
Advancing community detection using
Keyword Attribute Search
Sanket Chobe1 and Justin Zhan2* 

Introduction
Graphs have played an important role in the big data and social network analysis in
recent years [1]. It is straightforward to represent and manage the information from dif-
ferent domains with the help of graphs. It is efficient to define the relationship between
different entities and get the required knowledge from graphs. Due to changing dynam-
ics of users over the Internet, different applications of the social network, and the tre-
mendous rise in the volume of information, it is critical to design a method to efficiently
extract the knowledge and discover hidden patterns among the group of users. The com-
munity detection is widely used to derive a group of nodes closely interacting and having

Abstract 

As social network structures evolve constantly, it is necessary to design an efficient
mechanism to track the influential nodes and accurate communities in the networks.
The attributed graph represents the information about properties of the nodes and
relationships between different nodes, hence, this attribute information can be used
for more accurate community detection. Current techniques of community detection
do not consider the attribute or keyword information associated with the nodes in
a graph. In this paper, we propose a novel algorithm of online community detection
using a technique of keyword search over the attributed graph. First, the influential
attributes are derived based on the probability of occurrence of each attribute type-
value pair on all nodes and edges, respectively. Then, a compact Keyword Attribute Sig-
nature is created for each node based on the unique id of each influential attribute. The
attributes on each node are classified into different classes, and this class information
is assigned on each node to derive the strongest association among different nodes.
Once the class information is assigned to all the nodes, we use a keyword search
technique to derive a community of nodes belonging to the same class. The keyword
search technique makes it possible to search community of nodes in an online and
computationally efficient manner compared to the existing techniques. The experi-
mental analysis shows that the proposed method derive the community of nodes in an
online manner. The nodes in a community are strongly connected to each other and
share common attributes. Thus, the community detection can be advanced by using
keyword search method, which allows personalized and generalized communities to
be retrieved in an online manner.

Keywords:  Keyword search, Attributed graphs, Attribute index, Personalized
community detection, Generalized community detection

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Chobe and Zhan ﻿J Big Data (2019) 6:83
https://doi.org/10.1186/s40537-019-0243-y

*Correspondence:
jzhan@uark.edu
2 University of Arkansas, 227
N. Harmon Ave., Fayetteville,
AR, USA
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0001-5458-8282
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0243-y&domain=pdf

Page 2 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

a strong relationship with each other, which is helpful to get more positive results from
social network analysis. For example, if the nodes in a network represent the user pro-
files in a social network, and edges represent the interaction between these nodes, then
a community of nodes provides the group of users who are closely interacting with each
other and share some similar characteristics. The community detection can be used to
derive the information about a group of people who go to the same school, who work at
the same organization, or group of books by the same publication. This strong associa-
tion among the nodes in a network can also be used to predict the link formation or edge
creation. Deriving the strongest community among the large network graph has become
an increasingly important and critical task [2, 3] in graph analytics. Several different
techniques of community detection are already defined. Although more advance work is
in progress, there are small number of efficient mechanisms to get the knowledge from
attributed graphs. The large volume of information is represented in the form of network
graph, where some key attributes are assigned to the nodes, and relationship between
different nodes are represented in the form of edges. It is important to consider these
attributed graphs for the community detection, which can give us much more useful
information than general network graphs. Current techniques of community detection
can be categorized into three different categories. First, the Structure-based community
detection, where the community of nodes is formed based on the connectivity between
nodes. The techniques like Label Propagation [4], Random Walk [5], and Modularity
Optimization [6] focus on the probability of edge creation or connectivity between two
nodes. These probabilistic models derive a community based on the actual and possible
connection between different nodes, and group them together based on the connectivity
of nodes. This type of community detection gives the nodes which have high connectiv-
ity with each other and form a cohesive structure. However, these techniques do not
consider the attributes associated with each node, hence, the accurate communities may
not be derived from the attributed graphs. Another class of community detection tech-
nique considers the attributes associated with each node, also known as the Attribute-
based community detection. However, it is possible that the two nodes which share the
same attributes may not be connected to each other, hence the community of nodes may
not be structurally cohesive. There are some methods which consider the attribute simi-
larity as well as the connectivity between nodes while deriving a community of nodes.
The fundamental principle behind all these methods is to create a group of nodes which
share some common features. But, we do not have any prior information about how
many communities and what types of relationships are present between the nodes in a
community. Finding communities in an online manner is a more efficient and accurate
way of extracting knowledge on a real-time scale. Thus, we introduce a novel method
to derive the community of nodes in an online manner based on the attribute similarity
and the connectivity of nodes in a graph. This paper defines a new mechanism to extract
community of nodes from attributed graphs by using the keyword search technique. The
proposed method is used to derive the communities in an online manner, which makes
it possible to generate personalized communities based on the user queries. Since a key-
word search approach is used to detect the communities, proposed method is able to
derive these communities in a more accurate and efficient manner. The key contribu-
tions to the novel method are listed as follows:

Page 3 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

1.	 A novel technique of community detection is developed based on the existing revo-
lutionary research [2, 7–12].

2.	 The node attributes are used to represent the keywords in the attributed graphs to
design a novel algorithm of community detection using keyword search over attrib-
uted graphs.

3.	 Since the multiple keyword attributes are present on every node, it is important to
find the influential attributes from the set of attributes, which in turn leads to influ-
ential nodes. A new measure, called as node-weight, is defined to derive the influen-
tial attributes among all the nodes.

4.	 Apart from Node-weighted attributes, it is necessary to find the probability of con-
nectivity of nodes which share similar attributes. Hence, another threshold value,
called as edge-weight, is given to filter out the attributes which have the least prob-
ability of being shared among different nodes, and find the influential nodes in terms
of attribute similarity.

5.	 Once the influential attributes are determined, we assign a vector of keyword attrib-
utes on each node. These node attributes can be classified into different classes based
on the similarity of two attributes. We use Jaccard Similarity Index to measure the
similarity between two nodes.

6.	 These similar attributes between the two nodes contain the Node-weighted and Edge-
weighted attributes. The average value of the weight of common attributes give the
probability of edge creation between two nodes based on shared similar attributes.
Thus, these nodes can be classified together based on probability of connectivity, and
attribute similarity.

7.	 A class label is assigned to each node while classifying the attributes in differ-
ent classes. This class information is used as a keyword on each node, and can be
used for personalized as well as generalized community detection by using keyword
search techniques.

8.	 The experimental analysis shows that the proposed algorithm is able to derive the
personalized community for a query, and generalized communities for all class of
attributes. Thus, the proposed mechanism is able to derive community of nodes in an
online and efficient manner based on the keyword attributes.

The rest of the work is organized as follows. “Related work” section presents the
related work and background. “Methods” section gives the detailed explanation of
the proposed approach. “Keyword search based algorithm” section describes Key-
word Search based algorithm for personalized as well as generalized community
detection in detail. “Algorithm analysis” section analyzes the performance of the
proposed approach. “Experimental results” section describes experimental analysis,
and “Concluding remarks” section provides the conclusive remarks for the paper.

Related work
This section reviews the related work about community detection and keyword
search over the large network graphs.

Page 4 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

Community detection on attributed graphs

Since the inception of graph theory, many algorithms have been proposed for different
applications of graph theory [2, 7, 9]. For instance, social network analysis started in
1930s and has become one of the most critical and revolutionary areas of research in the
big data community.

Community detection

A community is also known as a cluster, and defined as a group of vertices which prob-
ably share common features, or have a strong relationship with each other formed by
the strong distribution of edges between vertices. In Fig. 1, a graphic representation of a
sample graph with communities is shown.

A community [13] can also be defined as a dense subgraph, since the nodes in same
communities have dense connection with each other than that of different communi-
ties. Each community represents a functional system or working unit, due to which it is
necessary to find different effective techniques of community detection. The community
detection techniques can be categorized as follows:

Structure‑based community detection

This class of community detection determines the probability of possible connection
based on the existing connections between nodes, and groups them together in one
community. The existing methods like Label Propagation [4] and Random Walk [5] gen-
erate the community structure based on a probabilistic model. The Label Propagation
[4] assigns label to each node and changes the label of each node based on the label of
neighbors. Though Label Propagation [4] is computationally efficient, it does not con-
sider the attributes associated with each node, hence, may not be an effective method
to create a group of nodes based on the label of neighbors for attributed graphs. The

Fig. 1  A simple graph with communities highlighted by different colors. A graphical representation of a
sample graph with communities

Page 5 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

Random Walk [5] method works on the principal of Markov Chain Process, where nodes
are grouped together based on the probability of transition from one node to another.
Since the current Random Walk [5] based methods do not consider the attributes asso-
ciated with nodes, hence, the generated communities may not have attribute similar-
ity between the nodes in a community. Girvan and Newman proposed a new measure
known as the modularity [6, 9], which is defined as the fraction of connections within a
community in the actual network minus expected fraction of connections in a random
network. As per the definition of modularity, a maximum modularity gives the best par-
tition of a network [9]. Fortunato and Barthelemy discovered that the modularity opti-
mization [13] gives extra importance to the number of connections in a network, and
hence this method cannot correctly classify some specific cases of networks. The main
limitation of the modularity optimization [13] approach is that it does not consider the
overall size of a community. To overcome this limitation, Rosvall and Bergstrom [3] used
the full description length of a partition of a network to compress the network-based
communication process. Li et al. [14] proposed a fast and accurate measure of mining
community structure by providing a kernel function to measure the leadership of each
node. Once the leader nodes are determined, a discrete-time dynamical system is used
to assign the community for each node dynamically. All these methods consider the
actual and possible connection between different nodes, and generate the structurally
cohesive community structure. However, none of the above methods considers the node
attributes, and hence, may not be the accurate measure to generate community struc-
tures for an attributed graph.

