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Introduction
The HPCC Systems Platform [1, 2] from LexisNexis Risk Solutions is an open source, 
parallel-processing computing platform designed for Big Data processing and analytics. 
HPCC is a scalable system based on hardware clusters of commodity servers. HPCC’s 
clusters are coupled with system software to provide numerous data-intensive comput-
ing capabilities, such as a distributed file storage system, job execution environment, 
online query capability, parallel application processing, and parallel programming 
development tools [2]. The Enterprise Control Language (ECL) [1, 3], part of the HPCC 
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platform, is a data-centric, declarative, and non-procedural programming language 
designed specifically for Big Data projects using the LexisNexis HPCC platform.

HPCC’s machine learning abilities are implemented within the ECL-ML plug-in 
module, also known as the ECL-ML Library [4], which extends the capabilities of the 
base HPCC platform. The ECL-ML Library is an open source project [4] created to 
manage supervised and unsupervised learning, document and text analysis, statistics 
and probabilities, and general inductive inference-related problems in HPCC.

In 2012, as part of the NSF-sponsored Industry/University Cooperative Research 
Center for Advanced Knowledge Enablement (CAKE), we initiated the project 
“Developing Learning Algorithms on HPCC/ECL Platform” [5]. The project’s main 
contributions have been the creation and implementation of machine learning algo-
rithms which were previously unavailable on the HPCC platform, as well as the 
improvement of various existing algorithms and tools in the ECL-ML Library. One 
of the supervised learning algorithms added to the HPCC’s ECL-ML Library was the 
Random Forest (RF) classifier [6]. Prior to our contribution, RF was not implemented 
in the ECL-ML Library. RF is a Decision Tree based ensemble supervised learning 
algorithm that combines Bootstrap Aggregating [7] (Bagging), which improves accu-
racy by incorporating more diversity and reducing the variance, with Random Feature 
Subspace Selection [8, 9], which improves efficiency by working faster only on subsets 
of the data features.

Our goal was to deliver the Random Forest classifier implementation on HPCC 
Systems Platform as a distributed machine learning algorithm for Big Data, i.e., an 
ECL-ML module ready to handle large volumes of data, within a reasonable time, by 
leveraging the HPCC Systems Platform’s capabilities, such as data distribution and 
parallel computing. In order to fulfill our goal, we needed to overcome two main 
challenges:

•	 In general, traditional RF implementations do not scale well with Big Data because 
the computational complexity increases as the data size increases.

•	 RF’s learning process is based on the recursive partitioning [10, 11] of Decision 
Trees; however, recursive function calls are not allowed in ECL.

Our final RF classifier implementation was completed in two main stages:

•	 First, the implementation on HPCC’s Platform of a fully operative RF classifier 
for discrete and continuous variables, called initial RF implementation, which 
includes learning/model building, class probability calculation, and classification 
functionality.

•	 Second, the optimization of our initial RF classifier implementation on HPCC’s 
Platform in order to handle the challenges associated with Big Data.

The rest of this paper is organized as follows. In “Related works” section, we present 
a brief summary of previous work related to the implementation of the RF algorithm. 
In “Methods” section, we introduce some basics about the HPCC Platform and its 
programming language (ECL) and present the background of the supervised learning 
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implementations on HPCC’s ECL-ML Library, in “Enterprise Control Language 
(ECL)” and “Supervised learning in HPCC platform” sections. Later, in “Implement-
ing recursive based algorithms through iterations” section, we discuss the implemen-
tation of the recursive partitioning of Decision Trees as an iterative split/partition 
process using ECL. To finish with “Methods”, in “Random Forest learning process in 
ECL-ML” and “Random Forest learning process optimization” sections, we explain 
our initial RF classifier implementation, analyze its flaws, and describe the modifica-
tions used to optimize its learning process. In “Results” and “Discussion” sections, we 
present and discuss our experimental results. We conclude with the discussion of our 
conclusions in “Conclusions” section. Additionally, in Appendix, we provide descrip-
tions and examples of the main data structures employed in our implementation 
showing the operation of the Decision Tree model growth in the iterative process.

Related works
Random Forest [6] is a Decision Tree based ensemble supervised learning algorithm that 
combines Bootstrap Aggregating, also called Bagging [7], with Random Feature Sub-
space Selection [8, 9] at the node level (hereinafter referred to as Random Feature Selec-
tion). Bagging reduces the variance of single Decision Tree predictions by building an 
ensemble of independent Decision Trees, using a bootstrap sample of the training data, 
and making predictions of new instances by aggregating the predictions of the ensemble 
(majority vote for classification or averaging for regression). Bootstrapped samples of the 
training data contain instances sampled from the original dataset, with replacement, and 
are identical in size to the original dataset. The Random Feature Selection decreases the 
correlations among trees in the Random Forest, which reduces the chance of overfitting, 
improves the predictive performance, and accelerates the learning process by searching 
for the best split per node faster on smaller random subsets of the training data features. 
RF is considered one of the best available machine learning algorithms [12] for classifi-
cation and regression: it is robust to outliers and noise, it overcomes overfitting prob-
lems, it can handle moderately imbalanced class data, and it is user-friendly, with just a 
couple of RF parameters to set. Furthermore, due to its algorithmic characteristics, such 
as intensive resampling and independent growing (parallel) of numerous Decision Tree 
models, RF is a good candidate for parallel implementation.

Since Breiman proposed the Random Forest algorithm in 2001 [6], RF implementa-
tions have evolved along with computation power, programming paradigms, the types 
of the data to be processed and the purpose of the processing. Starting with the origi-
nal implementation by Breiman and Cutler [13] written in Fortran 77, RF has been 
implemented in many machine learning collections, such as Weka [14] using Java for its 
implementation [15], Scikit-Learn [16] developed in Python, and R System for Statisti-
cal Computing through the package RandomForest-R [17] implemented in C ++/S, to 
name just a few non-distributed implementations. Looking at the representative exam-
ples of RF implementations used in bioinformatics circa 2012 in Boulesteix et al. [18], we 
noted that distributed RF implementations were not commonly used or did not exist at 
all by the time (January 2013) that we planned our RF implementation in the ECL-ML 
Library. Later in 2014, Fernandez-Delgado et al. [12] performed an exhaustive evaluation 
of 179 classifiers over the UCI Machine Learning Classification database (discarding the 
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large-scale data sets) and found out that best results were achieved by a parallel Random 
Forest implementation in R.

Because of the fact that RF can learn from high-dimensional data, which is data with a 
large number of attributes and a large amount of instances, it is used to accurately clas-
sify big sets of data in different field domains. Related to RF applications in bioinformat-
ics, Boulesteix et al. [18] stated in their review that “the Random Forest algorithm has 
evolved to a standard data analysis tool in bioinformatics.” The authors summarized ten 
years of RF development with emphasis on bioinformatics and computational biology, 
with a focus on practical aspects of the RF algorithm to provide helpful guidelines for 
applications. In addition, they discussed essential pitfalls and shortcomings of RF and 
its variable importance measures, as well as alternative approaches to overcome these 
problems.

The application of machine learning algorithms for anomaly/behavior discovery on 
mobile devices is currently an emerging area of interest. Alam et al. [19] concluded that 
RF can be used for detecting Android malware providing an exceptionally high accuracy 
of over 99.9% of the samples correctly classified in their results. Another relatively new 
domain is Physical Activity (PA) Recognition using wearables devices; Ellis et  al. [20] 
evaluated the use of the RF algorithm for predicting both PA type (household, stairs, 
walking, running) and Energy Expenditure (EE) from accelerometer and Heart Rate 
data. They found that the RF algorithm outperformed published methods for EE estima-
tion and achieved relatively high average accuracy, 92.3% and 87.5% for hip and wrist 
accelerometers, predicting activity types. They ascribe their results to the RF’s ability to 
model highly nonlinear patterns in the data.

On another subject related to our paper, Big Data analytics [21] is currently a hot 
topic. It takes special algorithms and professionals who can work with these algorithms 
to transform Big Data into meaningful information using a reasonable amount of time 
and resources. Moreover, the need to efficiently handle Big Data is growing extremely 
fast because of the proliferation of the social use of various features across the web and 
digital devices (smartphones, sensors, gadgets) producing lots of digital data that was 
previously unavailable. Random Forest is no stranger to Big Data’s new challenges [21] 
and it is particularly sensitive to Volume, one of the Big Data characteristics defined in 
2001 by Laney in his Meta Group (now Gartner) research report [22]. Consequently, 
RF optimization for large amounts of data became mandatory, with the parallelization 
of its learning process being key. This was mainly due to the fact that other ML algo-
rithms, such as Convolutional Neural Networks, Support Vector Machines, and Latent 
Dirichlet Allocation, were extremely accelerated using highly-parallel Graphics Process-
ing Units (GPU). Liao et al. [23] introduced CudaTree, a hybrid parallel GPU Random 
Forest implementation which adaptively switches between data and task parallelism, and 
compared its performance with two commonly used multi-core RF libraries: Scikit-learn 
and wiseRF.

