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Abstract 

Area of interest:  The trend of current software inevitably leads to the big data era. 
There are much of large software developed from hundreds to thousands of modules. 
In software development projects, finding the defect proneness manually on each 
module in large software dataset is probably inefficient in resources. In this task, the 
use of a software defect prediction model becomes a popular solution with much 
more cost-effective rather than manual reviews. This study presents a specific machine 
learning algorithm, which is the spectral classifier, to develop a software defect predic-
tion model using unsupervised learning approach.

Background and objective:  The spectral classifier has been successfully used in 
software defect prediction because of its reliability to consider the similarities between 
software entities. However, there are conditional issues when it uses the zero value as 
partitioning threshold. The classifier will produce the predominantly cluster when the 
eigenvector values are mostly positives. Besides, it will also generate low clusters com-
pactness when the eigenvector contains outliers. The objective of this study is mainly 
to propose an alternative partitioning threshold in dealing with the zero threshold 
issues. Generally, the proposed method is expected to improve the spectral classifier 
based software defect prediction performances.

Methods:  This study proposes the median absolute deviation threshold based spec-
tral classifier to carry out the zero value threshold issues. The proposed method consid-
ers the eigenvector values dispersion measure as the new partitioning threshold, rather 
than using a central tendency measure (e.g., zero, mean, median). The baseline method 
of this study is the zero value threshold based spectral classifier. Both methods are 
performed on the signed Laplacian matrix to meet the non-negative Laplacian graph 
assumption. For classification, the heuristic row sum method is used to assign the 
entity class as the prediction label.

Results and conclusion:  In terms of clustering, the proposed method can produce 
better cluster memberships that affect the cluster compactness and the classifier 
performances improvement. The cluster compactness average of both the proposed 
and baseline methods are 1.4 DBI and 1.8 DBI, respectively. In classification perfor-
mance, the proposed method performs better accuracy with lower error rates than 
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the baseline method. The proposed method also has high precision but low in the 
recall, which means that the proposed method can detect the software defect more 
precisely, although in the small number in detection. The proposed method has the 
accuracy, precision, recall, and error rates with average values of 0.79, 0.84, 0.72, and 
0.21, respectively. While the baseline method has the accuracy, precision, recall, and 
error rates with average values of 0.74, 0.74, 0.89, and 0.26, respectively. Based on those 
results, the proposed method able to provide a viable solution to address the zero 
threshold issues in the spectral classifier. Hence, this study concludes that the use of 
the median absolute deviation threshold can improve the spectral based unsupervised 
software defect prediction method.

Keywords:  Unsupervised software defect prediction, Spectral classifier, Signed 
Laplacian matrix, Zero thresholding, Median absolute deviation thresholding

Introduction
Software defect prediction model generally needs a prior software project repository 
dataset to train the model [1, 2]. Based on the dataset availability, there are two most 
common model development approaches. The first one is a supervised approach, 
where the software defect prediction model is developed from the training dataset 
and evaluated using the testing dataset. The second one is an unsupervised approach, 
where the software defect prediction model is developed using the current testing 
dataset without training dataset.

In the supervised approach, there are two types of defect prediction models, namely 
within project defect prediction and cross project defect prediction [3]. The within 
project defect prediction model uses a training dataset from the same prior soft-
ware projects to develop a model. The homogeneity between the training and testing 
datasets in this model could produce the best performance compared to the other 
approaches. However, there is a difficulty to implement this model on a new software 
project. Because, a new software project does not have a prior training datasets [3, 4]. 
The cross project defect prediction model is then used to deal with this issue, where 
training dataset is taken from the other different software projects to develop a model 
[4–6]. However, taking similar training datasets from the other software projects is 
not an easy way because of the heterogeneity between the source and the target pro-
jects [3, 7, 8]. If there are no lacks in the training dataset availability, the supervised 
approach is the main alternative in the software prediction model development. Oth-
erwise, the unsupervised approach offers an alternative solution to address the train-
ing dataset availability issue [9, 10].

In the unsupervised approach, the predicted model can be developed directly using 
the current software dataset with no need training datasets [11]. This dataset contains 
a set of unlabeled software entities. The unsupervised approach relies on the cluster-
ing techniques to group the unlabeled dataset into the non-overlapped clusters, which 
are defective and non-defective [12]. All entities in each cluster are then labeled using 
a classifier [3, 13]. The use of the unsupervised software defect prediction has been 
studied using many methods. Zhong et al. [14] compared the k-means algorithm with 
the natural-gas algorithms to evaluate the clustering performance. Based on the mean 
square error values, the natural gas algorithm outperformed the k-means algorithm. 
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However, this method requires a software expert to decide whether the software 
belongs to either defective or clean class.

Catal et al. [15] applied x-means clustering algorithm to obtain defective and non-
defective clusters using selected software metrics as the partitioning threshold. Those 
metrics are lines of code, cyclomatic complexity, operator, and operand. The software 
entity is predicted as defective if the metric values are higher than the threshold, 
and conversely. Bishnu et  al. [16] proposed the quadtree based k-means algorithm 
and compare it to some clustering algorithms. The error rates of their proposed 
algorithm are reasonably comparable to the k-means, Naive Bayes, and Linear Dis-
criminant Analysis. Abaei et al. [17] proposed the self-organizing map algorithm for 
software defect clustering. In the classes labeling, they used a similar threshold met-
rics that have been used in the x-means clustering algorithm, which is proposed by 
Catal et al. [15]. Their experimental results show that their algorithm outperformed 
both the Catal et al. [15] and Bishnu et al. [16] algorithms. Nam et al. [18] proposed 
the median-based partitioning threshold for clustering. All entities with higher val-
ues than the median are placed in one cluster, otherwise those entities are placed in 
the other cluster. The top half of the cluster members are then classified as defective, 
while the bottom half of the cluster members are classified as non-defective. Their 
proposed method has better performances compared to the Bayesian network, J48 
decision tree, logistic model tree, logistic regression, Naive Bayes, random forest, and 
support vector machine algorithms.

