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Introduction

With the advance of computational techniques, the amount of genomic data has risen
exponentially, with a rapid rate [1] making it hard to utilize such data in the medical field
without appropriate pre-processing, which in turn leads to more complexity and verac-
ity issues [2] eventually creating multiple complications such as storage, analysis, privacy
and security. Therefore, genomic data may look easy to handle in terms of its volume,
but it actually requires quite a complicated process due to the complexity, heterogeneity
and hybridity of its features. This process is entitled knowledge discovery process [3]:

+ Data recording Includes the different challenges and tools regarding the capture and
storage of data.

+ Data pre-processing Which includes all the operations of cleaning and appropriation
of the captured data to the ready to analyze form in order to optimize the analysis
step.

+ Data analysis The task of evaluating data using different algorithms following a logi-
cal reasoning to examine each component of the data provided, with the aim of dis-
pensing insightful outcomes.
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Fig. 1 Basic feature selection methods. The figure shows the three main types of feature selection, filter,
wrapper and embedded methods as well as the process in which data passes from initiation to completion
of selection in each one

+ Data visualization and interpretation The step involving the effective knowledge
representation using different methods in order to determine the significance and
importance of the findings.

The main goal in genomics has primarily been to sequence genomes of all living crea-
ture in order to analyze and understand the remaining secrets of the human body
and make it possible to detect causes for several genetic diseases. The focus now has
evolved from how to sequence the data to how to get use out of the already sequenced
data. The multiple challenges that genomic data presents call for the necessity of
building a strong model for the preprocessing step. It is compulsory to deal with these
challenges in order to allow the decreasing of the volume and complexity by choosing
only the most relevant features using feature selection techniques. The preprocess-
ing step is the foundation stone for the analysis accuracy. Even with small databases,
genomic data triggers several challenges, such as huge complexity as well as multi-
plicity of features and attributes, meaning that an appropriate processing step is very
critical and needed in order to conduct to perform a high-quality analysis [4]. One of
the goals of the preprocessing step is to reduce the dimensionality and the complexity
of a dataset, which is accomplished by feature selection. There are mainly six types of
feature selection methods. The first three basic methods are (see Fig. 1):

« Filters Filter methods are a preprocessing step that is independent of a subsequent
learning algorithms. They use independent techniques to select features. The set
of features is chosen by an evaluation criterion, or a score to assess the degree of
relevance of each characteristics to a target variable [5].

+ Wrappers Wrappers are feature selection methods that evaluate a subset of char-
acteristics by the accuracy of a predictive model trained along with them. The
evaluation is done using a classifier that estimates the relevance of a given subset
of characteristics. This type of methods has given evidence to be efficient yet com-
putationally expensive which makes it not very popular [6].

o Embedded Combine the qualities of filter and wrapper methods. As the Filter
methods have shown to be faster yet not very efficient while the Wrapper methods
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are more effective but very computationally expensive especially with big datasets,
a solution that combines the advantages of both methods was needed.

Other types of feature selection methods have been identified and praised in the

literature. Those types are usually based on the basic three types mentioned above.

+ Hybrid Methods that apply multiple conjunct primary feature selection methods
consecutively [7].

« Ensemble Use an aggregate of feature subsets of diverse base classifiers. It consists
of the use of different feature subsets [8].

+ Integrative Integrate external knowledge for feature selection [9].

As a matter of fact, this interest in big genomic data analytics has grown noticeably
resulting in a huge amount of publications. The scanning and review of these publica-
tions is necessary in order to place a researcher’s personal study into the field. Our study
presents a systematic mapping of the publications related to the application of feature
selection methods in big genomic data analysis using the mapping process suggested
method [10] followed by a review of the more relatable publications to our field of study.

The importance of the role of feature selection methods for the processing cycle
in big data, and especially genomic big data, is becoming more and more apparent.
Many researchers have presented different reviews and surveys of feature selection
methods and their role in augmenting results quality.

Vergara et al. [11] highlight and explain the problems that alarm the need for fea-
ture selection methods, they offer a state-of-the-art of feature selections methods
with an implementation of mutual information feature selection framework. In [12] a
set of feature selection methods and classification methods are presented by Li et al.
and Mitsunori Ogihara. along with experimental implementations using gene expres-
sion datasets. Wang et al. [13] present a survey of feature selection techniques and
their applications in big data analysis in the field of bioinformatics offering a new cat-
egorization of the feature selection techniques.