Another approach to deal with Big Data analytics challenges is the use of distributed 
storage and processing. In a recent paper, Landset et  al. [24] presented a comprehen-
sive review of the current state-of-the-art open source scalable tools for ML in the 
Hadoop ecosystem; taking an in-depth look at the strengths and weaknesses of the vari-
ous ML tools for Hadoop, they stated that Mahout [25] and MLlib [26] are the most 
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well-rounded Big Data libraries in terms of ML algorithm coverage and both work with 
Spark [27] and H2O [28]. Even though the Random Forest algorithm has been already 
implemented as distributed machine learning algorithms in Spark and H20 (both use 
distributed data frames), it is not the focus of this paper to carry out a comparison 
between our RF implementation in the ECL-ML Library and those implementations.

Methods
Enterprise Control Language (ECL)

The HPCC Systems Platform also includes the Enterprise Control Language (ECL) [1, 3] 
which is a powerful high-level, heavily-optimized, data-centric declarative language used 
for parallel data processing. The ECL code will run, without any change, on different 
HPCC System Platform configurations regardless of the size of the cluster being used. 
ECL includes extensive capabilities for data definition, filtering, data management, and 
data transformation, and provides an extensive set of built-in functions to operate on 
records in datasets which can include user-defined transformation functions [29].

Functionally, there are two types of ECL code: attribute definitions and executable 
actions. Most ECL code is composed of attribute definitions and follows a diction-
ary approach: each ECL definition defines an attribute expression and any previously 
defined attribute can then be used in succeeding ECL definitions. Attribute definitions 
only define what is to be done and cannot have side effects; they do not actually execute. 
The order that attributes are defined in the source code does not define their execution 
order. When an action is executed, only the attributes needed (drilling down to the low-
est level attributes upon which others are built) are compiled and optimized [3]. Even 
though there is no inherent execution order implicit in the order that attribute defini-
tions appear in the source code, there is a necessary order for compilation to occur with-
out error. ECL does not have any support for forward references (cannot call undefined 
attributes).

In ECL, almost all data is represented through datasets, which are collections of 
records of the same previously defined type. This way, the datasets could be automat-
ically stored in/fetched from memory or written to/read from disk over all the slave-
nodes in the cluster as required (see Appendix—data structures used in DT learning 
process).

Supervised learning in HPCC platform

Supervised learning is the machine learning task of inferring a function from labeled 
training data [30]; it can be divided into two subcategories: classification and regres-
sion. The main difference between them comes from the dependent variable (label) to be 
inferred. Classification works with discrete dependent variables, while regression works 
with continuous dependent variables. The HPCC Systems Platform provides support for 
classification and regression tasks through the ECL-ML Library.

In the ECL-ML Library, the classification process is controlled through a combination 
of common and particular modules/functions implemented in the Classify module (ML/
Classify.ecl):
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•	 Default module. This VIRTUAL module works similar to an abstract class in Java: it 
outlines the default behavior that modules based on it (specific Classifier modules) 
will inherit. It declares the default functions LearnD, ClassifyD, LearnC, and Clas-
sifyC. These functions should be overridden later for convenience at every specific 
classification algorithm implementation.

•	 Compare module. This module wraps many functions that compare one testing 
dataset’s dependent variable (actual class) against the classification results (pre-
dicted class) obtained from the same dataset’s independent variables. This compari-
son returns classification performance metrics calculated from the confusion matrix 
such as Recall, Precision, False Positive Rate and Accuracy.

•	 Classifier modules: These are the specific classifier implementations where default 
functions should be overridden by functions based upon the corresponding algo-
rithm. In addition, it is the only place where algorithm-based parameters, necessary 
for some algorithms, could be passed inside the implementation and used without 
conflicting the default functions declaration.

The ECL-ML’s classification process norm is based upon function and data structure 
declarations. The Default module regulates the classification function declarations. 
However, common data types shared by different ML processes, used in classification as 
well, are declared in the Types module (ML/Types.ecl).

Regardless of the algorithm used, the classifier model building is done through the 
LearnD or LearnC function, for discrete or continuous independent variables, respec-
tively. The learning function receives the training examples through two unique dataset 
inputs: independent and dependent (see Appendix—discreteField and numericField data 
structure). In addition, any algorithm parameter needed is passed at classifier instan-
tiation. Even though different classifiers have different model structures, the resulting 
model is converted into a common mapped numeric-matrix representation before being 
returned.

In a similar way, the class prediction is done through ClassifyD or ClassifyC, based 
upon the model used to classify. The classifying function needs a model and an inde-
pendent dataset to perform the classification. It returns one predicted class and a class 
probability distribution score for each instance input.

Implementing recursive based Algorithms through iterations

It is worth pointing out that we developed the first RF classifier implementation in the 
ECL-ML Library and before our contribution, there was no working RF implementa-
tion on the HPCC Platform. We have already implemented both discrete and continuous 
RF classifiers in the ECL-ML Library; however, the RF’s learning process optimization 
discussed in this paper has been completely applied only to the discrete version of the 
classifier. The continuous version of the RF classifier also takes advantage of this learn-
ing process optimization, but it requires additional changes to overcome certain unique 
issues. The optimization of the continuous version of RF is currently in progress. The RF 
classifier is part of the Classify module in the ECL-ML Library and was built under the 
umbrella of a Default module that defines Learn, Classify, and Compare main functions 
in order to deal with the supervised learning and classification process.
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In the RF’s learning process, each tree in the ensemble is built based on the principle 
of recursive partitioning. Although recursion per se is not allowed in ECL, we were able 
to implement the recursive partition algorithm by transforming recursion into iteration. 
Basically, our implementation combines the use of an iterative ECL built-in function called 
LOOP and ad hoc data structures that handle the split/partition process, similar to the 
Decision Tree’s learning process that will be explained in “Recursive partitioning” section.

We can briefly recapitulate the evolution of the RF classifier implementation in the 
ECL-ML Library as follows. We implemented the first Decision Tree (DT) classifier in 
the ECL-ML Library based upon an Iterative split/partition approach previously used in 
a module called Decision (ML/Trees.ecl). The Decision module is capable of partition-
ing the training data given in a tree structure, but it cannot build a model suitable for 
classification purposes. Thus, the Split function inside Decision module was cloned and 
improved with the purpose of creating new Split functions used to build Decision Tree 
models. Later, we cloned these new functions and upgraded them to work as Split func-
tions used in the first RF classifier implementation in the ECL-ML Library. Finally, we 
identified the flaws in our initial implementation, and we optimized the code to deliver 
our final RF classifier implementation designed to work with Big Data.

Recursive partitioning

In this section, we are going to describe how the Decision Tree’s recursive partitioning 
[10, 11] was implemented in the ECL-ML Library. We describe the process by which we 
transform recursion into iteration. The data-centric feature of ECL obliges us to give details 
about a few data structures in order to clearly explain the process. For simplicity, we are 
going to explain only the Gini Impurity/Info Gain Based implementation of the DT Discrete 
Learning process (LearnD); however, we also implemented the C4.5 version. Furthermore, 
we implemented both discrete and continuous versions of the two approaches.

Breiman et  al. recursive partition [10] is based on Hunt’s Concept Learning Sys-
tem framework [31], one of the earliest algorithms proposed to build a Decision Tree. 
Hunt’s algorithm forms the mainstay for all DT algorithms, essentially differing only 
in the choice of the split/partition function. It copes with all necessary elements in 
Decision Tree building and we will refer to it later in “Decision Tree learning process 
in ECL-ML” section. Let us take a look at Fig. 1 [32] depicting a high-level description 
of Hunt’s algorithm.

Fig. 1  Hunt’s Concept Learning System framework
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We can elaborate from the BuildTree function that the Split Selection Method, S, 
evaluates based upon the Training database, D, and a splitting criterion if node t is 
not a leaf node. The function continuously partitions the database D into children 
nodes of t, recursively applying BuildTree to each partition until the stop criterion is 
met. The stop criterion is met when node t is a leaf node. The DT is composed at the 
end by the collection of all returned leaf and split nodes (children nodes of t).