Zhang et al. [3] applied the spectral graph to develop unsupervised based spectral 
classifier algorithm. The set of software entities and its connectivities represent the 
nodes and edges of the spectral graph, respectively. They used zero value threshold 
to obtain the predicted defective and clean clusters. For labeling all cluster members, 
they used the heuristic row sums criterion. Their experimental results show that the 
spectral classifier outperformed the random forest, logistic regression, Naive Bayes, 
and logistic model tree algorithms. Their proposed method is improved by Marjuni 
et al. [13] to ensure the use of spectral classifier requirements, especially in the non-
negative Laplacian graph matrix. They applied the absolute of adjacency matrix to 
construct the signed Laplacian graph matrix. Their experiment shows that the use of 
signed Laplacian on spectral classifier can improve both the cluster compactness and 
classification.

Based on the preliminary experiment in this study, there are two conditional issues in 
the use of zero value threshold for spectral clustering. In case the eigenvector’s values 
are mostly positives, then all of the entities will be placed predominantly into one cluster. 
The other case is if the eigenvector’s values have balanced positives and negatives, then 
about half of all the entities will be predicted in the defective cluster. This kind of result 
might never occur in software project development. Second, the eigenvector’s values 
sometimes come with outliers, as shown in Fig. 1. In the clustering process, this outli-
ers issue may reduce the cluster compactness because of the wide distance between the 
eigenvector to the threshold. This study is motivated to address those issues by consider-
ing the characteristic of eigenvector values dispersion for partitioning. In this study, the 
median absolute deviation is chosen as the partitioning threshold to represent the eigen-
vector values dispersion. That means that the partitioning process will use the dispersion 
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measure belonging to the eigenvector position rather than using the central tendency 
measure (e.g., zero, mean, or median). Thus, the objective of this study is specifically to 
address the partitioning issues in spectral clustering such that could improve the spec-
tral classifier based on the zero value threshold.

This paper is presented in several sections, as follows. "Introduction" section describes 
the background, issues, and motivation of this study. "Related works"  section presents 
the current studies related to the use of spectral clustering and classifier in unsupervised 
based software defect prediction. "Basic theories"  section presents a brief of median 
absolute deviation and signed Laplacian based spectral clustering as the basic theories 
of this study. "Methods"  section presents the median absolute based spectral classifier as 
the proposed method and also the zero threshold based spectral classifier as the baseline 
of this study. "Experimental setup"  section presents the dataset preparation, experimen-
tal design, performance evaluation, and validation method. The experimental results and 
discussion of this study are presented in "Results and discussion" section. Finally, "Con-
clusion" section  summarizes the conclusions and future work of this study.

Related works
The unsupervised approach is usually used to avoid the limitation in the availability of the 
training datasets. A prediction model in this approach is commonly built using clustering 
methods. In this study, spectral clustering is chosen as the main study because it has the 
advantage to consider the similarities between entities. As a graph based clustering, spec-
tral clustering also has better performance than distance based clustering methods [3, 4].

Zhang et al. [3] initially proposed the spectral classifier in unsupervised software defect 
prediction to address the heterogeneity issue of the dataset in cross project software defect 
prediction. The negative similarities of the adjacency matrix are transformed into zeros to 
ensure the non-negative Laplacian matrix assumption. The Laplacian matrix is then decom-
posed to obtain the eigenvalues and eigenvectors. The second smallest eigenvalue and its 
eigenvector are then selected to construct the clusters by comparing the eigenvector value 
with the zero value threshold [19]. All entities with the eigenvector value greater than zero 
are grouped in the predicted defective cluster. Otherwise, these entities are grouped in the 

Fig. 1  Eigenvectors distribution. The eigenvectors distributions in a are obtained from signed Laplacian 
matrix decomposition of all datasets using Eq. 10. These eigenvectors distributions show that almost 
eigenvectors come with outliers. b shows the example of eigenvector distribution with MAD of CM1 dataset
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predicted non-defective cluster. The heuristic row sum criterion is then used to predict the 
label class of all the cluster members. The software entity is predicted as defective if its row 
sum greater than the row sum average of its cluster. Overall, their algorithm outperformed 
the k-means, partition around medoids, fuzzy C-means, and natural-gas algorithms.

However, there is a slight issue in the adjacency matrix construction. The adjacency matrix 
is a matrix that is used to represent the similarities between the pair of entities. This adja-
cency matrix can contain positive, zero, or negative values. If the adjacency matrix contains 
negative values, then this matrix might not be able to produce the non-negative Laplacian 
matrix, and the Laplacian matrix in spectral classifier becomes undefined. To address this 
issue, Marjuni et al. [13] proposed the signed Laplacian based spectral classifier. They per-
formed an absolute transformation on the adjacency matrix to fulfill the non-negative Lapla-
cian matrix assumption. Similar to the spectral classifier proposed by Zhang et al. [3], they 
also used the zero value thresholding for clustering and the heuristic row sum criterion for 
labeling. Their experimental results show that the use of signed Laplacian matrix can pro-
duce more cluster memberships, and affects to the classifier performances improvement.

