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Introduction
Today, nearly all money exists in form of numbers in a computer, and finance can be 
considered as a special kind of IT application that represents the flow of money in 
form of cash flows between different participants. Thus, automated processing seems 
to be a natural choice and the financial sector should be expected to lead digitization 
and automation initiatives. It is all the more surprising that not only is this not the case 
but, on the contrary, the financial sector is lagging behind other sectors. In 2008, when 
Lehman Brothers went bankrupt at the height of the financial crisis, nobody—neither 
the big banks nor the regulatory authorities—had the structures and processes in place 
to systematically measure, even imprecisely, the systemic aspects of the risks inherent 
in the development of subprime lending, securitization, and risk transfer [1]. As a con-
sequence, the top management did not have an adequate picture of these risks so that 
they could be denied during the build-up of the bubble and nobody was able to evaluate 
the implications of the failure of major financial institutions when the crisis eventually 
hit. The major shortcoming identified by the Basel Committee on Banking Supervision 

Abstract 

Large financial organizations have hundreds of millions of financial contracts on 
their balance sheets. Moreover, highly volatile financial markets and heterogeneous 
data sets within and across banks world-wide make near real-time financial analytics 
very challenging and their handling thus requires cutting edge financial algorithms. 
However, due to a lack of data modeling standards, current financial risk algorithms are 
typically inconsistent and non-scalable. In this paper, we present a novel implementa-
tion of a real-world use case for performing large-scale financial analytics leveraging 
Big Data technology. We first provide detailed background information on the financial 
underpinnings of our framework along with the major financial calculations. After-
wards we analyze the performance of different parallel implementations in Apache 
Spark based on existing computation kernels that apply the ACTUS data and algorith-
mic standard for financial contract modeling. The major contribution is a detailed dis-
cussion of the design trade-offs between applying user-defined functions on existing 
computation kernels vs. partially re-writing the kernel in SQL and thus taking advan-
tage of the underlying SQL query optimizer. Our performance evaluation demonstrates 
almost linear scalability for the best design choice.

Keywords:  Financial analytics, Query processing, User-defined functions, Performance 
evaluation

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Stockinger et al. J Big Data            (2019) 6:46  
https://doi.org/10.1186/s40537-019-0209-0

*Correspondence:   
Kurt.Stockinger@zhaw.ch 
†Kurt Stockinger, Nils Bundi, 
Jonas Heitz and Wolfgang 
Breymann contributed 
equally to this work
1 Zurich University of Applied 
Sciences, Technikumstrasse 9, 
8400 Winterthur, Switzerland
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0003-4034-4812
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0209-0&domain=pdf


Page 2 of 24Stockinger et al. J Big Data            (2019) 6:46 

(BCBS) [2] is the banks’ poor capability to “quickly and accurately” aggregate risk expo-
sures and identify concentrations of risk at “the bank group level, across business lines 
and between legal entities”. In particular, this affects their ability to quickly carry out so-
called stress tests, which can be viewed as a particular way to assess the banks’ exposure 
to risk associated with particular economic-financial scenarios.

Since 2009, banking regulation and oversight has been strengthened, e.g. with the 
Dodd-Frank act and the Basel III post crisis regulatory reform. This has considerably 
increased the reporting requirements and the associated costs, however, with limited 
effects. The problem still is the heterogeneity of the banks’ IT environment and the lack 
of a data and algorithmic standard that enables automated, transparent, and efficient 
aggregation of risk positions. There are some initiatives for a standardized description of 
financial instruments such as, e.g., FIBO [3]. Unfortunately, these endeavors are mostly 
limited to hierarchical classification schemes (business ontologies) and fail to deliver 
what is needed for financial analysis.

In our view the reasons for this failure are twofold. First, most current standardization 
efforts focus on contract data (namely what is called contract meta data) but for financial 
analytics the cash flows implied by the legal provisions are essential. The latter are rep-
resented by algorithms in the digital world. Thus, a suitable standardization of the data 
must go together with a standardization of the contract algorithms. The ACTUS [4] ini-
tiative is so far the only one that is pursuing this approach. ACTUS stands for Algorith-
mic Contract Type Unified Standard and is a standardization effort of financial contract 
data and algorithms based on ideas originally presented in [5].

The second reason is that most professionals do not believe that a standardization 
as we deem necessary is feasible. This hints at a lack of understanding of some crucial 
aspects of the deep structure of the financial system. Indeed, we have reason to believe 
that the underlying structure has the form of a so-called “bow tie” (see Fig.  1) found 
in many complex systems with a core/periphery network structure and cooperative and 
competitive interactions between network nodes [6]. The center of the bow tie, which 
must be highly efficient, reliable and transparent, consists of the financial system’s core 
functionality, namely the execution and analysis of the myriads of cash flows. These cash 

Fig. 1  Bow tie structure of the financial system. While input and output are diverse, the core is very restricted 
and can be represented by a limited number of financial contract types with a standardized data format and 
standardized algorithms. This combines flexibility of input and output with high efficiency of the core
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flows are bundled together and encoded in financial contracts, i.e., the financial instru-
ments. In order to achieve the required efficiency, reliability and transparency, one needs 
(i) an adequate standardization of the data the cash flow generating algorithms that 
together define the contract [7] and (ii) sufficient computational power as well as highly 
scalable parallel algorithms. The first goal has already been achieved with ACTUS [4], 
while (ii) is what is presented in this paper. Let us note that the full set of contract types 
will cover all important financial instruments from fixed rates bonds over symmetrical 
derivatives as futures and swaps to general basket structures that encompass for example 
asset backed securities (ABS) and collateralized debt obligations (CDO).