Attributed‑based community detection

Many different techniques of community detection have considered large complex graph
without any keyword or attributes on its nodes. There are few techniques of community
detection for the network graphs having node attributes [15]. Fang et al. [16] proposed
the community detection on large attributed graphs by creating an index tree based on
the keyword attribute information. Zhou et al. [17] proposed a method to derive the
clusters by computing the pairwise similarity between the nodes using keywords and
links between the nodes. Ruan et al. [18] proposed a method called as CODICIL, where
new edges are created based on the content similarity, and then effective graph sam-
pling is done to boost the efficiency of graph clustering. In another approach [19], the
attributed graph community detection is done based on probabilistic inferences. CESNA
[20] detects the overlapping communities by assuming communities generate content.
He et al. proposed another method known as MISAGA, [21] for mining subgraphs in
an attributed graph. MISAGA [21] defines a probabilistic measure to determine the
strength of association between a pair of attribute values, then it determines the degree
of association between each pair of vertices to group them together in one community.
All these methods consider the degree of association between a pair of vertices based on
a set of attributes on vertices. However, these methods may not consider the structure
cohesiveness or the connectivity between a pair of vertices while creating the commu-
nity structure. It is necessary to design a mechanism which will consider both, structure
cohesiveness and attribute similarity for a group of nodes belonging to the same com-
munity. There are few techniques which achieve this objective [22].

Page 6 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

Online community detection

There are some techniques to determine the communities in an online manner, that
is based on a query request. Few of these methods [23–26] obtain the community for
given vertex V based on the query over q. Such a personalized community detection
technique requires different measures like the minimum degree, k-core, etc., which
generate the structurally cohesive communities. Sozio et al. [23] proposed the first
algorithm known as the Global to find the k̂-core containing vertex q. Cui et al. [25]
proposed the Local to enhance the efficiency of the Global by expanding techniques
to local search space. There are many other methods like k-clique [24] and k-truss
[27] which searches the communities in large complex networks, but all these tech-
niques assume non-attributed graphs, and does not consider the important keyword
attribute information on nodes which can be used for the generation of more accurate
communities in the graph.

Keyword search over graphs

The keyword search over graphs [28–31] have attracted significant attention in recent
years since it provides valuable information to users without the knowledge of underly-
ing entities, schema, or access mechanism. Many advanced keyword search techniques
[28–32] are developed to search information over such large complex graphs. We use
the concept of keyword search over graphs to generate different communities in the
graph. We apply the naive keyword search approach to search the keyword attributes
on the nodes, and group them together based on the similarity between two nodes. The
keyword search approach gives the flexibility of searching the required group of nodes in
an online manner. Since the social network graphs may have multiple attributes assigned
to their nodes, a mechanism is designed to derive clusters in the graph based on the
attribute similarity among different nodes. The next section defines the problem, and
describes the key definitions and major aspects of the proposed approach.

In this paper, we consider some important measures described by structure-based,
attribute-based, online community detection, and keyword search methods to design a
novel method for more accurate community detection over large attributed graphs.

Methods
The proposed approach for community detection using Keyword Attribute Search is
explained in detail in this section. Before explaining the proposed approach, it is neces-
sary to define the problem, provide some corresponding definitions, and lemmas to sup-
port the proposed approach.

Data mdel

Let a network graph is denoted as G = (V ,E,Λ) , which is an undirected and attribute graph.
V is the set of vertices, E is the set of undirected edges, and Λ is the set of attributes assigned
to each vertex vi ∈ V in the graph. If two vertices vi and vj are connected to each other
through an undirected edge, then such a graph is known as a connected graph. The set of

Page 7 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

attributes for all vertices vi ∈ V is denoted as Λ = {attr1, attr2, attr3...attrn} , and the set of
attribute values associated with each vertex vi is denoted as attrji = {attr1i, attr2i, ...attrji)}.

In this paper, an undirected attributed graph G = (V ,E,Λ) is considered. Let n and m be
the size of V and E, respectively. Table 1 represents the meaning of all the symbols used in
the paper.

Preliminary

A community can be defined as a subgraph of G that have the nodes densely connected
to each other to form a cohesive structure, and sparsely connected to nodes in other com-
munities. The structure cohesiveness of a graph G is defined by how different nodes are
connected to each other. The minimum degree of all vertices in a community is k or more
[23, 25, 26, 33, 34], also known as k-core , which is an important condition for structure
cohesiveness of G.

Definition 1 (k‑core)

Given an integer k ( k ≥ 0 ), the k-core [23, 33, 35] of G denoted by Gk is the largest subgraph
of G such that, ∀v ∈ Gk , degGk

(v) ≥ k . The notion of k-core [16, 23, 33] makes sure that all
the nodes in a community Gk are densely connected to each other in some way, and hence
makes the structure cohesive.

Definition 2 (Jaccard Similarity Index)

Given a graph G = (V ,E) and two vertices v1, v2 ∈ V which have set of attributes X1 and
X2 respectively, the measure of similarity between the two vertices can be given by the Jac-
card Similarity Index [36] Sim(v1, v2) and defined as follows:

(1)Sim(v1, v2) =
|(X1 ∩ X2)|

|(X1 ∪ X2)|

Table 1  Symbols and meanings

Symbol Meaning

G(V, E) An undirected graph with set of vertices V and set of edges E

� A set of attributes for set of vertices V

q keyword or query to be searched on attributed graph G

degG(V) The degree of vertex V in G

L(X(q)) The length of the set of attribute X for vertex q

G[S′] The largest connected subgraph of G such that q ∈ G[S′] , and S ⊂ X(v)

Sim(q1, q2) Jaccard Similarity Index to measure similarity between q1 and q2

θc Minimum threshold constant for similarity between q1 and q2

θw Minimum threshold constant for average weight of the attributes shared
between q1 and q2

θd Maximum threshold constant for geodesic distance between q1 and q2

Wv Minimum threshold constant for Node-weight on attribute type-value pairs

We Minimum threshold constant for Edge-weight on attribute type-value pairs

GD(q1, q2) Shortest path length or geodesic distance between q1 and q2

Page 8 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

The Jaccard Similarity Index [36] measure can be useful to give some threshold con-
stant, which can be used to classify the vertices with a similarity of attributes greater
than or equal to the threshold constant into a common group of vertices.

Definition 3 (shortest path length or geodesic distance)

Apart from the attribute similarity, it is necessary that the two nodes v1 and v2 are con-
nected to each other at a minimum possible distance. If two nodes v1 and v2 are con-
nected to each other, but far away from each other in a network than the other nodes,
then such nodes may not be the part of a community. Since the communities contain
nodes which are densely connected, the shortest path distance between two nodes
should be minimal to make the community structure dense, or structurally cohesive.
The shortest path length or geodesic distance [37] can be used to calculate and specify
the maximum threshold on the distance between two nodes v1 and v2 . The shortest path
length or geodesic distance [37] can be given as follows:

Problem definition

The problem is defined as follows:

1.	 The vertices vi ∈ V in a subgraph should be connected to each other to form a cohe-
sive structure, and sparsely connected to other subgraphs.

2.	 The vertices vi ∈ V which have similar attributes should be partitioned into the same
group, while the vertices with different attributes should be partitioned into separate
groups.

Based on the above properties, the formal problem definition for the community
detection in attributed graphs is stated in the following definition:

Problem 1 (attributed community detection)

Given a graph G(V ,E, �) , positive integer constants k, d, θc , θw ,Wv , and We , a vertex
v ∈ V  , and a set of attributes attri ⊂ X(vi ∈ V) , return a set of subgraphs such that fol-
lowing properties should be satisfied ∀Gv ∈ G:

1.	 Connectivity Gv ∈ G is a connected subgraph and contains v ∈ V ;
2.	 Dense structure ∀v ∈ Gv following properties should be satisfied;

a.	 all the nodes v ∈ V in a subgraph have degree greater than or equal to the
K_core value, degGv (v) ≥ k , k is a minimum threshold for k-core value.

b.	 if two nodes (vi, vj) ∈ V are connected, then the distance between them should
be less than or equal to the maximum threshold constant d of the shortest path
length or geodesic distance, GD(vi, vj) ≤ d.