In this work, and in contrast to the previously presented related works, that present
a classical version of a review paper, we focus on genomic data by following a system-
atic approach of reviewing the existing feature selection methods specifically in the
genomics with the view of helping researchers build a comprehensive perception of
the best performing feature selection methods specifically for genomic big data.

The remainder of this paper is organized as follows. In “The mapping process” sec-
tion, we analyse the different steps of the followed systematic mapping research meth-
odology. “Mapping results and discussion” section highlights the main findings of the
mapping process along with the discussion of these findings. In “Review of results”
section, we provide a review of the systematic mapping resulting papers. In “Validity
considerations” section, we present the validity considerations that were used in the
research process. We conclude and share our perspectives and future work in “Con-
clusion and further work” section.
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Fig. 2 Adopted systematic mapping process. The figure depicts the systematic mapping and reviewing
process adopted in this study, which is proposed by Petersen et al.

The mapping process

In this paper, we employ the systematic mapping process proposed by Petersen et al. [10]
(see Fig. 2) with the objective of identifying the most relevant studies that relate to fea-
ture selection applied to big genomic data. The main goal of the mapping step is to even-
tually conduct a review of the mapping step’s resulting papers.

Initially, we define the research questions that help shape our study. A query search
using key words is run throughout different prominent digital databases, ACM, IEEE
Xplore, Science Direct, and Scopus, resulting in an immense number of publications.
The next step is the screening of results, which allows to consider only the publications
that are centered around our three keywords that are ‘Feature Selection; ‘Big Data’ and
‘Genomics. The last mapping step consists of the classification of the results accord-
ing to several criteria displayed bellow. At last, a review of the most pertinent works is
presented.

Research questions
Research questions are a foundation step contributing in the success of a mapping study.
Choosing research questions should be done carefully as it makes or breaks the study.
For more accuracy, we have decided to categorize our questions into three types: Guid-
ing Questions (GQ), Categorization Question (CQ), and Discussion Questions (DQ).

The first category is the Guiding Question, which presents a definite and clear expres-
sion of the area of concern. For this study, the Guiding Question is expressed as follow-
ing, “GQ: What type of feature selection techniques are being employed in solving big
data problems in genomics?” This question serves as the guiding question of our study.
Its purpose is the orientation of the search since the search query is deduced from it.
In this study, the articles that englobe the three main parts of this question were taken
under consideration, i.e. ‘Feature Selection, ‘Big Data’ and ‘Genomics.

Second questions are Categorization Questions, which may be used in the step of
identification of relevant contributions along with the rest of the classification criteria.
CQs: What are the categories of feature selection methods according to the tyoe of:

+ Research is being conducted in the paper?
« Contribution was proposed in the paper?
+ Use in Bioinformatics?

+ Data mining: predictive or descriptive?

« Predictive/descriptive modelling?
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Table 1 Keywords and synonyms in the search query

Terms Synonyms list
Feature selection Variable selection, dimensionality reduction
Big data Multi-dimensional data, high-dimensional

data, Hadoop, MapReduce, Spark
Genomics Genetics, bioinformatics, micro-array data

CQs are important in a sense that they can be used to decide whether the paper is worth
being taken under consideration or not. Along with the inclusion and exclusion criteria,
these questions provide enough information for the identification of relevant work.

The last category is the Discussion Question (DQ) that leverages the analytical and
critical review of the selected contributions: DQ: What are the feature selection meth-
ods and techniques previously employed in big genomic data analytics?

Query search

To conduct this study, we decided to focus on the previously proposed contributions
in feature selection techniques that were proposed for big genomic data. Three main
terms were selected in order to form an appropriate query for the search. A list of the
synonyms of the three terms is also considered in order not to omit any publication that
could potentially be relevant (see Table 1).