ACTUS builds on the observation that all financial analyses can be reduced to the fol-
lowing three steps: (1) evaluation of the cash flows of all financial contracts for a given 
state of the economic-financial environment (henceforth referred to as risk-factor sce-
narios); (2) application of specific analytical transformations to these cash flows, which 
results in granular analytics; and (3) aggregation of the granular analytics to any desired 
level. If data and contract algorithms are standardized, steps (2) and (3) consist nearly 
entirely of linear transformations, for which very efficient parallel algorithms exist. Up to 
now, this technology has been tested for cases consisting of about 4 × 103 contracts and 
up to 100 risk factor scenarios.

In order to scale up the solutions, it is important to notice that steps (1) and (2) can 
both be processed independently for different contracts and different risk factor scenar-
ios, which means that the computing problem is “embarrassingly parallel” [8]. This prop-
erty allows leveraging novel and freely available parallel and/or distributed computing 
technologies in order to solve the problem of modeling and simulating the core of the 
financial system sufficiently fast. In particular, this is essential for large financial institu-
tions with about 108 contracts and for Monte-Carlo simulation based analytics where 
each instrument has to be evaluated under up to 105 scenarios. Indeed, this results in 
a Big Data and Big Computation problem with up to approximately 108 × 105 = 1013 
contract-scenario pairs.

Research objectives

In the following, we concentrate on the parallel computing technology for modeling, 
simulating and analyzing the functional core of the financial system at a large scale. The 
research objectives address the following questions, which we judge essential for this 
technology to be deployed in large-scale real-world solutions:

•	 Question 1: Can we easily parallelize existing financial kernels?
•	 Question 2: Can financial calculations be formulated in SQL and thus be accelerated 

by taking advantage of a SQL Query Optimizer?
•	 Question 3: What is the scalability of running large-scale, real-world financial analyt-

ics?

The portfolio of contracts investigated in this paper is limited to fixed income instru-
ments as generalized bonds, annuities and loans with constant rate of amortization. This 
limitation is unlikely to entail a restriction of the generality of the results of our study 
as to the scaling behavior because the principles, namely the embarrassingly parallel 
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structure of the problem as explained in Section Case Study, remains the same for all 
contract types. This is why we expect the core of the results presented in this paper to be 
valid for all contract types. However, we expect the pre-factors of that scaling behavior 
to indeed depend on the contract types. A detailed analysis of the computational behav-
ior of these factors for all 30+ contract types, however, is beyond the scope of this paper.

Contributions

The paper builds on preliminary work [9] and makes the following contributions:

•	 We introduce a real-world Big Data financial use case and discuss the system archi-
tecture that leverages state-of-the-art Big Data technology for large-scale risk calcu-
lations.

•	 A detailed performance evaluation of user-defined functions (UDFs) vs. SQL pro-
cessing for end-to-end financial analytics provides insights into optimal design and 
implementation strategies.

•	 Conventional wisdom is that Spark performs dynamic resource optimization. We 
demonstrate on a real use case the current limitations of the Spark resource manager 
and discuss potential improvements and lessons learned that are relevant for other 
large-scale Big Data problems.

•	 We sketch a research agenda for extending SQL in order to make it applicable to a 
wide range of financial applications.

The paper is organized as follows. "Related work" section reviews the literature in the 
areas of big data and financial analytics. "Background" section provides information on 
financial data modelling and introduces the ACTUS framework. "Methods: parallel data 
structure" and "Methods: system design" sections introduce the parallel data structure 
and the system architecture based on Big Data technology to enable scalable finan-
cial analytics. "Results and discussion" section provides a detailed evaluation of paral-
lel financial analytics implemented in Apache Spark running on up to 512 vCPU cores. 
Finally, the results are summarized in "Conclusion" section.

Related work
Over the past decades, the financial services industry has transitioned from a “small-
data discipline” to a “big-data discipline” [10]. Traditional data management techniques 
no longer seem able to effectively handle the ever-increasing, huge and rapid influx of 
heterogeneous data and require the adoption of novel Big Data technology [11]. In fact, 
some areas in the financial domain seem to have applied these novel techniques already. 
In particular, there exists a large body of literature on Big Data applications in financial 
(stock) market and economic time series prediction, forecasting [12–14], financial crime 
prediction [15], and business intelligence in general [16]. The adoption of Big Data tech-
nology is, however, uneven. For example, there is less momentum of applying Big Data in 
financial auditing [17]. In financial risk management, large data sets are mainly used for 
estimating and forecasting stochastic quantities such as stock price volatility [11], which 
is in line with the use of Big Data technologies for time series prediction and forecast-
ing. Big Data technologies are also used for systemic risk measurement [18]. Simulation 
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approaches to financial risk analysis and management have proven to be an effective tool 
and a major candidate for the adoption of Big Data technologies [19]. Monte–Carlo sim-
ulations, e.g. have a long tradition in financial risk management and What-If scenario 
analysis is widely used as a forward-looking financial management and regulatory tool.

Recent trends in Big Data technology enable novel dataflow-oriented parallelization. 
Specifically, Apache Spark [20, 21] and Apache Flink [22] are widely-used open-source 
engines for Big Data processing and analytics that show better performance than the 
more traditional MapReduce-based approaches due to reduced disk usage [23] and main 
memory optimizations. Especially, the introduction of Spark SQL, which integrates rela-
tional processing with functional programming, is particularly interesting for data ware-
housing and data analytics applications across different disciplines and is already widely 
used both in academia [24, 25] and in industry [26]. Large vendors like IBM use Spark 
as core engines for their own products but also companies like Toyota and Alibaba use 
Spark for internal data analysis [27].

