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Introduction
Graphs have played an important role in the big data and social network analysis in 
recent years [1]. It is straightforward to represent and manage the information from dif-
ferent domains with the help of graphs. It is efficient to define the relationship between 
different entities and get the required knowledge from graphs. Due to changing dynam-
ics of users over the Internet, different applications of the social network, and the tre-
mendous rise in the volume of information, it is critical to design a method to efficiently 
extract the knowledge and discover hidden patterns among the group of users. The com-
munity detection is widely used to derive a group of nodes closely interacting and having 
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a strong relationship with each other, which is helpful to get more positive results from 
social network analysis. For example, if the nodes in a network represent the user pro-
files in a social network, and edges represent the interaction between these nodes, then 
a community of nodes provides the group of users who are closely interacting with each 
other and share some similar characteristics. The community detection can be used to 
derive the information about a group of people who go to the same school, who work at 
the same organization, or group of books by the same publication. This strong associa-
tion among the nodes in a network can also be used to predict the link formation or edge 
creation. Deriving the strongest community among the large network graph has become 
an increasingly important and critical task [2, 3] in graph analytics. Several different 
techniques of community detection are already defined. Although more advance work is 
in progress, there are small number of efficient mechanisms to get the knowledge from 
attributed graphs. The large volume of information is represented in the form of network 
graph, where some key attributes are assigned to the nodes, and relationship between 
different nodes are represented in the form of edges. It is important to consider these 
attributed graphs for the community detection, which can give us much more useful 
information than general network graphs. Current techniques of community detection 
can be categorized into three different categories. First, the Structure-based community 
detection, where the community of nodes is formed based on the connectivity between 
nodes. The techniques like Label Propagation [4], Random Walk [5], and Modularity 
Optimization [6] focus on the probability of edge creation or connectivity between two 
nodes. These probabilistic models derive a community based on the actual and possible 
connection between different nodes, and group them together based on the connectivity 
of nodes. This type of community detection gives the nodes which have high connectiv-
ity with each other and form a cohesive structure. However, these techniques do not 
consider the attributes associated with each node, hence, the accurate communities may 
not be derived from the attributed graphs. Another class of community detection tech-
nique considers the attributes associated with each node, also known as the Attribute-
based community detection. However, it is possible that the two nodes which share the 
same attributes may not be connected to each other, hence the community of nodes may 
not be structurally cohesive. There are some methods which consider the attribute simi-
larity as well as the connectivity between nodes while deriving a community of nodes. 
The fundamental principle behind all these methods is to create a group of nodes which 
share some common features. But, we do not have any prior information about how 
many communities and what types of relationships are present between the nodes in a 
community. Finding communities in an online manner is a more efficient and accurate 
way of extracting knowledge on a real-time scale. Thus, we introduce a novel method 
to derive the community of nodes in an online manner based on the attribute similarity 
and the connectivity of nodes in a graph. This paper defines a new mechanism to extract 
community of nodes from attributed graphs by using the keyword search technique. The 
proposed method is used to derive the communities in an online manner, which makes 
it possible to generate personalized communities based on the user queries. Since a key-
word search approach is used to detect the communities, proposed method is able to 
derive these communities in a more accurate and efficient manner. The key contribu-
tions to the novel method are listed as follows:
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1.	 A novel technique of community detection is developed based on the existing revo-
lutionary research [2, 7–12].

2.	 The node attributes are used to represent the keywords in the attributed graphs to 
design a novel algorithm of community detection using keyword search over attrib-
uted graphs.

3.	 Since the multiple keyword attributes are present on every node, it is important to 
find the influential attributes from the set of attributes, which in turn leads to influ-
ential nodes. A new measure, called as node-weight, is defined to derive the influen-
tial attributes among all the nodes.

4.	 Apart from Node-weighted attributes, it is necessary to find the probability of con-
nectivity of nodes which share similar attributes. Hence, another threshold value, 
called as edge-weight, is given to filter out the attributes which have the least prob-
ability of being shared among different nodes, and find the influential nodes in terms 
of attribute similarity.

5.	 Once the influential attributes are determined, we assign a vector of keyword attrib-
utes on each node. These node attributes can be classified into different classes based 
on the similarity of two attributes. We use Jaccard Similarity Index to measure the 
similarity between two nodes.

6.	 These similar attributes between the two nodes contain the Node-weighted and Edge-
weighted attributes. The average value of the weight of common attributes give the 
probability of edge creation between two nodes based on shared similar attributes. 
Thus, these nodes can be classified together based on probability of connectivity, and 
attribute similarity.

7.	 A class label is assigned to each node while classifying the attributes in differ-
ent classes. This class information is used as a keyword on each node, and can be 
used for personalized as well as generalized community detection by using keyword 
search techniques.

8.	 The experimental analysis shows that the proposed algorithm is able to derive the 
personalized community for a query, and generalized communities for all class of 
attributes. Thus, the proposed mechanism is able to derive community of nodes in an 
online and efficient manner based on the keyword attributes.

The rest of the work is organized as follows. “Related work” section  presents the 
related work and background. “Methods” section gives the detailed explanation of 
the proposed approach. “Keyword search based algorithm” section   describes Key-
word Search based algorithm for personalized as well as generalized community 
detection in detail. “Algorithm analysis” section analyzes the performance of the 
proposed approach. “Experimental results” section  describes experimental analysis, 
and “Concluding remarks” section  provides the conclusive remarks for the paper.

Related work
This section reviews the related work about community detection and keyword 
search over the large network graphs.
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Community detection on attributed graphs

Since the inception of graph theory, many algorithms have been proposed for different 
applications of graph theory [2, 7, 9]. For instance, social network analysis started in 
1930s and has become one of the most critical and revolutionary areas of research in the 
big data community.

Community detection

A community is also known as a cluster, and defined as a group of vertices which prob-
ably share common features, or have a strong relationship with each other formed by 
the strong distribution of edges between vertices. In Fig. 1, a graphic representation of a 
sample graph with communities is shown.

A community [13] can also be defined as a dense subgraph, since the nodes in same 
communities have dense connection with each other than that of different communi-
ties. Each community represents a functional system or working unit, due to which it is 
necessary to find different effective techniques of community detection. The community 
detection techniques can be categorized as follows:

Structure‑based community detection

This class of community detection determines the probability of possible connection 
based on the existing connections between nodes, and groups them together in one 
community. The existing methods like Label Propagation [4] and Random Walk [5] gen-
erate the community structure based on a probabilistic model. The Label Propagation 
[4] assigns label to each node and changes the label of each node based on the label of 
neighbors. Though Label Propagation [4] is computationally efficient, it does not con-
sider the attributes associated with each node, hence, may not be an effective method 
to create a group of nodes based on the label of neighbors for attributed graphs. The 

Fig. 1  A simple graph with communities highlighted by different colors. A graphical representation of a 
sample graph with communities
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Random Walk [5] method works on the principal of Markov Chain Process, where nodes 
are grouped together based on the probability of transition from one node to another. 
Since the current Random Walk [5] based methods do not consider the attributes asso-
ciated with nodes, hence, the generated communities may not have attribute similar-
ity between the nodes in a community. Girvan and Newman proposed a new measure 
known as the modularity [6, 9], which is defined as the fraction of connections within a 
community in the actual network minus expected fraction of connections in a random 
network. As per the definition of modularity, a maximum modularity gives the best par-
tition of a network [9]. Fortunato and Barthelemy discovered that the modularity opti-
mization [13] gives extra importance to the number of connections in a network, and 
hence this method cannot correctly classify some specific cases of networks. The main 
limitation of the modularity optimization [13] approach is that it does not consider the 
overall size of a community. To overcome this limitation, Rosvall and Bergstrom [3] used 
the full description length of a partition of a network to compress the network-based 
communication process. Li et al. [14] proposed a fast and accurate measure of mining 
community structure by providing a kernel function to measure the leadership of each 
node. Once the leader nodes are determined, a discrete-time dynamical system is used 
to assign the community for each node dynamically. All these methods consider the 
actual and possible connection between different nodes, and generate the structurally 
cohesive community structure. However, none of the above methods considers the node 
attributes, and hence, may not be the accurate measure to generate community struc-
tures for an attributed graph.

