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Introduction
Satellites orbiting the Earth with their remote sensing capabilities captures informa-
tion about the geography of Earth in form of remotely sensed images. These images are 
representations of the Earth’s surface as seen from space and contains intensity about 
the physical quantities such as the solar radiance reflected from the ground, emitted 
infrared radiation or backscattered radar intensity [14]. This information is captured by 
multiple sensors on board the satellites which capture radiation for various wavelengths 
and is provided in the form of multispectral raster data. The use of multiple sensors for 
the same geographic area captures various types of information which includes thermal 
imaging (infrared), visible radiation (Blue, Green and Red), etc., and is stored as indi-
vidual bands [2]. Multi spectral and multi-dimensional data is usually available in form 
of multi-band georeferenced  tagged image file format (GeoTIFF) files, an extension of 
TIFF format. A Landsat 7 image comes in the form of a GeoTIFF file consisting of 8 
spectral bands and each of the spectral band stores a different wavelength scattered or 
emitted from the Earth’s surface. The earlier GeoTIFF standard was limited to support-
ing 4 GB of raster data which has been superseded by the current Big GeoTIFF standard 
and allows storage of image files larger than 4 GB in the TIFF container [17]. This was 
required due to the increasing spatial resolution and number of concurrent bands that 
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needed to be stored for a geographic area. There is also a large availability of images 
of Giga Pixel resolution (109 pixels) images from domains such as bio-technology and 
forensics which are also stored in Big GeoTIFF format. Organizing and managing this 
kind of data is in itself a huge task and processing of it requires designing parallel and 
distributed systems which will allow for faster processing of terabytes of data and pro-
vide the results in a limited amount of time.

Raster image consists of representation of geographic objects in a two-dimensional 
scene and it is a two dimensional array of individual picture elements called pixels 
arranged in columns and rows [45]. Each pixel individually represents information about 
an area on the Earth’s surface. The information about the area is represented by an inten-
sity value and a location address in a two dimensional image. While the intensity value is 
represented by the measured reflectance, the location is represented by (longitude, lati-
tude) value for a geo-referenced image [43]. A single pixel in a multiband image has sev-
eral values depending on the number of sensors which captured information for that 
geographic location. The individual bands are usually used independently depending 
upon the geospatial analysis required and the intermediary outputs combined to form 
the final results. All of these bands when used in conjunction for geospatial analysis 
will provide more accurate representation about the phenomena on the Earth’s surface. 
There are many techniques available to store and organize the multiband data (pixels) of 
an image in binary files such as band sequential (BSQ), band interleaved by pixel (BIP), 
and band interleaved by line (BIL). The BIL format stores the data of the first pixel from 
all the different bands in the first row, and the data of the second pixel from all the differ-
ent bands in the second row and so on [20]. One example of such format is the sensor’s 
data that comes from French satellite [also known as SPOT (Satellite Pour l’Observation 
de la Terre which translates to Satellite for observation of Earth) data] [64]. This study 
uses a custom input format which is similar to BIL to overcome some of the difficul-
ties which are faced when processing such binary data formats in a MapReduce envi-
ronment. There is a separate section (“Geometrical space to spectral space (preparation 
phase)”) discussing the details and the data format required as input to the developed 
mining framework.

The paper has the following structure. A review of the advancements in Big Geospatial 
data mining has been presented in “Related works” section. The novel approach of con-
verting multispectral data to geometrical space is discussed and developed in “Proposed 
methodology” section. “Result and discussion” section provides an analysis summary of 
the obtained results. Finally, “Conclusion and future work” section concludes the paper 
and provides directions for further research.

Related works
Due to the requirements for various applications related to planning and decision mak-
ing, the Landsat 7 program was launched in 1999 [29, 36]. The planning and decision 
making include landuse change analysis, environment conservation and impact assess-
ment, wildlife habitat mapping, disaster management, urban sprawl analysis, agricul-
ture and horticulture, natural resource management and monitoring, etc. The Landsat 7 
program served to make a complete temporal archive of cloud free images of the Earth 
and is still active after the launch of its successor Landsat 8 in 2013 [15]. The Earth’s 
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surface as depicted by true colour on widely used web mapping services like Google 
Maps/Earth, Bing Maps, Yahoo Maps, etc., is based on colour enhanced Landsat 7 satel-
lite imagery. In addition to the satellite imagery, geospatial data is also being acquired by 
use of aircrafts, unmanned aerial vehicles (drones) and ground based operations such as 
land surveys.

Big‑geospatial data

Collectively the geospatial data available from several sources has grown into petabytes 
and increases by terabytes in size every day [24]. The increase in the sources of data and 
its acquisition have been exponential as compared to the development of processing 
systems which can process the data in real time. Large amount of processed geospatial 
data is available for development of virtual globe applications from Nasa World Wind, 
temporal datasets archived at Google Earth Engine, etc. Beside these crowd sourcing 
online efforts such as OpenStreetMaps [5, 30] and Wikimapia have also assimilated tera-
bytes of geospatial data. The data available from these efforts may have been derived 
from satellite imagery but is only applicable for a few applications such as for routing 
and navigation purposes. USGS [47], an organization established for the development 
of public maps and geo-sciences expertise has started providing access to applications 
and data related to disaster management during earthquakes, landslides, volcanoes, etc. 
but is limited in providing support for processing related to other planning and decision 
making applications. Private organizations such as earth observation system (EOS) have 
started providing automated on-the-fly earth observation (EO) imagery processing and 
analysis. Their products include providing realtime processing of classic GIS algorithms 
[21] on several of the open data sets available from the earth observation satellites (EOS).

The amount of geospatial data available is not just an increase in size but with avail-
ability of higher resolution has also increased the complexity of processing it and led 
to the geospatial “Big Data” phenomenon. According to Bhosale and Gadekar [8], the 
term ‘Big Data’ describes innovative techniques and technologies to capture, store, dis-
tribute, manage and analyze petabytes or larger-sized datasets with high-velocity and 
different structures. It is the data sets or combinations of data sets whose size (volume), 
complexity (variability), and rate of growth (velocity) make them difficult to be captured, 
managed, processed or analyzed by conventional technologies and tools. It has been 
stated for geospatial data in [48] that, “the size of spatial big data tends to exceeds the 
capacity of commonly used spatial computing systems owing to their volume, variety 
and velocity”, which truly encompasses the amount of spatial data available today and 
the complexity of the operations to be performed into the boundaries of the big data 
problem. The authors in [44] have supported that spatial data are large in quantity and 
are complex in structures and relationships. The study in [49] draws our attention to 
spatial interaction, spatial structure and spatial processes in addition to the spatial loca-
tion which forms the basis of any spatial processing system.