However, Big Data technologies have not yet been used for simulation approaches 
to financial risk measurement that are based on the cash flows generated by individual 
financial contracts. While building the core to existing analytical platforms  [28] and, 
on a conceptual level, to novel regulatory infrastructure  [29], up to now the ACTUS 
approach has only been tested on a small scale [30]. A large scale test of this approach is 
the missing element needed in order to build a scalable financial simulation and analysis 
environment that gets to the core of the financial systems and provides the means to 
flexibly assess all kinds of risks combined with the capability of flexible, situation-based 
analytics. At present, such an approach has only been presented at a very high, con-
ceptual level, without working out the technical details. E.g., a concept for automated 
reporting has been proposed in  [29]. This approach uses a combination of blockchain 
technology as well as the ACTUS data and algorithmic standard for financial contract 
modeling also used in this paper.

Background
Risk assessment means analyzing a complex system in a special way. Carrying out 
such an analysis thoroughly and consistently is a formidable task. We argue that com-
mon financial risk management infrastructures currently still fall short [2]. However, 
it is not per se unfeasible if one uses adequate concepts and technology. Typically, 
it relies heavily on simulation which, besides experiment and theory, is a standard 
approach in science for understanding complex systems and establishing effective 
control. If based on “first principles”, simulation of a complex system needs to start 
at the level of granular data, i.e., the system’s most elementary building blocks. For 
a bank’s balance sheet, these are the financial contracts (also called financial instru-
ments or assets); they cover the whole financial universe reaching from widely known 
securities as stocks and bonds to complex derivatives. The balance sheets of even 
mid-size banks consist of millions of such contracts and their apparent heterogene-
ity historically has prevented a common analytical treatment. However, the concep-
tual core shared by all financial contracts is that they define a set of rules governing 
the exchange of future cash flows. In fact, it is these simulated cash flow streams 
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which provide the input from which all kind of financial analysis can be computed [5]. 
Accordingly, the process of financial analysis can be decomposed into the following 
two steps:

1.	 A simulation step that consists of the generation of the cash flows encoded in the 
definition of the financial contract (see "Cash flow simulation as non-linear func-
tion" section); the core of this step consists of non-linear transformations of the input 
data onto the generated cash flow streams; they must be specifically implemented for 
financial contracts to faithfully represented their legal content.

2.	 The analysis step which consists of linear transformations of these cash flows into 
meaningful analytical metrices by weighted aggregation; the granular-level analytical 
results provide the input for higher-level risk analysis and financial analysis in general 
(see "Financial analytics as linear transformations" section).

These two steps constitute the ACTUS Process of Financial Analysis (APFA); the decom-
position is crucial in order to organize financial analysis into an efficient process that 
can be standardized and automated. They provide two computation kernels described in 
"Cash flow simulation as non-linear function" and "Financial analytics as linear transfor-
mations" sections.

APFA architecture

Building on this understanding, Project ACTUS [4] is developing an algorithmic repre-
sentation of the universe of financial contracts as the core simulation engine that pro-
duces the cash flow stream.

Figure 2 shows the data flow. The data input required for the simulation step essen-
tially consists of contract data and risk factor scenarios:

Fig. 2  Data flows in the ACTUS framework with complex, non-linear financial analytics (cash flow generation) 
and linear financial analytics (financial measurements)
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•	 Contract data provide the contractual terms defined in the legal agreements; they 
determine types, dates,1 and amount of cash flows generated by a contract.

•	 Risk factors scenarios determine the state of the financial and economic environ-
ment under which the cash flows of a contract should be evaluated. Important risk 
factors are interest rates, foreign exchange rates, prices of shares and commodities 
but also credit ratings and default probabilities. Important is that their future state 
is unknown and has to be “guessed” in What-If calculations or randomly drawn in 
Monte–Carlo simulations.

We emphasize that both, contract data and risk factor information, is needed in order 
to generate the cash flows encoded in a contract. The reason is that the contractual 
terms often refer to market information such as interest rates in the case of a variable 
rate bond.

Cash flow simulation as non‑linear function

The actual mapping from a given pair of contract data and risk factor scenarios is per-
formed by the ACTUS contract algorithms. Mathematically, this can be represented as 
non-linear functions. It provides the ACTUS simulation kernel. More formally, consider 
a set of contracts S = {s1, s2, . . . , sn} , where contract si is represented by a set of contract 
attributes ai , and a payoff function Pi [4]. Further, let � represent an m-dimensional risk 
factor model that describes the current state and dynamics of a set of m market risk fac-
tors, O = {�1, . . . ,�m} . In general, the �i are time dependent and are generated for a set 
of dates T = {τ0, . . . , T}.

Scenarios Wk = {ωk
1 , . . . ,ω

k
m} of � are generated either “by hand” in form of What-If 

scenarios or randomly according to a mathematical model in the case of a Monte–Carlo 
simulation. Notice that the ωk

j  represent time series, ωk
j = {ωk

j (τ )|τ ∈ T } . The ACTUS 
payoff function then maps the contract attributes ai and risk factor scenarios ωk onto a 
stream of cash flow events Ek

i (t0) = {eki (t0), e
k
i (t1), . . .},

Here, t0 is the reference time that indicates the virtual “now” and typically is the starting 
point of the simulation and Tk

i = {t0, t1, ...} denotes the vector of the dates of the cash 
flow events eki (t) such that t ∈ Tk

i  . Notice that Tk
i  is typically different for different con-

tract–risk factor pairs (si,ωk).
Mapping  (1), which is represented by the left horizontal arrow in Fig.  2, represents 

the ACTUS simulation kernel that produces as result a stream of cash flow events for 
each contract–risk factor pair. This means that typically two cash flow streams Ek

i (t) 
and Ek ′

i′ (t
′) are equal only if i = i′ , k = k ′ , and t = t ′ . A simulation with n contracts and 

k  risk factor scenarios will thus result in n× k cash flow streams, each consisting of 
m ≥ 1 cash flow events. Since there are about 100 million contracts on a large bank’s 
balance sheet and Monte–Carlo simulations typically contain about 10,000 or even more 
risk factor scenarios, these intermediate results can be of the order of Petabytes.