There are some advantages of the use of signed Laplacian matrix in spectral cluster-
ing. First, the signed Laplacian matrix is positive semidefinite and fulfills the non-negative 
assumption of the Laplacian matrix. Second, the cluster memberships become increase 
because there are additional numbers of similarities obtained from negative similarities in 
the adjacency matrix. The increasing of the cluster memberships will affect the cluster com-
pactness improvement [12, 13, 18, 20–23].

Basic theories
The goal of this study is to improve the spectral classifier performance on signed Laplacian 
matrix by considering the eigenvector’s values dispersion as the partitioning threshold. This 
dispersion is measured by the median absolute deviation, which is also known as a posi-
tional characteristic of data distribution.

Median absolute deviation

Median absolute deviation (MAD) is used for dispersion measurement corresponds to the 
absolute deviation from median [24–28]. This measure is robust against data outliers and 
suitable for both nonparametric estimator location and scale [29–32]. The MAD value of 
the sample dataset is obtained as follows.

Given x = (x1, x2, . . . , xn) is an univariate vector of ordered increasingly quantitative 
dataset with size of n, and x̃ is the median of x. The MAD value of x is computed in Eq. 1 as 
follows:

The median x̃ is calculated in Eq. 2 with odd and even cases in the number of data size 
of n:

where xn is a data value of nth term, and satisfies the probabilities in Eq. 3, as follows:

(1)MAD = median | xi − x̃ |, for xi ∈ x.

(2)x̃ =





x� n+1
2

�, if n is odd

x
[ n2 ]

+x
[ n2+1]

2
, if n is even

,
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It means that the median x̃ is the middle value of x, where a half of the values of x 
are greater than x̃ and a half of the values of x are less than x̃ . If |xi − x̃| is a deviation 
between the data point and the median that are: |x1 − x̃| , |x2 − x̃| , …, |xn − x̃| , then the 
median of |xi − x̃| in Eq. 1 also satisfies the probabilities in Eq. 4, as follows:

The median value represents the measure of the central tendency of the dataset that 
computes the rank of the data observations. Whilst the MAD value represents the meas-
ure of dataset dispersion through the location of item data to its medians. This charac-
teristic makes the MAD more resistant to outliers than the median value itself [33].

There are two steps for determining the MAD value. First, computing the median of 
the dataset. Second, computing the median of the absolute distances between the 
instance values from the median. For example, given a set of a quantitative dataset of 
A = {42, 25, 75, 40, 20} , and B = {42, 25, 75, 40, 20, 200} . The ordered sets of A and B are 
A = {20, 25, 40, 42, 75} , and B = {20, 25, 40, 42, 75, 200} . The size of set A is nA = 5 (odd), 
while the size of set B is nB = 6 (even). The median of A is x̃A = x[ 5+1

2

] = x[3] , that is 

x̃A = 40. Similarly, the median of B is x̃B =
x
[ 6
2
]
+x

[ 6
2
+1])

2
=

x[3]+x[4]
2

= 40+42
2

 , that is 
x̃B = 41. The absolute distances between the instances and its median of A and B, 
namely DA and DB , are DA = {20, 15, 0, 2, 35} and DB = {21, 16, 1, 1, 34, 159} , respec-
tively. The ordered of DA and DB are DA = {0, 2, 15, 20, 35} and DB = {1, 1, 16, 21, 34, 159} . 
Hence, the MAD of A and B are MADA = 15 and MADB = 18.5, respectively.

Signed Laplacian based spectral clustering

In software defect prediction, the terminology of a graph can be used to represent a 
software entities dataset. Software entities reflect the graph nodes, while the similarities 
between software entities reflect the graph edges. The software entities and their simi-
larities are used to construct the adjacency matrix as graph representation. The adja-
cency matrix is then used to define the non-negative Laplacian graph matrix. In spectral 
classifier, the Laplacian graph matrix is decomposed to obtain the eigenvalues and eigen-
vector that are used for clustering process [29, 34]. This study uses the signed Laplacian 
graph matrix to apply the spectral classifier in unsupervised software defect prediction.

Given a software dataset D = {x}nij that contains n entities with m metrics. An adja-
cency matrix W of D is defined as a matrix of similarities between entities as follows:

(3)P(x ≤ x̃) ≥ 1/2 and P(x ≥ x̃) ≥ 1/2.

(4)P(|xi − x̃| ≤ x̃) ≥ 1/2 and P(|xi − x̃| ≥ x̃) ≥ 1/2.

(5)

W =



w11 w12 . . . w1n

w21 w22 . . . w2n

. . . . . . . . . . . .

wn1 wn2 . . . wnn




= xi · xj

=

m�

k=1

aik .akj

,
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where xi and xj are the metric vectors of software entities i and j, respectively; aik is the 
kth metric value for the ith software entity; and m is the total number of metrics. The 
element w11 ∈ W  can be positive, negative, or zero [20, 33]. This adjacency matrix is then 
used to construct the Laplacian matrix. In the signed graph, the Laplacian matrix must 
fulfill the positive semi-definite requirement [35]. In this study, the adjacency matrix W 
in Eq. 5 is transformed into its absolute to ensure the requirement, that is:

The signed Laplacian matrix is then defined as the following terms. For each entity i, let 
di

−1/2 denotes the signed degree of entity ith for wij ∈ W  , which is defined as:

and let D−1/2 denotes the normalized diagonal matrix of signed degree di
−1/2 , which is 

defined as:

and also let I denotes the unity matrix with size of n. The signed Laplacian matrix is then 
defined as:

The signed Laplacian matrix Lsym is then decomposed to get its spectrum that are both 
the eigenvalues and eigenvectors. A non-zero vector v of size n is an eigenvector of a 
signed Laplacian matrix Lsym of size n if there is an eigenvalues � such that satisfies the 
following linear equation:

In spectral clustering, the second smallest eigenvalue (e.g., �1 ) and the associated eigen-
vector (e.g., v1i ) are then selected to generate clusters [19, 35].