3.	 Attribute sharing ∀v ∈ Gv and ∀X ∈ � following properties should be satisfied;

a.	 each node v ∈ V should have a set of influential attributes such that,
P(attri ∈ v) ≥ Wv and P(attrij ∈ vj , attrik ∈ vk) ≥ We , where P(attri ∈ v) is

(2)GD(v1, v2) = min(∀i∀jd(vi, vj))

Page 9 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

the probability of attribute attri on all vertices, P(attrij ∈ vj , attrik ∈ vk) is the
probability of attribute attri shared between vertices vj and vk , Wv and We are
minimum threshold constants for probability of attributes on nodes and edges,
respectively.

b.	 if two nodes vi, vj ∈ V are connected, then the two nodes should share the maxi-
mal similar influential attributes, and the average weight of common influential
attributes should be greater than or equal to Average Edge weight, We(vi, vj) ≥ θw.

c.	 if two nodes vi, vj ∈ V are connected, then the two nodes should share the max-
imal similar attributes, and the similarity between these attributes should be
greater than or equal to Jaccard Similarity Index, Sim(vi, vj) ≥ θc.

The above properties like k-core and shortest path length make sure the community
structure is structurally cohesive, and the property of Node-weight, Edge-weight, and Jac-
card Similarity Index makes sure the community structure follows the attribute cohe-
siveness. Both of these requirements are critical for an accurate community detection.
Figure 2a, b shows the attributed graph with the corresponding communities based on
the problem definition. Figure 3 shows another example of ground truth network dataset
having certain number of communities. Our focus is to design an efficient mechanism
to derive communities not only in terms of interaction between the vertices in a com-
munity, but also in terms of attribute similarity between all the vertices in a community.

Community detection using keyword search

Although the following method [16] is applicable to attributed graphs and generate
communities which satisfies the structure and attribute cohesiveness, but it does not
consider the attribute type-value pair for the attribute cohesiveness. Since there can be
multiple values for one attribute type, it is necessary to identify the influential attribute
type-value pairs, and derive the communities based on these influential attributes. Thus
the proposed method is significant to identify the important attribute type-value pairs,
and derive more accurate communities for these attributes. The proposed method high-
lights the importance of finding the influential attributes. The Node-weighted and Edge-
weighted attributes are useful to find the probability of edge creation between two nodes
based on the connectivity as well as attribute similairty. The existing method [16] does
not find such influential attributes or probability of edge creation, hence the proposed
method is useful to find accurate communities. The vertices which have strong connec-
tivity and common keyword attributes can be grouped together in the same commu-
nity. An algorithmic framework is designed to classify keyword attributes on all vertices
based on the similarity between a set of attributes on two vertices, and the connectivity
between two vertices. These classes can be used to search the vertices strongly related to
each other, and hence, eventually the community. Following major steps are involved in
the community detection using keyword search method:

1.	 A probability threshold value called as Node-weight is defined, which derive the
influential attributes. If the probability of an attribute type-value pair is greater than

Page 10 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

Fig. 2  Karate-club network dataset with ground-truth communities. A simple example for Karate-club
ground-truth network dataset with corresponding communities

Fig. 3  Political-books network dataset with ground-truth communities. A simple example of Political books
ground-truth network dataset

Page 11 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

or equal to Node-weight , then that attribute type-value pair is considered as an
important attribute.

2.	 A probability threshold value called as Edge-weight is defined, which derives the
influential attributes in terms of the connectivity. If the probability of sharing of
any attribute type-value pair between all pair of vertices is greater than or equal to
Edge-weight , then that attribute type-value pair is considered as an important attrib-
ute.

3.	 All the influential keyword attribute information on nodes can be used to construct
an Attribute Index Structure, where different keyword attributes are classified and
grouped together in separate groups based on the attribute similarity between the
nodes, and their degree structure.

4.	 The factor Jaccard Index, and average weight of the Edge-weighted attributes between
a pair of vertices, is used to measure the similarity of attributes, while k-core and
geodesic distance are used to measure the connectivity of the vertices sharing similar
attributes.

5.	 While classifying each vertex in the graph based on the attributes, a new class of
attributes can be identified and stored in the Attribute Index Structure. This attribute
class information can be assigned as a label to each node of the graph with the key-
word attribute information, to find strongly associated nodes.

6.	 The naive keyword search algorithm is used to determine the personalized communi-
ties in the graph based on a query by using different class of attributes assigned to all
vertices in the graph.

7.	 For a generalized community detection, the naive keyword search algorithm is used to
determine all communities in the graph based on the class information and keyword
attribute information on different nodes in the graph.

All the classes can be accessed iteratively to determine different nodes which belong to
the same class, and which share strong association in terms of keyword information. The
group of such nodes will form a community structure in the graph. In the next section,
an algorithmic framework is defined and explained in detail for each major step.

Keyword search based algorithm
The Keyword Attribute Search-based algorithm requires that every node should have
some keyword or attributes associated with them, these keyword attributes are used to
search a specific type of attribute and group them together in one class. For example,
we use two network datasets Karate-club and Political Book in Figs. 2a and 3 respec-
tively, which have ground-truth communities associated with them. We assign random
attributes on each node of both the datasets, and derive communities by using Keyword
Search-based algorithm. The random attributes assigned to each node of the Karate-club
network is shown in Table 2.

Following major steps are involved in the Keyword Attribute Search-based algorithm:

Node‑weight

The first step, in the process of our community detection problem, is to determine the
influential nodes among all the nodes in a graph.Since each node v ∈ V contains a set

Page 12 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

of attributes X ∈ � , and each attribute type attrij ∈ X might be distributed on the dif-
ferent nodes with different values, it is important to find the influential attribute type-
value pairs among all the node attributes. The probability of each attribute type-value
pair on all vertices can be used to get influential attributes.The influential attributes can
be found based on the probability of each attribute type-value pair among all the nodes
in the graph. Let O(attri) is the number of times attri present among all the vertices, N
be the number of nodes in the graph, then the probability of attri can be given as follows:

For the example network shown in Fig. 2a, if we assume the maximum threshold for
Node-weight Wv = 20.0% , then the corresponding important attributes are listed in
Table 3.

Edge‑weight

Once all the important attributes are determined based on the probability of each attrib-
ute type-value pair on all the nodes of a graph, we consider the probability of occurrence

(3)P(attri) =
O(attri)

N
=

∑N
j=1 attri

N

Table 2  Node attributes of sample graph in Fig. 2a

Attribute type Set of values

School {‘UNLV’, ‘SUNY’, ‘ASU’}

Employer {‘Caesars’, ‘MGM’, ‘Amazon’, ‘Google’}

Role {‘Student’, ‘Professor’, ‘Software Engineer’, ‘Manager’, ‘Team Lead’}

Sports {‘Soccer’, ‘Baseball’, ‘Badminton’, ‘Basketball’}

Vehicle {‘Toyota’, ‘Hyundai’, ‘Mercedes’, ‘Audi’, ‘BMW’, ‘Chevrolet’}

City {‘Las Vegas’, ‘New York’, ‘Phoenix’}

Country {‘USA’}

Table 3  Node-weight for Karate-club network

Id Attribute type-value pair Probability

1 Country: USA 100.0

2 School: UNLV 50.0

3 School: SUNY 35.0

4 City: New York 50.0

5 City: Las Vegas 50.0

6 Role: Student 38.00

7 Sports: Baseball 38.00

8 Sports: Soccer 32.00

9 Employer: Caesars 30.00

10 Employer: Google 27.00

11 Employer: Microsoft 24.00

12 Employer: MGM 21.00

13 Vehicle: Hyundai 22.00

14 Vehicle: Chevrolet 21.00

Page 13 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

of each attribute type-value pair on each edge, that is, how many times each attribute
type-value pair is shared between all pair of vertices. The threshold value of probabil-
ity of each attribute type-value pair on each edge can be called as the Edge-weight. If
the probability of each attribute type-value pair on each edge is greater than or equal
to Edge-weight, then that attribute type-value pair is considered to be influential. Let
O(attrij) and O(attrik) be the number of times attribute attri present on vertices j and k,
respectively. O(attrij , attrik) represents the number of times attri shared between vertex
j and k, when j and k are connected to each other. The probability of an attribute type-
value pair shared among all the pair of vertices can be given as follows:

We can determine the Edge-weight from the above important attribute type-value
pairs listed in Table 3, and the all the edges in Karate-club network graph sharing these
attribute type-value pairs. If we assume the maximum threshold value for Edge-weight
We = 10.0% , then, corresponding influential Edge-weight attributes are listed in Table 4.

Keyword attribute signature

The influential attributes can be stored in a decreasing order of the probability value, and
a unique index ki → attri|∀attri ∈ X value can be assigned to the attribute type-value
pair. The Keyword Attribute Signature contains a vector of these unique index values for
a set of attributes on each node. Thus, the Keyword Attribute Signature is a compact
representation of the attribute values on each node. The unique Id associated with each
attribute type-value pair shown in Table 4 is used to create the Keyword Attribute Signa-
ture on each node.