(1)Pi(t0, ai,ω
k) = Ek

i (t0).

1  Currently, the highest time resolution is one day.
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Financial analytics as linear transformations

Turning to the analytical part of APFA, we focus on three important measurements; 
nominal value N, fair value V, and funding liquidity L. These quantities reflect basic 
measurements necessary for analyzing and managing different types of financial risks. 
In fact, nominal value measures the (current) notional outstanding of, e.g., a loan and 
accordingly provides the basis for exposure calculations in credit-risk departments. On 
the other hand, fair value quantifies the price of a contract that could be realized in a 
market transaction at current market conditions, which is what market-risk practition-
ers are concerned with. Finally, funding liquidity assesses the expected net liquidity flows 
over some future time periods; it is a key concept used in the treasury department of 
organizations.

In order to formalize the linear financial analytics, we start from a stream of cash flow 
events Ek

i  . Each event eki (t) ∈ Ek
i  contains among other information elements the actual 

cash flow f ki (t) that is exchanged with the counter party and the current notional out-
standing nki (t) . From these atomic information elements, the three linear financial ana-
lytics can be derived as follows:

where � = {δ1, δ2, . . . , δu, . . .} defines a set of time periods within which the net liquid-
ity is computed as the sum of all cash flows occurring within these periods. Further, the 
dki (t) ’s denominate discount factors, which are computed from the interest-rate curve of 
the corresponding risk scenario ωk and a contract-specific discounting spread.

As can be seen from the analytics functions above the three linear analytical metrics 
can be conveniently derived from a contract’s cash flow event stream Ek

i  . They describe 
the Financial Analysis Kernel used for the second step of APFA. This kernel has been 
implemented by means of UDFs but can also be implemented using Spark SQL (see 
"Detailed design of parallel data flows" section). Notice, however, that apart from simple 
filter and aggregation operations some of these functions involve also time-arithmetics 
(e.g. liquidity calculations) and interpolations (e.g. discount factors) and, therefore, are 
less trivial than it might seem at first glance.

Methods: parallel data structure
In this section we describe the main data structures that are required to perform parallel 
financial computations based on UDFs and SQL.

In order to design a Big Data architecture for performing financial analytics at scale, 
we can either split the tasks or the data [31, 32].

(2)Nominal Value: Nk
i = nki (t0)

(3)
Fair Value: V k

i =
∑

t∈Tk
i

dki (t)f
k
i (t)

(4)

Liquidity: Lki = (lki (δ1), l
k
i (δ2), . . .)

with

lki (δu) =
∑

t∈(t0+δu−1,t0+δu)

f ki (t)
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•	 Task parallelism splits a task into subtasks and executes each sub-task on a poten-
tially different compute node of the computer cluster. In other words, each node 
potentially executes a different task. This approach assumes that the computational 
costs of tasks can be mathematically modeled and, on the basis of this information, 
the tasks can be split in a way that the workload is evenly distributed among the 
compute nodes. The optimal scheduling of the sub-tasks without under or over utili-
zation of some nodes is often non-trivial and hampers the scalability. This is the main 
challenge of task parallelism.

•	 Data parallelism splits the data and distributes it among the compute nodes in the 
cluster so that each compute node executes the same task typically on a different part 
of the whole data set. The main challenge is that distributing the data often results 
in significant communication costs when input data or intermediate results must be 
shipped from one compute node to another over the computer network.

Calculating cash flows for financial contracts and performing subsequent financial ana-
lytics is an embarrassingly parallel problem that falls into the category of data parallel-
ism. A major challenge is to design a data structure that (1) enables end-to-end parallel 
computation where (2) each row has to be independent from all the others in order to 
guarantee maximum parallelism. For the contract data part of the input data (see "APFA 
architecture" section as well as top left part of Fig. 3) this can be achieved quite easily 
because contract terms essentially consist of a table (the contract data table) where each 
row represents a contract and the columns contain the contract attributes according to 
the definitions of the ACTUS data dictionary .

The risk factor scenarios, on the other hand, are only semi-structured. That is, a single 
risk factor scenario represents a specific assumption on the future evolution of a multi-
dimensional financial-economic environment under which the cash flows ought to be 
evaluated. We refer to a representation of this environment as a risk factor model and to 
individual dimensions therein to risk factors. Examples of such risk factors are prices of 
shares or share price-indices (e.g. the DowJones index), prices of commodities (e.g. the 
price of gold), foreign exchange rates (e.g. the EUR/USD rate), specific reference interest 
rates (e.g. the 3-months LIBOR rate as in a certain currency), or an entire yield curve 
(e.g. the US Treasury Curve). It is important to notice that a yield curve itself is a multi-
dimensional object often referred to as the interest term structure as it represents a col-
lection of reference rates with different tenors or maturities.2 Hence, because a single 
risk factor can represent a vector-valued object, we need to introduce a third dimension 
in the representation of a single risk factor scenario. The other two dimensions are the 
risk factors themselves and the simulation time.