Methods
Proposed method

In this study, the MAD value of the eigenvector dispersion is proposed as the partition 
threshold to generate the predicted defective and clean clusters. All software entities with 
eigenvector’s value greater than the MAD value are grouped into the predicted defective 
cluster. Otherwise, these entities are grouped into the predicted clean cluster. This cluster 
membership is formulated as follows.

Suppose v1i is the eigenvector, which is associated to the second smallest eigenvalue �1 
of the signed Laplacian matrix (i.e., obtained in Eq. 10), and MADi is the median abso-
lute deviation of eigenvector v1i (i.e., computed using Eq. 1). The cluster membership of 
entity xi , namely ĉi , is then defined as:

(6)W = |W |.

(7)di
−1/2

=

n∑

j=1

|wij|

−1/2

,

(8)D
−1/2

= diag(d
−1/2

1 , d
−1/2

2 , . . . , d
−1/2

n ),

(9)Lsym = I − D
−1/2

WD
−1/2

.

(10)Lsymv = �v.

(11)ĉi =

{
1, for v1i > MADi

0, otherwise
.
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All entities with ĉi = 1 are placed as a member of the predicted defective cluster, namely 
Cd . Conversely, all entities with ĉi = 0 are placed as a member of the predicted clean 
cluster, namely Cc.

Finally, each member in all of the predicted clusters will be labeled as defective or clean. 
The labeling method is adopted from the heuristic method using row sum criteria, which 
is proposed by Zhang et al. [3]. If the row sum of an entity greater than the average row 
sum of its cluster, the class of this entity will be labeled as defective, otherwise it will be 
labeled as clean. This criterion is formulated as follows. Suppose Ci is a predicted cluster 
of ith with i = 1, 2, . . . , k . In this study, the k value is 2 ( k = 2 ) because there are only two 
predicted clusters that are defective and clean clusters. Suppose rxi =

∑m
j=1 xij is the row 

sum of entity xi ∈ Ci with m attributes. Suppose rci =
1
n

∑n
i=1 rxi is the average row sum of 

cluster ith . The label of entity xi , namely ci , is defined as:

All entities with ci = 1 will be labeled as defective. Conversely, all entities with ci = 0 will 
be labeled as clean. The brief of this proposed method is summarized in Algorithm 1. 

Algorithm 1 MAD threshold based spectral classifier.
Step 1. Normalize dataset using z-score transformation.

Step 2. Construct the adjacency matrix W .

Step 3. Transform the adjacency matrix into its absolute (i.e., W = |W |).

Step 4. Construct the signed Laplacian matrix Lsym.

Step 5. Decompose Lsym and select the second smallest eigenvalue with the associated eigenvectors.

Step 6. Compute the MAD threshold on the eigenvector.

Step 7. Perform clustering using MAD threshold.

Step 8. Labeling all entities in each cluster.

Baseline method

This study uses the zero threshold based spectral classifier [13] as the baseline method. All 
issues addressed in this study come from the baseline method. Thus, the proposed method 
in this study is generally designed to improve the performance of the baseline method. The 
baseline method algorithm is similar to the proposed method algorithm, with a slight dif-
ference in the partitioning threshold. In the baseline method, the cluster membership of 
entity xi , namely ĉi , is defined as:

All entities with ĉi = 1 are placed as a member of the predicted defective cluster, namely 
Cd . Conversely, all entities with ĉi = 0 are placed as a member of the predicted clean 
cluster, namely Cc . Algorithm 2 summarizes the algorithm of the baseline method.

(12)ci =

{
1, for rxi > rci
0, otherwise

.

(13)ĉi =

{
1, for v1i > 0

0, otherwise
.
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Algorithm 2 Zero threshold based spectral classifier.
Step 1. Normalize dataset using z-score transformation.

Step 2. Construct the adjacency matrix W .

Step 3. Transform the adjacency matrix into its absolute (i.e., W = |W |).

Step 4. Construct the signed Laplacian matrix Lsym.

Step 5. Decompose Lsym and select the second smallest eigenvalue with the associated eigenvectors.

Step 6. Perform clustering using zero threshold.

Step 7. Labeling all entities in each cluster.

Experimental setup
This experimental setup is prepared to conduct the experiments on both the proposed 
and baseline methods through Algorithm 1 and Algorithm 2, respectively. This experi-
mental setup includes the dataset preparation, experimental design, performance evalu-
ation, and validation method.

Dataset preparation

This experiment uses ten of the NASA Metrics Data Program (MDP) public dataset 
repositories that have been commonly used to study the software defect prediction. 
Table 1 summarizes those datasets. Each dataset consists of hundreds to thousands of 
program module entities [36, 37] with different numbers in the defect proportions. The 
original NASA MDP dataset repositories may need to be cleaned to remove the data 
redundancy and inconsistency to get more feasible for analyzing purposes [3, 38]. All 

Table 1  NASA MDP datasets

Dataset name Dataset description Programming 
language

Number 
of instance

Defect ratio (%)

CM1 Spacecraft instrument C 327 12.8

KC3 Storage management for ground data Java 194 18.6

MC1 Zero gravity experiment related to combus-
tion

C and C++ 1988 2.3

MC2 Video guidance system C 125 35.2

MW1 Zero gravity experiment related to combus-
tion

C 253 10.7

PC1 Flight software from an earth orbiting satel-
lite

C 705 8.7

PC2 Dynamic simulator for attitude control 
systems

C 745 2.1

PC3 Flight software for earth orbiting satellite C 1077 12.4

PC4 Flight software for earth orbiting satellite C 1287 13.8

PC5 Flight software for earth orbiting satellite C++ 1711 27.5
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public datasets in this study are online available, which are provided by Klainfo [39] and 
Shepperd et al. [40].