The richness of information contained in raster data is only limited by the number 
of captured bands and its resolution. To derive the full benefits by processing such 
data it has become of utmost importance to overhaul existing multi-dimensional 
approaches and consider the geospatial characteristic of the data. This will not only 
ease and simplify the way geospatial data is processed and analyzed but will also allow 
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to further exploit the available richness of data. The variety in attributes that can be 
gathered from multiple spectrums for a geographic feature must be studied, visual-
ized, interpreted and mined so as to extract qualitative, meaningful, useful informa-
tion and new relationships. The results can provide insights into accurate geographic 
phenomena which is not available from analysis of individual bands. With the accu-
mulation of large amount of data comes the difficult challenge of processing it and 
derive meaningful information which can be used for planning and decision mak-
ing. The main aim of this work is to discover hidden knowledge from big geo-spatial 
data by considering multiple dimensions collectively for a geographical area rather 
than processing the bands individually. The novel approach of converting from spatial 
space to geometrical space preserves the essential multispectral characteristics of the 
data. The work addresses the shortcomings of existing approaches while processing 
big geospatial data and new distributed techniques required for processing both ras-
ter and vector data have been presented. In the present work, k-means clustering has 
been described in detail. The developed techniques can be adapted to several of the 
spatial data mining tasks including spatial prediction; spatial association rule mining; 
and temporal geo-visualization.

For processing raster data, image processing techniques have been well developed 
and are available with open source packages such as OpenCV, Scilab and other closed 
source packages and libraries. These are limited in scale and processing of giga-pixel 
scale images such as large multiband GeoTIFF files require tens of hours if not days. 
This inhibits the discovery of important knowledge, the realtime provision of which 
may be highly useful in applications of disaster relief, etc. Knowledge Discovery in 
Databases  (KDD) is defined as the process of discovering useful knowledge from a 
collection of data and is closely related to data mining and it is important for the 
spatial data as well [35, 45]. The data mining process has been depicted in Fig. 1. It 
includes data preparation and selection, data cleansing, incorporating prior knowl-
edge on data sets and interpreting accurate solutions from the observed results [63]. 
The data mining life cycle (DMLC) starts with understanding the inputs or require-
ments, to formation of the system and until the last stage of deployment. Each of 
these depicted phases could be repeated in case the requirement changes. Geospatial 
data mining is an extension of classical data mining approach with the addition of 
geospatial component which requires application of complex image processing and 
spatial data processing techniques.

Business 
Understanding

Data
Understanding

Deployment

Evaluation Modelling

Data
PreparationData

Fig. 1  Data mining life cycle
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Big‑geospatial data processing

The classical data mining approach is no longer fit for processing of Big Data and has 
been modified and adapted by many frameworks which been developed to utilize the 
computing and storage available from distributed computing devices [37]. Big geo-spa-
tial data adds another level of complexity to this Big Data ecosystem which now also 
requires considering the spatial and geographical location. This has furthered the com-
plexity big data challenge [66]. A framework such as GS-Hadoop [31] can process mil-
lions of geospatial vector features in a matter of minutes but is limited to only processing 
vector data. De Smith et al. [19] have addressed the full spectrum of spatial analysis and 
associated modeling techniques that were available at the time with widely used geo-
graphic information systems (GIS) and associated softwares. The existing geospatial data 
processing systems are overwhelmed with the amount of data available and the com-
plex operations required to be performed demands urgent development of tools capa-
ble of managing and analyzing such Big geospatial data [32]. Bradley et al. [12] aim to 
reduce the size of the data to be processed by identifying regions of the data that can be 
compressed, regions that must be kept, and regions that can be discarded. The transmis-
sion of high resolution raster images over low-bandwidth connections requires a great 
amount of time. This problem can be mitigated to a little extent by transmitting a series 
of low resolution approximations which converge to the final image [52]. Low bandwidth 
connections are no longer of concern due to the development of faster networks and 
internet bandwidth available to gigabit speeds for organizations [33, 54].

The above mentioned studies address a few of the shortcomings of traditional geo-
processing while some others [25, 68] extend the geoprocessing functionality to work 
upon parallel and distributed processing systems. Beside the complex processing of geo-
spatial data, a considerable amount of work has been done on use of multidimensional 
data structures in information processing systems (IPS), the applications of which have 
been in fields of business analysis, astronomy, geomatics, bioinformatics, etc. [9]. The 
term “Multidimensional” essentially describes the way in which numerical information 
can be categorized and viewed [16]. It has been already established that large geospatial 
databases consist of multidimensional information. Several multidimensional models 
have also been proposed for establishing multidimensional databases (MDB) and on-line 
analytical processing (OLAP) [55]. It has also been stated that the traditional database 
systems are inappropriate for storage and analysis of multidimensional data since these 
systems are optimized for online transactional processing (OLTP) in which an enormous 
number of concurrent transactions containing normally few records are involved. Multi-
dimensional data cannot be stored in OLTP databases. Geodatabases store multidimen-
sional geospatial data with associated vector attributes and features for the raster data 
[6].

Distributed processing of geospatial data

The distributed data processing framework MapReduce was first introduced by Google 
and later it was incorporated into Hadoop as its strong capability [46, 60]. Apache 
Hadoop is an open-source software for reliable, scalable, distributed computing on com-
modity hardware [27, 56]. Hadoop is one of the most widely used distributed processing 
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frameworks developed to address the challenges of big data. The framework is extensible 
and can be adapted to support big geospatial data. The main concept of the framework 
is segregated in two parts, viz., the Hadoop Distributed File System (HDFS) for stor-
ing data and the MapReduce programming model to process the data which is usually 
stored on HDFS.

The framework subsequently has been in development by the Apache Software 
Foundation. Apache defines Hadoop as software library framework that allows for the 
distributed processing of large datasets across clusters of computers using simple pro-
gramming models [26]. It is important to highlight that initially Hadoop only supported 
MapReduce type of applications but has later been extended to support other program-
ming paradigms [28]. Hadoop is capable of storing and managing large volumes of data 
efficiently, using a large number of commodity hardware as Nodes forming a Hadoop 
cluster. The same cluster is used for processing the data locally stored on the Nodes to 
reduce the network communication. Hadoop can be used for many applications involv-
ing large volume of Geospatial as well as Spatio-temporal data analysis, Biomedical 
Imagery analysis, simulation of various physical, chemical and computationally intensive 
application biological processes [2, 13, 18, 38].

MapReduce model of programming has become one of the best ways to processes big 
data which is inherently stored by Hadoop on its own distributed file system (HDFS) [10, 
11]. The MapReduce model takes care of managing the whole processes from receiving 
the data, processing it and aggregating the results to form a single output. It takes care of 
distributing the data and managing the distributed resources throughout the whole pro-
cesses. Applications which require to work with big data benefits hugely from HDFS as 
it provides high throughput access and streaming capabilities to large amounts of data. 
It has been developed to be fault-tolerant, can run on cheap commercially of the shelf 
(COTS) hardware and support streaming data. The main MapReduce phases include the 
Map and the Reduce phases which have been depicted in Fig. 2.

The Key-Value approach used by the Map phase groups input values with their associ-
ated keys. The keys along with their set of values will be sent to the Reduce phase and 
the required functions will be applied on those groups of values to get the needed out-
put. There are other phases in MapReduce such as Shuffle phase, Sorting phase, Par-
titioner phase and Combine phase. The Combiner collects different (Key, Value) pairs, 
group similar keys and send them to the required node for the reducer. Keys and Values 
are sorted during the sorting phase. An appropriate partitioning logic can also be made 
available to ease the transferring of the data between the nodes.