Since individual risk factor scenarios are independent of each other, we can transform 
them into a data structure where the rows are also independent from each other (see 
Fig. 3, top-right box) with the following dimensions:

	 i.	 The risk factor scenarios (rows);

2  For instance, the US Treasury Curve is composed of the 1-month, 2-months, 3-months, 6-months, 1-years, 2-years, 
3-years, 5-years, 7-years, 10-years, 20-years, and 30-years tenor according to [33].
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	 ii.	 The risk factors that constitute the risk factor model (nested columns);
	iii.	 Simulation time (nested rows);
	iv.	 An additional grouping of risk factor components into vector-valued risk factor 

objects (separate meta-data file, see column RF-meta in box on bottom of Fig. 3).

Hence, to meet the requirement of the Spark parallel computation environment, we 
had to map this structure onto a risk factor table where each row contains a struc-
tured data object with the entire data for a single risk factor scenario.

The computation must be carried out for all the pairwise combinations of all rows 
of the contract data table with all rows of the risk factor table. Such a joint contract–
risk factor input table can be produced by means of a Cartesian product (see bottom 
part of Fig. 3).

Fig. 3  Financial analytics data structures. The top part shows the data structures of the two main data input 
data sets, i.e. contracts and risk factors. The lower part shows the joined contract–risk factor input table 
where each row is an independent combination of contract and risk factor information. Since all rows are 
independent from each other, we can easily parallelize the calculation of the resulting cash flows



Page 11 of 24Stockinger et al. J Big Data            (2019) 6:46 

Since both the contracts and the risk factor scenarios are independent from each other, 
the elements of the product table are also independent from each other. As a result, we 
can compute the cash flows for different contract–risk factor combinations (see bottom 
part of Fig. 3) independently.

The re-organization of the input data has the additional advantage that the existing 
computational kernels can be used for the parallel execution with minimal modifica-
tions, only.

Methods: system design
In this section, we describe the Big Data architecture that enables large-scale financial 
risk modeling. In particular, we present two different approaches. Approach 1 is called 
On-the-fly-architecture and performs end-to-end financial processing without material-
izing intermediate results. Approach 2 is called Materialized-Architecture and material-
izes intermediate results to enable interactive analytics based on pre-calculated data—an 
approach that is common in data warehousing [34]. We will motivate the design deci-
sions for both approaches and discuss advantages and disadvantages. In "Detailed design 
of parallel data flows" section, we provide detailed design decisions for a parallel data 
flow implementation that leverages both Spark User-Defined Functions as well as Spark 
SQL to implement linear, financial analytics at scale.

High‑level big data architecture

The financial use case presented in "Background" section allows for two different modes 
of analysis, namely On-the-fly analysis without the need to materialize large amounts 
of intermediate cash flow results, and time-deferred analysis where these intermediate 
results are materialized in order to be available for later analysis. The architectures for 
these analytical modes are displayed in Fig. 4. Panels (a) and (b) show two variations of 
the On-the-fly architecture while the architecture for time-deferred analysis is depicted 
in panel (c). We have implemented these architectures with Apache Spark using Ama-
zon’s S3 file system.3

On‑the‑fly‑architecture

Figure 4a, b show the On-the-Fly architecture of our system. More specifically, the archi-
tecture sketched in panel (a) uses UDFs for performing both the non-linear and linear 
analytics while the architecture sketched in panel (b) uses UDFs for the non-linear ana-
lytics and Spark SQL for the linear analytics.

Notice that both architecture scenarios use the ACTUS simulation kernel for the com-
putation of the cash flow events (complex, non-linear analytics) and both do not mate-
rialize these intermediate results but perform financial analytics right away in the same 
Spark context.

As to Question 1 of "Research objectives" section concerning the ease of paralleliz-
ing existing computational kernels, we note the following: The UDF-approach has 
the advantage that the existing Financial Analysis Kernel can be reused for parallel 

3  https​://aws.amazo​n.com/s3.

https://aws.amazon.com/s3
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Fig. 4  Big Data Architecture using three inputs: contracts, risk factors and analytical configuration 
parameters. The (non-linear) simulation step is carried out using Spark UDFs. The (linear) analytical steps are 
performed using a UDFs, b SQL and c UDFs or SQL
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computation without major rewrites. Only the core data structure of ACTUS needs to 
be re-written as a Spark Dataset containing the joint contract–risk factor input table (see 
Fig. 3) in order to fully benefit from Spark’s parallel computing engine. Subsequently, all 
financial calculations must also be performed on Spark Datasets.

Spark SQL provides an alternative to the “out-of-the-box” approach of UDFs. Since 
the Financial Analysis Kernel (that is used to perform financial analytics based on cash 
flows) consists entirely of linear transformations, at least some of its functionality can 
very naturally be expressed in SQL. We thus expect the processing to benefit from Spark 
Catalyst, i.e. Spark’s SQL Query Optimizer [21], to significantly improve run time per-
formance. In order to test this hypothesis, we compute the analytical quantities (2)–(4) 
introduced in "Financial analytics as linear transformations" section both with UDFs and 
SQL statements and compare their performance in "Results and discussion" section.

Materialized architecture

Materializing intermediate results is common practice in data warehousing where dedi-
cated data marts use intensive materialization to speed up query processing. However, 
materialization is often a trade-off between query speed and storage consumption since 
materializing results can significantly increase the storage requirements depending on 
the specific problem [34]. Moreover, materialized results might be out-of-date when the 
underlying calculations change. This applies one-to-one to our use case where materiali-
zation would allow flexible analysis according to ad-hoc criteria.