Data preprocessing

As shown in Algorithm 1 and Algorithm 2, the preprocessing step using z-score trans-
formation is added in both algorithms. The transformation aims to standardize the met-
ric values so that all metrics have the same value scale on the model development. The 
z-score transformation is formulated in Eq. 14.

where yi is the metric vector of i, ȳi is the mean of yi , si is the standard deviation of yi , 
and ýi is the normalized value of yi.

Experiment design

Both of the proposed and baseline methods in this study have two main processes that 
are clustering and labeling, as shown in Algorithm 1 and Algorithm 2. Before carrying 
out those main processes, the data preprocessing is performed to improve the dataset 
quality for analysis purpose. In this preprocessing, the dataset is standardized by the 
z-score transformation in Eq. 14 to improve the data normalization and features scaling. 
The main experiments are then sequentially taken as follows.

•	 Clustering: The clustering process is partitioning process to generate the defect and 
clean clusters. The clustering performance is evaluated using Davies Bouldin Index 
(DBI) that is computed using Eq. 15. The DBI is a universal measure that is usually 
used to validate any clustering performance as the internal validation.

•	 Labeling: The labeling process is classification process to obtain the predicted class of 
all entities in each cluster using the row sum criterion in Eq. 12. The labeling perfor-
mance is evaluated using some measures, such as precision, recall, accuracy, AUC, 
and error rates that are computed using Eqs. 17–21, respectively.

The study is conducted using Matlab software to evaluate both Algorithm 1 and Algo-
rithm 2 with the prepared datasets.

Performance evaluations

For clustering performance, the clustering algorithm is evaluated using an internal vali-
dation that is measured by the DBI, as follows:

where k is the number of all clusters, and DBij is calculated as follows:

(14)ýi =
yi − ȳi

si
,

(15)DBI =
1

k

k∑

i=1

max
j �=i

DBij ,

(16)DBij =
σµi + σµj

δ(µi,µj)
,
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where µi is the cluster mean of Ci , µj is the mean of cluster Cj , δ(µi,µj) is the distance 
between cluster mean of µi and µj , while σµi and σµj are the standard deviation of clus-
ter Ci and Cj , respectively. The smaller DBI indicates the better clustering, which means 
the predicted clusters are well partitioned because of the distance between each cluster 
means is large [20, 33, 36].

For labeling performance, the predicted labels are compared to the actual labels 
using confusion matrix for labeling performance evaluation [41]. The confusion 
matrix presents the number of predicted labels in columns and the number of actual 
labels in rows [16, 33], as shown in Table 2, which is constructed by these following 
elements:

•	 True negative (TN): The number of clean entities that the classifier predicts as clean.
•	 False positive (FP): The number of clean entities that classifier predicts as defective.
•	 False negative (FN): The number of defective entities that classifier predicts as clean.
•	 True positive (TP): The number of defective entities that the classifier predicts as 

defective.

The prediction performance measurements [33, 41–43] are then computed using the 
confusion matrix elements, as follows:

•	 Precision (PRE), which is measured by the fraction of true positive with all predicted 
defective entities. 

•	 Recall (REC), which is measured by the fraction of true positive with all actual defec-
tive entities. This metric is also called as true positive rate (TPR). 

•	 Accuracy (ACC), which is measured by the fraction of all correct predicted entities 
with all total entities. 

•	 Area under curve (AUC), which is measured by the area under curve of ROC (the 
receiver operating characteristics). The ROC itself is constructed by the curves of 
true positive rate across false positive rate. The true positive rate (TPR) and false pos-
itive rate (FPR) are computed using Eqs. 18 and 20, respectively [20]. 

(17)PRE =
TP

TP+ FP

(18)REC =
TP

TP+ FN

(19)ACC =
TP+ TN

TP+ FP+ FN+ TN

Table 2  Confusion matrix

Actual Predicted

False (clean) True (defective)

False (clean) True negative (TN) False positive (FP)

True (defective) False negative (FN) True positive (TP)
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•	 Error rates (ERR) or misclassified error, which is measured by the fraction all incor-
rect predicted entities with all total entities. 

Validation method

Validation method is performed by comparing the proposed method performances to 
the baseline method. The significance of performance differences between the proposed 
and baseline methods are validated using the Wilcoxon signed-rank test [44, 45] at the 
95% level of confidence. The Wilcoxon signed-rank is a nonparametric statistical test. 
Thus it does not need any assumptions about the dataset distribution. The validation 
test uses the null hypothesis H0 based on the median difference between pairs of data 
samples. This hypothesis is then tested using the p value for a decision making whether 
the null hypothesis is accepted or rejected [36, 46]. The p value is a probability associated 
with the critical value that a Type I error (false positive) is allowed. These are the follow-
ing hypotheses for this study.

•	 H0(1) : There is no difference in cluster compactness between the proposed and base-
line methods.

•	 H0(2) : There is no difference in precision performance between the proposed and 
baseline methods.

•	 H0(3) : There is no difference in recall performance between the proposed and base-
line methods.