Attributed‑based community detection

Many different techniques of community detection have considered large complex graph 
without any keyword or attributes on its nodes. There are few techniques of community 
detection for the network graphs having node attributes [15]. Fang et al. [16] proposed 
the community detection on large attributed graphs by creating an index tree based on 
the keyword attribute information. Zhou et  al. [17] proposed a method to derive the 
clusters by computing the pairwise similarity between the nodes using keywords and 
links between the nodes. Ruan et al. [18] proposed a method called as CODICIL, where 
new edges are created based on the content similarity, and then effective graph sam-
pling is done to boost the efficiency of graph clustering. In another approach [19], the 
attributed graph community detection is done based on probabilistic inferences. CESNA 
[20] detects the overlapping communities by assuming communities generate content. 
He et al. proposed another method known as MISAGA, [21] for mining subgraphs in 
an attributed graph. MISAGA [21] defines a probabilistic measure to determine the 
strength of association between a pair of attribute values, then it determines the degree 
of association between each pair of vertices to group them together in one community. 
All these methods consider the degree of association between a pair of vertices based on 
a set of attributes on vertices. However, these methods may not consider the structure 
cohesiveness or the connectivity between a pair of vertices while creating the commu-
nity structure. It is necessary to design a mechanism which will consider both, structure 
cohesiveness and attribute similarity for a group of nodes belonging to the same com-
munity. There are few techniques which achieve this objective [22].
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Online community detection

There are some techniques to determine the communities in an online manner, that 
is based on a query request. Few of these methods [23–26] obtain the community for 
given vertex V based on the query over q. Such a personalized community detection 
technique requires different measures like the minimum degree, k-core, etc., which 
generate the structurally cohesive communities. Sozio et  al. [23] proposed the first 
algorithm known as the Global to find the k̂-core containing vertex q. Cui et al. [25] 
proposed the Local to enhance the efficiency of the Global by expanding techniques 
to local search space. There are many other methods like k-clique [24] and k-truss 
[27] which searches the communities in large complex networks, but all these tech-
niques assume non-attributed graphs, and does not consider the important keyword 
attribute information on nodes which can be used for the generation of more accurate 
communities in the graph.

Keyword search over graphs

The keyword search over graphs [28–31] have attracted significant attention in recent 
years since it provides valuable information to users without the knowledge of underly-
ing entities, schema, or access mechanism. Many advanced keyword search techniques 
[28–32] are developed to search information over such large complex graphs. We use 
the concept of keyword search over graphs to generate different communities in the 
graph. We apply the naive keyword search approach to search the keyword attributes 
on the nodes, and group them together based on the similarity between two nodes. The 
keyword search approach gives the flexibility of searching the required group of nodes in 
an online manner. Since the social network graphs may have multiple attributes assigned 
to their nodes, a mechanism is designed to derive clusters in the graph based on the 
attribute similarity among different nodes. The next section defines the problem, and 
describes the key definitions and major aspects of the proposed approach.

In this paper, we consider some important measures described by structure-based, 
attribute-based, online community detection, and keyword search methods to design a 
novel method for more accurate community detection over large attributed graphs.

Methods
The proposed approach for community detection using Keyword Attribute Search is 
explained in detail in this section. Before explaining the proposed approach, it is neces-
sary to define the problem, provide some corresponding definitions, and lemmas to sup-
port the proposed approach.

Data mdel

Let a network graph is denoted as G = (V ,E,Λ) , which is an undirected and attribute graph. 
V is the set of vertices, E is the set of undirected edges, and Λ is the set of attributes assigned 
to each vertex vi ∈ V  in the graph. If two vertices vi and vj are connected to each other 
through an undirected edge, then such a graph is known as a connected graph. The set of 
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attributes for all vertices vi ∈ V  is denoted as Λ = {attr1, attr2, attr3...attrn} , and the set of 
attribute values associated with each vertex vi is denoted as attrji = {attr1i, attr2i, ...attrji)}.

In this paper, an undirected attributed graph G = (V ,E,Λ) is considered. Let n and m be 
the size of V and E, respectively. Table 1 represents the meaning of all the symbols used in 
the paper.

Preliminary

A community can be defined as a subgraph of G that have the nodes densely connected 
to each other to form a cohesive structure, and sparsely connected to nodes in other com-
munities. The structure cohesiveness of a graph G is defined by how different nodes are 
connected to each other. The minimum degree of all vertices in a community is k or more 
[23, 25, 26, 33, 34], also known as k-core , which is an important condition for structure 
cohesiveness of G.

Definition 1 (k‑core)

Given an integer k ( k ≥ 0 ), the k-core [23, 33, 35] of G denoted by Gk is the largest subgraph 
of G such that, ∀v ∈ Gk , degGk

(v) ≥ k . The notion of k-core [16, 23, 33] makes sure that all 
the nodes in a community Gk are densely connected to each other in some way, and hence 
makes the structure cohesive.

Definition 2 (Jaccard Similarity Index)

Given a graph G = (V ,E) and two vertices v1, v2 ∈ V  which have set of attributes X1 and 
X2 respectively, the measure of similarity between the two vertices can be given by the Jac-
card Similarity Index [36] Sim(v1, v2) and defined as follows:

(1)Sim(v1, v2) =
|(X1 ∩ X2)|

|(X1 ∪ X2)|

Table 1  Symbols and meanings

Symbol Meaning

G(V, E) An undirected graph with set of vertices V and set of edges E

� A set of attributes for set of vertices V

q keyword or query to be searched on attributed graph G

degG(V) The degree of vertex V in G

L(X(q)) The length of the set of attribute X for vertex q

G[S′] The largest connected subgraph of G such that q ∈ G[S′] , and S ⊂ X(v)

Sim(q1, q2) Jaccard Similarity Index to measure similarity between q1 and q2

θc Minimum threshold constant for similarity between q1 and q2

θw Minimum threshold constant for average weight of the attributes shared 
between q1 and q2

θd Maximum threshold constant for geodesic distance between q1 and q2

Wv Minimum threshold constant for Node-weight on attribute type-value pairs

We Minimum threshold constant for Edge-weight on attribute type-value pairs

GD(q1, q2) Shortest path length or geodesic distance between q1 and q2
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The Jaccard Similarity Index [36] measure can be useful to give some threshold con-
stant, which can be used to classify the vertices with a similarity of attributes greater 
than or equal to the threshold constant into a common group of vertices.

Definition 3 (shortest path length or geodesic distance)

Apart from the attribute similarity, it is necessary that the two nodes v1 and v2 are con-
nected to each other at a minimum possible distance. If two nodes v1 and v2 are con-
nected to each other, but far away from each other in a network than the other nodes, 
then such nodes may not be the part of a community. Since the communities contain 
nodes which are densely connected, the shortest path distance between two nodes 
should be minimal to make the community structure dense, or structurally cohesive. 
The shortest path length or geodesic distance [37] can be used to calculate and specify 
the maximum threshold on the distance between two nodes v1 and v2 . The shortest path 
length or geodesic distance [37] can be given as follows:

Problem definition

The problem is defined as follows:

1.	 The vertices vi ∈ V  in a subgraph should be connected to each other to form a cohe-
sive structure, and sparsely connected to other subgraphs.