The list of synonyms help broaden the circle of search, the more terms the query has
the higher the chances of not neglecting a relevant work get. In this mapping study, we
use dimensionality reduction as a synonym to feature selection although the process
of dimensionality reduction actually consists of two sub tasks. The first one is the fea-
ture extraction, one important step among the analysis process in any field [14], which
involves transforming or projecting a space composing of many dimensions into a space
of fewer dimensions and the second task is feature selection which is the process of
selecting only relevant and non redundant features. The reason behind using dimen-
tionality reduction as a synonym to feature selection is not to disgard significant papers
where the authors might have fused the two tasks or did not clearly state the type of the
sub task used. Forming the list of keywords and their synonyms is the helping step for
creating the query for the primary search step:

(Feature Selection OR Variable Selection OR Dimensionality Reduction)

AND

(Big Data OR Multi-dimensional data OR High-dimensional data OR Hadoop OR
MapReduce OR Spark)

AND

(Genomics OR Genetics OR Bioinformatics OR Micro-array data).

The search query is performed in four of the best assessed digital repositories that
prove to respect the worthiness parameters [15]. and was enriched with as many terms
related to our study as possible. The primary resulted in a large list of publications, which
the length varies depending on each repositories criteria of search (see Table 2).
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Table 2 Results of primary search

Repositories Number
of publications

ACM 216,222
IEEE Xplore 38,268
Science Direct 46,180
Scopus 17,600

The large number of publications resulting from performing the query search calls for
the need to a thorough selection of papers. This selection is evidently not random, it
relies on previously chosen identification criteria depending on the field of the study, as
well as other classification standards that meet the expected outcomes of our study.

Identification of relevant work

In order to identify relevant work, several criteria have to be chosen carefully. There are
two types of criteria, inclusion and exclusion criteria run through the research question
results.

Inclusion criteria
+ The reputation of the academic source, such as a journal or conference,
« Articles referenced in one of the articles considered and related to the subject.

Only the papers that were presented in the most prominent journals and conferences
were taken under consideration, for higher accuracy, we check the list of the references
for the relevant work.

Exclusion criteria

+ Delete publications that do not contain the term ‘Feature Selection, or any of its syn-
onyms, in the title, summary, or metadata section of the document.

+ Delete publications that do not contain the term ‘Big Data;, or any of its synonyms, in
the title, summary, or metadata section of the document.

+ Delete documents that only refer to terms without them being a subject of the study.

+ Cast aside publications that do not present a strong study that involves the three
terms by examining the introduction, conclusion and results sections of each publi-
cation.

The finally selected publications need to present a significant work that focuses on all
three main terms of the study or else it is not included in our study.

Classification characteristics

The selection relevant studies, after applying the inclusion and exclusion criteria, are
classified and categorized according to many characteristics. The first one is the catego-
rization question defined while framing the questions followed by the type of research
and the type of contribution and lastly the type of analytics (see Table 3).
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Table 3 Publications classification characteristics

Classification characteristics Types of research Types of contribution Types of analytics
Type of characteristics Evaluation Architecture Predictive
Experience Framework Descriptive
Opinion Methodology
Philosophical Model
Solution Platform
Solution Process
Solution Theory
Solution Tool

There are various types of research contributions and the focus in each one differs

according to the field of study. We find that in the field of genomics, researchers focus

on proposing philosophical, evaluation and solution contributions. They either present a

theoretical point of view about a set of existing methods or present a new methodology

to solve a recurrent problematic [16].

Types of research

3

Validation research Research that presents a thorough investigation of a solution that
is previously proposed.

Experience research Study where the researcher proposes the steps of an experimen-
tal study and presents experimental results.

Opinion research A personal subjective opinion of the researcher focusing on a cer-
tain method compared to other related works.

Philosophical research Research that analyses a certain problem on a theoretical level.
Solution research A presented solution to a certain problem supported by experi-
ments and proof of validity.

Types of contribution

.

Architecture A solution that is constructed of multiple components working together
for better results.

Framework A potentially extensible combination of various libraries that solve a cer-
tain problem.

Methodology A contribution to the methods for solving a certain computational
issue.

Model Presentation of predictive/descriptive models trained for solving particular
problems.

Platform A combination of hardware and software solutions enabling applications to
run.

Process Data-processing workflows proposed for solving a particular problem.
Theory Philosophical guidance towards solving a certain problem.