Attribute Index Structure

In the next step, we create an Attribute Index Structure for the Keyword Attrib-
ute Signature assigned to all nodes. Given a large attributed graph G = (V, E), the
task is to determine different classes of attributes from all the Keyword Attribute

(4)P(attrij , attrik) =

∑N
i=1

∑N
j=1O(attrij , attrik)

N

Table 4  Edge-weight for Karate-club network

Id Attribute type-value pair Probability

1 Country: USA 100.0

2 School: UNLV 38.0

3 School: SUNY 36.0

4 City: New York 38.0

5 City: Las Vegas 22.0

7 Sports: Baseball 16.00

9 Employer: Caesars 10.00

11 Employer: Microsoft 15.00

13 Vehicle: Hyundai 12.00

14 Vehicle: Chevrolet 13.00

Page 14 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

Signatures on all vertices. Since we do not have prior information on the type of
attributes in the graph, this information can be determined from the keyword attrib-
utes on different nodes. The Attribute Index Structure is created iteratively for
all nodes and will contain all the class of attributes in the large network graph.
Each class of attribute is created iteratively by comparing each node with other
nodes. If the two nodes have degree greater than or equal to k_core, then they are
considered for the classification. If the two nodes have degree greater than or
equal to k_core, and are similar to each other based on Jaccard Similarity Index,
then the Keyword Attribute Signature on two nodes can be merged into one class,
and two nodes belong to the same class. The Attribute Index Structure would con-
sist of the inverted list of Keyword Attribute Signature for each node with a cor-
responding class, first visited node, and the total number of vertices which belong
to the same class of attributes. The Attribute Index Structure can be denoted as
I = {C1:{X1,V1, count(C1)},C2:{X2,V2, count(C2)}, ...,Cn : {Xn,Vn, count(Cn)}} , where
Ci is the class assigned to each attribute set Xi , and Vi is the first node from which the
class Ci is derived. The pseudo-code given in Algorithm 1 is used to create the Attrib-
ute Index Structure:

Table 5 represents the Keyword Attribute Index structure created for the Karate-
club network dataset.

Keyword attribute class information

Once the Attribute Index Structure is created, it is used to assign the class of attribute
Ci on each vertex vi ∈ V along with the Keyword Attribute Signature information. The
main idea behind the class is to create awareness about strong relationship or com-
mon properties between the nodes. Initially, each vertex with the Keyword Attribute
Signature is considered as a separate community while searching it’s relationship with
other vertices, this Keyword Attribute Signature based search leads to different nodes
which share the same attribute information, which eventually helps derive the com-
munities in graph. However, for a large network graph, there are numerous type of
attributes associated with all nodes, hence it becomes necessary to classify Keyword
Attribute Signature at each node in different classes. There should be a parameter θc
to depict a maximum threshold of similarity between two sets of Keyword Attribute
Signatures on two vertices v1 and v2 , respectively, based on which it will be easy to
prune the search space over a large network

Table 5  Attribute Index Structure for Karate-club graph

Class Node V Attributes Count

1 1 {1, 2, 3, 4, 5, 7, 9, 11, 13, 14} 10

2 24 {1, 3, 7, 9, 11, 13} 7

Page 15 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

Algorithm 1 Keyword Attribute Index Structure

Input:
G = (V,E);
V = (V1, V2 . . . , Vn) : Set of vertices in the graph;
X = (X1, X2 . . . , Xm) : Set of influential attributes derived from Node-weight & Edge-
weight;
Xi = {attr1(Vi), attr2(Vi), . . . , attrj(Vi)} : Set of attributes associated with each vertex in
the graph;

Output:
I = {C1 : {X1, V1, count(C1)}, C2 : {X2, V2, count(C2)},.., Cn : {Xm, Vn, count(Cn)}} :
Attribute index structure where Cn is the class assigned to each attribute set Xm(Vn), and
Vn is the first node which belongs to Cn ;

1: Initialize i, j, k, count node = ∅
2: for Vertices vi ∈ V do
3: for Class Cj ∈ I do
4: k core ← get K core(G, vi) value;
5: attri ← attribute list X(vi) of Vi;
6: attrj ← attribute list Xj ∈ Cj of class Cj ;
7: Sim(attri, attrj) ← |attri ∩ attrj |/|attri ∪ attrj |;
8: Avg weight(attri, attrj) ← |We(attri ∪ attrj)|/|attri ∪ attrj |;
9:
10: if degree deg vi ≥ k core then
11: if Sim(attri, attrj) ≥ θc then
12: if Avg weight(attri, attrj) ≥ θw then
13: attri ∪ attrj ← Xj {for X(vi), Xj}
14: Vj ← vi classify vi in Cj ;
15: count(vi) + +; {Number of nodes for each class of attribute}
16: Merge attributes of vi, X(vi) ← X(vi) ∪ Cj in class Cj ;
17: end if
18: else
19: Ck ← k + 1 {Create a seperate class for attribute X(vi)};
20: Vk ← vi ;
21: Xk ←X(vi);
22: count(Ck) ← 1;
23: Set I = {Ck : {(Xk, Vk, count(Ck)}} ;
24: Set X(vi) ←X(vi) ∪ Ck where X(vi) ∈ X;
25: end if
26: end if
27: end for
28: end for
29: return I

graph. We can verify if an attribute is present in Attribute Index Structure I. If an
attribute attrij ∈ X(j) is present in the inverted list of attributes {Cj:Xj ,Vj , count(Cj)} ,
then we assign the corresponding class Cj of attribute attrij to the node vi . If an attrib-
ute attrij ∈ X(j) is not present in the inverted list, then the attribute attrij ∈ Xj is com-
pared with the existing attributes in I. The similarity between the two sets of attributes
is determined based on the Jaccard Similarity Index Sim(vi, vj) . If the Sim(Xi(vi),Xj(vj))
is greater than or equal to the threshold value θc , then the two attributes are combined
together Xi(vi) ∪ Xj(vj) , and same class Ci is assigned to the combination of attributes.
If Sim(Xi(vi),Xj(vj)) is less than the threshold value θc , then a new class Cj is assigned
to the attribute Xj(V(j)) along with the node Vj in the Attribute Index Structure I. We
also keep track of the count of nodes counti(Ci) which belong to same class of attributes
while creating the class of attributes in the Attribute Index Structure I. This information

Page 16 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

is useful in the personalized as well as generalized community detection. Based on the
key definitions and Attribute Index Structure I, following lemma is derived to prove that
the Attribute Index Structure is useful to classify nodes in different clusters, or groups to
form communities.

Lemma 1  Given G = (V ,E) and set of attributes X, if Xq = {Xq1,Xq2 , . . . ,Xqn} and
X̂q = { ˆXq1, ˆXq2, . . . , ˆXqn} are the set of attributes on the two vertices q and q̂ respectively,
and ( q, q̂) ∈ GXq i.e. q and q̂ belong to the same subgraph GXq . If L(Xq ∩ X̂q) ≥ Kq , then
Xq ∪ X̂q ∈ Cq , where Cq ∈ I .

Proof  To prove this lemma, we use a proof by contradiction. Let Xq = {Xq1,Xq2
, . . . ,Xqn} such that Xq ∈ Cq , and X̂q = { ˆXq1, ˆXq2, . . . , ˆXqn} such that X̂q ∈ Ĉq . Assuming
X̂q /∈ Cq , then it means that Xq and X̂q does not have any attribute in common, which
proves Cq is not equal to Ĉq and L(Xq ∩ X̂q) = φ . Thus, for every query or keyword ver-
tex Xq ∈ Cq and q ∈ Gq i.e. q belongs to the subgraph Gq , and X̂q ∈ Ĉq and q̂ ∈ Ĝq i.e. q̂
belongs to the subgraph Ĝq . This contradicts the given assumption that ( q, q̂) ∈ GXq and
also fails to satisfy the attribute cohesiveness. This proves the given lemma. �

Personalized community detection

As discussed in the previous steps, the Attribute Index Structure I contains the class Ci of
attributes , first node, and the number of nodes which belongs to class Ci , also, keyword
attribute Xi(vi) on each node vi ∈ V is updated to include the class Ci . This information is
crucial for the personalized community detection. The personalized community detection
can be defined as, a group of nodes having same class Cqi on each node for a given query
Q = {q1, q2, . . . , qi} , with i keywords in the query. For a given query Q which has keywords
or class of attributes, we access the class information Ci , the number of nodes which belong
to the same class counti(Ci) , and the first vertex Vi which belongs to class Ci from I. Once
this information is fetched from the Attribute Index Structure I, the naive keyword search
algorithm is used to search nodes which belong to class Ci . This naive keyword search starts
at the node Vi derived from I and finds the Breadth First Search (BFS) path with the node Vi
as the root node. It continues to search the nodes with same class Ci of attributes as node vi
along the BFS path of the node Vi . The Breadth First Search (BFS) path makes sure that all
the nodes are covered in the network, and every node is compared with other nodes to find
the nodes having similar class label. The keyword search has the upper bound of threshold
length counti(Ci) , and continues the keyword search until the counti(Ci) number of nodes
are not matched with the given class Ci . Following pseudo-code is used for the Keyword
Search required in personalized community detection. The pseudo-code for deriving the
k_core value for all the nodes, and the retrieval of a Breadth First Search Tree (BFS) for root
node Vi ∈ I is given by Algorithm 4 and Algorithm 5, respectively.