2.	 The vertices vi ∈ V  which have similar attributes should be partitioned into the same 
group, while the vertices with different attributes should be partitioned into separate 
groups.

Based on the above properties, the formal problem definition for the community 
detection in attributed graphs is stated in the following definition:

Problem 1 (attributed community detection)

Given a graph G(V ,E, �) , positive integer constants k, d, θc , θw ,Wv , and We , a vertex 
v ∈ V  , and a set of attributes attri ⊂ X(vi ∈ V ) , return a set of subgraphs such that fol-
lowing properties should be satisfied ∀Gv ∈ G:

1.	 Connectivity Gv ∈ G is a connected subgraph and contains v ∈ V ;
2.	 Dense structure ∀v ∈ Gv following properties should be satisfied;

a.	 all the nodes v ∈ V  in a subgraph have degree greater than or equal to the 
K_core value, degGv (v) ≥ k , k is a minimum threshold for k-core value.

b.	 if two nodes (vi, vj) ∈ V  are connected, then the distance between them should 
be less than or equal to the maximum threshold constant d of the shortest path 
length or geodesic distance, GD(vi, vj) ≤ d.

3.	 Attribute sharing ∀v ∈ Gv and ∀X ∈ � following properties should be satisfied;

a.	 each node v ∈ V  should have a set of influential attributes such that, 
P(attri ∈ v) ≥ Wv and P(attrij ∈ vj , attrik ∈ vk) ≥ We , where P(attri ∈ v) is 

(2)GD(v1, v2) = min(∀i∀jd(vi, vj))
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the probability of attribute attri on all vertices, P(attrij ∈ vj , attrik ∈ vk) is the 
probability of attribute attri shared between vertices vj and vk , Wv and We are 
minimum threshold constants for probability of attributes on nodes and edges, 
respectively.

b.	 if two nodes vi, vj ∈ V  are connected, then the two nodes should share the maxi-
mal similar influential attributes, and the average weight of common influential 
attributes should be greater than or equal to Average Edge weight, We(vi, vj) ≥ θw.

c.	 if two nodes vi, vj ∈ V  are connected, then the two nodes should share the max-
imal similar attributes, and the similarity between these attributes should be 
greater than or equal to Jaccard Similarity Index, Sim(vi, vj) ≥ θc.

The above properties like k-core and shortest path length make sure the community 
structure is structurally cohesive, and the property of Node-weight, Edge-weight, and Jac-
card Similarity Index makes sure the community structure follows the attribute cohe-
siveness. Both of these requirements are critical for an accurate community detection. 
Figure 2a, b shows the attributed graph with the corresponding communities based on 
the problem definition. Figure 3 shows another example of ground truth network dataset 
having certain number of communities. Our focus is to design an efficient mechanism 
to derive communities not only in terms of interaction between the vertices in a com-
munity, but also in terms of attribute similarity between all the vertices in a community.

Community detection using keyword search

Although the following method [16] is applicable to attributed graphs and generate 
communities which satisfies the structure and attribute cohesiveness, but it does not 
consider the attribute type-value pair for the attribute cohesiveness. Since there can be 
multiple values for one attribute type, it is necessary to identify the influential attribute 
type-value pairs, and derive the communities based on these influential attributes. Thus 
the proposed method is significant to identify the important attribute type-value pairs, 
and derive more accurate communities for these attributes. The proposed method high-
lights the importance of finding the influential attributes. The Node-weighted and Edge-
weighted attributes are useful to find the probability of edge creation between two nodes 
based on the connectivity as well as attribute similairty. The existing method [16] does 
not find such influential attributes or probability of edge creation, hence the proposed 
method is useful to find accurate communities. The vertices which have strong connec-
tivity and common keyword attributes can be grouped together in the same commu-
nity. An algorithmic framework is designed to classify keyword attributes on all vertices 
based on the similarity between a set of attributes on two vertices, and the connectivity 
between two vertices. These classes can be used to search the vertices strongly related to 
each other, and hence, eventually the community. Following major steps are involved in 
the community detection using keyword search method:

1.	 A probability threshold value called as Node-weight is defined, which derive the 
influential attributes. If the probability of an attribute type-value pair is greater than 
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Fig. 2  Karate-club network dataset with ground-truth communities. A simple example for Karate-club 
ground-truth network dataset with corresponding communities

Fig. 3  Political-books network dataset with ground-truth communities. A simple example of Political books 
ground-truth network dataset
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or equal to Node-weight , then that attribute type-value pair is considered as an 
important attribute.

2.	 A probability threshold value called as Edge-weight is defined, which derives the 
influential attributes in terms of the connectivity. If the probability of sharing of 
any attribute type-value pair between all pair of vertices is greater than or equal to 
Edge-weight , then that attribute type-value pair is considered as an important attrib-
ute.

3.	 All the influential keyword attribute information on nodes can be used to construct 
an Attribute Index Structure, where different keyword attributes are classified and 
grouped together in separate groups based on the attribute similarity between the 
nodes, and their degree structure.

4.	 The factor Jaccard Index, and average weight of the Edge-weighted attributes between 
a pair of vertices, is used to measure the similarity of attributes, while k-core and 
geodesic distance are used to measure the connectivity of the vertices sharing similar 
attributes.

5.	 While classifying each vertex in the graph based on the attributes, a new class of 
attributes can be identified and stored in the Attribute Index Structure. This attribute 
class information can be assigned as a label to each node of the graph with the key-
word attribute information, to find strongly associated nodes.

6.	 The naive keyword search algorithm is used to determine the personalized communi-
ties in the graph based on a query by using different class of attributes assigned to all 
vertices in the graph.

7.	 For a generalized community detection, the naive keyword search algorithm is used to 
determine all communities in the graph based on the class information and keyword 
attribute information on different nodes in the graph.

All the classes can be accessed iteratively to determine different nodes which belong to 
the same class, and which share strong association in terms of keyword information. The 
group of such nodes will form a community structure in the graph. In the next section, 
an algorithmic framework is defined and explained in detail for each major step.

Keyword search based algorithm
The Keyword Attribute Search-based algorithm requires that every node should have 
some keyword or attributes associated with them, these keyword attributes are used to 
search a specific type of attribute and group them together in one class. For example, 
we use two network datasets Karate-club and Political Book in Figs.  2a and 3 respec-
tively, which have ground-truth communities associated with them. We assign random 
attributes on each node of both the datasets, and derive communities by using Keyword 
Search-based algorithm. The random attributes assigned to each node of the Karate-club 
network is shown in Table 2.

Following major steps are involved in the Keyword Attribute Search-based algorithm:

Node‑weight

The first step, in the process of our community detection problem, is to determine the 
influential nodes among all the nodes in a graph.Since each node v ∈ V  contains a set 
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of attributes X ∈ � , and each attribute type attrij ∈ X might be distributed on the dif-
ferent nodes with different values, it is important to find the influential attribute type-
value pairs among all the node attributes. The probability of each attribute type-value 
pair on all vertices can be used to get influential attributes.The influential attributes can 
be found based on the probability of each attribute type-value pair among all the nodes 
in the graph. Let O(attri) is the number of times attri present among all the vertices, N 
be the number of nodes in the graph, then the probability of attri can be given as follows:

For the example network shown in Fig. 2a, if we assume the maximum threshold for 
Node-weight Wv = 20.0% , then the corresponding important attributes are listed in 
Table 3.