Decision Tree learning process in ECL‑ML

The Decision Tree classifier follows the learning process norm in the ECL-ML library. 
It builds one model through the Learn function. LearnD receives one training dataset, 
composed of one independent dataset (Indep) and one dependent dataset (Dep), as 
INPUT; and ultimately, it returns the final DT model as OUTPUT. The Indep dataset 
contains the training data’s independent variables (attributes) values. Since the number 
of attributes could be different among training datasets, each instance (training exam-
ple) is represented by a set of DiscreteField records (one for each attribute). The Dep 
dataset contains the dependent variable (class attribute) and it is also represented by a 
set of DiscreteField records; however, in this case, there is only one record per instance.

Comparing the LearnD function to the BuildTree function in Fig. 1, there are still two 
basic elements missing: node t and Split Selection Method S. The ML/Classify.Deci-
sionTree module is organized in a way that all DT classifiers are implemented inside 
it, having a specific classifier-module implemented for each Split Selection Method S. 
From now on, we are going to explain the DT learning process of the GiniImpurityBased 
learner which uses Gini Impurity/Information Gain as the Split Selection Method, simi-
lar to the ID3 algorithm [33]. We also notice that node t is not required as input in the 
LearnD function because LearnD builds the complete DT model from training data.

EXPORT GiniImpurityBased(INTEGER1 Depth=10, REAL Purity=1.0):= MODULE(DEFAULT)
EXPORT LearnD(DATASET(Types.DiscreteField) Indep, DATASET(Types.DiscreteField) Dep) := FUNCTION 

nodes := ML.Trees.SplitsGiniImpurBased(Indep, Dep, Depth, Purity); 
RETURN ML.Trees.ToDiscreteTree(nodes); 

END; 
…

END

ECL Code Block 1 – Gini Impurity based Decision Tree classifier.

Starting from a training dataset composed of Instances, the GiniImpurityBased 
learner builds a DT Model composed of split and leaf nodes. It is controlled by Depth 
and Purity parameters (control parameters) which are defined upon instantiating the 
DecisionTree module. Depth defines the maximum level that the tree can reach (Deci-
sion Tree Growth Stopping Criterion) and Purity establishes the degree of purity 
required in a node in order to be considered as a Leaf node (Node’s Splitting Cri-
terion). Let us take a look at the DecisionTree.GiniImpurityBased.LearnD definition 
shown in ECL Code Block 1.

LearnD gets the DT nodes through the SplitsGiniImpurBased function, imple-
mented in ML/Trees.ecl module, from the training dataset using the Depth and 
Purity parameters. These resultant nodes compound the DT model built, and they are 
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represented by a set of SplitD records. We will explain the model data structure later. 
At the end, in order to follow the Classify VIRTUAL module format, the resultant DT 
model is transformed into a NumericField record format. This last transformation, 
applying the ML.Trees.ToDiscreteTree function, allows us to generalize all classifier 
model representations using a common format (learning process norm).

Recursion as iteration  Inside the SplitsGiniImpurBased function, the training dataset 
is transformed into a DT model, based upon the Learning Control Parameters, and 
it is there where the recursive partitioning is implemented iteratively. The key to the 
process is how to combine all the components involved: iteration, split criterion, data 
partition, stop criteria, and parameters.

Essentially, instead of applying the Split Selection Method S individually and recur-
sively at each node (as well as the instances located there), the iterative split/partition 
process builds a complete Decision Tree Level at each iteration (breadth-first approach 
[34]), as shown at the Pseudocode Block, by applying S to the entire DT layout (nodes 
plus instances locations). Then it repeats the process as many times as the desired 
maximum tree level (Growth Stopping Criterion)—aka Depth. A detailed explanation 
can be found at Appendix, “Example 1—Tree Level Building”. Note that the database 
D values do not change at all (data integrity); what changes is the DT’s structure and 
the location of the training instances in the DT. See the data flow in Fig. 2.

Learn (Split Selection Method S, Training Data D, Depth, Purity)
DT Layout = Assign D instances to Root Node 
For i = 1 to Maximum Tree Level (Depth): 

Apply S to DT Layout’s Nodes (level = i )
          Turn Pure Nodes (Purity reached) into Leaf Nodes 
          Split Non-Pure Enough Nodes according S criterion 
               Create Split Nodes pointing to New Nodes (level = i +1) 
               Assign Training Instances into New Nodes created  
Return DT Layout as Dec Tree Model

Pseudocode Block 1 – Dec. Tree Learning as Itera�ve Split/Par��on process

From the Pseudocode Block 1 we can highlight the need for:

•	 A data structure that can handle the location of training examples (instances) into 
the tree’s nodes.

•	 A split/partition function that receives training data located at the tree’s nodes 
and returns the data located in a new node layout.

•	 A way to call the split/partition function iteratively according to the control 
parameters (Max Tree Level, Purity).

•	 A Decision Tree’s Growth Stopping Criterion.

The natural way to handle iteration in ECL is through the built-in LOOP function. 
Mainly, these requirements match the core definition of the LOOP function. There 
are many ways to call LOOP in ECL. Let’s review the documentation for the one used 
in our earliest DecisionTree implementation:
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LOOP (dataset, loopcount, loopbody)

- dataset The recordset to process.
- loopcount An integer expression specifying the number of �mes to iterate.
- loopbody The opera�on to itera�vely perform. This may be a PROJECT, JOIN, or other such opera�on. 

ROWS(LEFT) is always used as the opera�on's first parameter, indica�ng the specified dataset is the input 
parameter.

The LOOP func�on itera�vely performs the loopbody opera�on. There is an implicit COUNTER and it is 
available for use to return the current itera�on.

Now, let us take a look at our LOOP call (shown in ECL Code Block 2) inside 
SplitsGiniImpurBased function and explain how it works in more detail using the 
default values of the Control Parameters: Depth = 10 and Purity = 1.

results := LOOP(root_inst, Depth, Par��onGiniImpurityBased(ROWS(LEFT), COUNTER, Purity));

ECL Code Block 2 – Decision Tree LOOP statement

The LOOP statement diagram, shown in Fig. 3, represents the data flow correspond-
ing to the ECL Code Block 2 above. All the training instances are initially located 
at the root node (node_id = 1, level = 1), the dataset that contains these locations is 
defined as root_inst. The code shown above will iteratively perform the loopbody 
split/partition function PartitionGiniImpurityBased over Node Instance Assign 

Fig. 2  Decision Tree learning process
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dataset (initially root_inst) until the maximum tree level is processed (10 times) and 
will return all instances’ new locations throughout the recently built tree’s layout. 
Essentially, this means that the loopbody function will process the root_inst dataset 
only in the first iteration. Then, for the remaining iterations, the loopbody function 
will process the previous iteration loopbody’s output. In addition, the implicit COUN-
TER starts at value one and is increased by one after each iteration completion. The 
COUNTER not only controls the CONTINUE/END LOOP execution (Stop Tree 
Growth Criterion). It is also used to inform the loopbody function about the level of 
the DT that must be processed at any current iteration.

Split/partition loopbody function  In order to fully understand Decision Tree and Ran-
dom Forest implementations, as well as their optimizations, we need to explain the main 
data transformations inside the DT split/partition loopbody function.

First, we need to observe that the loopbody function’s INPUT and OUTPUT must 
have the same data type because one iteration’s OUTPUT is the next iteration’s INPUT. 
During the learning process the Decision Tree layout is composed of split and leaf 
nodes (tree structure) plus the location of the training data in those nodes. In order to 
handle both the tree node structure and the location of the training instances with the 
same data type, our loopbody function uses NodeInstDiscrete RECORDs with multiple 
meanings. Basically, NodeInstDiscrete combines node information with instance data to 
articulate instance-location and identify Split and Leaf nodes. See Appendix, “Example 
1—Tree Level Building”.

Fig. 3  LOOP statement diagram
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In Fig.  4, Decision Tree Split/Partition Function diagram, we can observe the data 
metamorphosis. Starting from the previous location of the instances in a tree struc-
ture as INPUT, the function processes only the current level data, identifies pure nodes, 
chooses the best splits for impure nodes to create branches to higher level nodes, and 
relocates the training instances in the new tree structure, culminating in four sepa-
rate datasets which are collected and returned via OUTPUT: Prior Level, Pure Enough 
Node-Instances, Split Nodes and New Node-Instance.

Following the data flow in Fig. 4, the first action is to separate the data that has already 
been processed (Prior Level) from unprocessed data (Current Level). The function uses 
the implicit LOOP COUNTER to identify which tree’s level is being processed. All 
INPUT records with level field values less than COUNTER do not need to be processed 
because they have already reached their final states in a previous iteration; therefore, 
they are temporarily stored into the Prior Level dataset. On the contrary, records with 
level field values equal to COUNTER are temporarily stored into the Current Level data-
set for further processing. Prior and Current level data are separated and stored without 
any transformation from the INPUT.