Page 17 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

Algorithm 2 Personalized Community Detection

Input:
G = (V,E,X);
V = (V1, V2 . . . , Vn) : Set of vertices in the graph;
X = (X1, X2 . . . , Xm) : Set of attributes in the graph;
Xi = {attr1(Vi), attr2(Vi), . . . , attrj(Vi)} : set of attributes associated with each vertex in
the graph;
I = {C1 : {X1, V1, count(C1)}, C2 : {X2, V2, count(c2)},.., Cn : {Xm, Vn, count(Cn)}} :
Attribute index structure where Cn is the class assigned to each attribute set Xm(Vn), and
Vn is the first node which belongs to Cn ;
Q = {q1, q2, . . . , qn} : Query having a list of keywords or class information;

Output:
Comm(Ci): Communities with the nodes sharing the keyword information in the query Q;

1: Initialize i, j, node = ∅;
2: for Query qi ∈ Q do
3: Class Ci ←qi;
4: if Class Ci ∈ I then
5: nodei = Vi; {Attribute Index Structure I = {Ci : {Xi, Vi, counti(Ci))}}}
6: k core ← get K core(G, vi) value;
7: if degree degnodei ≥ k core then
8: node counti ←counti(nodei);
9: bfs list(nodei) ←BFS Tree(G, vi); {Get BFS list of node vi}
10: while count ≤ node counti do
11: for Node vj ∈ bfs list(nodei) do
12: if degree degvj ≥ k core ∧GD(vi, vj) ≤ θd then
13: Classj ←attrj(vj) {Attribute list attrj(vj) of vj ∈ Class Ci}
14: if Query qi ∈ Classj then
15: Commi(qi) ←vj ; {Mark vj for community }
16: end if
17: end if
18: end for
19: end while
20: end if
21: end if
22: end for
23: return Comm(Q);

Generalized community detection

The generalized community detection can derive all communities from a network graph
based on the Keyword Attribute Signature associated with each node in the graph. The
personalized community detection is based on the keyword search query Q, while
generalized community detection may not need keyword search query Q. The Attrib-
ute Index Structure I has all the required information about different attributes Xi(vi)
on node vi ∈ V and class Ci of these attributes. All this information can be used for the
generalized community detection. The process starts by scanning the Attribute Index
Structure I for each class Ci of the attribute, then perform the keyword search at node
Vi associated with Ci in I. The Keyword Search process explained in the personalized
community detection leads to a community of nodes for each class Ci ∈ I . Same process
is performed recursively for each class Ci of the attribute, corresponding node Vi , and
the attributes Xi(Vi) associated with the node Vi . The pseudo-code given in Algorithm 3
explains the generalized community detection process in detail:

Page 18 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

Algorithm 3 Generalized Community Detection

Input:
G = (V,E,X);
V = (V1, V2 . . . , Vn) : Set of vertices in the graph;
X = (X1, X2 . . . , Xm) : Set of attributes in the graph;
attr(Vi) = {attr1(Vi), attr2(Vi), . . . , attrj(Vi)} : set of attributes associated with each
vertex in the graph;
I = {C1 : {X1, V1, count(C1)}, C2 : {X2, V2, count(C2)},.., Cn : {Xm, Vn, count(Cn)}} :
Attribute index structure where Cn is the class assigned to each attribute set Xm(Vn), and
Vn is the first node which belongs to Cn ;

Output:
Comm(Ci): Communities having the nodes vi belong to Ci ∈ I;

1: Initialize i, j, node = ∅;
2: for Class Ci ∈ I do
3: Class Ci ← query qi;
4: nodei = Vi; {I = {Ci : {Xi, Vi, counti(Ci)}}}
5: k core ← get K core(G, vi) value;
6: if degree degnodei ≥ k core then
7: node counti ← counti(nodei);
8: bfs list(nodei) ←BFS Tree(G, vi); {Get BFS list of node vi}
9: while count ≤ node counti do
10: for node vj ∈ bfs list(nodei) do
11: if degree degvj ≥ k core ∧GD(vi, vj) ≤ θd then
12: Classj ← attrj(vj) {attrj(vj) = Ci}
13: if qi ∈ Classj then
14: Commi(qi) ← vj ; {Mark vj for community }
15: end if
16: end if
17: end for
18: end while
19: end if
20: end for
21: return Comm(Q);

The personalized community detection can be used to derive a particular commu-
nity from a graph in an online manner. However, the generalized

Algorithm 4 Find K core for All Vertices

Input:
G = (V,E,X);
Output:
K core : List of K core values for all the vertices;
1: Compute the degree of all the vertices degvi ;
2: Arrange the set V of vertices in the increasing order of their degrees;
3: for vi ∈ V do
4: K core[vi] = deg(vi)
5: for vj ∈ Neighbors(vi) do
6: if deg(vj) > deg(vi) then
7: deg(vj) = deg(vj)− 1
8: Arrange V in increasing order accordingly
9: end if
10: end for
11: end for

Page 19 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

Algorithm 5 Bredth First Search Tree (BFS Tree)

Input:
G = (V,E,X);
Q : Queue to add the visited vertices in the path;
Output:
bfs list : List of vertices in the BFS path starting at vertex vi ∈ I;
1: Add vi ∈ V to Q and mark it as visited;
2: while vi ∈ Q do
3: w = QueueFront(Q);
4: Remove Q;
5: for each visited vj adjacent to w do
6: mark vj as visited;
7: Add vj ito Q {Add(Q, vj)};
8: end for
9: end while

community detection can be used to derive all the communities from a graph without
any query in an online manner.

Illustration

The proposed method is explained by illustrating a simple example. We consider a small
graph with corresponding node attributes and edges as displayed in Fig. 4a. If we con-
sider the Node-weight and Edge-weight as 50% each, we get the influential attributes as
{1:School = UNLV } , {2:City = Las Vegas} , {3:Role = Student} , and {4:Role = Professor} .
We create the compact signature from the influential attributes as shown in Fig. 4a. If we
consider the Jaccard Similarity Index JCD as 40% , k_core and geodesic distance GD as 1
each, then we can apply the method to get the attribute index structure shown in Fig. 4b.
Each class identified in the attribute index structure is assigned as an attribute to each node
in the graph. The generalized community detection algorithm gives all the communities for
the sample graph as shown in Fig. 4c.

For example, if we look at the Karate-Club network graph shown in Fig. 2a with different
attributes on each node and the Attribute Index Structure shown in Table 5, we derive the
community of nodes that belong to the same class of attributes as shown in Fig. 5a. Simi-
larly, based on the previously defined measures, we derive the communities for the Politi-
cal-Books network dataset shown in Fig. 3. All the communities are displayed in Fig. 5b.

Algorithm analysis
The complexity analysis of the proposed method can be divided into following major parts
based on the major steps involved in the community detection process.

Node‑weight and Edge‑weight

The Node-weight and Edge-weight are calculated by calculating the probability of each
attribute on each node vi and edge eij , respectively. Let’s assume that there are n nodes and
m edges in a network graph, and each node contains an average of c attributes, then the
time required to calculate Node-weight and Edge-weight can be given as follows:

(5)[H]O(attri(vj)) =

c∑

i=1

n∑

j=1

O(attri(vj)) = O(c ∗ n) = O(n)

Page 20 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

Maximizing degree of nodes

Identifying the nodes, which have a maximum degree, satisfy the requirement of the struc-
ture cohesiveness. The k-core measure is used to identify such nodes with a maximum

(6)HO(attri(ejk)) =

c∑

i=1

m∑

j=1

m∑

k=1

O(attri(ejk)) = O(c ∗m) = O(m)

Fig. 4  Illustration of proposed method. A sample example to illustrate the proposed method and highlight
important steps of the proposed method

Page 21 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

possible degree. The k-core of a graph G can be identified within the time complexity of
O(m) , where m is the number of lines. Since all the n nodes of graph G are traversed to
identify the k-core value, the complexity of the process to maximize the degree of nodes can
be given as follows:

(7)O(K_core) = min(degK_core(G,V)) = O(n+m))

(8)O(K_core) = O(n) = O(|V | + |E|)

Fig. 5  Communities generated from ground-truth network dataset using proposed method. Communities
generated for the sample ground-truth network datasets using the proposed method

Page 22 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

Attribute Index Structure creation

As explained in the previous section, the Attribute Index Structure is created to clas-
sify Keyword Attribute Signature on each node into different classes. These classes
are used to generate the communities based on the similarity of a set of attributes
on two nodes of the graph. Since we consider the nodes which have degree greater
than or equal to the threshold value of k_core, nodes which have degree less than the
k_core are rejected and will not be part of any community. This criteria prune the
search space over a large network graph. There is another threshold known as Jac-
card Similarity Index θc , which verify the similarity between two Keyword Attribute
Signatures. If the similarity between two sets is greater than or equal to θc , then such
sets are combined into one class Ci , otherwise, the two sets are classified into two dif-
ferent class of attributes Ci and Cj , respectively. If we consider the worst case scenario
where all the nodes are densely connected to each other, hence, they have maximal
degrees associated with them, then all the n nodes of the graph G are considered for
the Attribute Index Structure creation. Also, if we assume that there are c attributes
on each node of the graph G, then the time required for the comparison of the two
Keyword Attribute Signatures would be some constant value. Hence, the total time
required for the creation of Attribute Index Structure can be given by the following
equation:

Keyword search for community detection

Every class of attributes in the Attribute Index Structure Ci ∈ I is associated with a
vertex Vi , and the number of nodes counti(Ci) which belong to the class Ci . This infor-
mation is used for the personalized as well as generalized community detection by
using the Keyword Search method. Since the generalized community detection uses
each class of attributes Ci ∈ I  , the Keyword Search method is executed for every class
and generate communities. The Keyword Search starts at the first vertex Vi associated
with class Ci , then it searches iteratively for keyword Ci on every node in Breadth First
Search (BFS) tree oriented at root Vi ( vi ∈ BFS_TREE(Vi) ). It is also necessary to con-
sider another important requirement for cohesive community structure, i.e. shortest
path length between two nodes. The shortest path length between two nodes should
be less than or equal to a maximum threshold path length. Thus, the time required
for the generalized community detection with keyword search would consist of the
total time required for finding Node-weight, Edge-weight, and k-core, creating Attrib-
ute Index Structure, retrieving the BFS tree for vertex vi ∈ Ci , and determining the
nodes having shortest path length less than or equal to a maximum threshold path
length. The time required for the BFS tree creation is O(|V | + |E|) , but the nodes in
the graph have maximum degree forming a dense structure, hence, it is safe to assume
that the time required for the BFS tree creation is dominated by the number of edges,
that is O(|E|), or O(m). Now, the generalized community detection searches for all the
classes Ci ∈ I  , hence, the BFS tree is retrieved for each vertex vi associated with Ci ∈ I  .

(9)O(I) =

n∑

i=1

n∑

j=1

O(n ∗ c) = O(n) = O(|V |)

Page 23 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

In the worst case, each vertex vi belongs to separate class Ci , hence, the BFS tree
requires the O(n ∗ |E|) or O(|V | ∗ |E|) time. The time required to calculate the shortest
path length for n or |V| vertices is O(n2) or O(|V |2) . Thus, the total time complexity
for the generalized community detection can be given as follows:

Since as per the assumption, the given graph is undirected, attributed, and dense graph,
hence the number of edges |E| dominate the number of nodes |V|, which results in the
time complexity to be bounded with the number of edges or degree of the nodes. Hence,
the resultant time complexity for the generalized community detection can be given as
follows:

Experimental results
Different experiments are performed to verify the accuracy of the proposed method. We
consider only the undirected and attributed graph for all the experiments. All the experi-
ments are executed on 64 GB main memory in Intel Core i5 @ 3.70 GHz on an Windows
10 operating system. Python 2.7 is used to implement the algorithms with networkx
package for graph related operations.

Experimental setup

We divide our experiments into three parts. The first part of the experiment com-
pares the proposed approach with the existing methods. We use the network datasets
like Karate-Club, American Football, Political-Books, Dolphin-network, email-EU-core,
DBLP, and Amazon [38] with the ground-truth communities for the comparison experi-
ment. The second part contains the experiments on smaller datasets, where a number
of nodes in the graph are less than or equal to 1000, while the third part contains exper-
iments on the large datasets where the number of nodes in the graph is greater than
10,000. Since the community structure would contain the dense subgraphs, we include
the variation in a number of edges by creating synthetic graphs having 2000, 5000, and
10,000 nodes respectively, and the probability of edge creation 0.50, 0.40, and 0.30
respectively. We distribute a number of attributes randomly on each node of all the
above graphs where no attribute values are assigned to any node, so that the threshold
value for attribute classification varies, and the resultant community structure can be
verified. We use real datasets like YouTube video crawl [39], Twitter User Profiles [40],
Skytrax Airline Reviews, Terrorist Data [41], Caesars Entertainment anonymous data-
set, and Facebook for the second and third part of the experiment. We randomly assign
attributes to the datasets having only edge lists, and randomly create edges with a certain
probability of edge creation for the datasets having node list only. The networkx package
of Python 2.7 is used for all the graph related operation in the experiments.

Discussion

Table 6 shows the details about the runtime and a number of communities in each
comparison experiment. Figure 6 displays the result for comparison of runtime and

(10)
O(Commi(I)) = max(O(|V |),O(|E|),O(|V | + |E|),

O(|V | ∗ |E|),O(|V |2))

(11)O(Commi(I)) = O(|V | ∗ |E|))

Page 24 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

the number of communities generated for existing methods and the proposed method,
respectively. Tables 7 and 8 show the statistics for the small as well as large graph data-
sets, respectively. The tables show statistics about the number of nodes, the number
of edges, the probability of edge creation, and the number of attributes on each node.
Tables 9 and 10 show the statistics about the experimental results on the small as well as
large graph datasets, respectively. The tables show detailed information of each experi-
ment, where the number of nodes and edges are mentioned along with the threshold
value for the similarity of attributes between two nodes, a threshold value for the short-
est path length, the number of communities, and the time required for the proposed

Table 6  Comparison with existing methods

T1 Time for K-Clique, C1 #Communities for K-Clique, T2 Time for GN (Girvan-Newman), C2 #Communities for GN, T3 time for
proposed method, C3 #Communities for proposed method

Graph T1 C1 T2 C2 T3 C3

Karate 1 3 1 33 1 2

Football 1 4 1 114 1 5

Political-Books 1 4 1 104 1 4

Dolphins 1 3 1 61 1 3

email-EU-Core 187 3 3300 772 50 8

DBLP 6480 47,307 46,080 13,477 936 128

Amazon 7380 23,134 88,080 75,499 6791 468

Fig. 6  Run time vs number of communities for Amazon and DBLP datasets. Experimental results showing the
run time and the number of communities generated for ground-truth network Amazon and DBLP datasets
using the proposed method

Page 25 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

method to generate these communities. All this detailed information shows the authen-
ticity of the proposed method to generate more accurate communities. All the experi-
mental results are depicted in Figs. 7 and 8, respectively.

Case study

We create a small case study based on a real time graph dataset provided by Cae-
sars Entertainment Corporation located at Las Vegas, USA . This dataset contains the
anonymous real time attribute data collected from the Caesars Entertainment Corpo-
ration WiFi data, a test graph is created to represent the information about patrons vis-
iting different properties of Caesars Entertainment, time, and places of their visit at a

Table 7  Small graph datasets

Graph Nodes V Edges E Prob. of edge Attributes
on each
node

Twitter User Profile 100 3426 P = 0.70 26

Twitter User Profile 200 11,793 P = 0.70 26

Twitter User Profile 500 74,625 P = 0.60 26

Twitter User Profile 1313 517,068 P = 0.60 26

Skytrax Airline Reviews 100 3514 P = 0.70 7

Skytrax Airline Reviews 200 13,882 P = 0.70 7

Skytrax Airline Reviews 500 74,907 P = 0.60 7

Skytrax Airline Reviews 1005 300,202 P = 0.60 7

Terrorist Data 100 3457 P = 0.70 7

Terrorist Data 200 13,969 P = 0.70 7

Terrorist Data 500 74,753 P = 0.60 7

Terrorist Data 1000 299,420 P = 0.60 7

Caesars Entertainment 100 3439 P = 0.70 6

Caesars Entertainment 200 13,929 P = 0.70 6

Caesars Entertainment 500 74,835 P = 0.60 6

Caesars Entertainment 1000 299,953 P = 0.60 6

Table 8  Large graph datasets

Graph Nodes V Edges E Prob. of edge Attributes
on each
node

Facebook 2000 1,000,025 P = 0.50 7

Facebook 5000 4,997,567 P = 0.40 7

Facebook 10,000 14,998,579 P = 0.30 7

Youtube video crawl 2000 998,910 P = 0.50 9

Youtube video crawl 5000 4,997,518 P = 0.40 9

Youtube video crawl 10,000 14,996,737 P = 0.30 9

Terrorist data 2000 1,000,470 P = 0.50 7

Terrorist data 5000 4,998,900 P = 0.40 7

Terrorist data 10,000 15,004,225 P = 0.30 7

Caesars entertainment 2000 998,937 P = 0.50 6

Caesars entertainment 5000 4,887,265 P = 0.40 6

Caesars entertainment 10,000 14,997,657 P = 0.30 6

Page 26 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

particular property. We create a graph G = (V ,E) with |V | = 200 nodes and |E| = 12000
edges with 60% probability of edge creation in the graph at different nodes, this makes
the graph structurally cohesive. We assign different attributes Xi(vi) like, Patron_Id,
Path_From_Property, Path_To_Property, Time_From_Property, Time_To_Property, and
Place_Visited on all the vertices vi ∈ V  . Since each attribute may have different values on
each node, the probability threshold value of Node-weight =10.0 and Edge-Weight =1.0
is set. Tables 11 and 12 represent all the attribute type-value pairs having probability
greater than or equal to Node-weight and Edge-weight, respectively. Table 13 represents
the Attribute Index Structure for graph dataset. Figs. 9, 10a–c, 11a–c show the original
graph and communities generated through the proposed method, respectively.