Edge‑weight

Once all the important attributes are determined based on the probability of each attrib-
ute type-value pair on all the nodes of a graph, we consider the probability of occurrence 

(3)P(attri) =
O(attri)

N
=

∑N
j=1 attri

N

Table 2  Node attributes of sample graph in Fig. 2a

Attribute type Set of values

School {‘UNLV’, ‘SUNY’, ‘ASU’}

Employer {‘Caesars’, ‘MGM’, ‘Amazon’, ‘Google’}

Role {‘Student’, ‘Professor’, ‘Software Engineer’, ‘Manager’, ‘Team Lead’}

Sports {‘Soccer’, ‘Baseball’, ‘Badminton’, ‘Basketball’}

Vehicle {‘Toyota’, ‘Hyundai’, ‘Mercedes’, ‘Audi’, ‘BMW’, ‘Chevrolet’}

City {‘Las Vegas’, ‘New York’, ‘Phoenix’}

Country {‘USA’}

Table 3  Node-weight for Karate-club network

Id Attribute type-value pair Probability

1 Country: USA 100.0

2 School: UNLV 50.0

3 School: SUNY 35.0

4 City: New York 50.0

5 City: Las Vegas 50.0

6 Role: Student 38.00

7 Sports: Baseball 38.00

8 Sports: Soccer 32.00

9 Employer: Caesars 30.00

10 Employer: Google 27.00

11 Employer: Microsoft 24.00

12 Employer: MGM 21.00

13 Vehicle: Hyundai 22.00

14 Vehicle: Chevrolet 21.00
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of each attribute type-value pair on each edge, that is, how many times each attribute 
type-value pair is shared between all pair of vertices. The threshold value of probabil-
ity of each attribute type-value pair on each edge can be called as the Edge-weight. If 
the probability of each attribute type-value pair on each edge is greater than or equal 
to Edge-weight, then that attribute type-value pair is considered to be influential. Let 
O(attrij) and O(attrik) be the number of times attribute attri present on vertices j and k, 
respectively. O(attrij , attrik) represents the number of times attri shared between vertex 
j and k, when j and k are connected to each other. The probability of an attribute type-
value pair shared among all the pair of vertices can be given as follows:

We can determine the Edge-weight from the above important attribute type-value 
pairs listed in Table 3, and the all the edges in Karate-club network graph sharing these 
attribute type-value pairs. If we assume the maximum threshold value for Edge-weight 
We = 10.0% , then, corresponding influential Edge-weight attributes are listed in Table 4.

Keyword attribute signature

The influential attributes can be stored in a decreasing order of the probability value, and 
a unique index ki → attri|∀attri ∈ X value can be assigned to the attribute type-value 
pair. The Keyword Attribute Signature contains a vector of these unique index values for 
a set of attributes on each node. Thus, the Keyword Attribute Signature is a compact 
representation of the attribute values on each node. The unique Id associated with each 
attribute type-value pair shown in Table 4 is used to create the Keyword Attribute Signa-
ture on each node.

Attribute Index Structure

In the next step, we create an Attribute Index Structure for the Keyword Attrib-
ute Signature assigned to all nodes. Given a large attributed graph G = (V, E), the 
task is to determine different classes of attributes from all the Keyword Attribute 

(4)P(attrij , attrik) =

∑N
i=1

∑N
j=1O(attrij , attrik)

N

Table 4  Edge-weight for Karate-club network

Id Attribute type-value pair Probability

1 Country: USA 100.0

2 School: UNLV 38.0

3 School: SUNY 36.0

4 City: New York 38.0

5 City: Las Vegas 22.0

7 Sports: Baseball 16.00

9 Employer: Caesars 10.00

11 Employer: Microsoft 15.00

13 Vehicle: Hyundai 12.00

14 Vehicle: Chevrolet 13.00
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Signatures on all vertices. Since we do not have prior information on the type of 
attributes in the graph, this information can be determined from the keyword attrib-
utes on different nodes. The Attribute Index Structure is created iteratively for 
all nodes and will contain all the class of attributes in the large network graph. 
Each class of attribute is created iteratively by comparing each node with other 
nodes. If the two nodes have degree greater than or equal to k_core, then they are 
considered for the classification. If the two nodes have degree greater than or 
equal to k_core, and are similar to each other based on Jaccard Similarity Index, 
then the Keyword Attribute Signature on two nodes can be merged into one class, 
and two nodes belong to the same class. The Attribute Index Structure would con-
sist of the inverted list of Keyword Attribute Signature for each node with a cor-
responding class, first visited node, and the total number of vertices which belong 
to the same class of attributes. The Attribute Index Structure can be denoted as 
I = {C1:{X1,V1, count(C1)},C2:{X2,V2, count(C2)}, ...,Cn : {Xn,Vn, count(Cn)}} , where 
Ci is the class assigned to each attribute set Xi , and Vi is the first node from which the 
class Ci is derived. The pseudo-code given in Algorithm 1 is used to create the Attrib-
ute Index Structure:

Table  5 represents the Keyword Attribute Index structure created for the Karate-
club network dataset.

Keyword attribute class information

Once the Attribute Index Structure is created, it is used to assign the class of attribute 
Ci on each vertex vi ∈ V  along with the Keyword Attribute Signature information. The 
main idea behind the class is to create awareness about strong relationship or com-
mon properties between the nodes. Initially, each vertex with the Keyword Attribute 
Signature is considered as a separate community while searching it’s relationship with 
other vertices, this Keyword Attribute Signature based search leads to different nodes 
which share the same attribute information, which eventually helps derive the com-
munities in graph. However, for a large network graph, there are numerous type of 
attributes associated with all nodes, hence it becomes necessary to classify Keyword 
Attribute Signature at each node in different classes. There should be a parameter θc 
to depict a maximum threshold of similarity between two sets of Keyword Attribute 
Signatures on two vertices v1 and v2 , respectively, based on which it will be easy to 
prune the search space over a large network 

Table 5  Attribute Index Structure for Karate-club graph

Class Node V Attributes Count

1 1 {1, 2, 3, 4, 5, 7, 9, 11, 13, 14} 10

2 24 {1, 3, 7, 9, 11, 13} 7
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Algorithm 1 Keyword Attribute Index Structure

Input:
G = (V,E);
V = (V1, V2 . . . , Vn) : Set of vertices in the graph;
X = (X1, X2 . . . , Xm) : Set of influential attributes derived from Node-weight & Edge-
weight;
Xi = {attr1(Vi), attr2(Vi), . . . , attrj(Vi)} : Set of attributes associated with each vertex in
the graph;

Output:
I = {C1 : {X1, V1, count(C1)}, C2 : {X2, V2, count(C2)},.., Cn : {Xm, Vn, count(Cn)}} :
Attribute index structure where Cn is the class assigned to each attribute set Xm(Vn), and
Vn is the first node which belongs to Cn ;