•	 H0(4) : There is no difference in accuracy performance between the proposed and 
baseline methods.

•	 H0(5) : There is no difference in error rates between the proposed and baseline meth-
ods.

•	 H0(6) : There is no difference in AUC performance between the proposed and base-
line methods.

All of the null hypotheses will be tested separately using the two-tailed Wilcoxon signed-
rank test at the 95% level of confidence (i.e., p <0.05). If the p value is less than 0.05, then 
the null hypothesis is rejected, and the performances of both methods are significantly 
different. Otherwise, the null hypothesis is accepted.

Results and discussion
This experiment is conducted to evaluate the performances of the proposed method and 
comparing those performances to the baseline. The proposed and baseline methods are 
summarized in Algorithm 1 and Algorithm 2, respectively. As explained in "Experimen-
tal setup" section, both the proposed and baseline methods are performed on the signed 
Laplacian matrix, which is constructed by Eq. 6.

(20)FPR =
FP

FP+ TN

(21)ERR =
FP+ FN

TP+ FP+ FN+ TN
= 1− ACC
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The data preprocessing, which follows step 1 in Algorithm 1 and Algorithm 2, is per-
formed to standardize the dataset on the same scale. The clustering process of both the 
proposed and baseline algorithm follows step 2 to step 7 in Algorithm 1 and step 2 to 
step 6 in Algorithm 2. Step 2 and step 3 are constructing the adjacency matrix and the 
absolute of adjacency matrix using Eqs. 5 and 6, respectively. Step 4 is constructing the 
signed Laplacian matrix in Eq. 9 from the absolute of adjacency matrix in step 3. The 
signed Laplacian matrix is then decomposed to get the eigenvalues and eigenvectors 
using Eq. 10 correspond to the step 5. Figure 1a shows the eigenvectors distribution for 
all datasets. Almost all of the eigenvectors come with outliers in their distribution. If the 
zero value threshold is used to generate clusters on those eigenvectors, it may produce 
clusters with low compactness in cluster memberships.

In this study, the proposed method considers the eigenvector’s values dispersion meas-
ure using the MAD value to determine the new threshold. The MAD value is computed 
using Eq. 1. Figure 1b illustrates the comparison example between the eigenvector dis-
persion and its MAD on CM1 dataset. It shows that the MAD value overcomes the out-
liers in the eigenvector dispersion. The MAD value represents the eigenvector values 
position and does not reflect the changes of the eigenvector values. Table 3 presents the 
dispersion measures of eigenvectors for all datasets, such as range, interquartile range, 
standard deviation, and MAD.

The next step is the partitioning process to generate defective and clean clusters. The 
second smallest eigenvalue of the Laplacian matrix is chosen to define the selected 
eigenvector for the partitioning process. Besides, the partitioning process also needs 
a partitioning threshold. The proposed method uses the median absolute deviation of 
the selected eigenvector, while the baseline method used the zero value as the partition 
thresholds. The MAD value of the selected eigenvector is computed using Eq. 1, corre-
sponds the step 6 in Algorithm 1. Both of these thresholds are then used to generate the 
clusters, corresponds the step 7 in Algorithm 1 and step 6 in Algorithm 2, respectively. 
The cluster memberships of both proposed and baseline methods follow Eqs. 11 and 13, 
respectively.

In the proposed method, the defective cluster is constructed to group all entities 
which its eigenvalue greater than the MAD threshold—otherwise, the clean cluster is 

Table 3  Eigenvector dispersion measures

Dataset name Range value Interquartile range Standard 
deviation

Median 
absolute 
deviation

CM1 0.247 0.085 0.054 0.028

KC3 0.278 0.119 0.070 0.054

MC1 0.313 0.020 0.022 0.013

MC2 0.369 0.127 0.088 0.060

MW1 0.311 0.091 0.062 0.035

PC1 0.197 0.063 0.037 0.030

PC2 0.252 0.052 0.036 0.027

PC3 0.255 0.071 0.041 0.035

PC4 0.142 0.090 0.027 0.018

PC5 0.104 0.042 0.024 0.021
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constructed to group all entities which its eigenvector less or equals than the MAD 
threshold. In the baseline method, the defective cluster is constructed to group all enti-
ties which its eigenvalue greater than zero—otherwise, the clean cluster is constructed 
to group all entities which its eigenvector less or equals than zero. Table 4 shows the dis-
tribution of cluster memberships using both proposed and baseline methods.

The proposed method detects 26.90% of all entities as defective (i.e., in the defec-
tive cluster) and 73.10% of all entities as clean (i.e., in the defective cluster). Whereas, 
the baseline method detects 45.12% of all entities as defective and 54.88% of all entities 
as clean. Based on these results and compared to the number of defective in Table  1, 
the proposed method can produce clusters with better cluster memberships than the 

Table 4  Clusters membership and performance

Dc is the predicted defective cluster; Cc is the predicted clean cluster

The italicized values indicate the better performance

Dataset name Zero threshold based spectral clustering MAD threshold based spectral 
clustering

Cluster memberships 
(%)

Compactness 
(DBI)

Cluster memberships 
(%)

Compactness 
(DBI)