Big Data

Split 1

Split 2

Split N

Map 1

Map 2

Map N

Reduce 
1 to N

Output

Fig. 2  Schematic diagram for processing big data using Map and Reduce
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To identify spatial patterns, most well-known statistical techniques are based on the 
concept of intra- and inter-cluster variances (like the k-means algorithm or the Empiri-
cal Orthogonal Function) [7]. There are various Classification and Clustering algorithms 
supported by Mahout, a data mining platform built on Hadoop. It supports k-means, 
canopy, fuzzy k-mean, naive bayes, etc. [26]. It should also be noted that these algo-
rithms can be easily used with any framework based on Hadoop such as Apache Spark.

K-means algorithm is made to group a set of data into K sub-groups of the data or as 
we can say into K number of clusters, where the data can be in N dimensions, and in 
each cluster the sum of squares is minimized. Zhang et al. [67] improve the initial focal 
point and determine the K value, through simulation experiments while [1] propose 
new cost function and distance measure based on co-occurrence of values that works 
well for data with mixed numeric and categorical features. Sarode and Mishra [50] have 
mentioned, “It is not practical to require that the solution has minimal sum of squares 
against all partitions”, except if the size of the data and dimensions is very small and the 
number of the clusters K is two.

Eldawy and Mokbel [23] developed SpatialHadoop, which is a comprehensive exten-
sion to Hadoop for support for geo-spatial vector data over Hadoop. It supports spatial 
constructs and the awareness of spatial data inside Hadoop code base. SpatialHadoop is 
composed of four main layers, which are language, storage, map-reduce and operations 
layer. The language layer provides Pigeon, a high level SQL-like language. The storage 
layer employs two level index structure of global and local indexing. And it introduces 
two components, spatialFileSplitter and spatialRecordReader, through the MapReduce 
layer. Finally the operation layer in reduce some basic spatial operations like range query, 
K-Nearest Neighbours (kNN), and spatial join, etc. SpatialHadoop is meant for the spa-
tial data but it support only supports single dimension vector data and it does not have 
any of the data mining (classification and clustering) techniques listed above which may 
be required for processing satellite imagery [3].

Mennis and Guo [39] described the urgent need for effective and efficient methods 
to extract unknown and unexpected information from datasets of unprecedentedly 
large size having millions of observations, high dimensionality by hundreds of vari-
ables, and coming from heterogeneous data sources and having other complex attrib-
utes. Yao [65] stressed the development of spatial data infrastructure and efficient and 
effective spatio-temporal data mining methods. The development of CLARANS [42] 
is based on randomized search and is based on PAM and CLARA used for cluster 
analysis. Vatsavai et al. [58] studied into the IO and CPU requirements of spatial data 
mining algorithms for analyzing big spatial data and have presented the applications 
of bio-mass monitoring, complex object recognition, climate change studies, social 
media mining and mobility applications. STING [61] use hierarchical statistical infor-
mation grid based approach for spatial data mining and STING+ [62] extends the 
approach by suspending the effects of the updates in the hierarchy until their cumu-
lative effect triggers to mulitple layers in the hierarchy. Bédard et al. [4] highlighted 
the requirement of efficient spatial data mining methods to cope with the huge size 
of spatial data which is increasing rapidly in the spatial data warehouses. To analyse 
the collected data at multiple resolutions, it is required to develop techniques with 
the ability to keep up the performance independent of the size of the spatial data. 
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A clustering model represented using choropleth to identify spatial relationships 
between the clustering obtained by spatial data mining has been developed using 
ArcView (a desktop GIS) and highlights the importance of correct visualization of 
geospatial data [41]. PixelMap [34] technique combines kernel-density-based cluster-
ing with visualization for displaying large amounts of spatial data. Visualization of big 
spatial datasets at various levels is an important requirement. The output from the 
proposed mining techniques can be scaled at various levels and passed to Desktop 
GIS for visualization.

Proposed methodology
In this paper, the development and implementation of distributed framework for 
mining multiband raster geospatial data has been described. The framework has been 
evaluated using k-means clustering function which has also been updated to sup-
port our multi-dimensional data format in MapReduce environment. The proposed 
framework also supports multi-distance calculating functions such as the Euclidean 
distance and Manhattan distance while it is also simple to extend it to support other 
distance calculations such as Mahalanobis distance depending on the number of 
dimensions involved for data processing [51]. K-means clustering is a method com-
monly used to automatically partition a dataset into k-groups. It proceeds by select-
ing k initial cluster centers and then iteratively refining them as follows [59]:

•	 Each instance di is assigned to its closest cluster center.
•	 Each cluster center cj is updated to be the mean of its constituent instances.
•	 The algorithm converges when there is no further change in assignment of 

instances to clusters.

In the present work, multi spectral (multi-dimensional) geospatial data derived 
from Landsat 8 have been used. To derive the experimental results, four to six spec-
tral bands have been taken from several satellite images for the experimentations. The 
data is transformed for use with the developed mining platform. In the first stage, 
each pixel value of the different four bands are considered from the spectral space 
to the geometrical space. This has been further discussed in “Geometrical space to 
spectral space (preparation phase)” section of the paper. In the second stage, K-means 
clustering is applied in the MapReduce distributed mode and finally return the data 
into its initial form so it can be used for visualization. There are several implemen-
tations which have been based upon increasing the efficiency of k-means either 
supervised or non-supervised and there are several others which support multi-
dimensional k-means clustering but none of them directly consider the information 
available in multispectral format. The present work can be easily extended for appli-
cation of any other classification or clustering technique and any number of bands 
with simple modifications to support the proposed index file format. The proposed 
work forms one of the first distributed implementation for mining multi spectral data 
(supporting multiple dimensions) collectively and the techniques described can form 
a candidate for inclusion in the machine learning Mahout framework or for raster 
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processing support in other distributed geospatial processing systems. The perfor-
mance of the mining platform has also been found to be satisfactory with respect to 
the amount of resources allocated and this has been highlighted in the succeeding 
sections.

Geometrical space to spectral space (preparation phase)

SpatialHadoop supports working with the geometrical location of the different features and 
implements spatial operations according to the type of shapes of the geo-spatial data which 
may be point, line, or polygon (rectangle). It does not support raster data. This study deals 
with the special case of working with multi spectral raster data available from Landsat 8 
imagery in which every pixel can have 11 different values available from different bands. We 
use a subset of these bands All of these values are considered as the positional value of that 
pixel in different dimensions. In this way, all the different values of a single pixel are used to 
form a multidimensional spatial shape. E.g., polygon in a multi-dimensional space. The data 
in the geo-spatial mining process can then be used to perform the desired spatial operation. 
Table 1 describes the sample dataset.