1: Initialize i, j, k, count node = ∅
2: for Vertices vi ∈ V do
3: for Class Cj ∈ I do
4: k core ← get K core(G, vi) value;
5: attri ← attribute list X(vi) of Vi;
6: attrj ← attribute list Xj ∈ Cj of class Cj ;
7: Sim(attri, attrj) ← |attri ∩ attrj |/|attri ∪ attrj |;
8: Avg weight(attri, attrj) ← |We(attri ∪ attrj)|/|attri ∪ attrj |;
9:
10: if degree deg vi ≥ k core then
11: if Sim(attri, attrj) ≥ θc then
12: if Avg weight(attri, attrj) ≥ θw then
13: attri ∪ attrj ← Xj {for X(vi), Xj}
14: Vj ← vi classify vi in Cj ;
15: count(vi) + +; {Number of nodes for each class of attribute}
16: Merge attributes of vi, X(vi) ← X(vi) ∪ Cj in class Cj ;
17: end if
18: else
19: Ck ← k + 1 {Create a seperate class for attribute X(vi)};
20: Vk ← vi ;
21: Xk ←X(vi);
22: count(Ck) ← 1;
23: Set I = {Ck : {(Xk, Vk, count(Ck)}} ;
24: Set X(vi) ←X(vi) ∪ Ck where X(vi) ∈ X;
25: end if
26: end if
27: end for
28: end for
29: return I

graph. We can verify if an attribute is present in Attribute Index Structure I. If an 
attribute attrij ∈ X(j) is present in the inverted list of attributes {Cj:Xj ,Vj , count(Cj)} , 
then we assign the corresponding class Cj of attribute attrij to the node vi . If an attrib-
ute attrij ∈ X(j) is not present in the inverted list, then the attribute attrij ∈ Xj is com-
pared with the existing attributes in I. The similarity between the two sets of attributes 
is determined based on the Jaccard Similarity Index Sim(vi, vj) . If the Sim(Xi(vi),Xj(vj)) 
is greater than or equal to the threshold value θc , then the two attributes are combined 
together Xi(vi) ∪ Xj(vj) , and same class Ci is assigned to the combination of attributes. 
If Sim(Xi(vi),Xj(vj)) is less than the threshold value θc , then a new class Cj is assigned 
to the attribute Xj(V(j)) along with the node Vj in the Attribute Index Structure I. We 
also keep track of the count of nodes counti(Ci) which belong to same class of attributes 
while creating the class of attributes in the Attribute Index Structure I. This information 
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is useful in the personalized as well as generalized community detection. Based on the 
key definitions and Attribute Index Structure I, following lemma is derived to prove that 
the Attribute Index Structure is useful to classify nodes in different clusters, or groups to 
form communities.

Lemma 1  Given G = (V ,E) and set of attributes X, if Xq = {Xq1,Xq2 , . . . ,Xqn} and 
X̂q = { ˆXq1, ˆXq2, . . . , ˆXqn} are the set of attributes on the two vertices q and q̂ respectively, 
and ( q, q̂) ∈ GXq i.e. q and q̂ belong to the same subgraph GXq . If L(Xq ∩ X̂q) ≥ Kq , then 
Xq ∪ X̂q ∈ Cq , where Cq ∈ I .

Proof  To prove this lemma, we use a proof by contradiction. Let Xq = {Xq1,Xq2 
, . . . ,Xqn} such that Xq ∈ Cq , and X̂q = { ˆXq1, ˆXq2, . . . , ˆXqn} such that X̂q ∈ Ĉq . Assuming 
X̂q /∈ Cq , then it means that Xq and X̂q does not have any attribute in common, which 
proves Cq is not equal to Ĉq and L(Xq ∩ X̂q) = φ . Thus, for every query or keyword ver-
tex Xq ∈ Cq and q ∈ Gq i.e. q belongs to the subgraph Gq , and X̂q ∈ Ĉq and q̂ ∈ Ĝq i.e. q̂ 
belongs to the subgraph Ĝq . This contradicts the given assumption that ( q, q̂) ∈ GXq and 
also fails to satisfy the attribute cohesiveness. This proves the given lemma. �

Personalized community detection

As discussed in the previous steps, the Attribute Index Structure I contains the class Ci of 
attributes , first node, and the number of nodes which belongs to class Ci , also, keyword 
attribute Xi(vi) on each node vi ∈ V  is updated to include the class Ci . This information is 
crucial for the personalized community detection. The personalized community detection 
can be defined as, a group of nodes having same class Cqi on each node for a given query 
Q = {q1, q2, . . . , qi} , with i keywords in the query. For a given query Q which has keywords 
or class of attributes, we access the class information Ci , the number of nodes which belong 
to the same class counti(Ci) , and the first vertex Vi which belongs to class Ci from I. Once 
this information is fetched from the Attribute Index Structure I, the naive keyword search 
algorithm is used to search nodes which belong to class Ci . This naive keyword search starts 
at the node Vi derived from I and finds the Breadth First Search (BFS) path with the node Vi 
as the root node. It continues to search the nodes with same class Ci of attributes as node vi 
along the BFS path of the node Vi . The Breadth First Search (BFS) path makes sure that all 
the nodes are covered in the network, and every node is compared with other nodes to find 
the nodes having similar class label. The keyword search has the upper bound of threshold 
length counti(Ci) , and continues the keyword search until the counti(Ci) number of nodes 
are not matched with the given class Ci . Following pseudo-code is used for the Keyword 
Search required in personalized community detection. The pseudo-code for deriving the 
k_core value for all the nodes, and the retrieval of a Breadth First Search Tree (BFS) for root 
node Vi ∈ I is given by Algorithm 4 and Algorithm 5, respectively. 
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Algorithm 2 Personalized Community Detection

Input:
G = (V,E,X);
V = (V1, V2 . . . , Vn) : Set of vertices in the graph;
X = (X1, X2 . . . , Xm) : Set of attributes in the graph;
Xi = {attr1(Vi), attr2(Vi), . . . , attrj(Vi)} : set of attributes associated with each vertex in
the graph;
I = {C1 : {X1, V1, count(C1)}, C2 : {X2, V2, count(c2)},.., Cn : {Xm, Vn, count(Cn)}} :
Attribute index structure where Cn is the class assigned to each attribute set Xm(Vn), and
Vn is the first node which belongs to Cn ;
Q = {q1, q2, . . . , qn} : Query having a list of keywords or class information;

Output:
Comm(Ci): Communities with the nodes sharing the keyword information in the query Q;

1: Initialize i, j, node = ∅;
2: for Query qi ∈ Q do
3: Class Ci ←qi;
4: if Class Ci ∈ I then
5: nodei = Vi; {Attribute Index Structure I = {Ci : {Xi, Vi, counti(Ci))}}}
6: k core ← get K core(G, vi) value;
7: if degree degnodei ≥ k core then
8: node counti ←counti(nodei);
9: bfs list(nodei) ←BFS Tree(G, vi); {Get BFS list of node vi}
10: while count ≤ node counti do
11: for Node vj ∈ bfs list(nodei) do
12: if degree degvj ≥ k core ∧GD(vi, vj) ≤ θd then
13: Classj ←attrj(vj) {Attribute list attrj(vj) of vj ∈ Class Ci}
14: if Query qi ∈ Classj then
15: Commi(qi) ←vj ; {Mark vj for community }
16: end if
17: end if
18: end for
19: end while
20: end if
21: end if
22: end for
23: return Comm(Q);