Tool Well-defined software utilities addressing a subset of a bigger problem.
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Table 4 Results of the identification of relevant work step

Repositories Number
of publications

ACM 1
IEEE Xplore

Science Direct 19
Scopus

Types of analysis
+ Predictive analysis An analytical study of current data with the aim of making pre-
dictions about future outcomes.
+ Descriptive analysis An analytical description of the basic features of the dataset
in a study that provides simple summaries about a sample.

Mapping results and discussion

The following section presents the outcomes of the step of identification of relevant
works in the mapping process highlighted in “The mapping process” section. The dif-
ference between the number of publications in each repository is drastic. The reason
behind this could be explained by the diversity of the criteria of each search engine
(see Table 4).

The ACM search engine is more likely to consider each word on its own during the
search and present all the possible articles that contain the word, which explains the
enormous difference between the number of the papers resulting from the primary
search and the ones that are consequent of the mapping process. The other reposito-
ries present a narrower number of publications, which could be explained by the fact
that they use more precise and to the point search engines.

After applying the different criteria of inclusion and exclusion, only the most rel-
evant to the field of interest papers are kept. We also choose for reviewing purposes
not to include philosophical studies.

Feature selection methods are an important key to the analysis of genomic big data,
which calls for the need to more innovative methods and algorithms. It is noticeable
that the most researchers in this field offer new innovative solutions, or evaluations of
already existing solutions, supported by strong proof and experiments (see Fig. 3). Those
two types are followed by validation studies that verify and test with previously proposed
solutions. It is also clear that with the advance of years, the number of publications con-
sidering more solutions and evaluation paper have gone higher (see Fig. 4).

The interest in the field has grown exponentially both in conferences and journals as
we can see in Fig 5. The most noticeable contributions are proposed methodologies that
offer new implementations of algorithms. In this field and for the last decade, there are
more publications in journals than there are in conferences. Different architectures,
frameworks and tools are proposed as well as solutions to the problem of feature selec-
tion in big genomic data analytics, yet the methodologies gain the lion’s share among the
proposed contributions, followed by frameworks and architectures (see Fig. 6).
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Fig. 3 Existing studies of feature selection methods in big genomic data analytics. The figure shows the
results of the comparison between types of already existing studies, which shows that most research is
oriented towards presenting solutions or evaluations of already existing solutions, supported by strong proof
and experiments
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Fig. 4 Distribution of types of research throughout the last ten years. The figure depicts the distribution
of the proposed research within the last 10 years, taking into account the type of these studies, solution,
evaluation or validation

The goal of data analysis in the medical field is usually predicting diseases with the
aim of prevention. When it comes to feature selection methods, the majority of the
proposed solutions are part of the preprocessing step in a predictive analytics study,
which explains why the publications concerned with predictive analytics outnumber

dramatically the ones concerned with descriptive analytics as seen in Fig. 7.
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Review of results
DQ: What are the feature selection methods and techniques previously employed in big
genomic data analytics?

The crucial role played by the feature selection step has led many researchers to inno-
vate and find different approaches to address this issue. The rationale behind the discus-
sion question is to review and discuss those contributions existing within the resulting
papers of the systematic mapping process (Table 5). One distinctive attempt to display
an opinion research based on well-known approaches in feature selection applied to dig-
ital genetics in order to enhance machine intelligence is found on [17] by Muneshwara
et al. In their paper, Muneshwara et al. do not focus on a single type of feature selection
method, paradoxically, however, the rest of the contributions display diverse solutions
that can be categorized according to the six types of feature selection methods.

Filter methods

The initial feature selection type is the filter methods, in which the algorithm selecting
relevant and non-redundant features in the data set is actually independent of the used
classifier. Many bioinformatics researchers have shown interest in this particular type of
feature selection methods due to the simplicity of its implementation, its low computa-
tional cost and its speed. Yang et al. [18] present experimental results of the multivariate
(mRMR) feature selection algorithm on five real datasets. The algorithm selects features
that have maximal statistical dependency based on mutual information. It considers
relevant features and redundant features simultaneously. In another scope, Tsamardi-
nos et al. [19] dispense an algorithm for feature selection in big data settings that can
combine local logistic regression coefficients to global models. The algorithm is tested,
with Single Nucleotide Polymorphisms (SNP) dataset, against the global logistic regres-
sion models produced by Apache MLIib! and shows better performance in number of

selected features, and predictive performance.