Dataset description: predominantly limestone mining area
No. of bands: 6 (subset from Landsat 8 image has been taken)
Area: Aravalli Fort Hills (North of Gujarat, India)
Geographic Location:

Lat, Lon: 24° 00′ North, 72° 54′ East
Landsat 8 (path): (148,149); Landsat 8 (row): (43,44)

For implementation of distributed k-means for supporting multi-dimensional data, four 
bands from a raster image have been considered initially. The polygon thus formed with 
four points (one in each dimension) can be also reduced to a two dimension rectangle. Spa-
tial operations can then be simplistically applied to this form of data. The following formula 
represents pixel values for four bands which have then been converted to a polygon and has 
been represented as a rectangle in two dimensions what is called as indexed pixel data and 
the process has been depicted in Fig. 3.

(1)(X1, Y1, X2, Y2) → Polygon (X1, Y1, X2, Y1, X2, Y2, X1, Y2, X1, Y1)

(2)(45, 46, 47, 48) → Polygon (45, 46, 47, 46, 47, 48, 45, 48, 45, 46)

Table 1  Subset of the bands selected from the Landsat 8 image for experimentations

Spatial band no. Wavelength range (µm) Description of band

2 0.450–0.515 Blue

3 0.525–0.600 Green

4 0.630–0.680 Red

5 0.845–0.885 Near IR

6 1.560–1.660 Short wave IR(SWIR)-1

7 2.100–2.300 Short wave IR(SWIR)-2
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Figure 4 represents the total workflow which is divided into three main stages. In 
the first stage, the data is transformed it into 4-dimensional data set in which each 
pixel is transformed essentially into a rectangle owing to ‘4’ values obtained from each 
band of the image. The ‘4’ values for each pixel from every band is put into a resultant 
file which contains a matrix resembling the image’s pixels. The process can quickly 
iterate over thousands of rows and columns and in the resultant file each row contains 
the pixel’s values for the same geographic location from the ‘4’ different bands. These 
‘4’ different values are represented as shown in Fig. 4a which also contains an index 
value unique to every pixel. The process is extensible to support ‘N’ number of bands.

The proposed mining mode demonstrates application of k-means clustering to work 
with multi-dimensional images in a MapReduce environment. Figure  5 represents the 
clustering and editing functions available for the input format. This work can further 
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Fig. 3  Phase-1 indexing
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Fig. 4  The image after the preparation (a, c) and after being clustered (b, d)
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be extended to support other geospatial operations available with SpatialHadoop or 
can alternatively be integrated with Mahout. The MapReduce implementation of the 
workflow and support for working with data stored on Hadoop Distributed File System 
(HDFS) opens opportunities for mainly supporting the big data ecosystem.

Index all the pixels and assigning geographic location

A.	Map Phase

	 The proposed k-means clustering model goes through the main two phases of the 
MapReduce programming module which are the Map and the Reduce phases [69]. 
In the Map phase, the k-means model will take two different files as the inputs, the 
data set file and the initial centroid file. It will calculate the distance from each point 
in the data input to each of the initial centroids. This way the nearest centroid to 
each point in the whole data set is obtained. The Map phase will then send to the 
reducer the values obtained for each point along with the nearest centroid to that 
point. The output from the Mapper to the Reducer task will include the nearest key 
(point) together with centroid values. Multi-spectral k-means clustering depicting 
transformation of values from Map to Reduce phases.

Input: A list of < key l, value l > pairs, k global centroids. Where value 1 is its content 
of online of the input file which contain the multi values of each pixel and its location.
Output: A list of < key 2, value 2 > pairs. Where key 2 is the index of the cluster and 
value 2 is the point values and its location which belonging to that cluster (key 2).

K-mean Clustering 
(MapReduce V.2)Clustered 

Image 
Editing

Converter to Raster 
(MapReduce V.2)

Join
(MapReduce V.2)

Clipping 
(MapReduce V.2)

Horizontal and 
Vertical Splitting 
(MapReduce V.2)

Clustered   
Raster 

Indexed 
Pixel 

Fig. 5  Phase-2 K-means clustering
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B.	 Reduce phase
	 The reduce phase will receive each key with its attached group of values which are all 

the points from the data input for which the corresponding key is the nearest centroid. 
The main job of the Reducer is to calculate the optimal centroid out of each group of 
points which will have the average distant to all the element of that group of points. 
The reducer will produce the final output which is the new optimal centroids which 
again along the data input file will be taken to go through the Map and Reduce phases 
for the next iteration. The process is repeated till all the centroids get converged.

Input: A list of < key 3, value 3 > pairs Where key 3 is the index of the cluster and value 
3 is the list of points values belonging to that cluster
Output: it will have two cases, one if the running iteration is any iteration but not 
the last, and the other case if the running iteration is the last iteration. And it can be 
described as:

•	 In the case of any iteration it will give the new calculated set of centroids.
•	 In case of the last iteration A list of < key 4, value 4 > pairs will be added as an out-

put. Where key 4 is the index of the cluster and value 3 is the position of the pixel in 
the image as shown in Fig. 4c

The final output of the model will be two main files. The first file is the set of final centroids 
set, Fig. 4c. The second file will contain the coordinates of each point in the input dataset along 
with the cluster number which that point belong to as shown in Fig. 4d. Using the last output 
file from Reduce phase, we can get the clustered image back again for the visualization pur-
poses, which is further done using MapReduce. Figure 6 represents the final clustering output 
from the MapReduce model. Figure 7 describes the phases for processing the image.

Fig. 6  8k image file after being clustered and plotted (cluster visualization from ENVI)
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Spectral space to geometrical space

The input multiband raster image is converted from geometrical space to the spectral 
space for processing purposes. Values from all the available bands from the image are 
considered. Those values represent different values of one pixel in an image and the same 
has been explained earlier. The location of that pixel is also added as the index to that 
same line where it has the pixel’s values similar to BIL format. Due to the present work, 
it has become possible to study and analyze multiband raster images without the need 
to process different bands individually and infer the phenomena for a particular area. 
After processing the image it is required to convert the obtained output from ASCII to 
image from the geometrical space to the spectral space, to be able to visualize the image 
or perform further processing and annotations that might be required after the mining 
process. The next part of the paper discusses several image processing functions that 
have been developed to work with multiband raster data on Hadoop.

Image filtering and after processing phase

Mode filtering

Mode filtering [57] model to the raster image, the mode filtering involves assigning 
to the central pixel the most common values inside the window around the pixel. 
Programs to work upon a distributed platform have been developed which will apply 
the mode filtering on the image. The window size that is needed by the algorithm 
can be specified at runtime. Mode filtering works to smoothen the edges of the poly-
gons and at the same time to reduce the noise. Figure 8 shows the working of the fil-
ter. The window size here is (5 × 5) pixels, the filter will find out which value inside 
the window is the most common value and it will assign it to the widow’s central 
cell. The most common valued in the window, i.e., 8 will replace all the 9 values in 
the 5th column.