Generalized community detection

The generalized community detection can derive all communities from a network graph 
based on the Keyword Attribute Signature associated with each node in the graph. The 
personalized community detection is based on the keyword search query Q, while 
generalized community detection may not need keyword search query Q. The Attrib-
ute Index Structure I has all the required information about different attributes Xi(vi) 
on node vi ∈ V  and class Ci of these attributes. All this information can be used for the 
generalized community detection. The process starts by scanning the Attribute Index 
Structure I for each class Ci of the attribute, then perform the keyword search at node 
Vi associated with Ci in I. The Keyword Search process explained in the personalized 
community detection leads to a community of nodes for each class Ci ∈ I . Same process 
is performed recursively for each class Ci of the attribute, corresponding node Vi , and 
the attributes Xi(Vi) associated with the node Vi . The pseudo-code given in Algorithm 3 
explains the generalized community detection process in detail: 
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Algorithm 3 Generalized Community Detection

Input:
G = (V,E,X);
V = (V1, V2 . . . , Vn) : Set of vertices in the graph;
X = (X1, X2 . . . , Xm) : Set of attributes in the graph;
attr(Vi) = {attr1(Vi), attr2(Vi), . . . , attrj(Vi)} : set of attributes associated with each
vertex in the graph;
I = {C1 : {X1, V1, count(C1)}, C2 : {X2, V2, count(C2)},.., Cn : {Xm, Vn, count(Cn)}} :
Attribute index structure where Cn is the class assigned to each attribute set Xm(Vn), and
Vn is the first node which belongs to Cn ;

Output:
Comm(Ci): Communities having the nodes vi belong to Ci ∈ I;

1: Initialize i, j, node = ∅;
2: for Class Ci ∈ I do
3: Class Ci ← query qi;
4: nodei = Vi; {I = {Ci : {Xi, Vi, counti(Ci)}}}
5: k core ← get K core(G, vi) value;
6: if degree degnodei ≥ k core then
7: node counti ← counti(nodei);
8: bfs list(nodei) ←BFS Tree(G, vi); {Get BFS list of node vi}
9: while count ≤ node counti do
10: for node vj ∈ bfs list(nodei) do
11: if degree degvj ≥ k core ∧GD(vi, vj) ≤ θd then
12: Classj ← attrj(vj) {attrj(vj) = Ci}
13: if qi ∈ Classj then
14: Commi(qi) ← vj ; {Mark vj for community }
15: end if
16: end if
17: end for
18: end while
19: end if
20: end for
21: return Comm(Q);

The personalized community detection can be used to derive a particular commu-
nity from a graph in an online manner. However, the generalized 

Algorithm 4 Find K core for All Vertices

Input:
G = (V,E,X);
Output:
K core : List of K core values for all the vertices;
1: Compute the degree of all the vertices degvi ;
2: Arrange the set V of vertices in the increasing order of their degrees;
3: for vi ∈ V do
4: K core[vi] = deg(vi)
5: for vj ∈ Neighbors(vi) do
6: if deg(vj) > deg(vi) then
7: deg(vj) = deg(vj)− 1
8: Arrange V in increasing order accordingly
9: end if
10: end for
11: end for
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Algorithm 5 Bredth First Search Tree (BFS Tree)

Input:
G = (V,E,X);
Q : Queue to add the visited vertices in the path;
Output:
bfs list : List of vertices in the BFS path starting at vertex vi ∈ I;
1: Add vi ∈ V to Q and mark it as visited;
2: while vi ∈ Q do
3: w = QueueFront(Q);
4: Remove Q;
5: for each visited vj adjacent to w do
6: mark vj as visited;
7: Add vj ito Q {Add(Q, vj)};
8: end for
9: end while

community detection can be used to derive all the communities from a graph without 
any query in an online manner.

Illustration

The proposed method is explained by illustrating a simple example. We consider a small 
graph with corresponding node attributes and edges as displayed in Fig.  4a. If we con-
sider the Node-weight and Edge-weight as 50% each, we get the influential attributes as 
{1:School = UNLV } , {2:City = Las Vegas} , {3:Role = Student} , and {4:Role = Professor} . 
We create the compact signature from the influential attributes as shown in Fig. 4a. If we 
consider the Jaccard Similarity Index JCD as 40% , k_core and geodesic distance GD as 1 
each, then we can apply the method to get the attribute index structure shown in Fig. 4b. 
Each class identified in the attribute index structure is assigned as an attribute to each node 
in the graph. The generalized community detection algorithm gives all the communities for 
the sample graph as shown in Fig. 4c.

For example, if we look at the Karate-Club network graph shown in Fig. 2a with different 
attributes on each node and the Attribute Index Structure shown in Table 5, we derive the 
community of nodes that belong to the same class of attributes as shown in Fig. 5a. Simi-
larly, based on the previously defined measures, we derive the communities for the Politi-
cal-Books network dataset shown in Fig. 3. All the communities are displayed in Fig. 5b.

Algorithm analysis
The complexity analysis of the proposed method can be divided into following major parts 
based on the major steps involved in the community detection process.

Node‑weight and Edge‑weight

The Node-weight and Edge-weight are calculated by calculating the probability of each 
attribute on each node vi and edge eij , respectively. Let’s assume that there are n nodes and 
m edges in a network graph, and each node contains an average of c attributes, then the 
time required to calculate Node-weight and Edge-weight can be given as follows:

(5)[H ]O(attri(vj)) =

c∑

i=1

n∑

j=1

O(attri(vj)) = O(c ∗ n) = O(n)
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Maximizing degree of nodes

Identifying the nodes, which have a maximum degree, satisfy the requirement of the struc-
ture cohesiveness. The k-core measure is used to identify such nodes with a maximum 

(6)HO(attri(ejk)) =

c∑

i=1

m∑

j=1

m∑

k=1

O(attri(ejk)) = O(c ∗m) = O(m)

Fig. 4  Illustration of proposed method. A sample example to illustrate the proposed method and highlight 
important steps of the proposed method
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possible degree. The k-core of a graph G can be identified within the time complexity of 
O(m) , where m is the number of lines. Since all the n nodes of graph G are traversed to 
identify the k-core value, the complexity of the process to maximize the degree of nodes can 
be given as follows:

(7)O(K_core) = min(degK_core(G,V )) = O(n+m))

(8)O(K_core) = O(n) = O(|V | + |E|)

Fig. 5  Communities generated from ground-truth network dataset using proposed method. Communities 
generated for the sample ground-truth network datasets using the proposed method
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Attribute Index Structure creation

As explained in the previous section, the Attribute Index Structure is created to clas-
sify Keyword Attribute Signature on each node into different classes. These classes 
are used to generate the communities based on the similarity of a set of attributes 
on two nodes of the graph. Since we consider the nodes which have degree greater 
than or equal to the threshold value of k_core, nodes which have degree less than the 
k_core are rejected and will not be part of any community. This criteria prune the 
search space over a large network graph. There is another threshold known as Jac-
card Similarity Index θc , which verify the similarity between two Keyword Attribute 
Signatures. If the similarity between two sets is greater than or equal to θc , then such 
sets are combined into one class Ci , otherwise, the two sets are classified into two dif-
ferent class of attributes Ci and Cj , respectively. If we consider the worst case scenario 
where all the nodes are densely connected to each other, hence, they have maximal 
degrees associated with them, then all the n nodes of the graph G are considered for 
the Attribute Index Structure creation. Also, if we assume that there are c attributes 
on each node of the graph G, then the time required for the comparison of the two 
Keyword Attribute Signatures would be some constant value. Hence, the total time 
required for the creation of Attribute Index Structure can be given by the following 
equation:

Keyword search for community detection

Every class of attributes in the Attribute Index Structure Ci ∈ I  is associated with a 
vertex Vi , and the number of nodes counti(Ci) which belong to the class Ci . This infor-
mation is used for the personalized as well as generalized community detection by 
using the Keyword Search method. Since the generalized community detection uses 
each class of attributes Ci ∈ I  , the Keyword Search method is executed for every class 
and generate communities. The Keyword Search starts at the first vertex Vi associated 
with class Ci , then it searches iteratively for keyword Ci on every node in Breadth First 
Search (BFS) tree oriented at root Vi ( vi ∈ BFS_TREE(Vi) ). It is also necessary to con-
sider another important requirement for cohesive community structure, i.e. shortest 
path length between two nodes. The shortest path length between two nodes should 
be less than or equal to a maximum threshold path length. Thus, the time required 
for the generalized community detection with keyword search would consist of the 
total time required for finding Node-weight, Edge-weight, and k-core, creating Attrib-
ute Index Structure, retrieving the BFS tree for vertex vi ∈ Ci , and determining the 
nodes having shortest path length less than or equal to a maximum threshold path 
length. The time required for the BFS tree creation is O(|V | + |E|) , but the nodes in 
the graph have maximum degree forming a dense structure, hence, it is safe to assume 
that the time required for the BFS tree creation is dominated by the number of edges, 
that is O(|E|), or O(m). Now, the generalized community detection searches for all the 
classes Ci ∈ I  , hence, the BFS tree is retrieved for each vertex vi associated with Ci ∈ I  . 

(9)O(I) =

n∑

i=1

n∑

j=1

O(n ∗ c) = O(n) = O(|V |)
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In the worst case, each vertex vi belongs to separate class Ci , hence, the BFS tree 
requires the O(n ∗ |E|) or O(|V | ∗ |E|) time. The time required to calculate the shortest 
path length for n or |V| vertices is O(n2) or O(|V |2) . Thus, the total time complexity 
for the generalized community detection can be given as follows:

Since as per the assumption, the given graph is undirected, attributed, and dense graph, 
hence the number of edges |E| dominate the number of nodes |V|, which results in the 
time complexity to be bounded with the number of edges or degree of the nodes. Hence, 
the resultant time complexity for the generalized community detection can be given as 
follows:

Experimental results
Different experiments are performed to verify the accuracy of the proposed method. We 
consider only the undirected and attributed graph for all the experiments. All the experi-
ments are executed on 64 GB main memory in Intel Core i5 @ 3.70 GHz on an Windows 
10 operating system. Python 2.7 is used to implement the algorithms with networkx 
package for graph related operations.

Experimental setup

We divide our experiments into three parts. The first part of the experiment com-
pares the proposed approach with the existing methods. We use the network datasets 
like Karate-Club, American Football, Political-Books, Dolphin-network, email-EU-core, 
DBLP, and Amazon [38] with the ground-truth communities for the comparison experi-
ment. The second part contains the experiments on smaller datasets, where a number 
of nodes in the graph are less than or equal to 1000, while the third part contains exper-
iments on the large datasets where the number of nodes in the graph is greater than 
10,000. Since the community structure would contain the dense subgraphs, we include 
the variation in a number of edges by creating synthetic graphs having 2000, 5000,  and 
10,000 nodes respectively, and the probability of edge creation 0.50,  0.40,   and 0.30 
respectively. We distribute a number of attributes randomly on each node of all the 
above graphs where no attribute values are assigned to any node, so that the threshold 
value for attribute classification varies, and the resultant community structure can be 
verified. We use real datasets like YouTube video crawl [39], Twitter User Profiles [40], 
Skytrax Airline Reviews, Terrorist Data [41], Caesars Entertainment anonymous data-
set, and Facebook for the second and third part of the experiment. We randomly assign 
attributes to the datasets having only edge lists, and randomly create edges with a certain 
probability of edge creation for the datasets having node list only. The networkx package 
of Python 2.7 is used for all the graph related operation in the experiments.

Discussion

Table  6 shows the details about the runtime and a number of communities in each 
comparison experiment. Figure  6 displays the result for comparison of runtime and 

(10)
O(Commi(I)) = max(O(|V |),O(|E|),O(|V | + |E|),

O(|V | ∗ |E|),O(|V |2))

(11)O(Commi(I)) = O(|V | ∗ |E|))
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the number of communities generated for existing methods and the proposed method, 
respectively. Tables 7 and 8 show the statistics for the small as well as large graph data-
sets, respectively. The tables show statistics about the number of nodes, the number 
of edges, the probability of edge creation, and the number of attributes on each node. 
Tables 9 and 10 show the statistics about the experimental results on the small as well as 
large graph datasets, respectively. The tables show detailed information of each experi-
ment, where the number of nodes and edges are mentioned along with the threshold 
value for the similarity of attributes between two nodes, a threshold value for the short-
est path length, the number of communities, and the time required for the proposed 

Table 6  Comparison with existing methods

T1 Time for K-Clique, C1 #Communities for K-Clique, T2  Time for GN (Girvan-Newman), C2 #Communities for GN, T3 time for 
proposed method, C3 #Communities for proposed method

Graph T1 C1 T2 C2 T3 C3

Karate 1 3 1 33 1 2

Football 1 4 1 114 1 5

Political-Books 1 4 1 104 1 4

Dolphins 1 3 1 61 1 3

email-EU-Core 187 3 3300 772 50 8

DBLP 6480 47,307 46,080 13,477 936 128

Amazon 7380 23,134 88,080 75,499 6791 468

Fig. 6  Run time vs number of communities for Amazon and DBLP datasets. Experimental results showing the 
run time and the number of communities generated for ground-truth network Amazon and DBLP datasets 
using the proposed method
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method to generate these communities. All this detailed information shows the authen-
ticity of the proposed method to generate more accurate communities. All the experi-
mental results are depicted in Figs. 7 and  8, respectively.

Case study

We create a small case study based on a real time graph dataset provided by Cae-
sars Entertainment Corporation located at Las Vegas, USA . This dataset contains the 
anonymous real time attribute data collected from the Caesars Entertainment Corpo-
ration WiFi data, a test graph is created to represent the information about patrons vis-
iting different properties of Caesars Entertainment, time, and places of their visit at a 