Wrapper methods

Although filter methods are easier to implement, wrapper methods are advantageous
for providing better performance by including classification performance of the used
classifier, such as accuracy, within the evaluation of the feature selection algorithm. In
[20], He et al. present a wrapper feature selection solution for the prediction of a genetic
trait, which can be seen as an extension of minimum redundancy maximum relevance
(mRMR) feature selection in a transductive manner. Then, using real data they show
evidence that their wrapper feature selection leads to higher predictive accuracy than
mRMR. On the other hand, analysis of gut microbiota in relation to mental disease (spe-
cifically schizophrenia) is the focus of the study in [21], where Shen et al. conduct several
experiments using the Boruta feature selection algorithm followed by a random forest
classifier are reported. Sun et al., in [22], introduce a new feature selection algorithm
for internet of things (IoT) information processing. This method is based on the max-
imal information coefficient (MIC), allowing to capture different types of correlations

! https://spark.apache.org/mllib/.
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between variables. A new data mining approach, called frequent item feature selection is
proposed by Kavakiotis et al. [23], the novelty approach is based on the use of frequent
items for the selection of most informative markers from genomic data, relying on two
major components, the first being the identification of the most frequent and unique
genotypes for each sampled population and the second being the selection of the most
informative SNP subsets among these populations.

Embedded methods

Embedded methods work by adding a penalty against complexity to reduce the degree
of overfitting or variance of a model by adding more bias. Those methods are differ-
ent from other feature selection methods in the way that feature selection and learn-
ing interact; they do not separate the learning from the feature selection part. In [24],
Saghir et al. present an evaluation of a random forest classifier using generated datasets
for whole genome shotgun (WGS) sequencing in order to solve binning and classifica-
tion problems. Diversely, Sasikala et al. propose in [25] a genetic algorithm for feature
selection method, called SVEGA to rank genes according to their capability to differenti-
ate the classes. Tests with four classification algorithms demonstrate its ability to reduce
features and improve accuracy rate. Alternatively, Kumar et al. in [26] propose a method
that includes a diversity of statistical tests for feature selection. Similarly to [27], they use
a distributed implementation based on MapReduce on Hadoop in order to reduce exe-
cution time. In the same scope, in [28] Zhang et al. apply a novel computational strategy
to identify gene expression signatures in three types of hematopoietic cells, where each
cell type is represented by its gene expression profile. To achieve this goal, the expression
features are analyzed by a combination of a Monte Carlo feature selection (MCES) algo-
rithm and an optimized SVM classifier method, resulting in a feature list of the relevant
gene expression.

Liu et al. developed in [29] two methods SKI-Cox and wLASSO-Cox, respectively, to
facilitate variable selection for Cox-regression model using multi-omics data. They pro-
pose a new framework that can be useful in building a clinically applicable predictive
models, as well as identifying driver genes helping to explaining cancer development,
prognosis, and relation to patient-specific outcomes. Within the same scope of embed-
ded methods, Li and Huang [30] attempt to identify characteristic tissue-gene expression
patterns through the combination of morningness-associated genetic polymorphisms
in a genome-wide association studies (GWAS) data. For this, the authors employ an
incremental feature selection method with a dagging classifier, to analyze tissue-gene
expression patterns and extract the important ones. Zhou et al. in [31] propose a com-
putational method to predict N-formyl methionines (fMet) based on various types of
features, including position-specific scoring matrix (PSSM) based conservation scores,
amino acid factors, secondary structures, solvent accessibilities and disorder scores.
The optimal set of features is extracted using mRMR and incremental feature selec-
tion (IFS) methods. On the other hand, in [32] Triguero et al. present random oversam-
pling and evolutionary feature weighting for a random forest (ROSEFW-RF) algorithm,
which reportedly deals well with imbalanced class distribution in a large dataset. Prior

to building the model, they apply a combination of multiple preprocessing stages, such
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as random oversampling, a evolutionary feature weighting. All steps of this approach are
run within MapReduce computational framework.