Fig. 4  Decision Tree split/partition function diagram
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Similar to recursive partitioning, the loopbody function needs to identify the nodes 
that are Pure from the Current Level data, and somehow proceed to mark them so they 
are not subsequently processed. In order to do this, the Gini Impurity is calculated in 
every node and temporarily stored into the Node’s Impurity dataset. It is important to 
note that only the dependent variable (class) of each instance is needed for the calcu-
lation. Since every training instance is represented by one or more NodeInstDiscrete 
RECORDs (one for each independent variable) and the dependent variable was already 
copied into all of them, the Current Level data needs to be filtered out to only one record 
per instance (usually filtering the first attribute records) before the Node Gini Impurity 
calculation. Afterward, the Current Level data is separated into two disjoint datasets 
(without any transformation) using the Node Impurity results and the Purity parame-
ter. All records belonging to Pure Nodes (Leaf ) are temporarily stored into Pure Enough 
Node-Inst dataset, otherwise, they are stored into the Impure Node-Inst dataset for fur-
ther processing.

Subsequently, Impure Node’s instances must be relocated into new child nodes cre-
ated based upon best split selection. Only Impure Node data is used to choose the Best 
Split per Node and generate branches. Branches are links between parent nodes and 
their children. Two or more Branches form a Split node (one for each possible value of 
the selected split attribute). They share the same parent node but have distinct child des-
tinations—always new nodes of immediate higher level (child node level = parent node 
level + 1). The Branches data is temporarily stored into the Split Nodes dataset. After 
that, all instances located at Impure Nodes are relocated into the recently created New 
Child Nodes (Split Nodes) based upon their attribute values, and they are temporarily 
stored into the New Node-Inst dataset. Finally, the four temporary results, Prior Level, 
Pure Enough Node-Inst, Split Nodes, and New Node-Inst, are appended to form the 
new tree layout, plus instances locations, and sent to the OUTPUT.

Recap  To summarize, the Decision Tree’s learning process, based on the recursive par-
titioning algorithm, is implemented in ECL by splitting nodes and relocating instances’ 
data iteratively using an ECL built-in LOOP function. Starting with all training instances 
located in the root node, the split/partition function is applied repeatedly until the Stop 
Criterion is achieved, where all the instances reached a Leaf node or the DT grew up to 
the maximum level desired. Both the recursive partitioning algorithm and the iterative 
split/partition process deliver the same DT model given the same training data and learn-
ing parameters; however, the methods of operations of their split/partition functions are 
different. The iterative approach uses the split/partition function to process a whole DT 
level (breadth-first approach [34]), instead of using the function to independently process 
each node as in the recursive approach.

Random Forest learning process in ECL‑ML

The RF algorithm [6] builds one DT model for each sample with repetition from the 
original training data, where the DT’s nodes splitting is based only upon a randomly 
selected subset of the independent variables (Random Feature Selection).

In the same way as with the DT, the RF classifier follows the learning process norm 
in ECL-ML: it builds a model from one training dataset using the LearnD or LearnC 
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function and it returns the final RF model as output. Moreover, the final RF model is 
an ensemble of DTs, and thus the RF learning process is also based upon the iterative 
split/partition process (as mentioned in “Recursion as iteration” section) with a cou-
ple of modifications in order to handle both Bagging and Random Feature Selection 
(as shown in Fig. 5).

Initial implementation

The code that implements the ensemble DTs growth in ECL was cloned from the 
DT learning process and upgraded to fulfill particular RF learning requirements: 

Fig. 5  Random Forest initial implementation
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Bootstrapping and Random Feature Selection. In order to identify which tree of the 
ensemble an elemebuild a RF discrete model betweennt belongs to, a new field called 
group_id was added to all the key data structures used in the RF learning process.

Bootstrap (sampling)  In general, sampling is not an issue in ECL. The simplest way 
to implement sampling is to create a hash table (association list) between the new 
instance IDs of the sampled dataset and the corresponding instance IDs randomly 
selected from the original dataset; then it is possible to use the hash table to retrieve 
the dataset values whenever they are needed.

The bootstrap of the training data within the RF learning process is performed at the 
beginning of the process just before growing the ensemble of DTs, as shown in Fig. 5. For 
each tree in the ensemble, one new dataset is generated through sampling with replace-
ment from the original dataset. Each new sampled dataset must have the same size as 
the original, be properly identified by group_id, be assigned to a root node identified by 
node_id = group_id, and finally be stored in the Training Data into Root Nodes dataset. 
See Pseudocode Block 2. It is important to note that the resulting Roots dataset will have 
K × N × M records, where K is the number of Trees to grow, N the number of instances 
and M the number of features in the original training dataset.

This way, every single root node with its associated new Sampled Training Data is 
ready to go through the iterative split/partition process and build its own independ-
ent tree. It is very important to note that the forest growth is done in a breadth-first 
[34] way; i.e., at each iteration, all current-level nodes of the tree ensemble are pro-
cessed simultaneously to build a whole RF level, similarly to what was previously 
explained in “Decision Tree learning process in ECL-ML” section.

Bootstrap (Dep = dependent Training Data, N = size of Dep,
Indep = independent Training Data, K = Number of Trees) 

For i = 1 to K                  // Generate Hash Table (i) from Dep 
For j = 1 to N              // Sampling with repetition 

         Hash record = (group_id = i, orig_instance_ID = j, 
        new_instance_ID = M*(i-1) + RndNumber(M)) 

For each HashTable record as HT    // Training Data to Roots 
For each Indep (id = HT.orig_instance_ID) record as ind 

        Append to Roots (node_id = HT.group_id,  
              inst_id = HT.new_instance_ID, indep_data = ind, 

dep_data = Dep (id = orig_instance_ID))
Pseudocode Block 2- Bootstrap (Sampling)

Random Feature Selection  The Random Selection of Features task within the split/
partition function is what differentiates the learning process of RF ensemble Trees (see 
Fig. 6) from regular Decision Trees. Right after any node is considered not pure enough 
to become a Leaf node (IMPURE), only a random subset of features is selected to accom-
plish the best split analysis.

The Random Feature Selection (RFS) task is implemented within the RndFeatSelParti-
tionGIBased loopbody function. Initially, we were focused on overcoming the overhead 
that Bagging added to the process and we were willing to accept the tradeoff between 
accuracy and simplicity. Therefore, instead of performing RFS for every single node at 
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each iteration as the RF algorithm stated, only one RFS per Tree at each iteration was 
implemented.

Basically, within the loopbody function, one randomly selected list of features is gen-
erated for each tree in the ensemble (controlled through the parameter Number of 
Features to Select), then all these lists are appended in one hash table. The hash table 
is used to filter the Impure Node-Instances dataset, selecting only the Node-Instance 
feature values listed per tree. The resulting filtered records are stored in the RndFeat 
Select Node-Instance temporary dataset, ready to continue with the Choose Best Split 
per Node task.

Completing the cycle  After RFS, the function chooses the best split attribute for each 
node. The selection is accomplished in the same way as in the DT learning: it chooses 
the best attribute to split a node based on Information Gain and it creates the Branches 
that represent the Split. In addition, in order to complete the split/partition process, 
the instances located at Impure Nodes (Impure Node-Inst dataset) need to be relo-
cated into the new nodes to which the recently created branches are pointing. Finally, 
the four temporary results, Prior Level, Pure Enough Node-Inst, Split Nodes, and New 

Fig. 6  Random Forest split/partition function diagram
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Node-Inst, are appended to form the new tree layout (including the new locations of 
instances) and sent to the OUTPUT.

Notice that all Node-Instances datasets used in the split/partition function, except 
the RndFeat Sel Nodes-Inst, contain one record for each attribute value per instance.

Final notes  Our initial implementation was able to build a Random Forest model 
from a training dataset; however, it was far from being efficient. The rise in the learning 
processing time, due to increasing the training data cardinality-dimensionality and/or 
the number of trees to build the model, limited the usefulness of our initial RF imple-
mentation. It was beyond the scope of our research to find out the escalation break 
point since the cluster characteristics (number of slaves, HW configuration) were part 
of the equation. It was more important to find out the flaws in our initial approach and 
fix them.

Random Forest learning process optimization

In order to optimize our RF module, it was imperative to re-examine our initial imple-
mentation and identify any flaws throughout the process, data flow, or programming 
[35]. The first issue that drew our attention within the implemented RF Learning Pro-
cess, was the fact that for each iteration of the iterative split/partition LOOP, which 
builds the RF model, every single Node-Instance RECORD is sent into the loopbody 
function to be processed, regardless of whether its processing was completed. Send-
ing records that do not require additional processing to the next iteration of the learn-
ing process causes the algorithm to take longer to finalize, due to the unnecessary use 
of large amounts of computational resources (memory, disk and CPU cycles).