Table 7  Small graph datasets

Graph Nodes V Edges E Prob. of edge Attributes 
on each 
node

Twitter User Profile 100 3426 P = 0.70 26

Twitter User Profile 200 11,793 P = 0.70 26

Twitter User Profile 500 74,625 P = 0.60 26

Twitter User Profile 1313 517,068 P = 0.60 26

Skytrax Airline Reviews 100 3514 P = 0.70 7

Skytrax Airline Reviews 200 13,882 P = 0.70 7

Skytrax Airline Reviews 500 74,907 P = 0.60 7

Skytrax Airline Reviews 1005 300,202 P = 0.60 7

Terrorist Data 100 3457 P = 0.70 7

Terrorist Data 200 13,969 P = 0.70 7

Terrorist Data 500 74,753 P = 0.60 7

Terrorist Data 1000 299,420 P = 0.60 7

Caesars Entertainment 100 3439 P = 0.70 6

Caesars Entertainment 200 13,929 P = 0.70 6

Caesars Entertainment 500 74,835 P = 0.60 6

Caesars Entertainment 1000 299,953 P = 0.60 6

Table 8  Large graph datasets

Graph Nodes V Edges E Prob. of edge Attributes 
on each 
node

Facebook 2000 1,000,025 P = 0.50 7

Facebook 5000 4,997,567 P = 0.40 7

Facebook 10,000 14,998,579 P = 0.30 7

Youtube video crawl 2000 998,910 P = 0.50 9

Youtube video crawl 5000 4,997,518 P = 0.40 9

Youtube video crawl 10,000 14,996,737 P = 0.30 9

Terrorist data 2000 1,000,470 P = 0.50 7

Terrorist data 5000 4,998,900 P = 0.40 7

Terrorist data 10,000 15,004,225 P = 0.30 7

Caesars entertainment 2000 998,937 P = 0.50 6

Caesars entertainment 5000 4,887,265 P = 0.40 6

Caesars entertainment 10,000 14,997,657 P = 0.30 6
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particular property. We create a graph G = (V ,E) with |V | = 200 nodes and |E| = 12000 
edges with 60% probability of edge creation in the graph at different nodes, this makes 
the graph structurally cohesive. We assign different attributes Xi(vi) like, Patron_Id, 
Path_From_Property, Path_To_Property, Time_From_Property, Time_To_Property, and 
Place_Visited on all the vertices vi ∈ V  . Since each attribute may have different values on 
each node, the probability threshold value of Node-weight =10.0 and Edge-Weight =1.0 
is set. Tables  11 and  12 represent all the attribute type-value pairs having probability 
greater than or equal to Node-weight and Edge-weight, respectively. Table 13 represents 
the Attribute Index Structure for graph dataset. Figs. 9, 10a–c, 11a–c show the original 
graph and communities generated through the proposed method, respectively.

Table 9  Experimental results on small graphs

G Graph, V #Nodes in the graph, E  edges in the graph, Sim #attribute similarity, L shortest path length, C #number of 
communities,T #time in seconds

G V E Sim (%) L C T

Twitter user profile 100 3426 70 3 2 1

Twitter user profile 200 11,860 70 3 2 3

Twitter user profile 500 74,625 70 3 4 10

Twitter user profile 1313 517,072 70 5 3 25

Skytrax airline reviews 100 3514 50 3 3 1

Skytrax airline reviews 200 13,882 50 3 3 2

Skytrax airline reviews 500 74,907 50 3 4 6

Skytrax airline reviews 1005 300,202 50 3 5 28

Terrorist data 100 3457 70 3 2 1

Terrorist data 200 13,969 70 3 2 2

Terrorist lata 500 74,753 70 3 3 10

Terrorist lata 1000 299,420 70 3 3 37

Caesars entertainment 100 3439 70 3 10 1

Caesars entertainment 200 13,929 70 3 12 2

Caesars entertainment 500 74,835 70 3 12 6

Caesars entertainment 1000 299,953 70 3 13 22

Table 10  Experimental results on large graphs

G graph, V #nodes in the graph, E edges in the graph, Sim #attribute similarity, L shortest path length, C #number of 
communities, T #time in seconds

G V E Sim (%) L C T

Facebook 2000 1,000,025 70 3 60 100

Facebook 5000 4,997,567 70 3 37 2577

Facebook 10,000 9,996,858 70 3 51 1701

Youtube video crawl 2000 998,910 70 3 5 62

Youtube video crawl 5000 4,997,518 70 3 5 817

Youtube video crawl 10,000 14,996,737 70 3 6 6785

Terrorist data 2000 1,000,470 70 3 9 100

Terrorist data 5000 4,998,900 70 5 10 2149

Terrorist data 10,000 15,004,225 70 5 10 25,000

Caesars entertainment 2000 998,937 70 3 7 109

Caesars entertainment 5000 4,997,265 70 3 10 1321

Caesars entertainment 10,000 14,997,657 70 3 10 7383
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Now, for the personalized community detection, we can create the queries q 
like, find a community of nodes where people traveled from property A to prop-
erty B. Such a query q represents the class of keyword attributes Path_From_ 
Property = A,Path_To_Property = B , and the personalized community detection algo-
rithm finds all the nodes vi ∈ I , where Ci(vi) = q . This creates a community of nodes 
Commi(Ci) , where all the nodes have path from Property A to B . However, the general-
ized community detection finds the communities Commi(Ci) for all Ci ∈ I , which con-
tains all the nodes sharing the keyword attribute information, resulting in more accurate 
community detection as desired.

Concluding remarks
A community structure derived from an attributed graph exhibits the structure and 
keyword attribute cohesiveness. The proposed keyword search based method derives 
communities with the structure and keyword attribute cohesiveness by constructing an 
Attribute Index Structure. The Attribute Index Structure correctly represents different 

Fig. 7  Run time vs number of communities for small graph datasets. Experimental results showing the run 
time and the number of communities generated for small graph datasets using the proposed method
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Fig. 8  Run time vs number of communities for large graph datasets. Experimental results showing the run 
time and the number of communities generated for large graph datasets using the proposed method

Table 11  Node-weight for Caesars-WiFi dataset

Id Attribute type-value pair Probability

1 Property_Region: Gaming 21.0

2 To_Property: Cromwell 20.50

3 From_Property: Cromwell 20.50

4 From_Property: Harrahs_LV 18.0

5 From_Property: Paris 17.0

6 To_Property: Caesars Palace 16.00

7 To_Property: Paris 15.00

8 From_Property: Caesars Palace 14.50

9 To_Property: Harrahs_LV 14.00

10 From_Property: Ballys 14.00

11 Property_Region: Cromwell_Valet 11.00

12 To_Property: Flamingo 10.00
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Table 12  Edge-weight for Caesars-WiFi dataset

Id Attribute type-value pair Probability

1 Property_Region: Gaming 4.5

2 To_Property: Cromwell 4.0

3 From_Property: Cromwell 4.0

4 From_Property: Harrahs_LV 3.16

5 From_Property: Paris 3.0

6 To_Property: Caesars Palace 3.00

7 To_Property: Paris 2.26

8 From_Property: Caesars Palace 2.19

9 To_Property: Harrahs_LV 2.00

10 From_Property: Ballys 2.00

11 Property_Region: Cromwell_Valet 1.09

Table 13  Attribute Index Structure for Caesars-WiFi Dataset

Class Node V Attributes Count

1 0 {2, 4, 5, 8, 10} 48

2 2 {0, 1, 6, 9, 10} 35

3 9 {0, 1, 2, 5} 15

4 11 {0, 6, 7, 9} 16

5 14 {0, 3, 4, 5, 6} 29

6 21 {0, 1, 6, 7, 10} 6

7 31 {2, 4, 6, 8, 10} 4

8 35 {0, 1, 2, 3} 9

9 47 {0, 2, 3, 6, 8} 12

10 50 {0, 5, 7, 8, 9} 13

10 61 {1, 2, 4, 10} 5

10 188 {0, 1, 10, 3, 4} 2

Fig. 9  Original graph generated for caesars dataset. Depicts the Caesars datasets
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classes of attributes and helps to derive the community of nodes which share a finite 
number of keyword attributes, along with the cohesive structure. The proposed method 
is able to provide the personalized and generalized community detection methods, which 
provides the flexibility to determine community of nodes in an online manner. Hence, 
the proposed method provides a more accurate measure of community detection in 
terms of the cohesive structure as well as keyword attribute similarity, compared to the 
existing algorithms. In addition, the proposed method provides a mechanism to gener-
ate communities in an online manner, which is more useful to determine real-time com-
munity of nodes. For future work, we intend to design a probabilistic model to predict 
the community of a node based on its connectivity with different nodes and attribute 
similarity. A probabilistic model can predict the class of a node, which can be further 
used for the Advanced Keyword Search techniques. We will also examine other metrics 

Fig. 10  Communities Detected for caesars way finding data. Displays various detected communities
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of keyword search over distributed graphs so that, the current work can be extended to a 
distributed environment and more efficient techniques of keyword search can be incor-
porated for the purpose of community detection.
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