Jl. Imam Bonjol No. 207, Semarang 50131, Jawa Tengah, Indonesia.

Received: 18 July 2019 Accepted: 9 September 2019

References
	1.	 Punitha K, Chitra S. Software defect prediction using software metrics: a survey. In: Proceedings of the 2013 inter-

national conference on information communication and embedded systems (ICICES); 2013. p. 555–8. https​://doi.
org/10.1109/ICICE​S.2013.65083​69.

	2.	 Petersen K. Measuring and predicting software productivity: a systematic map and review. Inf Softw Technol.
2011;53(4):317–43. https​://doi.org/10.1016/j.infso​f.2010.12.001.

	3.	 Zhang F, Zheng Q, Zou Y, Hassan AE. Cross-project defect prediction using a connectivity-based unsupervised classi-
fier. In: Proceedings of the 38th international conference on software engineering ICSE; 2016. p. 309–20. https​://doi.
org/10.1145/28847​81.28848​39.

	4.	 Nam J, Fu W, Kim S, Menzies T, Tan L. Heterogeneous defect prediction. IEEE Trans Softw Eng. 2018;44(09):874–96.
https​://doi.org/10.1109/TSE.2017.27206​03.

	5.	 Singh P, Verma S, Vyas OP. Software fault prediction at design phase. J Electr Eng Technol. 2015;9(5):1739–45. https​://
doi.org/10.5370/JEET.2014.9.4.742.

	6.	 Ryu D, Baik J. Effective multi-objective Naive Bayes learning for cross-project defect prediction. Appl Soft Comput.
2016;49:1062–77. https​://doi.org/10.1016/j.asoc.2016.04.009.

	7.	 Cheng M, Wu G, Jiang M, Wan H, You G, Yuan M. Heterogeneous defect prediction via exploiting correlation sub-
space. In: Proceedings of the 28th international conference on software engineering and knowledge engineering
SEKE 2016; 2016. p. 171–6. https​://doi.org/10.18293​/seke2​016-090.

	8.	 Yeh Y, Huang C, Wang YF. Heterogeneous domain adaptation and classification by exploiting the correlation sub-
space. IEEE Trans Image Process. 2014;23(5):2009–18. https​://doi.org/10.1109/TIP.2014.23109​92.

	9.	 Fu W, Menzies T. Revisiting unsupervised learning for defect prediction. In: Proceedings of the 2017 11th joint meet-
ing on foundations of software engineering ESEC/FSE 2017; 2017. p. 72-83. https​://doi.org/10.1145/31062​37.31062​
57.

	10.	 Yang J, Qian H. Defect prediction on unlabeled datasets by using unsupervised clustering. In: Proceedings the 2016
IEEE 18th international conference on high performance computing and communications; IEEE 14th international
conference on Smart City; IEEE 2nd international conference on data science and systems (HPCC/SmartCity/DSS);
2016. p. 465–72. https​://doi.org/10.1109/HPCC-Smart​City-DSS.2016.0073.

	11.	 Wahono RS. A systematic literature review of software defect prediction: research trends, datasets, methods and
frameworks. J Softw Eng. 2015;1(1):1–16. https​://doi.org/10.1049/iet-sen.2011.0132.

	12.	 Azam NF, Viktor HL. Spectral clustering: an explorative study of proximity measures. In: Fred A, Dietz JLG, Liu K, Filipe
J, editors. Knowledge discovery, knowledge engineering and knowledge management. IC3K 2011. Communica-
tions in computer and information science, vol. 348. Berlin: Springer; 2013. https​://doi.org/10.1007/978-3-642-37186​
-8_4.

	13.	 Marjuni A, Adji TB, Ferdiana R. Unsupervised software defect prediction using signed Laplacian-based spectral classi-
fier. Soft Comput. 2019;2019:1–12. https​://doi.org/10.1007/s0050​0-019-03907​-6.

	14.	 Zhong S, Khoshgoftaar TM, Seliya N. Unsupervised learning for expert-based software quality estimation. In: Pro-
ceedings of the eighth IEEE international conference on high assurance systems engineering HASE 2004; 2004. p.
149–55. https​://doi.org/10.1109/HASE.2004.12817​39.