The second issue that drew our attention was the fact that the whole data per 
Instance, consisting of a dependent value and many independent values, are sent to 
the loopbody function for each iteration, even though not all of the independent val-
ues per instance are required to complete the loopbody internal tasks that build a DT 
level (see Fig. 6 to identify the internal tasks).

Node Impurities are calculated based upon Instance dependent values only, which 
need only one RECORD per instance to be represented. Choosing the Best Split per 
Node based upon Information Gain (IG) needs both instances’ dependent and inde-
pendent values; however, only a randomly selected subset of the independent data is 
used to calculate IG per Node, which can be represented with just some RECORDs 
per instance (but not all of them at any particular iteration). Finally, in order to 
arrange the new partition of the data, just one RECORD per instance, containing 
node info and basic instance info (ID and dependent value), would be enough to indi-
cate the location of the instances in the new nodes. Therefore, to include the Inde-
pendent data as part of the loopbody function, INPUT is a waste of resources.

The revision of the initial implementation helped us to re-organize the process and 
data flows. We have improved our initial approach so that the loopbody function 
receives, at each iteration, only one RECORD per instance (with its dependent value). 
Thereby, only the necessary independent data are fetched, using the IDs of the received 
instances, from within the function. See Fig.  7. The new approach also allowed us to 
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take full advantage of distributed data storage and parallel processing capabilities of the 
HPCC Platform, speeding up the RF learning process. In the following sections, we will 
explain our approach enhancements in detail.

Current level filtering

Remember that at any iteration if a node is pure enough—Leaf node—then it is not split, 
and its instances are not relocated; otherwise, the node is split into new nodes (children 
nodes) and its instance data is partitioned among them (New Nodes-Instances Reloca-
tion). The loopbody function should only process the current level Node-Instances data 
(identified by the level parameter). Therefore in our initial RF implementation, for each 
iteration all records from previous levels needed to be filtered out, saved in a tempo-
rary dataset and returned without any change at the end of the function. Moreover, the 
number of RECORDs that still require processing decreases as the LOOP progresses, 
because many of them have already reached their final state (Leaf nodes). Consequently, 
too many pointless read/write operations were performed during the iterative process.

Fig. 7  Random Forest optimized implementation
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This issue was fixed by changing the way the built-in LOOP function was used. For-
tunately, there is a way to call LOOP that filters the records passed to the loopbody 
function:

LOOP ( dataset, loopfilter, loopcondi�on, loopbody )

- dataset The recordset to process.
- loopfilter A logical expression that specifies the set of records whose processing is not yet 

complete. The set of records not mee�ng the condi�on are no longer itera�vely processed and are 
placed into the final result set. This evalua�on occurs before each itera�on of the loopbody

- loopcondi�on A logical expression specifying con�nuing loopbody itera�on while TRUE 
- loopbody The opera�on to itera�vely perform. …

The syntax is slightly different, although the way it operates is well suited for our 
improvement purpose. The loopfilter logical expression will let pass only the current 
level records to the split/partition loopbody function. In addition, the loopcondition log-
ical expression keeps the LOOP going until the maximum tree level was processed. The 
new LOOP call statement inside SplitsGiniImpurBased function looks like:

res := LOOP (root_inst, LEFT.level=COUNTER, COUNTER < Depth , RndFeatSelPar��onGIBased(ROWS(LEFT), COUNTER));

ECL Code Block 3 – Op�mized Random Forest LOOP statement

Note that the optimized loopbody function (explained in the next section) will process 
all records received. The RECORDs level filtering is now the responsibility of the LOOP 
statement (shown in ECL Code Block 3), yet, it is still necessary to pass the level value in 
order to properly generate new Nodes.

Reducing R/W operations within iterative split/partition process

The second issue required an innovative approach in order to avoid unnecessary read/
write (R/W) operations throughout the Iterative split/partition process. The intention of 
the new approach is to complete the RF learning process faster, by considerably reduc-
ing the amount of Node-Instance RECORDs supplied into the split/partition loopbody 
function.

The first and last tasks within the RndFeatSelPartitionGIBased loopbody function, the 
Node Impurity Calculation and the Relocating Instances in New Nodes sub-processes, 
could be accomplished using just one RECORD per instance. The former is based upon 
Node-Instance dependent values only. It would be sufficient to use just one RECORD 
containing the dependent value per Instance. Likewise, the latter could use just one 
RECORD to relocate an instance into a node (containing the dependent value as well). In 
addition, for the subsequent iteration, only the previous iteration’s New Node-Instances 
will be sent to the loopbody function to be processed (as per Current Level Filtering). 
Therefore, the loopbody function could be simplified to receive and return just one 
RECORD per instance. This way it would deal with only K (number of trees) times N 
(number of original instances) RECORDs instead of K × N times M (number of depend-
ent variables) RECORDs per iteration as the initial implementation did.

Conversely, the Best Split per Node analysis is based upon subsets of Node-Instance 
independent values randomly selected per node, requiring several RECORDs per 
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instance but not all of them (RFS). This cannot be changed. However, the RndFeat Select 
Node-Instance dataset (Choose Best Split per Node’s INPUT) could be manufactured 
using a more efficient method. Rather than filtering the required dependent variables, 
it would be better to fetch them. The former method extracts the RFS chosen features 
from all the independent values per instance, implying pass them all through the loop-
body function (K × N × M records). The latter method fetches (from an external source) 
only the instances’ dependent values selected by RFS. It needs just one RECORD per 
instance passing through the loopbody function (K × N records) and the complete inde-
pendent variables dataset outside the function to fetch from. Therefore, the Bootstrap 
and the RFS processes needed to be restructured in order to fit this new approach with 
reduced R/W operations.

Parallel processing through data distribution and locally performed operations  One way 
to make the most of the HPCC platform is by distributing the data evenly among the 
Cluster Slave Nodes (CLUSTER-NODE), in a manner that later computations based on 
this data could be completed independently on each CLUSTER-NODE (LOCAL-ly) or 
with minimal interaction between them. Most of the data transformations used in our 
implementations are performed through some of the built-in functions available in ECL: 
JOIN, PROJECT, TABLE, COUNT, LOOP, DEDUP, etc. These functions process the data 
distributed among the HPCC CLUSTER-NODEs according to ECL code and the ECL 
compiler’s automatic optimization. However, the automatic optimizations do not always 
get the best performance results; a deep understanding of how the data flows inside a 
process will help to tune the relevant ECL code and turn it into a more efficient process.

Along the RF learning process, more precisely at each iteration of the split/partition 
loopbody function, most of the calculations, mainly aggregations, performed are based 
upon Node-Instance data. Moreover, these calculations are completely independent from 
one node to another, regardless which tree of the ensemble the node belongs to. We opti-
mized the loopbody function code to DISTRIBUTE the Node-Instance data by {group_id, 
node_id}, meaning that all the Node-Instance RECORDs with the same node_id value will 
be stored in the same CLUSTER-NODE and the process could execute calculations and 
store their results on each CLUSTER-NODE independently, thus reducing runtime.

There is another high resource consumption task within the loopbody function, deal-
ing with the Training Independent data. As we mentioned earlier, we changed our 
approach from filtering to fetching. The new approach implementation is supported by 
the Bootstrap Optimization task, where the entire Sampled Training Independent (K × 
N × M records) dataset is generated and DISTRIBUTED by instance ID only once. Thus, 
the sampled data is ready to be used as many times as needed for independent data 
retrieving, and these fetch operations are performed on each HPCC CLUSTER-NODE 
independently, reducing runtime as well. More detailed explanations are discussed in 
further sections.

Bootstrap Optimization  The optimized Bootstrap process operates as shown in Pseu-
docode Block 3. Since only dependent values will pass through iterative split/partition’s 
iterations, the independent values do not need to be present in the Training Data-Root 
Nodes dataset (see Fig. 7). The resulting Sampled Training Independent dataset contains 
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only one record per new instance, having K × N records regardless of the number of 
features in the original Training dataset. At the same time, the Sampled Training Inde-
pendent dataset is generated and DISTRIBUTED, using the new instance ID as KEY, all 
over the cluster in order to speed up its retrieval. The retrieval task will be explained later 
in the Fetching instances’ independent data at RFS section. Notice that the group_id field 
is no longer necessary since the retrieval of independent data (FETCH) is now accom-
plished using only the new instance IDs and the feature numbers.