To execute the mode filtering, the following four arguments are required:

<The input files >—the clustered image
<File size >—the dimensions of the image
<The window size>
<The output file name>

WKT 
Polygons of 
Each Cluster

Clustered   
Raster 
Image

Calculating 
Area & length 
of Each Cluster

Calculating  the 
Mean and Standard 

Deviation

Mode Filtering

Cleaning + Cluster 
Isolation

Converter to 
Vector

Topology
The Relation 
Between two 

Polygons

List and Information 
About All Polygons  + 

the Length or Their 
Boundaries

The Mean and 
Standard Deviation  

Displayed in 
any of GIS 

Displayed in 
Any of GIS 

Fig. 7  Phase-3 filtering and topology study
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In Fig. 9, a considerable amount of difference can be noticed after applying mode 
filter with different window size. The mode filtering can also be applied iteratively. 
An example image of the size 8000 × 8000 pixels is depicted in Fig. 9a. Figure 9b, c, 
d shows the results of mode filtering with window of the size 5 × 5, 9 × 9 and 11 × 11 
pixels respectively on the same input image. One may select a window size appropri-
ate for the data and to remove the desired amount of noise from the input image.

Boundaries highlighting enhancement

An application for vectorization has built to derive the boundaries of all the identi-
fied clusters so the output can be used with desktop GIS softwares for further analysis. 
Options to filter certain clusters or a group of clusters according to the requirements 
are available and can be specified as parameters when executing the vectorization tool. 
Two examples have been represented in Figs. 10 and 11. Figure 10 shows the polygons 
of Cluster No. 7 after filtering the results of the image of size of 8000 × 8000 pixels. Fig-
ure 11 shows the polygons of Cluster No. 3 filtered from the image of size 4000 × 4000 
pixels. In both the figures, the left side contain the whole image and the right side con-
tains a small part of the image (shown zoomed in). The visualization is accomplished 
using QGIS.

Clipping

Application for further editing including clipping any part of an image, splitting any 
image (horizontal/vertical) or for joining adjoining images. Figure 12 shows two differ-
ent examples after clipping two different parts of an image. The left side is 1000 × 1000 
pixels while a small part on the top left corner of the complete image is also highlighted 
with red boundaries. On the far right side of the another polygon with blue boundaries 
is clipped. The size of the clipped raster is 2000 × 1000 pixels.

Fig. 8  Mode filtering process
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Fig. 9  Image after applying mode filtering with different window sizes

Fig. 10  Highlighting the boundaries of Cluster No. 7 in 8k image
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Split

An editing tool for splitting images into multiple parts is also integrated with the 
data mining framework. This tool has two different modes; the first one is for verti-
cal splitting and the second one is for horizontal splitting. After selecting the appro-
priate splitting method, the column(s) and/or row(s) for the split can be specified. 
The number of partitions or splits can also be specified and the application will auto-
matically calculate the relevant rows and columns to be passed as arguments. Exam-
ples for both the cases have been presented. Figure  13 shows the vertical splitting 
in three different windows. The center window (highlighted in blue) shows the full 
image whereas the right and left windows shows the new images created after split-
ting the original image. Figure 14 depicts the same using horizontal splitting mode in 
which the left image represent the original image and on the right, the horizontally 
split parts are represented.

Fig. 11  Highlighting the boundaries of Cluster No. 3–4k image

Fig. 12  Clipping two parts of different sizes from an image
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Join

Join is the editing tool that is made for joining any two images and it also have different 
modes, which are right, left, up, and down. Two input images and the mode for join-
ing those two images is passed as an argument to attach the second images to the first 
one accordingly. This can be done to the images before the mining phase or after that 

Fig. 13  Vertical splitting of the image in the middle

Fig. 14  Horizontal-split of the image in the left
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according to the need. It has been made possible to process several images together after 
getting them from different sources, converting it to the proposed format and finally 
joining them together in a distributed environment. Figure  15 shows an example of 
an image that has been joined with itself using the Duplicate copy → MapReduce join 
process.

Cleaning

Cleaning the image and removing small polygons (or clusters) is a technique called 
salt and pepper [53]. This technique has been modified to work in a distributed envi-
ronment and has been integrated with the mining platform. To perform cleaning of 
the clustered image(s), a limit for the minimum size of polygons has to be specified 
which will remove all sub-clusters. Those small sub-clusters can be safely ignored 
while performing spatial operations or calculating statistics for large geographic 
areas. This function can also remove all the sub-clusters below a specified threshold 
and a clean output is obtained.

In Fig.  16, an image of 8000 × 8000 pixels is represented after application of the 
above discussed techniques. Clustering have been applied and the noise in the result-
ant image is cleaned by application of mode filter with a window of size 11 × 11 pixels. 
All the small sub-polygons with a threshold of the size 100 × 100 or less have been 
cleaned. The resultant output is still left with several small polygons which may not be 
needed for further study. An appropriate threshold can also be decided automatically 
depending on certain parameters which can be specified by the user. A percentage of 
sub-clusters can be removed and which will only keep the required polygons which 
cover the maximum amount of geographical area.

Figure 17 represents results from the same image (of size of 8000 × 8000 pixels) after 
application of the above discussed techniques. As discussed above, after clustering mode 
filtering is performed with a window size of 11 × 11 pixels. The application automati-
cally decides to clean all the small sub-clusters keeping the rest which covers more than 
90% of the geographic area. The clustered data is filtered by automatically calculating 

Fig. 15  Joining two copies of the same image



Page 19 of 34Alkathiri et al. J Big Data            (2019) 6:82 

the minimum polygon size, which may be different for each cluster. E.g., in Cluster No. 
1 (Blue), the threshold size of polygon which is not removed or cleaned is 1000 pixels. In 
Cluster No. 2 (Green) the minimum size of polygons is found to be 1694 and thus poly-
gons which represent more than 90% of the area in each cluster will not be discarded.

Figure  18 represents output from the same input image. The application of the 
above discussed techniques is the same. For this sample, the biggest 10 sub-polygons 
from each cluster are kept where those are most likely to represent the area for fur-
ther study. In each cluster, these top ten polygons represented a different percent-
age of the area for the cluster. E.g., in Cluster No. 4 (Purple), the top ten polygons 

Fig. 16  After removing shapes of size 100 × 100 pixels and less

Fig. 17  Removing the smallest 10% of shapes from each cluster
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represent 48% of the cluster; The total area size and the top ten polygons from Cluster 
No. 10 (Blue) represent 77% of the area of the cluster.

Studying the polygons in the clusters

The binary topological relation [22] between two objects A and B. is based on the intersec-
tion of the three part of each object which are the interior, boundary, and exterior of those 
two objects using the nine-intersection matrix which is shown below:

where: A: object;Ao : interior;A−: boundary and ∂A: exterior , B: object;Bo
: interior;

B
−: boundary and ∂B: exterior.