Figure  4c shows the architecture where intermediate results are materialized and 
can be reused for subsequent analytics or query processing. The simulation step that 
required complex, non-linear analytics remains unchanged. However, as opposed to the 
On-the-fly architecture, here we materialize the simulation results on AWS S3 in Parquet 
format. In a subsequent analytical step, a second Spark context performs financial ana-
lytics (see “Spark Context 2” in Fig. 4c) either with UDFs or SQL as previously shown in 
the On-the-fly architecture.

Detailed design of parallel data flows

Let us now turn to the detailed design of parallel data flows of the whole APFA to imple-
ment complex financial calculations. First, we discuss the design based on Spark User-
Defined Functions for the implementation of the whole ACTUS process of financial 
analysis. Second, we discuss the design based on Spark SQL, which requires rewrit-
ing Eqs.  2–4 but enables leveraging Spark SQL’s Query Optimizer for linear financial 
analytics.

On‑the‑fly‑architecture: spark user‑defined functions

Figure  4a shows the data flow for the On-the-fly processing based on Spark-UDFs for 
financial analytics. The two main input data sets are the risk factor scenarios and the 
financial contracts, from which the contract–risk factor input table is produced. All 
resulting contract–risk factor pairs need additional inputs such as time-period specifica-
tion for liquidity aggregation and reporting currency. After the cash flows being calcu-
lated, the financial analytics is performed, which yields contract-level results.
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The main advantage of this approach is that the non-linear simulation part and the 
linear analytics can both be performed by the existing computation kernels. Parallel data 
processing is achieved through leveraging UDFs in Spark.

On‑the‑fly‑architecture: Spark SQL

Figure 4b shows the data flow for the On-the-fly processing using SQL for the analytical 
part. The simulation part remains unchanged. Now, however, the cash flow events are 
kept in (distributed) main memory and the analytical part is performed using Spark SQL 
to express Eqs. 2–4. The hypothesis is that the performance of these types of calculations 
can benefit from the Spark’s Query Optimizer.

Materialized architecture: Spark UDF and SQL

Last, the same two implementations of financial analytics, i.e. the Spark UDF and Spark 
SQL approach, are applied also to the materialized cash flow events. Figure 4c shows the 
detailed data flows for the materialized architecture with cash flow event generation as 
first step in Spark Context 1 and analytics computations using Spark UDFs or Spark SQL 
as second step in Spark Context 2.

Results and discussion
In this section, we will describe the experimental setup used for the performance evalua-
tion of our system on up to 512 vCPU cores and present the results. In particular, we will 
analyze the performance difference between the on-the-fly architecture and the materi-
alized architecture. Moreover, we will study how the UDF-based approach differs from 
a SQL-based approach and in which case the financial calculations can benefit from 
Spark’s SQL Query Optimizer.

Our performance evaluation demonstrates almost linear scalability for the best design 
choice. The results show that UDFs perform better for complex queries while SQL per-
forms better for less complex queries.

Experimental setup

The ACTUS Simulation Kernel is implemented in Java. In order to parallelize the execu-
tion of the calculations, we used Apache Spark [35]. All experiments were executed on 
Amazon Web Services running Spark 2.3 using the Java interface of Spark and ACTUS.

We used up to 32 machines of type m3.2×large, each with 30 GB RAM and 16 vCPU 
cores running at 2.5 GHz. In total, the largest experiments ran on 960 GB of (distributed) 
RAM and 512 vCPU cores. In order to achieve maximum elasticity, we used Amazon’s 
S3 file system [36] running in the same data center (us-east-1) that also runs Amazon 
Web Services hosting Spark. Further, we extended AWS’s standard Spark and YARN 
configuration for the experiments according Cloudera’s best practices [37]. To achieve 
the maximal parallelism, each machine is configured with three Spark executors running 
on 5 CPU cores and 6.5 GB of RAM.

Our test case contains up to 96 million financial contracts that need 40 ACTUS con-
tract attributes for input specification for the simulation and 3 additional parameters 
for the analytical part. The contracts represent both fixed-rate and variable rate bullet 
loans and are simulated randomly for this study. The total size of the contract data set is 
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30 GB. In addition, we generated up to 1,000 risk factor scenarios that have a total size 
of 3 MB. Note that the two input data sets per se are relatively small. However, when 
performing the Cartesian product that serves as the input for the event calculations, the 
resulting data set is of the order of 300 GB for 1 risk factor scenario and 96 million con-
tracts. The simulation results, on the other hand, consist of an event stream for each 
contract–risk factor pair, which results in a maximum file size of about 450 GB again for 
96 million contracts and 1 risk factor scenario.4

Financial simulation and analytics

In all cases, the financial simulation is carried out by the ACTUS Simulation Kernel, 
which implements Eq.  1. We emphasize again that this is the non-linear part of the 
whole process.

As to the linear, analytical part, we evaluated nominal value (Eq. 2), liquidity (Eq. 4) 
and fair value (Eq. 3), which are all provided by the Financial Analysis Kernel as UDFs 
and re-written in SQL.