Hybrid methods

Hybrid methods gained an immense popularity due to the fact that they incorporate
multiple types of feature selection methods, Filters, Wrappers and Embedded, within
the same process. In [33], Wang et al. apply two screening method on a publicly available
sample from the Gene Expression Omnibus (GEO) database.” The methods help omit
redundant genomic pairs that do not help the prediction process and reduce correlation
among classifiers in order to improve prediction accuracy. With the aim of speeding up
the training time of a support vector machine (SVM) algorithm, Arumugam and Jose in
[34] propose an algorithm that utilizes a twofold SVM and applies decision tree as a data
filter, to reduce dimensionality. Alternatively, in [35] a framework that incorporate the
Pearson correlation coefficient within two different feature selection approaches based
on information gain and relief is proposed by Jafari et al. The framework is tested on
real biological data showing higher accuracy and speed compared to other state-of-the-
art methods. From another perspective, Ghaddar et al. in [36] address the problem of
selecting the minimal number of features for a binary classifier. They introduce a new
approach for SVM classification and feature selection based on iteratively adjusting a
bound on the 11-norm of the classifier vector. Reportedly, the advantage of this approach
is its intuitive implementation and computational tractability for applications that con-
tain high dimensional features where the direct application of standard feature selec-
tion models is computationally intractable. On the same premises, in [37], Wang et al.
employ (MCES) followed by incremental feature selection (IES) to identify relevant fea-
tures that can be used to train an SVM classifier for distinguishing the five types of can-
cers. The use of MCEFS in feature analysis leads to the extraction of 16 decision rules that

augment the classification accuracy.

Ensemble methods

Ensemble feature selection methods combine independent feature subsets and could
eventually provide better approximation to the optimal subset of features, which made
them attract researchers’ attention during the last few years. In [38], Farid et al. propose
a feature selecting method for ensemble clustering of complex genomic data by combin-
ing two traditional clustering algorithms, k-means and similarity-based clustering. They
test their model on an exome data set (for Brugada syndrome studies) and compare it
with four different clustering methods, showing that their method results to decreas-
ing compactness. Within the same scope of Ensemble methods, Hogan et al. address the
problem of Next Generation Sequencing (NGS) data at very large scale in [39] by inves-
tigating the effectiveness of parallel ensemble classifiers, principally random forests, to
take advantage of the available computational resources. They consider a mix of real and
synthetic data.

2 https://www.ncbi.nlm.nih.gov/geo/.
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Itegrative methods

Integrative feature selection methods are considered as an immerging genre, they inte-
grate external data during the process of feature selection. Zhu et al. present in [40] an
implementation of a sparse regression algorithm. They integrate an additional regres-
sion technique in order to increase the feature selection accuracy. Their algorithm is
tested upon a complex (SNP) database and indeed shows better results than other fea-
ture selection methods they experimented with. Alternatively, in [41], Altinigneli et al.
present a parallelized form of the LogicFS algorithm applied on stimulated datasets and
real schizophrenia datasets for predicting SNP interactions and shows a great running
time improvement compared to non-parallelized LogicFS. On the other hand, in [42],
Raghu et al. present an integrative feature selection method for finding a maximally rel-
evant and diverse gene sets with preferential diversity using an importance score that
combines both prior knowledge and data inherent information. On the strength of ite-
grative feature selection methods, AlFarraj et al. [43] examine the Ant Colony Optimiza-
tion based feature selection process. They use various datasets such as the Protein Data
Bank,® VariBench protein data,* lung cancer data and, bank marketing data in order to
investigate the accuracy of the method, which shows better performance compared to
other methods.

Based on MapReduce paradigm, Kumar et al. [44] propose the usage of an ANOVA
statistical test for feature selection, followed by training k-nearest neighbors (kNN) clas-
sifier for classifying big microarray data. They utilize MapReduce over scalable clusters
which also allows the processing time to be reduced. Presented in [45] another research
direction that dealing with Rule-based classifier where Farid et al. propose an adaptive
rule-based classifier for multi-class classification of biological data, in a human inter-
pretable way. Their classifier combines the random subspace and boosting approaches
with an ensemble of decision trees to generate a set of classification rules with the goal
of minimizing over-fitting and the impact of, noisy instances and class-imbalance in
data. In order to select relevant features, Kumar et al. [27] propose a method that uses
various statistical tests, followed by kNN to classify data into cancerous/non-cancerous.
The distributed implementation (MapReduce on Hadoop) of these methods reportedly
reduces the execution time drastically. Within the same scope, Elsebakhi et al. propose,
in [46], a functional networks method for enhancing a large scale machine learning clas-
sifier based on propensity score and Newton-Raphson-maximum likelihood optimi-
zation. The application of this method on big biomedical data shows that this method
outperforms most of the existing state-of-the-art statistical and machine learning meth-
ods with regards to performance and execution time. Based on MapReduce, Dhifli et al.
[47] propose the scalable and distributed method MR-SimLab to compute pairwise simi-
larities between labels of graph nodes. A comparative study on multiple datasets shows
that this method improves predictive accuracy.