In Fig. 19, two polygons are taken from the 4 k data set after clustering. The first 
polygon is highlighted with a yellow colour and the other one is gray in colour. The 

(3)Ŵ9(A, B) =




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o ∩ B

o
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o ∩ ∂B A
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−
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
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Fig. 18  The biggest 10 shapes from each cluster

Fig. 19  Topological relationship for Case 1
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topological relationship is established by the application and it can be identified that 
polygon number 114 is inside polygon number 739 and they are not touching the 
boundaries. The binary topological relationship between these two objects is found 
with the following:

In Fig. 20, a polygon which is numbered 245 on the left side of the diagram belongs 
to the Cluster No. 2 that is outside of polygon number 1277 which belongs to Clus-
ter No. 4 The polygon is shown on the right side of the diagram. Those polygons are 
touching each other’s boundaries and we find the binary topological relationship 
between those to objects as the following:

In Fig. 21, two polygons have been selected and highlighted with a yellow colour. Poly-
gon No. 245 is outside Polygon No. 1270 and they are not touching each other’s bounda-
ries. The binary topological relationship between those two objects is realized from the 
following:

An exhaustive list of relations between the largest polygons can be iteratively com-
puted for topological study of the area. This list can then be further used to perform 

(4)Case 1: Ŵ9(114, 739) =


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
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Fig. 20  Topological relationship for Case 2
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statistical studies and application of other machine learning approaches to derive inter-
actions between different environmental factors and conditions.

Result and discussion
Technical specification of the Hadoop cluster used for the experiments

The Hadoop-cluster was set-up in a HP Proliant DL580 G7 server with 4 × Intel® Xeon® 
CPU E7-4870 @ 2.40 GHz totalling to 80 cores. The server is equipped with 512 GB of 
RAM. HPE 3PAR StoreServ served as storage backend with 2 × 8  Gbps connectivity. 
Hadoop (v.2.6.0) cluster was configured in the server with 50 Virtual Machines. The stor-
age capacity of the cluster is 2.7 TB and which has been represented in Fig. 22. The clus-
ter consisted of one Master machine (Name Node) and 50 data machines (Data Nodes). 
The Name Node is configured with 4 virtual processors and 12 GB RAM whereas the 
Data Nodes were heterogeneously configured with the following:

•	 1 data node (on Name Node) with 4 virtual processor and 12 GB RAM
•	 38 data nodes with 1 virtual processor and 8 GB RAM
•	 11 data nodes with 1 virtual processor and 4 GB RAM

Data set preparation

The data used to test the functionality of the mining framework consists of two multi-
spectral images of different size for the same location as described in “Geometrical space 
to spectral space (preparation phase)” section.

The pre-preparation phase: It consists of converting the multi-spectral data set into 
two dimension image by indexing all the pixels in the image obtained from different 
spectral bands using each pixel’s location. This generalization of multiple values for a 
single pixel obtained from multiple band into a single file also makes it easier for the 
data to processed irrespective of the number of bands from the image. As an example 

Fig. 21  Topological relationship for Case 3
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the values of the first pixel taken from 6 different files (in case of 6 band image) are gath-
ered in a single line along with the (number of the row and column which both repre-
sent the index for that pixel). The process is repeated for all the remaining pixels in the 
image. Everything is performed using MapReduce paradigm to utilize the potential of 
the Hadoop Cluster.

New format: From the pre-preparation phase, the example image with 6 bands is con-
verted into two dimension image stored in an ASCII file which looks like the following:

#Hadoop fs -cat bigdata-256bs/part-r-00000 | head -n 10
8650,8075,7650,13779,11029,8582,1,10001
8653,8079,7659,13732,11065,8616,1,10007
8655,8082,7669,13701,11093,8642,1,10010
8660,8088,7680,13661,11131,8675,1,10016
8656,8079,7673,13603,11118,8675,1,10025
10275,10484,11249,17210,16363,13831,1,1003
8657,8076,7676,13537,11140,8699,1,10034
8658,8077,7667,13531,11058,8648,1,10043
8661,8080,7665,13518,10997,8615,1,10049
8657,8075,7655,13505,10958,8589,1,10052
The ASCII file is comma separated file and the first six values (in Red) represent the 

values of a pixel gathered from different bands whereas the last two values (in Black) 
represents the index of that pixel (geographic location). With this format it become eas-
ier to process the data for the pixel collectively using MapReduce.

Benchmarking the Hadoop cluster (I/O)

As the storage backend consists of a single Storage Area Network (HPE 3PAR StorServ) 
with multiple disks, it is also important to test and benchmark the throughput of the 
HDFS. The benchmarking has been performed in conjunction with several suggestions 
provided by Mukherjee et al. [40]. It is appropriate to use a distributed file system such 
as HDFS on top of a shared disk infrastructure such as a storage area network. It is also 
possible to reduce the replication factor to 1 as redundancy and fault tolerance are not 

Fig. 22  The storage capacity of the Hadoop cluster
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desired in such an enterprise storage system. Table 2 shows various statistics from the 
DFSIO benchmark which ships with Hadoop.

Running K‑means clustering

In the above sections, several functions provided by the mining framework have been 
tested with many multiband images. The current section provides detailed discussion 
about the proposed MapReduce extensions to the k-means algorithm to work with 
multiband data in a geometric space. The results for clustering two multiband images 
for the same geographical location but with different resolutions using our approach to 
k-means have been described in detail. The proposed approach does not just perform 
clustering but with support for various image processing techniques allows to describe 
the geographical features in the image and in particular the topological relationships 
between different object that exist in the image. Those functions have already been 
described earlier.

The multiband images are uploaded to the HDFS and an indexed file is generated using 
the technique discussed in “Data set preparation” section using MapReduce. A param-
eter file containing the list of initial centroids is also provided for the uploaded image. In 
the subsequent testing, as the two different images are for the same geographic location 
with different resolutions, the same set of the initial centroids for clustering both the 
images is used. This will also help to compare the output from both of the images and 
to identify the quality of our clustering model. This has been further demonstrated in 
Table 7.

To test the performance of clustering, each image was clustered several times with a 
different block-size. The number of blocks that an image will be divided into depends 
on the size of the image and the block size that has been specified in the cluster configu-
ration. A small block size will lead to a large number of blocks even for a small image 
while a large block size is configured if it is desired that the image is not split into a large 
number of block. Small block size is desired in case of small images so that several block 
are distributed across the cluster and thus cluster storage and computing capacity can be 
used. A large block size would reduce the network communication as several small block 
need not be communicated across the cluster of 50 nodes. The results of the clustering 
approach has been tested twice; once in a full Hadoop cluster consisting of 50 nodes and 
the second time with just two nodes.

The performance of the approach to cluster the multi-spectral raster images in the 
Hadoop framework (a distributed environment) and related image processing tech-
niques is represented in Tables 3, 4, 5 and 6. Each of the tables shows the elapsed time 

Table 2  Benchmarking the cluster

TestDFSIO No. of files Total 
MBytes 
processed

Throughput 
MB/s

Average IO 
rate MB/s

IO rate std 
deviation

Test exec time 
(s)

Write 3 300 27.14932127 30.57173347 9.107456973 50.61

Read 3 300 45.91368228 46.32478333 4.366822343 58.072
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of the k-means clustering process, the average time used for each of mapping, shuffling, 
merging, and reduce phases in addition to the total mapping time with respect to the 
block size.