	15.	 Catal C, Sevim U, Diri B. Software fault prediction of unlabeled program modules. In: Proceedings of the world
congress on engineering WCE 2009; 2009. p. 1–6.

https://doi.org/10.1109/ICICES.2013.6508369
https://doi.org/10.1109/ICICES.2013.6508369
https://doi.org/10.1016/j.infsof.2010.12.001
https://doi.org/10.1145/2884781.2884839
https://doi.org/10.1145/2884781.2884839
https://doi.org/10.1109/TSE.2017.2720603
https://doi.org/10.5370/JEET.2014.9.4.742
https://doi.org/10.5370/JEET.2014.9.4.742
https://doi.org/10.1016/j.asoc.2016.04.009
https://doi.org/10.18293/seke2016-090
https://doi.org/10.1109/TIP.2014.2310992
https://doi.org/10.1145/3106237.3106257
https://doi.org/10.1145/3106237.3106257
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0073
https://doi.org/10.1049/iet-sen.2011.0132
https://doi.org/10.1007/978-3-642-37186-8_4
https://doi.org/10.1007/978-3-642-37186-8_4
https://doi.org/10.1007/s00500-019-03907-6
https://doi.org/10.1109/HASE.2004.1281739

Page 20 of 20Marjuni et al. J Big Data (2019) 6:87

	16.	 Bishnu PS, Bhattacherjee V. Software fault prediction using quad tree-based k-means clustering algorithm. IEEE
Trans Knowl Data Eng. 2012;24(6):1146–50. https​://doi.org/10.1109/TKDE.2011.163.

	17.	 Abaei G, Rezaei Z, Selamat A. Fault prediction by utilizing self-organizing map and threshold. In: Proceedings of the
international conference on control system, computing and engineering, ICCSCE 2013; 2013. p. 465–70. https​://doi.
org/10.1109/ICCSC​E.2013.67200​10.

	18.	 Nam J, Kim S. CLAMI: defect prediction on unlabeled datasets. In: Proceedings of the 30th IEEE/ACM international
conference on automated software engineering ASE 2015; 2015. p. 452–63. https​://doi.org/10.1109/ASE.2015.56.

	19.	 Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell. 2000;22(8):888–905.
https​://doi.org/10.1109/34.86868​8.

	20.	 Aggarwal C, Reddy CK. Data clustering: algorithms and applications. Boca Raton: CRC Press, Taylor and Francis
Group; 2014.

	21.	 Wang X, Davidson I. Active spectral clustering. In: Proceedings of the 10th IEEE international conference on data
mining; 2010. p. 561–8. https​://doi.org/10.1109/ICDM.2010.119.

	22.	 Wacquet G, Caillault EP, Hamad D, Hébert PA. Constrained spectral embedding for K-way data clustering. Pattern
Recogn Lett. 2013;4(9):1009–17. https​://doi.org/10.1016/j.patre​c.2013.02.003.

	23.	 Kunegis J, Schmidt S, Lommatzsch A, Lerner J, De Luca EW, Albayrak S. Spectral analysis of signed graphs for cluster-
ing, prediction and visualization. In: Proceedings of the SIAM international conference on data mining SDM 2010;
2010. p. 559–70. https​://doi.org/10.1137/1.97816​11972​801.49.

	24.	 Dodge Y. Mean absolute deviation. The concise encyclopedia of statistics. New York: Springer; 2008. p. 348.
	25.	 Mantaj A, Pater R, Wagner W. Aspects of linear and median correlation coefficients matrix. Folia Oecon.

2010;2010(235):307–27.
	26.	 Stephanie. Median absolute deviation. 2014. https​://www.stati​stics​howto​.datas​cienc​ecent​ral.com/media​n-absol​

ute-devia​tion/.
	27.	 Median absolute deviation. In: Encyclopedia of statistics in behavioral science. https​://doi.org/10.1002/04700​13192​

.bsa38​4.
	28.	 Rousseeuw PJ, Croux C. Alternatives to the median absolute deviation. J Am Stat Assoc. 1993;88(424):1273–83. https​

://doi.org/10.1080/01621​459.1993.10476​408.
	29.	 Pham-Gia T, Hung TL. The mean and median absolute deviations. Math Comput Model. 2001;34(7):921–36. https​://

doi.org/10.1016/S0895​-7177(01)00109​-1.
	30.	 Arce GR, Li Y. Median power and median correlation theory. IEEE Trans Signal Process. 2002;50(11):2768–76. https​://

doi.org/10.1109/TSP.2002.80409​2.
	31.	 Ahad NA, Abdullah S, Zakaria NA, Yahaya SSS, Yusof N. Median based robust correlation coefficient. In: AIP Confer-

ence Proceedings. 2017;1905(1):050002:1–050002:5. https​://doi.org/10.1063/1.50122​21.
	32.	 Hogel J, Schmid W, Gaus W. Robustness of the standard deviation and other measures of dispersion. Biom J.

1994;36(4):411–27. https​://doi.org/10.1002/bimj.47103​60403​.
	33.	 Zaki MJ, Wagner M. Data mining and analysis. New York: Cambridge Univerity Press; 2014.
	34.	 Malgorzata L, Slawomir TW. Clustering based on eigenvectors of the adjacency matrix. Int J App Math Comput Sci.