3 https://www.rcsb.org/.
* http://structure.bmc.lu.se/VariBench/.
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Validity considerations

In order to present a significant review, a very critical process has to be followed. It is
preferable to apply a systematic mapping process upon the set of publications in the
field of interest. Although it is always preferable to follow a systematic process, before
engaging in a functional study, it still cannot present a perfect accuracy and reliability.
During this study, we have tried to limit the risks of error yet that does not negate the
fact that there are still some threats to the validity of the process.

Digital databases

Since we used a limited number of well-recognized repositories, i.e. ACM, IEEE
Xplore, Science Direct and Scopus, to select the initial set of papers, we may have
omitted some possibly strong contributions. The decision to neglect other reposito-
ries can be justified by the fact that if a paper presents a strong contribution, chances
are it would be referenced in one of the initially selected papers, and thus, it would be
included in our study after applying the second inclusion criteria.

Research questions

Our research questions were discussed and agreed by the members of the research
team. There is a chance that an aspect of interest to other researchers may have been
neglected. Although the team welcomed external and internal propositions about
what could be an aspect of interest, there is a slight chance that some angles could not

have been covered by this study.

Inclusion and exclusion criteria
As inclusion and exclusion criteria can have major impact on the mapping process,
they are also agreed on previously by the whole research team. To the best of knowl-

edge, we include all possible synonyms of the key search terms.

Classification accuracy

The labeling of each research, publication and type of analytics proposed was quite
difficult, each paper was checked twice in order to verify its categorization. We have
tried our hardest to match the conventional agreed upon classification elements in
order to upgrade the accuracy of the categorization thus limit the chances of error.

Conclusion and further work

In this paper, focusing on the data preprocessing step, we identify and review the most
relevant studies on feature selection methods employed in the analysis of genomic
big data. We believe that our work will benefit future studies in genomic data analyt-
ics. The review of research literature highlights the strong correlation between the
choice of appropriate feature selection methods and the nature of the dataset as well
as the type of the study and desired outputs. A wide range of the reviewed papers
propose new solutions through offering new methodologies, frameworks, architec-
tures and tools depicting the importance of the usage of feature selection methods
while processing genomic big data. In another scope, a considerable amount of papers
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offer evaluation and validation tests of previously proposed methodologies and tools.
Despite the increasing interest in genomic data analytics, the attention on the pre-
processing step remains consistently present. As future work, we aim at contributing
to the feature selection methods by proposing a hybrid feature selection method for
genomic data and evaluate it within a genomic analytics process.
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Publication repository Type Title Year Classification
IEEE Symposium on Computational ~ Conference Minimal-redundancy-maximal- 2013 Evaluation
Intelligence in Bioinformatics and relevance feature selection using
Computational Biology (CIBCB) different relevance measures for
omics data classification [18]
IEEE International Conference on Conference Identification of SNP Interactions 2014 Solution
Big Data Using Data-Parallel Primitives on
GPUs [41]
Elsevier—Procedia Computer Sci- Conference Large Scale Read Classification for 2014  Evaluation
ence Next Generation Sequencing [39]
IEEE International Symposium on Conference Big Data Biology-Based Predictive 2015 Evaluation
Technologies for Homeland Secu- Models Via DNAMetagenomics
rity (HST) Binning For WMD Events Applica-
tions [24]
IEEE International Congress on Big Conference Two screening methods for genetic 2015 Solution
Data association study with application
to psoriasis microarray data sets
[33]
Elsevier—Procedia Computer Sci- Conference A Novel Feature Selection Technique 2015 Solution
ence for Improved Survivability Diagno-
sis of Breast Cancer [25]
Elsevier—Procedia Computer Sci- Conference Feature Selection and Classification 2015 Evaluation
ence of Microarray Data using MapRe-
duce based ANOVA and K-Nearest
Neighbor [44]
Elsevier—Knowledge-Based Systems  Journal Classification of microarray using 2015 Solution
MapReduce based proximal sup-
port vector machine classifier [26]
Elsevier—Journal of Computational  Journal Large-scale machine learning 2015 Solution
Science based on functional networks for
biomedical big data with high
performance computing platforms
[46]
Elsevier—Knowledge-Based Systems Journal ROSEFW-RF: The winner algorithm 2015 Solution
for the ECBDL'14 big data competi-
tion: An extremely imbalanced big
data bioinformatics problem [32]
|IEEE/ACM Transactions On Computa- Journal MINT: Mutual Information based 2015 Solution
tional Biology And Bioinformatics Transductive Feature election for
Genetic Trait Prediction [20]
IEEE Future Technologies Conference  Conference A Feature Grouping Method for 2016 Solution
Ensemble Clustering of High-
Dimensional Genomic Big Data
[38]
Elsevier—Expert Systems With Journal An adaptive rule-based classifier for 2016 Solution
Applications mining big biological data [45]
Elsevier—Journal of Biomedical Journal Analysis of microarray leukemia data 2016 Solution
Informatics using an efficient MapReduce-
based K-nearest-neighbor classifier
(271
Elsevier—Neurocomputing Journal Prediction of protein N-formylation 2016 Evaluation
and comparison with N-acetyla-
tion based on a feature selection
method [31]
IEEE Transactions On Big Data Journal Journal Low-Rank Graph-Regularized 2017 Solution
Structured Sparse Regression for
Identifying Genetic Biomarkers [40]
IEEE Digital Genomics to Build a Conference Digital Genomics to Build a Smart 2017 Opinion