Table 3  Clustering (1.9 GB) raster image with a 50 node Hadoop cluster

Block size (MB) Elapsed 
time 
(min)

Average 
map time 
(min)

Average 
shuffle time 
(min)

Average 
merge time 
(min)

Average 
reduce time 
(min)

Total 
mapping 
time (min)

16 4.7 2.4 2.0 0.0 0.1 3.3

32 4.1 1.1 1.3 0.0 0.3 2.8

64 4.5 1.8 1.0 0.0 0.3 2.8

96 5.8 2.4 2.9 0.0 0.1 4.5

128 6.4 3.2 4.6 0.1 0.1 5.3

256 8.0 4.3 6.1 0.0 0.1 6.8

Table 4  Clustering (1.9 GB) raster image with a 2 node Hadoop cluster

Block size (MB) Elapsed 
time 
(min)

Average 
map time 
(min)

Average 
shuffle time 
(min)

Average 
merge time 
(min)

Average 
reduce time 
(min)

Total 
mapping 
time (min)

16 16.3 13.1 2.3 0.1 0.2 12.9

32 13.0 10.0 2.1 0.1 0.2 11.6

64 11.5 9.3 4.3 0.2 0.1 10.5

96 11.8 9.7 6.6 0.2 0.2 10.9

128 14.1 11.8 12.2 0.2 0.1 10.8

256 14.9 11.6 13.5 0.1 2.9 14.2

Table 5  Clustering (17.79 GB) raster image using a 50 nodes Hadoop-cluster

Block size (MB) Elapsed 
time 
(min)

Average 
map time 
(min)

Average 
shuffle time 
(min)

Average 
merge time 
(min)

Average 
reduce time 
(min)

Total 
mapping 
time (min)

128 36.0 13.7 17.9 0.3 1.6 22.9

265 34.5 13.0 14.1 0.3 2.0 21.4

512 36.4 13.7 14.8 0.2 1.7 23.9

1024 49.5 23.5 32.7 0.5 1.9 34.6

Table 6  Clustering 17.79 GB raster image using a 2 node Hadoop cluster

Block size (MB) Elapsed 
time 
(min)

Average 
map time 
(min)

Average 
shuffle time 
(min)

Average 
merge time 
(min)

Average 
reduce time 
(min)

Total 
mapping 
time (min)

128 99.472 61.95 22.262 0.274 1.96 88.426

265 85.7 69.7 14.1 0.3 1.5 74.2

512 74.0 58.6 10.3 0.3 1.8 63.9

1024 114.2 95.3 103.3 0.3 1.7 104.1

18 GB 146.3 114.1 136.5 0.0 1.3 137.0
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K‑means using 50 node Hadoop cluster for Image No. 1

Table 3 shows the several statistics of clustering the Image No. 1 with 8000 × 6000 pixels 
using a full Hadoop cluster of 50 nodes. It is evident that the minimum elapsed time was 
recorded in the time where the image was stored using the block size 32 MB, that was 
followed by the block size of 64 MB and so on till the maximum block size of 256 MB. 
The same is clearly illustrated in Fig. 23 and it can be seen that all of average mapping 
time, average shuffling time, and the totally mapping time increase with the block size. 
The average merge and reduce time was not affected with the change in the block size of 
the image.

Figure 23 clearly shows the increase in the execution time with respect to the block 
size.

From the statistics we can infer that by increasing the block size, the number of the 
blocks created from the image will be reduced and due to less number of blocks, only a 
few number of Hadoop nodes (processing machines) will compute over the data. This is 
because several Data Nodes will not be even utilized due to non-availability of data local 
to them and this leads to increase in the execution time.

K‑means using 2 node Hadoop cluster for Image No. 1

The Hadoop cluster was resized keeping only a couple of Data Nodes. Table 4 represents 
the average mapping, shuffling, merging, and reduce phases in addition to the total map-
ping time with respect to the block size. It is found that the execution time was the least 
in the case of the blocks with size of 64 MB. It was followed by 96, 128 and 256 MB block 
size respectively. It can be noticed from Fig. 24 that the execution time increases with 
the increase in the block size.

From the statistics of executing K-means clustering model over Hadoop clusters with 
50 nodes, as available in Table 3, it is evident that the fastest execution time is 4.1 min 
with block size of 32 MB. From the statistics, available in Table 4, it can be noticed that 
the execution time has increase by 3 times due to limited number of nodes (= 2) and the 
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Fig. 23  Clustering 1.9 GB raster image with a 50 nodes Hadoop cluster
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minimum execution time is 11.5 min with block size of 64 MB. Figure 25 illustrates the 
elapsed time for both the clusters varying the block size.

Comparing results of K‑means between 2 nodes and 50 nodes Hadoop cluster for Image No. 1

Figure 26 shows a large increase in the time needed for shuffling the blocks with increas-
ing the size of the blocks. The shuffle time remains considerably the same with up to 
64 MB of block size for both 2 nodes and 50 nodes Hadoop cluster. For the 50 nodes 
cluster, the shuffle time varies from 1 min to 6.1 min for 64 MB to 256 MB block size 
respectively. For the 2 Nodes Hadoop cluster, the average shuffling time goes up to 
13.5 min in case of 256 MB.

It has been mentioned before that the processing time increases in the case of bigger 
blocks of data. With bigger blocks there will be less number of blocks. E.g., if an image is 
of 1 GB size, with a block size of 256 MB, it will result in only 4 blocks. This means that 
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Fig. 24  Clustering 1.9 GB raster image with a 2 node Hadoop cluster

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

16 32 64 96 128 256

Ti
m

e 
(m

in
ut

es
)

 

Block Size (MegaBytes) 

1-node

50-nde

Fig. 25  Comparing the elapsed time for running k-means with 1.9 GB raster image in 2 and 50 nodes 
Hadoop cluster



Page 28 of 34Alkathiri et al. J Big Data            (2019) 6:82 

only four mappers can ever run for processing the data from this image. For a large Clus-
ter, this will leave the resources unutilized and lead to an increase the execution time.

K‑means using 50 nodes Hadoop cluster for Image No. 2

The second image (Image No. 2) is for the same geographical location but with different 
resolution. It is a 6-band raster image and each band has 24000 rows and 18000 col-
umns. In an uncompressed form this image requires 4.83 GB storage with pixel depth 
of 2 bytes (24,000 rows × 18,000 columns × 6 bands × 2 bytes of data). After running 
the indexing method upon this binary file we get a plain text ASCII representation (an 
indexed image) of size 17.76 GB. For further processing, the initial set of centroids are 
provided (these are the same centroids which were provided for the previous image con-
sidering the same geographical location and to make sure that the k-means clustering 
technique receives the same input). The values presented in Table 5 and represented in 
Fig. 27 have been averaged by running the clustering technique four times upon a full 
cluster of 50 nodes. For each of the run, the block-size is changed and the file is updated 
to follow the new block size. As the current image is much larger than Image No. 1, the 
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block size have also been increase accordingly. The block size for the experimentations 
used are 128 MB, 256 MB, 512 MB, and 1024 MB respectively.