Dc Cc Dc Cc

CM1 44.34 55.66 1.3 28.75 71.25 1.1

KC3 44.85 55.15 1.4 21.50 78.50 1.2

MC1 32.80 67.20 2.0 24.60 75.40 1.8

MC2 48.00 52.00 1.9 21.60 78.40 1.1

MW1 45.45 54.55 1.4 30.83 69.17 1.0

PC1 48.23 51.77 1.9 31.49 68.51 1.3

PC2 45.23 54.77 2.2 19.06 80.94 1.5

PC3 48.47 51.53 2.4 30.16 69.84 1.4

PC4 46.23 53.77 1.8 29.91 70.09 1.2

PC5 47.63 52.37 2.1 31.09 68.91 1.9

Average 45.12 54.88 1.8 26.90 73.10 1.4

Fig. 2  Predicted clusters result. a, b illustrate an example of the cluster memberships of CM1 dataset, which 
are constructed using the zero threshold based spectral clustering and MAD threshold based spectral 
clustering, respectively. Related to Table 4, the use of MAD as partitioning threshold can increase the number 
of predicted cluster memberships
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baseline. The proposed method groups the entities based on their eigenvector positions 
that are measured by its distance to the median. Whereas, the zero threshold groups the 
entities based on their eigenvector difference values with the zero. Figure 2 shows the 
example of the cluster memberships on CM1 dataset that are produced by both the pro-
posed and baseline methods.

The clustering performances of both methods are evaluated using the cluster com-
pactness, which is measured by the DBI in Eq. 15. Table 4 shows the DBI values, where 
the proposed method outperforms the baseline for all datasets. The cluster compact-
ness averages of both the proposed and baseline methods are 1.4 DBI and 1.8 DBI, 
respectively. This achievement corresponds with the increase in the number of cluster 
membership as referred on Table 4. The clustering performance difference between the 
proposed and baseline methods is validated using the two-tailed Wilcoxon signed-rank 
test at 95% level of confidence. The observed p value of this test is 0.001. Hence, the null 
hypothesis H0(1) is rejected. This significance test concludes that the proposed method 
can produce better cluster compactness than the baseline method.

Following Algorithm 1 and Algorithm 2, the last step is labeling all cluster members 
as defective or clean classes. The label of each entity is obtained using the heuristic row 
sum criterion in Eq. 12 by comparing the row sum of the entity with the average row 
sum of its cluster. The classifier performances are then evaluated using precision, recall, 
accuracy, AUC, and also error rates, which are computed using Eq. 17–21, respectively. 
Table 5 shows all of these performances using both the proposed and baseline methods.

In precision performance, Table 5 shows that the proposed method can improve the 
precision of the baseline. The precisions averages of both methods are 0.84 and 0.74, 
respectively. While Fig.  3a illustrates the precision performance comparison between 
the proposed and baseline methods for all datasets. The precision performance differ-
ence has been validated using the two-tailed Wilcoxon signed-rank test at the 95% level 
of confidence. The observed p value is 0.005 and the null hypothesis H0(2) is rejected. 
Hence, the precisions of both methods are significantly different. Table  5 also shows 
that the proposed method outperforms the baseline in the CM1, MC1, MW1, PC1, 

Table 5  Performance comparison between  zero and  MAD threshold based spectral 
classifiers

The italicized values indicate the better performance

Dataset name Zero threshold based spectral classifier MAD threshold based spectral classifier

PRE REC ACC​ AUC​ ERR PRE REC ACC​ AUC​ ERR

CM1 0.72 0.92 0.71 0.68 0.29 0.81 0.71 0.76 0.76 0.24

KC3 0.78 0.88 0.75 0.75 0.25 0.72 0.61 0.71 0.80 0.29

MC1 0.76 0.94 0.78 0.67 0.22 0.98 0.94 0.94 0.74 0.06

MC2 0.74 0.71 0.68 0.75 0.32 0.60 0.57 0.67 0.82 0.33

MW1 0.69 0.95 0.69 0.70 0.31 0.84 0.58 0.71 0.74 0.29

PC1 0.73 0.94 0.75 0.78 0.25 0.83 0.64 0.80 0.77 0.20

PC2 0.72 0.89 0.77 0.76 0.23 0.97 0.63 0.84 0.74 0.16

PC3 0.72 0.92 0.79 0.77 0.21 0.85 0.86 0.80 0.77 0.20

PC4 0.79 0.90 0.72 0.67 0.28 0.87 0.80 0.73 0.77 0.27

PC5 0.78 0.81 0.78 0.74 0.22 0.88 0.87 0.94 0.74 0.06

Average 0.74 0.89 0.74 0.73 0.26 0.84 0.72 0.79 0.77 0.21
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PC2, PC3, PC4, and PC5 datasets. However, the proposed method underperformed 
in the KC3 and MC2 datasets. Related to the eigenvector’s values dispersion measure 
in Table 3, the KC3 and MC2 datasets have higher dispersion measures than the other 
datasets, especially in the interquartile range, standard deviation, and MAD values. Sta-
tistically, those eigenvector’s dispersion measures affect the entities distribution. For 
example, the interquartile range represents the range of the middle half of the eigenvec-
tor’s values distribution. The higher interquartile range indicates that the eigenvector’s 
values spread out from the central tendency point (e.g., median). Hence, the number of 
both defective and clean entities in the middle-half of the eigenvector’s values distribu-
tion becomes increasing. Consequently, the precision of the proposed method becomes 
decreasing in the KC3 and MC2 datasets and underperformed the baseline method.