Bootstrap (Dep = dependent Training Data,
N = size of Dep, K = Number of Trees) 
For i = 1 to K             // Generate Hash Table (i) from Dep 

For j = 1 to N         // Sampling with repetition 
        Hash record = (group_id = i, orig_instance_ID = j, 

new_instance_ID = M*(i-1) + RndNumber(M)) 
For each HashTable record as HT 

Append to Roots (node_id = HT.group_id, 
                                 inst_id = HT.new_instance_ID, 
                                 dep_data = Dep (id = orig_instance_ID)) 

Generate Sampled Training Independent dataset // ST-Indep
        For each Indep (id = HT.orig_instance_ID) record as ind 

ST-Indep record = (inst_id = HT.new_instance_ID, 
                                           indep_data = ind) 
Distribute ST-Indep dataset over Cluster using inst_id as KEY

Pseudocode Block 3- Bootstrap Op
miza
on

RF split/partition loopbody function optimizations  As a result of implementing the 
Bootstrap Optimization and moving the Current Level Filtering outside the RF split/
partition loopbody function, the function’s RFS task was optimized to Fetch Instances’ 
independent data, instead of filtering them, in order to allow the loopbody function to 
complete its task by receiving and delivering a Node-Instance dataset containing only one 
Node-Instance RECORD per instance.

No filtering current level data: Filtering the Current Level Node-Instances is no longer 
necessary within the loopbody function as it was in the previous version (compare 
Figs. 6, 8). The optimized function now assumes that all records received belong to the 
Current Level and need to be processed. In addition, the Node-Instance INPUT dataset 
contains only one RECORD per instance and these records contain the dependent val-
ues. Thus, each node’s Gini Impurity calculations are performed directly and simultane-
ously using the input dataset just as it is, without filtering out the data to a record per 
instance as with the previous version.

Furthermore, the Node’s Impurity data is used to separate1 (without any transforma-
tion) the INPUT dataset into Pure and Impure Node-Instances datasets. Pure Enough 
Nodes data is sent to the OUTPUT (just one record per instance) and Impure Nodes 
data is sent to the RFS task to continue the split process.

Fetching instances’ independent data at RFS: The final version of the optimized loop-
body function implements RFS at the node level properly as per the RF algorithm [6]. 

1  These operations were done LOCAL-ly as per “Parallel processing through data distribution and locally performed 
operations” section.
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Randomly selected feature data subsets from Impure Nodes’ instances are gathered in 
a faster and more efficient approach by fetching the RFS instances’ independent values, 
i.e., a hash table of Selected Features per Node (SFN) is randomly generated at each iter-
ation, then the data required to choose the Best Split per Node is fetched from the Sam-
pled Training Independent dataset created at the Bootstrap phase according to the SFN 
hash table.

The Pseudocode Block 4 shows how the RFS-Fetching implementation works. 
It takes full advantage of the data-centric, distributive and parallel HPCC Platform 
capabilities to speed up the data retrieval:

•	 The Sampled Training Independent dataset generated at Bootstrap phase is evenly 
DISTRIBUTED all over the CLUSTER NODES by instance ID. It is used as the 
SOURCE of the independent values retrieval at every iteration.

•	 The Node-Inst-Feat dataset is generated by JOINing the Impure Nodes and SFN 
Hash Table datasets. The JOIN operation is performed on each CLUSTER NODE 
independently because both datasets are DISTRIBUTED by {group_id, node_id}.

•	 The resultant Node-Instance-Feature dataset is DISTRIBUTED using ID as KEY 
in order to generate the RETRIEVER dataset for the independent values retrieval.

•	 Both SOURCE and RETRIEVER datasets were DISTRIBUTED by instance ID, 
and hence, the independent values can be quickly retrieved using a JOIN-LOCAL 
operation executed on each CLUSTER NODE independently.

Fig. 8  Optimized Random Forest split/partition loopbody function
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Initially, the RFS in the optimized function version was implemented at tree level 
like the initial version. However, further tests found some issues with the resultant 
trees. The generalization of the model was somehow affected negatively due to the 
fact that at each iteration, during the construction of the model, nodes from the same 
tree chose their best splits from the same feature subsets.

Random Feature Selection – Fetch Independent data (Dec.Tree Layout,
K = Number of Features to select, M = Number of independent variables)
Source = Sampled Training Independent data (distributed by instance_id)
For each Dec.Tree Layout Impure node as Node            // NodexKoutofM

// Generate Selected Features per Node (SFN) Hash Table
Feats_selected = Sampling K numbers from {1 to M} without repetition
For i = 1 to K 

SFN record = (group_id = Node.group_id, node_id = Node.node_id,
number = Feats_selected(i) )

Node-Inst-Feat record = JOIN (Node.instances, SFN) by inst_id, number
Retriever = Distribute Node-Instance-Features using instance_ID as KEY
RFSData = JOIN (Source, Retriever) by instance_id

Pseudocode Block 4- RFS Fetching Independent data

Completing the optimized cycle: With the intention of accelerating the tasks of 
Choose the Best Split per Node and generating the Split Nodes dataset, the toSplit 
dataset is DISTRIBUTED by {group_id, node_id} and all data transformations are 
performed on each CLUSTER NODE independently according to “Parallel process-
ing through data distribution and locally performed operations” section. In addition, 
in order to complete the split/partition iteration, the loopbody function relocates 
all Impure Nodes into the new nodes to which the Split Nodes are pointing. How-
ever, keeping in mind our attempt to reduce read/write operations within iterative 
split/partition process initial explanation, the relocation in the optimized version is 
completed in a more efficient way. It uses only one RECORD to relocate an instance 
into a node (New Node-Inst dataset); moreover, this operation is achieved quickly 
in just one step by combining the toSplit dataset with the Split Nodes dataset using 
the locally performed operation JOIN-LOOKUP. Finally, the three temporary results, 
Pure Enough Node-Inst, Split Nodes and New Node-Inst, are appended to form the 
new Forest Layout dataset and sent to the OUTPUT.

Results
The optimization of the Random Forest implementation in ECL is the outcome of 
many consecutive upgrades and testing cycles. Some of them come from other mod-
ule’s improvements, such as Decision Trees and sampling, and others are specifically 
designed to overcome RF issues, such as Fetching the Independent data from a Sam-
pled Training Data located outside the loopbody function (location related to the pro-
gram scope). Furthermore, the implementation of this new approach (Fetching) involved 
a deep restructuration of the RF Learning Process; thus, a Preliminary Evaluation (PE) 
using a not completely optimized version was performed to confirm that Fetching 
could reduce the learning process runtime. After verifying our Preliminary Evaluation’s 
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PE’s positive results, the RF learning process was comprehensively optimized and its 
improvement evaluated again in the Final Assessment.

Preliminary evaluation

It is important to note that by this time the two implementations to be compared already 
filtered the Node-Instance records that did not require further processing at the LOOP 
level and also that their RFS were implemented at tree level (not at node level as the 
original algorithm states, which is discussed in “Random Feature Selection” section). 
The main objective of the evaluation was to confirm that keeping the Sampled Training 
Independent data outside the split/partition loopbody function could reduce RF learn-
ing runtime.

Preliminary experimental design

We compare the time to build a RF discrete model between the Fetching on Demand 
Independent data approach (NEW) and the Filtering Independent data approach (OLD) 
using a discretized version of the UCI Machine Learning Adult test data set [36] (16,281 
instances × 13 features + class) where the missing values where replaced by zero and the 
“fnlwgt” attribute was removed. Note that we did not use the models to classify because 
the classification performance was not the topic of interest in this evaluation.

Using an HPCC Cluster with 50 nodes we build several RF models, keeping the Num-
ber of Features Selected constant to 6 (approx. half the total) and varying the Number 
of Trees and Depth learning parameters. The experiment cases consider four different 
Number of Trees, NoT = {25, 50, 75, 100} and six levels of Depth, D = {10, 25, 50, 75, 
100, 125}. For both NEW and OLD approaches, a total of 10 runs for each case was per-
formed and the runtime measure.

Preliminary evaluation results

The graphs below (Figs. 9, 10) depict the results of the NEW approach, on the left, and 
the OLD approach, on the right, by averaging the runtime of the 10 runs per case.

In Fig.  9, we can observe that for all Number of Trees configurations, identified by 
different color lines, the Learning Time increases for both approaches, as expected, 
when the Depth of the tree increases; however, the slope (Learning Time change over 
numTrees change) seems to be larger for OLD approach lines. In addition, the slope of 
both approach lines tends to increase with Number of Trees. However, the increments 
are significantly larger for the OLD approach lines, meaning that the NEW approach 
performed faster compared to the OLD approach as the Number of Trees increases.