Nominal value is straightforward and results in the following simple SQL query: 

SELECT * FROM CashFlows WHERE Type = ’AD0’

 where AD0 refers to the initial event of cash flows.
Liquidity is more complex, since it depends not only on the cash flows but also 

requires a varying number of time periods of variable length (see Eq. 4). Every additional 
time period results in a further UNION-path which increases the complexity of the SQL 
query. The following query shows a liquidity calculation over 2 time periods: 

SELECT ID, Scenario, AccountID, Currency,
’2016-02-08’ AS Date, SUM(value) AS Liquidity

FROM CashFlows
WHERE Date > ’2016-02-01’
AND Date <= ’2016-02-08’
AND Type IN (’IED’,’IP’,’Pr’,’MD’,’FP’,’PRD’,’TD’)

GROUP BY Scenario, ID, AccountID, Currency
UNION
SELECT ID, Scenario, AccountID, Currency,

’2016-02-29’ AS Date, SUM(value) AS Liquidity
FROM CashFlows
WHERE Date > ’2016-02-08’

AND Date <= ’2016-02-29’
AND Type IN (’IED’,’IP’,’Pr’,’MD’,’FP’,’PRD’,’TD’)

GROUP BY Scenario, ID, AccountID, Currency

 Fair value is the most complex calculation when expressed in SQL. These types of 
analytics require discount factors, which are computed from the yield-curves of the 
risk factor data. This computation requires the extraction of data for various tenors and 
typically also interpolation because cash flows mostly do not occur exactly at the tenor 
dates. While technically possible, such operations result in overly complex SQL queries 

4  The maximum number of contracts computable by a single node are 3 million contract–risk factor pairs for the on-
the-fly SQL approach. A higher number of contracts causes Spark memory problems. The reason for this behavior will 
be discussed in "On-the-fly results" section. We used that number as an upper calculation load limit per node. So we 
result in 96 million contract–risk factor pairs on 32 nodes for our largest test case.
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and considerable amount of re-writing. Hence we did not attempt to re-write that part 
of the Financial Analysis Kernel in SQL so that Fair Value analytics is available only as 
Spark-UDF and not in SQL.

On‑the‑fly results

The objective of these experiments is to address Questions 2 and 3 stated in "Research 
objectives" section. In short, the goal is to measure the performance of parallel financial 
analytics based on UDFs (where the existing financial kernel can be re-used) as opposed 
to re-writing the linear analytics in SQL in order to take advantage of Spark’s Query 
Optimizer. Moreover, for the first set of experiments we evaluated the end-to-end runt-
ime without materializing intermediate results.

For all our experiments we studied the scalability by simultaneously increasing the 
number of CPU cores and the size of the input data set. For instance, when doubling the 
number of CPU cores, we also doubled the size of the input data set. This type of scal-
ability evaluation is also referred as Gustafson–Barsis’s Law in parallel computing [38]. 
The advantage of this approach is that the performance can easily be interpreted since 
the ideal performance curve is a parallel to the x-axis (line with slope 0).

Figure  5 shows the performance of the simulation step (together with a “trivial” 
analytics consisting simply of counting the cash flow events) on up to 512 vCPU cores 
(see label of x-axis at the bottom) and up to 96 million contracts (see label of x-axis 
at the top). The results described here and in the remainder of the paper are for a 
combination of a certain number of contracts (top x-axis) and 1 risk factor scenario. 
Other experiments have shown the same scaling behavior for different combinations 

Fig. 5  Generation and count of the number of cash flow events for various combinations of contracts and 
risk factor scenarios. Note the two x-axes. The top part shows the number of contractions while the bottom 
part shows the number of vCPU cores. In short, as we double the number of vCPU cores, we also double the 
input data size
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of contracts and risk factor scenarios. In other words, the analysis scales similarly in 
contracts and in risk factor scenarios so that for the scaling behavior of execution 
time vs. input size, the number of contract–risk factor scenario pairs is the only quan-
tity of interest.

We can see that from 16 vCPU cores (which corresponds to 1 Spark worker node) to 
32 vCPU cores (2 nodes), the slope of the curve is larger than 0, which indicates sub-
optimal performance. The reason is that by increasing the number of nodes from 1 to 
2, Spark needs to start the cluster management, which includes shuffling of data over 
the network and causes an extra overhead. However, starting from 32 cores we observe 
almost linear scalability with a slope close to 0. Since there is no additional dispropor-
tional management overhead in our application, this is the expected behavior.

Figure 6 shows the performance for calculating nominal value, liquidity and fair value 
based on UDFs and SQL running on up to 512 vCPU cores. Notice that the calculations 
include the simulation step. Let us first analyze the results for UDFs. All three curves 
look similar to the curve of counting cash flow events. These results show that linear 

Fig. 6  UDF and SQL analytics for on the On-the-fly-architecture to calculate nominal value, liquidity and fair 
value
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financial analytics calculations do not introduce any unexpected scalability issues when 
compared with counting cash flow events. Most time is spent on the simulation part.5

We also notice that calculating liquidity takes significantly longer than calculating 
nominal value, which is due to the additional complexity of temporal query processing. 
We will analyze this aspect in more detail in Fig. 7 below.

Let us now analyze the performance of executing linear financial analytics with Spark 
SQL (see again Fig. 6). The main goal of these experiments is to study if these types of 
calculations can benefit from Spark’s SQL Query Optimizer. The results shows that this 
is clearly not the case. While the execution time for event counting and nominal value 
are very similar to the results obtained before, the execution time for liquidity calcula-
tion has doubled. In addition, it could be carried out only with up to 64 cores and then 
crashes because it exceeds the memory limits of the system even though the size of the 
intermediate cash flow event table (CFET) requires only approximately half of the sys-
tem’s total memory.

This disappointing behavior is caused by the structure of Eq.  4. The computation 
involves a summation of cash flow events within different time periods of different 
lengths.

Since Spark does not support temporal SQL functionality, every time period needs to 
be calculated on its own and later added to the result with a union. That means that (i) 
the CFET must be accessed multiple times, (ii) large intermediate result sets are created 

Fig. 7  Increasing complexity of the liquidity analysis running on the On-the-fly-architecture. Liquidity is 
calculated ranging between 1 and 16 time periods with UDFs and SQL

5  Surprisingly, calculating nominal value is even faster than counting the events. This counterintuitive behavior is due to 
the architecture of the application. For counting all events, these events (Java objects) must be loaded into main memory 
as a Spark Dataset. On the other hand, for calculating nominal value, the events of any contract are analyzed directly 
after their generation and only a single value per contract–risk factor input is loaded into the Spark Dataset. In summary, 
summing up the individual nominal values generates less overhead than loading all events into a Spark Dataset—which 
requires a costly conversion from Java objects to Spark Datasets.