In contrary to precision, the proposed method underperformed the baseline in the 
recall performance. As shown in Table 5, the recall values of the proposed method are 
smaller than the recall values of the baseline method. The recall averages of both meth-
ods are 0.72 and 0.89, respectively. Figure 3b illustrates the recall performance compari-
son between the proposed and baseline methods for all datasets. The recall performance 
difference is proven significant by the two-tailed Wilcoxon signed-rank test at the 95% 
level of confidence. The observed p value is 0.01 and the null hypothesis H0(3) is rejected. 
Hence, the recall performance of the proposed method is significantly different from the 
baseline method. Table  5 also shows that recall of the proposed method outperforms 
the baseline only in the PC5 dataset. Related to the eigenvector’s values dispersion of 
this dataset in Table 3, the PC5 dataset has the lowest range of eigenvector values than 
the other datasets. It means that the difference value between the maximum and mini-
mum of the eigenvectors in the PC5 dataset is too small. Hence, almost entities spread 

Fig. 3  Performance comparison. a–d illustrate the performance comparison between the zero threshold 
based spectral classifier and MAD threshold based spectral classifier in precision, recall, accuracy, and error 
rates
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around the central tendency point, including both the defective and clean entities. Con-
sequently, the ratio of the correct predicted defective to all the actual defective entities 
(i.e., recall) in the PC5 dataset becomes increasing.

Based on the precision and recall, there is a trade-off performance between the pro-
posed and baseline methods. The proposed method has high in precision but low in the 
recall, while the baseline method has low in precision but high in the recall. This trade-
off indicates that the proposed method can predict more precisely the actual defective, 
although in the small number. Whereas the baseline method can predict more defective 
entities, but not all of the predicted defectives are actual defectives.

In terms of accuracy, Table 5 shows that the proposed method outperforms the base-
line in almost all of datasets, but underperformed in the KC3 and MC2 datasets. These 
lower accuracies in those two datasets might be caused by the high dispersion measures 
in the interquartile range, standard deviation, and MAD, as shown in Table 3. Overall, 
the accuracy averages of both the proposed and baseline methods are 0.79 and 0.74, 
respectively. Hence, the error rate of both the proposed and baseline methods are 0.21 
and 0.26, respectively. It means that 79% of all entities are classified correctly using the 
proposed method with the misclassified rates of 21%, while the baseline method can 
classify 74% of all entities correctly with the misclassified rates of 26%. Those accura-
cies and error rates indicate that the proposed method can predict the defective enti-
ties more accurate than the baseline. The performance comparison of accuracy and 
error rates between the proposed and baseline methods for all datasets are illustrated in 
Fig. 3c, d, respectively. The accuracy performance and error rates differences are proven 
significant by the Wilcoxon test at the 95% level of confidence. The observed p value of 
accuracy performance test is 0.03, and the null hypothesis H0(4) is rejected. While the 
error rates difference test gives observed p value of this test is 0.04, and the null hypoth-
esis H0(5) is rejected.

Fig. 4  AUC curve of CM1 dataset. a, b illustrate the AUC curves of CM1 dataset using the zero threshold 
based spectral classifier and MAD threshold based spectral classifier, respectively. The AUC is the area under 
the ROC that is constructed using the true positive rate (TPR) or recall across the false positive rate (FPR), 
which are computed by Eqs. 18 and 20, respectively
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In terms of AUC, Table 5 shows that the proposed method outperforms the baseline in 
almost all of datasets. The AUC averages of both methods are 0.77 and 0.73, respectively. 
It means that the abilities to distinguish the defective and clean classes of both methods 
are 77% and 73%, respectively. The AUC performance difference is proven significant by 
the two-tailed Wilcoxon signed-rank test at the 95% level of confidence. The observed 
p value of this test is 0.01, and the null hypothesis H0(6) is rejected. Figure 4 illustrates 
the example of the AUC curve for the CM1 dataset. The AUC itself is the area under the 
ROC that is constructed using the true positive rate (TPR) across the false positive rate 
(FPR), which are computed by Eqs. 18 and 20, respectively.

Conclusion
The median absolute deviation threshold has been presented in this paper to address 
the zero threshold issues in the spectral classifier based unsupervised software defect 
prediction. The median absolute deviation, as a dispersion measure, is proposed as the 
partitioning threshold to reduce the predominantly cluster issue when the eigenvec-
tor values of spectral graph matrix are mostly positives. The median absolute deviation 
threshold is also designed to address the eigenvector values outliers issue. Thus, the 
objective of this study is generally to improve the performances of zero value threshold 
based spectral classifier in unsupervised software defect prediction through the median 
absolute deviation threshold based spectral classifier.

Experimental results show that the proposed method can improve both clustering and 
classification. The proposed method produces better cluster memberships and increase 
cluster compactness. Which means there is an improvement in the numbers of entities 
that are separated correctly into the predicted clusters. This resulting clusters affect the 
classification performance improvement. The accuracy and misclassified rates of the 
median absolute deviation threshold based spectral classifier outperformed the zero 
threshold value based spectral classifier. In the AUC performance, the median absolute 
deviation threshold based spectral classifier also performs better in the ability to dis-
tinguish the defective and clean classes. In the precision and recall performances, the 
median absolute deviation threshold based spectral classifier high in precision although 
low in the recall. Based on those achievements, this study concludes that the median 
absolute deviation threshold based spectral classifier not only able to overcome the 
zero value threshold issues in the spectral classifier. But, it can also improve the zero 
value threshold based spectral classifier performances. The median absolute deviation 
threshold based spectral classifier method is an unsupervised approach with no need of 
training dataset. Thus, there is a significant potential to generalize the proposed method 
on the new software projects or an established software project with lacks in training 
dataset.

This study only deals with the zero threshold issues in the spectral classifier based 
unsupervised software defect prediction and does not perform any feature analyses, 
such as feature selection, auto-correlation analysis, or multi-collinearity analysis. As well 
known, feature analyses are essential to obtain the only relevant features in the classifier 
model development. Hence, for future work, the feature analyses would be considered to 
optimize the achievement of this study.
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