Furthermore, by changing the grouping of the results by Depth, as shown in Fig. 10, 
we note that for models with Depth > 25, the Learning Time of the NEW approach is 
less than the OLD one; in addition, the ratio of the changes for both approach lines tend 
to increase when the Depth increases. However, the increment is larger for the OLD 
approach.

Final assessment

It is important to note that the final optimization of the Fetching Independent data 
approach takes full advantage of the distributive and parallel HPCC Platform capabilities 
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and implements the Random Feature Selection (RFS) at node level as the algorithm 
states (as explained in “Reducing R/W operations within Iterative split/partition pro-
cess” section). The main objective of this final assessment was to evaluate the RF learn-
ing runtime with the fully optimized RF implementation.

Final experimental design

We compare the time to build a RF discrete model between the final optimization of 
the Fetching Independent data approach (NEWFINAL) against the Filtering Independ-
ent data approach (OLD) using a bigger dataset. We use subsamples of the UCI Machine 
Learning Cover Type data set [36, 37] (581,012 instances × 54 features + class), with 
more attributes and more instances and having 7 different values for the class attribute. 
It was necessary to preprocess the data, because the first 10 attributes of the dataset had 
too many values. Thus, we reduced them by BUCKETING to 20 values. It is important 
to note that we used only a 10% sample size to run the experiments because the OLD 

Fig. 9  Preliminary Learning runtime comparison for increasing Number of Trees (numTrees)

Fig. 10  Preliminary Learning runtime comparison for increasing maximum level of trees (depth)
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implementation would take too much time to process the original dataset. Also, we did 
not use the models to classify because the classification performance was not the topic 
of interest in this evaluation.

Using an HPCC Cluster with 50 nodes we build several RF models, keeping the Num-
ber of Features Selected constant to 7 (approximately the square root of the number of 
features) and varying the Number of Trees and Depth learning parameters. The experi-
ment cases consider three different Number of Trees, NoT = {25, 50, 75} and four levels 
of Depth, D = {10, 25, 50, 75}. For both the NEWFINAL and the OLD approach, a total 
of 7 runs for each experiment case were performed and the runtime measured.

Fetching vs filtering results

The graphs below (Figs. 11, 12) depict the results of the NEWFINAL approach, on the 
left, and the OLD approach, on the right, by averaging the runtime of the 7 runs per 
case.

In Fig. 11, we can observe that for all Number of Trees configurations, identified by 
different color lines, the Learning Time increases for both approaches, as expected, 
when the Depth of the tree increases; however, the impact of the Depth increase seems 
to be much larger for the OLD approach.

We can observe in the graph in Fig.  12 the same results grouped by Depth, identi-
fied by different color lines, that for all Depth cases the Learning Time of the NEWFI-
NAL approach is smaller than the OLD one; in addition, the slope of both approach lines 
(Learning Time change over numTrees change) tends to increase with Depth. However, 
the increments are significantly larger for the OLD approach lines.

Moreover, Tables 1 and 2 present the same speed up ratio results (ratioOldNew) 
ordered differently. Table  1 results are sorted by numTrees + Depth and Table  2 
results are sorted by Depth + numTrees. The ratio value called ratioOldNew is the 

Fig. 11  Final Learning runtime comparison for increasing maximum level of trees (depth)
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result of dividing the averages of the OLD approach runtimes over the NEWFINAL 
approach runtimes per experiment case. For all numTrees cases the ratioOldNew 
increases when the Depth increases; however, the ratio range tends to decrease for 
models with a larger number of Trees.

Another important thing to note is that the reduction of RF learning runtime in 
the Final Assessment is much greater than in the Preliminary Evaluation, not just 
because the optimization improves the performance but also because the proportion 
of Number of Random Features Selected over Total Number of Features is different. 
In the Preliminary Evaluation, the proportion RFS/Total was 6/13 and the runtime 
was reduced around half. In the Final Assessment, the proportion of RFS/Tot was 
7/54 and the average ratioOldNew was 7.45, which is close to the inverse of 7/54. The 
ratio’s impact makes sense since, for the OLD implementation, all the independent 

Fig. 12  Final Learning runtime comparison increasing Number of trees (numTrees)

Table 1  SpeedUp ratio sorted by numTrees + depth

numTrees Depth ratioOldNew

25 10 5.67519

25 25 7.840796

25 50 9.877268

25 75 10.301324

50 10 5.038769

50 25 6.952996

50 50 8.395452

50 75 8.832542

75 10 4.889199

75 25 6.306244

75 50 7.233024

75 75 8.071576

Average ratio 7.45
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values per instance are passed through the split/partition loopbody function, while 
in the NEW implementation independent values are not passed through and only 
the required values (Random Features Selected per Node) are fetched from within 
the loopbody function.

Scalability results

For the Scalability test, we vary the size of the training data as a percentage of the origi-
nal, we use  % Size = {10, 20, 30, 40, 50} and measure the RF Learning runtime for Num-
ber of Trees, NoT = {25, 50}.

In Fig. 13, we can observe in the graph that the final optimized version learning runt-
ime increases as the size of the training data increases and that the slope of the line that 
represents RF learning using 25 trees is slightly less than the one that represents RF 
learning using 50 trees.

Table 2  SpeedUp ratio sorted by depth + numTrees

numTrees Depth ratioOldNew

25 10 5.67519

50 10 5.038769

75 10 4.889199

25 25 7.840796

50 25 6.952996

75 25 6.306244

25 50 9.877268

50 50 8.395452

75 50 7.233024

25 75 10.301324

50 75 8.832542

75 75 8.071576

Average ratio 7.45
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Discussion
The optimization of our RF implementation focused on the speed up of the bottleneck 
in its learning process, due to an inefficient approach used to gather the data inside the 
function that iteratively builds the RF model. The initial RF implementation used a Pass 
them All and Filter Independent Data approach. This approach sends the complete Sam-
pled Training Data (independent and dependent datasets) for each iteration through 
the loopbody function and selects from there the required data for the split/partition 
calculations. In contrast, the optimized version uses a Fetch on Demand Independent 
Data approach. This enhanced approach sends through the loopbody function only the 
dependent training data and fetches just the data needed from the independent training 
dataset located outside the function, thus avoiding many unnecessary read/write opera-
tions for each iteration and easing the parallelization of the process.

Based on the results of our Preliminary Evaluation, we confirmed that the Fetch-
ing approach helps to reduce the learning process runtime; thus, we proceeded with 
the complete RF learning restructuration and optimization. Simply put, we added the 
implementation of Random Feature Selection at the node level and a comprehensive 
parallelization of the loopbody split/partition function (as explained in “Reducing R/W 
operations within iterative split/partition process” section).

The results of our Final Assessment demonstrate that there is a significant learning 
process runtime reduction when using the optimized Random Forest, which implements 
the Fetch on Demand Independent Data approach, compared to the former initial RF 
implemented with Pass Them All and Filter Independent Data approach. The speed up 
ratio is roughly, on average, the proportion of the Number of Features Selected over 
Total Number of Features of the Training Data. In addition, the results also indicate that 
the optimized RF implementation scales well when increasing the number of trees and/
or the size of the data.

Conclusions
We successfully implemented the first Random Forest classifier for the LexisNexis 
HPCC Systems Platform. We were able to implement Random Forest’s recursive parti-
tion process using the HPCC native programming language called ECL, a data-driven 
programming language that does not allow recursion per se, by transforming the recur-
sive partition process into an iterative partition process.

Moreover, after many software development cycles, it was possible to identify our ini-
tial RF implementation’s flaws. Consequently, we replaced its Pass Them All and Filter 
Independent Data approach by a more efficient Fetch on Demand Independent Data 
approach, taking full advantage of the distributive and parallel computing capabilities of 
the HPCC Platform, to finally deliver our optimized Random Forest implementation as a 
distributed machine learning algorithm for Big Data.

In the future, the same development methodology described in this paper could be 
applied to implement and/or optimize other supervised learning algorithms in the 
ECL-ML Library. First, the proper operation (whether they return the correct results) 
could be verified and their process runtime evaluated. Second, flaws in their ECL 
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design-implementation could be identified and then corrected through upgrades, taking 
full advantage of the distributive and parallel capabilities of the HPCC Platform.
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Appendix
This appendix includes descriptions of ECL data structures used in the DT Learning 
Process and a Tree Level Building example that will help to better understand the mate-
rial in this paper.