Table 9  Experimental results on small graphs

G Graph, V #Nodes in the graph, E edges in the graph, Sim #attribute similarity, L shortest path length, C #number of
communities,T #time in seconds

G V E Sim (%) L C T

Twitter user profile 100 3426 70 3 2 1

Twitter user profile 200 11,860 70 3 2 3

Twitter user profile 500 74,625 70 3 4 10

Twitter user profile 1313 517,072 70 5 3 25

Skytrax airline reviews 100 3514 50 3 3 1

Skytrax airline reviews 200 13,882 50 3 3 2

Skytrax airline reviews 500 74,907 50 3 4 6

Skytrax airline reviews 1005 300,202 50 3 5 28

Terrorist data 100 3457 70 3 2 1

Terrorist data 200 13,969 70 3 2 2

Terrorist lata 500 74,753 70 3 3 10

Terrorist lata 1000 299,420 70 3 3 37

Caesars entertainment 100 3439 70 3 10 1

Caesars entertainment 200 13,929 70 3 12 2

Caesars entertainment 500 74,835 70 3 12 6

Caesars entertainment 1000 299,953 70 3 13 22

Table 10  Experimental results on large graphs

G graph, V #nodes in the graph, E edges in the graph, Sim #attribute similarity, L shortest path length, C #number of
communities, T #time in seconds

G V E Sim (%) L C T

Facebook 2000 1,000,025 70 3 60 100

Facebook 5000 4,997,567 70 3 37 2577

Facebook 10,000 9,996,858 70 3 51 1701

Youtube video crawl 2000 998,910 70 3 5 62

Youtube video crawl 5000 4,997,518 70 3 5 817

Youtube video crawl 10,000 14,996,737 70 3 6 6785

Terrorist data 2000 1,000,470 70 3 9 100

Terrorist data 5000 4,998,900 70 5 10 2149

Terrorist data 10,000 15,004,225 70 5 10 25,000

Caesars entertainment 2000 998,937 70 3 7 109

Caesars entertainment 5000 4,997,265 70 3 10 1321

Caesars entertainment 10,000 14,997,657 70 3 10 7383

Page 27 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

Now, for the personalized community detection, we can create the queries q
like, find a community of nodes where people traveled from property A to prop-
erty B. Such a query q represents the class of keyword attributes Path_From_
Property = A,Path_To_Property = B , and the personalized community detection algo-
rithm finds all the nodes vi ∈ I , where Ci(vi) = q . This creates a community of nodes
Commi(Ci) , where all the nodes have path from Property A to B . However, the general-
ized community detection finds the communities Commi(Ci) for all Ci ∈ I , which con-
tains all the nodes sharing the keyword attribute information, resulting in more accurate
community detection as desired.

Concluding remarks
A community structure derived from an attributed graph exhibits the structure and
keyword attribute cohesiveness. The proposed keyword search based method derives
communities with the structure and keyword attribute cohesiveness by constructing an
Attribute Index Structure. The Attribute Index Structure correctly represents different

Fig. 7  Run time vs number of communities for small graph datasets. Experimental results showing the run
time and the number of communities generated for small graph datasets using the proposed method

Page 28 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

Fig. 8  Run time vs number of communities for large graph datasets. Experimental results showing the run
time and the number of communities generated for large graph datasets using the proposed method

Table 11  Node-weight for Caesars-WiFi dataset

Id Attribute type-value pair Probability

1 Property_Region: Gaming 21.0

2 To_Property: Cromwell 20.50

3 From_Property: Cromwell 20.50

4 From_Property: Harrahs_LV 18.0

5 From_Property: Paris 17.0

6 To_Property: Caesars Palace 16.00

7 To_Property: Paris 15.00

8 From_Property: Caesars Palace 14.50

9 To_Property: Harrahs_LV 14.00

10 From_Property: Ballys 14.00

11 Property_Region: Cromwell_Valet 11.00

12 To_Property: Flamingo 10.00

Page 29 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

Table 12  Edge-weight for Caesars-WiFi dataset

Id Attribute type-value pair Probability

1 Property_Region: Gaming 4.5

2 To_Property: Cromwell 4.0

3 From_Property: Cromwell 4.0

4 From_Property: Harrahs_LV 3.16

5 From_Property: Paris 3.0

6 To_Property: Caesars Palace 3.00

7 To_Property: Paris 2.26

8 From_Property: Caesars Palace 2.19

9 To_Property: Harrahs_LV 2.00

10 From_Property: Ballys 2.00

11 Property_Region: Cromwell_Valet 1.09

Table 13  Attribute Index Structure for Caesars-WiFi Dataset

Class Node V Attributes Count

1 0 {2, 4, 5, 8, 10} 48

2 2 {0, 1, 6, 9, 10} 35

3 9 {0, 1, 2, 5} 15

4 11 {0, 6, 7, 9} 16

5 14 {0, 3, 4, 5, 6} 29

6 21 {0, 1, 6, 7, 10} 6

7 31 {2, 4, 6, 8, 10} 4

8 35 {0, 1, 2, 3} 9

9 47 {0, 2, 3, 6, 8} 12

10 50 {0, 5, 7, 8, 9} 13

10 61 {1, 2, 4, 10} 5

10 188 {0, 1, 10, 3, 4} 2

Fig. 9  Original graph generated for caesars dataset. Depicts the Caesars datasets

Page 30 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

classes of attributes and helps to derive the community of nodes which share a finite
number of keyword attributes, along with the cohesive structure. The proposed method
is able to provide the personalized and generalized community detection methods, which
provides the flexibility to determine community of nodes in an online manner. Hence,
the proposed method provides a more accurate measure of community detection in
terms of the cohesive structure as well as keyword attribute similarity, compared to the
existing algorithms. In addition, the proposed method provides a mechanism to gener-
ate communities in an online manner, which is more useful to determine real-time com-
munity of nodes. For future work, we intend to design a probabilistic model to predict
the community of a node based on its connectivity with different nodes and attribute
similarity. A probabilistic model can predict the class of a node, which can be further
used for the Advanced Keyword Search techniques. We will also examine other metrics

Fig. 10  Communities Detected for caesars way finding data. Displays various detected communities

Page 31 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

of keyword search over distributed graphs so that, the current work can be extended to a
distributed environment and more efficient techniques of keyword search can be incor-
porated for the purpose of community detection.

Abbreviations
GD: geodesic distance; BFS: Breadth First Search.

Acknowledgements
We sincerely and gratefully acknowledge following organizations for their help and support.

Caesars Entertainment Corporation, Las Vegas, USA, for providing the attributed graph dataset. This graph dataset was
created for the test purpose from the Anonymous Pervasive WiFi data, and contains the anonymous information of dif-
ferent patrons visiting different properties of Caesars Entertainment, time of visit, place of visit at the property, and path
taken from one property to another.

The United States Department of Defense (W911NF-17-1-0088, W911NF-16-1-0416), AEOP/REAP programs support, the
National Science Foundation (1625677, 1710716), and the United Healthcare Foundation (UHF 1592) for their support and
finance for this project.

Fig. 11  Communities detected for caesars way finding data. Displays various detected communities

Page 32 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

Authors’ contributions
All authors have contributed to the research and manuscript with the order they appear. The last author being the pro-
ject principal investigator. All authors discussed the final results as well as improved the final manuscript. Both authors
read and approved the final manuscript.

Funding
The authors were funded through the UNLV Big Data Hub.
This study was supported by U.S. Department of Defense (Grant numbers: W911NF1810437; W911NF1810246).

Data availability statement
Since we used the dataset from Caesars Entertainment for the experimental analysis. This dataset contains the anony-
mous information about the Caesars’ customers visiting different properties at different time and hours of the day. How-
ever, we will not be able to disclose the dataset. We used some open source datasets for experimental analysis available
[38]. All the implementation related source codes are available at : https​://githu​b.com/sanke​tchob​e/Advan​ce-Commu​
nity-Detec​tion.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 University of Nevada, Las Vegas, Las Vegas, USA. 2 University of Arkansas, 227 N. Harmon Ave., Fayetteville, AR, USA.

Received: 27 April 2019 Accepted: 16 August 2019

References
	1.	 Albert R, Barabási AL. Statistical mechanics of complex networks. Rev Mod Phys. 2002;74:47–97.
	2.	 Sun PG, Sun X. Complete graph model for community detection. Phys A Stat Mech Appl. 2017;471:88–97.
	3.	 Rosvall M, Bergstrom CT. An information-theoretic framework for resolving community structure in complex net-

works. Proc Natl Acad Sci. 2007;104:7327–31.
	4.	 Raghavan UN, Albert R, Kumara S. Near linear time algorithm to detect community structures in large-scale net-

works. Phys Rev E. 2007;76:36106.
	5.	 Aldous D, Fill J. Reversible Markov chains and random walks on graphs; 2002. http://www.stat.berke​ley.edu/users​/

aldou​s/RWG/book.html.
	6.	 Zhang XS, Wang RS, Wang Y, Wang J, Qiu Y, Wang L, et al. Modularity optimization in community detection of com-

plex networks. Epl. 2009;87:38002.
	7.	 Fortunato S, Castellano C. Community structure in graphs. In: Meyers RA, editor. Computational complexity theory.