K‑means using 2 node Hadoop cluster for Image No. 2

From the values in Table 6 it can be observed that the most appropriate block size for 
the Image No. 2 is 512 MB which requires the minimum execution time. The values have 
been averaged over four consecutive runs to minimize error margin. For very large block 
size (of 18 GB), as represented in Fig. 28, the Shuffle time increases exponentially as the 
phase requires data to be transferred from one node to another and is heavily dependent 
on the network.

Comparing results of K‑means between 2 nodes and 50 nodes Hadoop cluster for Image No. 2

From the results represented in Fig. 29, the advantage of utilizing the Hadoop distrib-
uted environment for processing large raster images is evident. It can be seen that the 
execution time decreases considerably when the same Image (No. 2) is processes upon 
a full cluster of 50 nodes rather than two nodes cluster. In Fig. 29, the red line represent 
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Fig. 28  Clustering 17.79 GB raster image using a 2 node Hadoop cluster
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the time needed to cluster the image using two node or a Hadoop cluster of to machines 
whereas the blue line represent the time needed to do the same processes using 50 
nodes. Even for larger block size, the results remain constant and as is evident.

Figure 29 also shows that running the algorithm using two nodes, for the dataset, the 
block size was 512 MB provided the best performance. While processing the same data-
set using 50 machines, 256 MB block size is preferable. With a quick comparison of clus-
tering Image No. 2 (size: 18 GB) and Image No. 1 (size: 1.9 GB), it is found that 32 MB 
and 64 MB block size provided the minimum execution time for 50 Node cluster and 
2 node cluster respectively. It is concluded that the block size is an important factor to 
be considered for preparing the dataset along with other factors such as the number of 
nodes (machines) in the Hadoop cluster when deploying a geo-spatial Big Data process-
ing framework.

The 50 nodes Hadoop cluster is configured with about 360  GB of memory. From 
Fig. 30, it is visible that a large amount of memory is being used with 128 MB of data 
blocks and this can be attributed to the fact that all of the data nodes in the cluster are 
contributing. The use of memory decreases with the increase in the data blocks because 
several of the data nodes remain idle and does not contribute as no blocks are available 
local to them for processing. Similar results have been obtained with Image No. 1 with 
block size ranging from 16 to 256 MB and have been excluded for brevity.

Evaluating the results of clustering using the proposed technique with widely used 

geospatial image analysis software

Table 7 represents the percentage of the number of pixels in each cluster from the two 
different images. As the images are for the same geographic area but with a different res-
olution, the results of clustering with the proposed techniques and using ENVI, a widely 
used image processing application, are identical. The percentage difference for both the 
images have been calculated and verified for multiple runs as described in the above sec-
tions. The percentage difference is found to be negligible except in case of Cluster No. 4 
and Cluster No. 10 in the discussed case which validates the use of the proposed tech-
nique for multi-dimensional data.
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Conclusion and future work
The main objective of the present work is to utilize the advances in distributed process-
ing, specifically MapReduce programming paradigm, to facilitate big geospatial data 
processing and mining. The multispectral essence of the raster images has been pre-
served by converting multi-spectral space to multi-dimensional geometric space. The 
existing data mining and machine learning techniques are limited by scale and the ones 
even which are available for use in a distributed environment for processing raster data 
and scalability only support processing of single spectral band at a time. With the devel-
opment of this work, it has now become easier to port existing image processing tech-
niques for distributed processing of giga-pixel imagery and application of custom logic 
for development of applications.

A big geospatial data mining platform based on Apache Hadoop distributed pro-
cessing environment has been developed in this work. The developed mining plat-
form comes with a group of editing, filtering and other image processing techniques to 
help better extracting the geographical features out of the image data. The processing 
(mining) capabilities and other image processing facilities of the framework have been 
tested using several images of unconventional size in scale of giga-pixels, and it shows 
the advantages of using the developed framework upon a distributed environment as 
compared to a desktop GIS application using a single machine. In a distributed envi-
ronment, clustering was performed on sample images over 50 node (machines) cluster 
and over 2 nodes (machines). ENVI, a desktop GIS application, was also used over the 
same image of a reduced resolution to analyze the results of the proposed clustering 
technique. There is a gain of factor of about 2 to 2.5 in time of data process depending 
on the block size employed. The clustering results comparison shows maximum devia-
tion of 2.7 percent which is negligible. The analysis of times of various sub processes 
shows clearly advantages of this processing in MapReduce programming. The classified 
image data can be used further for spatial as well as temporal characterizing the geo-
spatial objects in an area for scene modelling and also modelling geo-spatial processes. 

Table 7  Comparing the number of pixels for the important clusters

Cluster no. No. of pixels 
in Image 
No. 1

Cluster 
area 
(X%)

No. of pixels 
in Image 
No. 2

Cluster 
area 
(Y%)

No. of pixels 
in (ENVI 
results)

Cluster area 
(Z%)

Difference 
(Z − (Y + X)/2)

1 505,827 1.05 4,553,869 1.05 82,766 1.40 0.34%

2 1,807,105 3.76 16,300,000 3.77 229,199 3.87 0.10%

3 1,989,750 4.15 17,900,000 4.14 304,015 5.14 0.99%

4 3,055,365 6.37 27,500,000 6.37 534,589 9.03 2.66%

5 4,917,089 10.24 44,300,000 10.25 582,282 9.84 0.41%

6 5,598,346 11.66 50,300,000 11.64 647,603 10.94 0.71%

8 6,484,568 13.51 58,400,000 13.52 822,424 13.89 0.38%

7 6,819,688 14.21 61,400,000 14.21 854,459 14.43 0.22%

9 7,689,434 16.02 69,200,000 16.02 896,664 15.15 0.87%

10 9,132,838 19.03 82,200,000 19.03 965,999 16.32 2.71%

Total 48,000,000 100 432,000,000 100 5,920,000 100 0.00

(~ 48 Megapixels) (~ 0.43 Gigapixels) (~ 6 Megapixels)



Page 32 of 34Alkathiri et al. J Big Data            (2019) 6:82 

The results of clustering have been tested by going from spatial to geometrical space and 
similarly other methods can also be adapted to support processing of multiband data 
coherently.

The results derived also highlight the importance of requirement of compute, memory, 
storage and network infrastructure for processing such large datasets. Appropriate data 
storage mechanisms are also required for fast access to large amounts of data as in a dis-
tributed environment the data is distributed across a number of nodes. The nodes where 
the data blocks are stored contribute to the overall performance of the system. This has 
also been evaluated by using different block size when storing the data.

The proposed work can be extended to support other spatial mining techniques. Dis-
tributed processing techniques developed for clustering can be extended to support 
other types of processing. Workflows are an important component of any geospatial 
data mining systems and the current system can be extended to support workflow type 
of applications. The current system does not have a visualization interface which can 
be provided and will allow to see big geospatial data at various levels of abstractions. A 
workflow pipeline which can inserts the data into a database for an application server 
such as GeoServer is highly desirable and is currently being worked out.
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