2018;28(4):771–86. https​://doi.org/10.2478/amcs-2018-0059.
	35.	 Knyazev AV. Signed Laplacian for spectral clustering revisited. ArXiv, abs/1701.01394. arxiv​:pdf/1701.01394​.pdf. 2017.
	36.	 Tomar D, Agarwal S. Prediction of defective software modules using class imbalance learning. Appl Comput Intell

Soft Comput. 2016;2016:1–12. https​://doi.org/10.1155/2016/76582​07.
	37.	 Gray D, Bowes D, Davey N, Sun Y, Christianson B. Reflections on the NASA MDP data sets. IET Softw. 2012;6(6):549–

58. https​://doi.org/10.1049/iet-sen.2011.0132.
	38.	 Shepperd M, Song Q, Sun Z, Mair C. Data quality: some comments on the NASA software defect datasets. IEEE Trans

Softw Eng. 2013;39(9):1208–15. https​://doi.org/10.1109/TSE.2013.11.
	39.	 Klainfo NASA MDP software defect dataset. 2016. https​://githu​b.com/klain​fo/NASAD​efect​Datas​et.
	40.	 Shepperd M, Song Q, Sun Z, Mair C. NASA MDP software defects datasets. 2018. https​://figsh​are.com/colle​ction​s/

NASA_MDP_Softw​are_Defec​ts_Data_Sets/40549​40.
	41.	 Hall T, Beecham S, Bowes D, Gray D, Counsell S. A systematic literature review on fault prediction performance in

software engineering. IEEE Trans Softw Eng. 2012;38(6):1276–304. https​://doi.org/10.1109/TSE.2011.103.
	42.	 Davies ER. Machine learning: probabilistic methods. In: Computer vsion. 5th ed. Cambridge: Academic Press; 2018.

p. 399–451.
	43.	 MLWiki Evaluation of binary classifiers. 2015. http://mlwik​i.org/index​.php/Evalu​ation​_of_Binar​y_Class​ifier​s.
	44.	 Rey D, Neuhauser M. Wilcoxon signed-rank test. In: Lovric M, editor. International encyclopedia of statistical science.

Heidelberg: Springer; 2011.
	45.	 Ren J, Qin K, Ma Y, Luo G. On software defect prediction using machine learning. J Appl Math. 2014;2014:1–9. https​

://doi.org/10.1155/2014/78543​5.
	46.	 Ryu D, Choi O, Baik J. Value-cognitive boosting with a support vector machine for cross-project defect prediction.

Empir Softw Eng. 2016;21(1):43–71. https​://doi.org/10.1007/s1066​4-014-9346-4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TKDE.2011.163
https://doi.org/10.1109/ICCSCE.2013.6720010
https://doi.org/10.1109/ICCSCE.2013.6720010
https://doi.org/10.1109/ASE.2015.56
https://doi.org/10.1109/34.868688
https://doi.org/10.1109/ICDM.2010.119
https://doi.org/10.1016/j.patrec.2013.02.003
https://doi.org/10.1137/1.9781611972801.49
https://www.statisticshowto.datasciencecentral.com/median-absolute-deviation/
https://www.statisticshowto.datasciencecentral.com/median-absolute-deviation/
https://doi.org/10.1002/0470013192.bsa384
https://doi.org/10.1002/0470013192.bsa384
https://doi.org/10.1080/01621459.1993.10476408
https://doi.org/10.1080/01621459.1993.10476408
https://doi.org/10.1016/S0895-7177(01)00109-1
https://doi.org/10.1016/S0895-7177(01)00109-1
https://doi.org/10.1109/TSP.2002.804092
https://doi.org/10.1109/TSP.2002.804092
https://doi.org/10.1063/1.5012221
https://doi.org/10.1002/bimj.4710360403
https://doi.org/10.2478/amcs-2018-0059
http://arxiv.org/pdf/1701.01394.pdf
https://doi.org/10.1155/2016/7658207
https://doi.org/10.1049/iet-sen.2011.0132
https://doi.org/10.1109/TSE.2013.11
https://github.com/klainfo/NASADefectDataset
https://figshare.com/collections/NASA_MDP_Software_Defects_Data_Sets/4054940
https://figshare.com/collections/NASA_MDP_Software_Defects_Data_Sets/4054940
https://doi.org/10.1109/TSE.2011.103
http://mlwiki.org/index.php/Evaluation_of_Binary_Classifiers
https://doi.org/10.1155/2014/785435
https://doi.org/10.1155/2014/785435
https://doi.org/10.1007/s10664-014-9346-4

	Unsupervised software defect prediction using median absolute deviation threshold based spectral classifier on signed Laplacian matrix
	Abstract
	Area of interest:
	Background and objective:
	Methods:
	Results and conclusion:

	Introduction
	Related works
	Basic theories
	Median absolute deviation
	Signed Laplacian based spectral clustering

	Methods
	Proposed method
	Baseline method

	Experimental setup
	Dataset preparation
	Data preprocessing
	Experiment design
	Performance evaluations
	Validation method

	Results and discussion
	Conclusion
	Acknowledgements
	References