The weather data

The Weather data, shown in Fig.  14, is a tiny dataset for classification created by 
the University of Waikato’s Machine Learning Group [14] and provided as a sample 
dataset with their WEKA software. The dataset is used in numerous Data Mining 
related courses and books. It has 14 instances, described by four attributes (related 

WEATHER DATASET Dependent dataset Independent dataset
id outloo tempe humid windy play id number value id number value

1 0 0 1 0 0 1 1 0 1 1 0
2 0 0 1 1 0 2 1 0 1 2 0
3 1 0 1 0 1 3 1 1 1 3 1
4 2 1 1 0 1 4 1 1 1 4 0
5 2 2 0 0 1 5 1 1 2 1 0
6 2 2 0 1 0 6 1 0 2 2 0
7 1 2 0 1 1 7 1 1 2 3 1
8 0 1 1 0 0 8 1 0 2 4 1
9 0 2 0 0 1 9 1 1 … … …

10 2 1 0 0 1 10 1 1 … … …
11 0 1 0 1 1 11 1 1 14 1 2
12 1 1 1 1 1 12 1 1 14 2 1
13 1 0 0 0 1 13 1 1 14 3 1
14 2 1 1 1 0 14 1 0 14 4 1

Fig. 14  Weather Dataset representation
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to weather) and the “class” value—whether or not to play a game. We are going to use 
the weather dataset to support our explanations and examples. The dataset size and 
simplicity will help to explicitly show and describe the different data structures and 
tasks in this appendix. Notice that the data was originally categorical, and we con-
verted it to discrete numerical in order to work with ECL.

Data structures used in DT learning process

DiscreteField and NumericField

These records help to represent any discrete or continuous corresponding dataset in 
a tabular M rows by N columns Matrix format. Any single record is composed of 3 
fields:

id: it contains the instance identifier number (row). All records with the same id 
belong to the same training example. ECL-ML Library supports up to eighteen 
quintillion by default.
number: identifies the instance’s variable (column). ECL-ML support up to four 
billion by default.
value: the value for an instance variable (discrete or continuous feature value).

In the ECL-ML Library, a dataset for supervised learning is represented with two 
datasets: dependent and independent. The dependent dataset is always discrete. One 
DiscreteField record is enough to represent the instance class. The independent data-
set needs one record per instance attribute value to represent the independent data of 
an instance. In this case we are using DiscreteField records for the independent data-
set because the Weather independent variables are discrete (see Fig.  14), otherwise 
we were using NumericField records.

NodeID  This data structure is used in the definition of tree-related data structures. It 
wraps the elementary identification of a node. It is composed of 2 fields:

node_id: contains node identifier number.
level: states the Tree level position of the node. Trees start at level one (root).

SplitD  The SplitD records are used to represent a discrete Decision Tree model com-
posed of a set of Split nodes and Leaf nodes. A Split node is composed of Branches 
which are links to other nodes. A Leaf node is a kind of “final state” node where the 
class value can be assigned. The record structure has the following fields:

NodeID: Node Info, all records that compose a Branch or Leaf Node have the same 
NodeID.
number: identifies Leaf nodes when the value is zero, otherwise it is a Branch node 
and the value points to the independent variable (attribute) used to split.
value: holds the attribute’s value of the Branch, or the class value for Leaf nodes.
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new_node_id: holds the node_id of the destination node a Branch is linked to.
support: number of instances that got the Branch or Leaf node during the learning 
process, useful for class probability distribution calculation.

Figure 15 displays, on the left, the SplitD records that represent the Decision Tree 
built, on the right, learning from the Weather dataset. The top Split node (root), com-
posed of many records (branches) identified with node_id = 1 and level = 1, corre-
spond to the root node in the Tree View graph.

The attribute selected to split the root node was the attribute number 1, which cor-
responds to “outlook.” Every single record represents one of the branches with info 
about the attribute value, the destination node “new_node_id” and instances count 
“support.” Leaf nodes are represented with a record having “number” equals to zero 
and the “value” defines the final class, e.g. the node identified with node_id = 4 repre-
sents the leaf node on the second level of the Decision Tree graph, having “1” as final 
class and four instances ending there (support).

NodeInstDisc  The NodeInstDisc records are used in the Decision Tree’s learning pro-
cess. They represent the interim structure of the tree at any moment of the learning 
process and the current location of the training Instances in this tree. Their data struc-
ture is composed of 7 fields:

NodeID (2): node_id, level. Node Info.
DiscreteField (3): id, number, value. Instance Independent Data or Branch’s split 
data.
Depend (1): depend. Instance’s dependent value or Branch’s child node_id.
Support (1): support. Support during learning.

The NodeInstDisc record is the INPUT/OUTPUT datatype of the split/partition 
loopbody function and has multiple meanings based upon the id field (a component 
of DiscreteField). The value of id distinguishes the tree structure related records from 
records stating Node Instance locations. Records having their id greater than 0 stand for 
Node-Instances that need further processing. They carry the Instance data: the depend-
ent value in the depend field and independent values in the DiscreteField, needing one 

Fig. 15  Decision Tree model representation in HPCC. SplitD dataset—Decision Tree
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record for each dependent variable. Moreover, the further processing of these records 
depends on the level field.

Records having their level less than LOOP iteration number (current level) belongs 
to LEAF Nodes. They do not need further processing besides the class support count 
after the LOOP has finished; whereas, records having their level equal to current level 
will be processed by the split/partition function. Records having id equal to 0 stand for 
Branches, links between parent nodes and their children, which compose a Split node. 
Branches carry info about the independent variable used to split the node, the variable’s 
id in the number field and the variable’s value in the value field.

Example 1—Tree Level Building  In this example, we show that the loopbody function 
of our iterative split/partition process grows the DT using a breadth-first manner, i.e. one 
complete level at a time. The records in the Table 3 depict the temporary status of the DT 
at the beginning of iteration number 2 (see Fig. 16).

Table 3  Node-instance records of iteration 2’s input

Node_id Level Id Number Value Depend Support

1 1 0 1 4 1 4

1 1 0 1 3 2 5

1 1 0 1 2 0 5

2 2 1 1 *** 0 0

2 2 2 1 *** 0 0

2 2 8 1 *** 0 0

2 2 9 1 *** 1 0

2 2 1 1 *** 1 0

3 2 4 1 *** 1 0

3 2 5 1 *** 1 0

3 2 6 1 *** 0 0

3 2 0 1 *** 1 0

3 2 4 1 *** 0 0

4 2 3 1 *** 1 0

4 2 7 1 *** 1 0

4 2 2 1.. *** 1 0

4 2 3 1 *** 1 0

Fig. 16  Decision Tree at the beginning of iteration 2
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The loopbody function receives all NodeInstDisc records (shown in Table 3) that rep-
resent the DT in construction at the beginning of the 2nd iteration (see Fig.  16). The 
location of any instance identified by “id” is specified by the “node_id.” Records with “id” 
equal to zero contain split related info, although it is not possible to find such records at 
the current level processed. The records marked with “***” are repeated once for each 
attribute value to complete the whole instance data, with the number identifying the 

Table 4  Node-instance records of iteration 2’s output

Node_id Level Id Number Value Depend Support

1 1 0 1 4 1 4

1 1 0 1 3 2 5

1 1 0 1 2 0 5

2 2 0 3 8 1 3

2 2 0 3 6 0 2

3 2 0 4 5 0 3

3 2 0 4 7 1 2

4 2 3 1 *** 1 0

4 2 7 1 *** 1 0

4 2 12 1 *** 1 0

4 2 13 1 *** 1 0

5 3 4 4 *** 1 0

5 3 10 4 *** 1 0

5 3 5 4 *** 1 0

6 3 9 3 *** 1 0

6 3 11 3 *** 1 0

7 3 6 4 *** 0 0

7 3 14 4 *** 0 0

8 3 8 3 *** 0 0

8 3 1 3 *** 0 0

8 3 2 3 *** 0 0

Fig. 17  Decision Tree at the end of iteration 2
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attribute. The function filters out the record of prior levels (level < 2) and performs all the 
algorithm calculations only using the current level data.

The records in Table 4 depict the temporary status of the DT at the end of iteration 
number 2 (See Fig. 17).

After the iteration 2, the loopbody function returns all NodeInstDisc records (shown in 
Table 4) that represent the DT in construction (see Fig. 17), just before the iteration 3. 
Note that the iteration 2 grew the whole DT’s level 2. It transformed Node 2 and Node 
3 into Split nodes (branches) and also, left all the instances located at Node 4 untouched 
because the node was pure enough to be considered a Leaf node. On a final note, even 
though the picture shows the Node 4 as a Leaf node of class “1” and support “4,” there 
are really 16 records (4 instances times 4 features as shown in the Table 4) that do not 
require further loopbody processing.
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