Smart Franchise in Real Time
Applications

Franchise in Real Time Applica-
tions [17]
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Table 6 (continued)

Publication repository Type Title Year Classification
IEEE 33rd International Conference Conference Integrated Theory- and Data-driven 2017  Solution
on Data Engineering Feature Selection in Gene Expres-
sion Data Analysis [42]
Elsevier—Artificial Intelligence In Journal A hybrid framework for reverse engi- 2017  Solution
Medicine neering of robust Gene Regulatory
Networks [35]
Elsevier—Computers in Biology and ~ Journal FIFS: A data mining method for 2017 Solution
Medicine informative marker selection in
high dimensional population
genomic data [23]
Elsevier—Information Systems Journal MR-SimLab: Scalable subgraph selec- 2017 Solution
tion with label similarity for big
data [47]
Elsevier—Methods Journal Multi-omics facilitated variable selec- 2017 Evaluation
tion in Cox-regression model for
cancer prognosis prediction [29]
Springer Journal A greedy feature selection algorithm 2018 Solution
for Big Data of high dimensional-
ity [19]
Springer—The Natural Computing Conference Optimized feature selection algo- 2018 Solution
Applications Forum rithm based on fireflies with gravi-
tational ant colony algorithm for
big data predictive analytics [43]
Elsevier—Materials today Proceed- ~ Conference Efficient Decision Tree Based Data 2018 Solution
ings Selection and Support Vector
Machine Classification [34]
Elsevier—Schizophrenia Research Journal Analysis of gut microbiota diversity ~ 2018 Evaluation
and auxiliary diagnosis as a bio-
marker in patients with schizo-
phrenia: A cross-sectional study
[21]
Elsevier—BBA-Molecular Basis of Journal Distinguishing three subtypes of 2018 Evaluation
Disease hematopoietic cells based on gene
expression profiles using a support
vector machine [28]
Elsevier—BBA-Molecular Basis of Journal Predicting and analyzing early wake- 2018 Evaluation
Disease up associated gene expressions
by integrating GWAS and eQTL
studies [30]
Elsevier—Future Generation Com- Journal Feature selection for loT based on 2018 Solution
puter Systems maximal information coefficient
[22]
Elsevier—European Journal of Journal High dimensional data classification 2018 Solution
Operational Research and feature selection using sup-
port vector machines [36]
Elsevier—BBA-Molecular Basis of Journal |dentification of the functional altera- 2018 Evaluation

Disease

tion signatures across different
cancer types with support vector
machine and feature analysis [37]
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