New York: Springer; 2012. p. 490–512.
	8.	 Sachan M, Contractor D, Faruquie TA, Subramaniam LV. Using content and interactions for discovering communities

in social networks. In: Proceedings of the 21st internarional confernce on world wide web—WWW ’12. New York:
ACM; 2012. p. 331. http://dl.acm.org/citat​ion.cfm?doid=21878​36.21878​82.

	9.	 Girvan M, Newman MEJ. Community structure in social and biological networks. Proc Natl Acad Sci USA.
2002;99:7821–6.

	10.	 Nallapati RM, Ahmed A, Xing EP, Cohen WW. Joint latent topic models for text and citations. In: Proceeding 14th
ACM SIGKDD international conference knowledge discovery data Min—KDD 08. New York: ACM; 2008. p. 542.

	11.	 Liu Y, Niculescu-Mizil A, Gryc W. Topic-link LDA. In: Proceedings of the 26th annual international conference on
machine learning. New York: ACM; 2009. p. 1–8.

	12.	 Newman M, Girvan M. Finding and evaluating community structure in networks. Phys Rev E. 2004;69:26113.
	13.	 Fortunato S, Barthelemy M. Resolution limit in community detection. Proc Natl Acad Sci. 2006;104:36–41.
	14.	 Li HJ, Bu Z, Li A, Liu Z, Shi Y. Fast and accurate mining the community structure: integrating center locating and

membership optimization. IEEE Trans Knowl Data Eng. 2016;28:2349–62.
	15.	 Tong H, Faloutsos C, Gallagher B, Eliassi-Rad T. Fast best-effort pattern matching in large attributed graphs. In: Pro-

ceedigns of the 13th ACM SIGKDD intenational conference on knowledge discovery data minning—KDD ’07. New
York: ACM; 2007. p. 737.

	16.	 Fang Y, Cheng R, Luo S, Hu J. Effective community search for large attributed graphs. In: Proceedings of the VLDB
endow. VLDB Endowment; 2016. p. 1233–44.

	17.	 Zhou Y, Cheng H, Yu JX. Graph clustering based on structural/attribute similarities. In: Proceedings of the VLDB
endow. VLDB Endowment; 2014. p. 718–29.

	18.	 Ruan Y, Fuhry D, Parthasarathy S. Efficient community detection in large networks using content and links. In: Pro-
ceedings of the 22nd international conference on world Wide Web—WWW ’13. New York: ACM; 2016. p. 1089–98.

	19.	 Xu Z, Ke Y, Wang Y, Cheng H, Cheng J. A model-based approach to attributed graph clustering. In; Proceedings of
the 2012 international conference on management of data—SIGMOD ’12. New York: ACM; 2012. p. 505.

	20.	 Yang J, McAuley J, Leskovec J. Community detection in networks with node attributes. In: Proceedings of the IEEE
international conference data mining. Nwe York: ICDM; 2013. p. 1151–6.

	21.	 He T, Chan KCC. MISAGA: an algorithm for mining interesting subgraphs in attributed graphs. IEEE Trans Cybern.
2018;48:1369–82.

https://github.com/sanketchobe/Advance-Community-Detection
https://github.com/sanketchobe/Advance-Community-Detection
http://www.stat.berkeley.edu/users/aldous/RWG/book.html
http://www.stat.berkeley.edu/users/aldous/RWG/book.html
http://dl.acm.org/citation.cfm?doid=2187836.2187882

Page 33 of 33Chobe and Zhan ﻿J Big Data (2019) 6:83

	22.	 Yang T, Jin R, Chi Y, Zhu S. Combining link and content for community detection. In: Alhajj R, Rokne J, editors. Ency-
clopedia of social network analysis and mining. New York: Springer; 2017.

	23.	 Sozio M, Gionis A. The community-search problem and how to plan a successful cocktail party. In: Proceedings 16th
ACM SIGKDD international conference on knowldge discovery data minning—KDD ’10. New York: ACM; 2010. p.
939.

	24.	 Xiao Y, Lu Y, Cui W, Wang W, Wang H. Online search of overlapping communities. In: Proceedings of the 2013 interna-
tional conference on management data—SIGMOD ’13. New York: ACM; 2013. p. 277.

	25.	 Cui W, Xiao Y, Wang H, Wang W, Local search of communities in large graphs. In: Proceedings of the ACM SIGMOD
international conference on management data—SIGMOD ’14. New York: ACM; 2014. p. 991–1002.

	26.	 Li R-H, Qin L, Yu JX, Mao R. Influential community search in large networks. In: Proceedings of the VLDB endow. VLDB
Endowment; 2015. p. 509–20. http://www.vldb.org/pvldb​/vol8/p509-li.pdf.

	27.	 Yu JX, Huang X, Qin L, Cheng H, Tian W, Querying k-truss community in large and dynamic graphs. In: Proceed-
ings of the ACM SIGMOD international conference on management data—SIGMOD ’14. New York: ACM; 2014. p.
1311–22.

	28.	 Bhalotia G, Hulgeri A, Nakhe C, Chakrabarti S, Sudarshan S. Keyword searching and browsing in databases using
BANKS. In: Proceedings of the international confernece on data engineering; 2002. p. 431–40.

	29.	 Kacholia V, Pandit S, Chakrabarti S, Sudarshan S, Desai R, Karambelkar H. Bidirectional expansion for keyword search
on graph databases. Vldb. VLDB Endowment; 2005. p. 505–16. http://dl.acm.org/citat​ion.cfm?id=10835​92.10836​52

	30.	 Ding B, Yu JX, Wang S, Qin L, Zhang X, Lin X. Finding top-k min-cost connected trees in databases. In: Proceedings of
the international conference on data engineering; 2007. p. 836–45.

	31.	 Kargar M, An A. Keyword search in graphs. In: Proceedings of the VLDB endow. VLDB Endowment; 2014. p. 681–92.
	32.	 Lian X, Chen L, Sun Y, Wang G, Yu JX, Yuan Y. keyword search over distributed graphs with compressed signature.

IEEE Trans Knowl Data Eng. 2017;29:1212–25.
	33.	 Seidman SB. Network structure and minimum degree. Soc Netw. 1983;5:269–87.
	34.	 Dorogovtsev SN, Goltsev AV, Mendes JFF. K-core organization of complex networks. Phys Rev Lett. 2005;96:40601.
	35.	 Li RH, Yu JX, Mao R. Efficient core maintenance in large dynamic graphs. IEEE Trans Knowl Data Eng.

2014;26:2453–65.
	36.	 Wu L, Bai T, Zhe W, Wang L, Hu Y, Ji J. A new community detection algorithm based on distance centrality. In:

Proceedings of the 2013, 10th international conference on fuzzy system knowledge discovery FSKD 2013; 2013. p.
898–902.

	37.	 Hutair MB, Aghbari Z Al, Kamel I. Social community detection based on node distance and interest. In: Proceedings
of the 3rd IEEE/ACM international conference big data computing, application technologies—BDCAT ’16; 2016. p.
274–89.

	38.	 Leskovec J, Krevl A. SNAP datasets: stanford large network dataset collection; 2014. https​://snap.stanf​ord.edu/data/
wiki-Vote.html.

	39.	 Cheng X, Dale C, Liu J. Statistics and social network of YouTube videos. In: IEEE International workshop on Quality of
Service IWQoS; 2008. p. 229–38.

	40.	 Kwak H, Lee C, Park H, Moon S. What is Twitter, a social network or a news media? In: WWW ’10 proceedings of the
19th international conference world wide web. New York: ACM; 2010. p. 591.

	41.	 Gutfraind A, Genkin M. A graph database framework for covert network analysis: an application to the Islamic State
network in Europe. Soc Netw. 2017;51:178–88.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://www.vldb.org/pvldb/vol8/p509-li.pdf
http://dl.acm.org/citation.cfm?id=1083592.1083652
https://snap.stanford.edu/data/wiki-Vote.html
https://snap.stanford.edu/data/wiki-Vote.html

	Advancing community detection using Keyword Attribute Search
	Abstract
	Introduction
	Related work
	Community detection on attributed graphs
	Community detection
	Structure-based community detection
	Attributed-based community detection
	Online community detection

	Keyword search over graphs

	Methods
	Data mdel
	Preliminary
	Definition 1 (k-core)
	Definition 2 (Jaccard Similarity Index)
	Definition 3 (shortest path length or geodesic distance)

	Problem definition
	Problem 1 (attributed community detection)

	Community detection using keyword search

	Keyword search based algorithm
	Node-weight
	Edge-weight
	Keyword attribute signature
	Attribute Index Structure
	Keyword attribute class information
	Personalized community detection
	Generalized community detection
	Illustration

	Algorithm analysis
	Node-weight and Edge-weight
	Maximizing degree of nodes
	Attribute Index Structure creation
	Keyword search for community detection

	Experimental results
	Experimental setup
	Discussion
	Case study

	Concluding remarks
	Acknowledgements
	References