Page 19 of 24Stockinger et al. J Big Data            (2019) 6:46 

and (iii) the latter must be updated for every time window. These operations consume a 
large amount of the main memory for shuffling, repartitioning and memorizing interme-
diate results, which eventually causes the application to crash.

Let us now focus on the liquidity calculations which use up the longest computation 
time. In order to better understand the performance of the liquidity analytics, we ran 
experiments with different liquidity time periods ranging from 1 to 16 (see Fig. 7). We 
can see that as the number of time periods increases, the execution times for both UDF- 
and SQL-based analytics increase. However, we notice a higher increase of the SQL exe-
cution times. The reason for this increase is that each additional liquidity period requires 
additional calculations over the contract data and hence increases the complexity of the 
calculation.

Materialized results

The goal of these experiments is to measure the performance difference of running linear 
financial analytics based on UDFs vs. SQL when materializing large intermediate results.

The major challenge in our case is that the intermediate results of generated cash flow 
events are orders of magnitudes larger than the input data (i.e. the financial contracts 
and the risk factor scenarios). Hence, result materialization is a trade-off between stor-
age consumption and CPU consumption.

Our first set of experiments shows the performance of generating and materializing 
cash flow events on Amazon’s S3 storage for up to 96 million contracts using up to 
512 CPU cores (see Fig. 8). The size of the generated cash flow events ranges between 
13.6 and 435.2 GB. We can observe a slope of 0.075. For optimal scalability, we would 
expect a slope close to 0. This positive slope is caused by the overhead incurred by 
creating Parquet files and updating the respective metadata information. Notice that 

Fig. 8  Generating and materializing cash flow events on AWS to an S3 bucket
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the latter is performed by a single driver process, which requires expensive synchro-
nization operations with all worker processes and thus cannot be expected to scale 
perfectly.

As to linear financial analytics, on the other hand, the results in Fig. 9 show clearly 
a performance advantage for Spark SQL with respect to UDF. The reason is that UDFs 
are a black box for the Spark Query Optimizer so that Spark needs to load all data 
from the Amazon S3-bucket when calculating analytics with UDFs.

Moreover, preparing the data for subsequent financial analytics requires memory-
intensive shuffling operations. These expensive operations in combination with the 
limited repartition options of Spark cause the crash of our application due to exceed-
ing the system’s memory limits. In the SQL approach, on the other hand, Spark fully 
takes advantage of the Query Optimizer so that it loads only the requested rows and 
benefits from optimization techniques such as column pruning and filter pushdown 
[21].

Finally, we analyzed the performance for liquidity analytics with different time peri-
ods. Figure 10 gives a quite detailed picture of the performance advantage of SQL: With 
an increasing number of time periods the performance advantage of SQL over UDFs 
decreases such that for more than 32 liquidity periods, UDF analytics performs slightly 
better than SQL analytics. Here again, the reason seems to be that Spark SQL’s Query 
Optimizer does not support temporal SQL processing efficiently so that it ends up with 
ever more complex queries for increasing number of time periods.

In summary, when using the materialized architecture the results show a clear advan-
tage of performing linear financial analytics using Spark SQL over UDFs. However, when 
time-series specific operations of increasing length must be carried out, this perfor-
mance advantage continuously decreases and eventually vanishes.

Fig. 9  UDF and SQL analytics on the materialized architecture to calculate nominal value, liquidity and fair 
value
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Conclusion
In this paper we presented the implementation of a real-world use case for performing 
large-scale financial analytics. We investigated the performance of two different parallel 
implementations based on existing computation kernels. Approach 1 uses Spark UDFs 
for parallel query processing. This approach has the benefit that the existing computa-
tion kernel only requires minimal re-writing to take advantage of Spark’s parallel com-
puting environment. Approach 2 uses Spark SQL that requires complete re-writing of 
the respective linear financial analytics in order to take advantage of Spark’s SQL Query 
Optimizer. Moreover, we measured the performance of these two approaches on an On-
the-fly-architecture and compared the results against a Materialized-architecture. In 
our experiments on up to 512 vCPUs cores the financial analytics based on UDFs shows 
good scalability for a real-world use case while SQL-based analytics deteriorate for cer-
tain, more complex query workloads. However, performing analytics on Spark SQL 
shows advantages for iterative workloads on materialized results.

Based on our experience with using Spark in the context of financial analytics in a 
real-world use case, we learned the following lessons that also provide answers to the 
research objectives that we introduced in "Research objectives" section.

Lesson 1—Use UDFs for on-the fly calculations: UDFs can leverage an existing finan-
cial analysis kernel and perform significantly better than re-writing the respective 
function in SQL —even though SQL is well adapted to linear operations. The reason 
is that even though Spark’s Query Optimizer produces reasonable query plans, the 
financial calculations contain temporal query aspects that are not especially sup-
ported because temporal SQL is missing in Spark. Given that many financial calcula-
tions require some form of temporal query processing, implementing temporal SQL 
in Spark would be crucial for this type of applications.

Fig. 10  Increasing complexity of the liquidity analysis running on the materialized architecture. Liquidity is 
calculated ranging between 1 and 16 time periods with UDFs and SQL
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Lesson 2—Use SQL for iterative calculations on materialized results:  Spark SQL can 
take advantage of the query optimizer for certain financial calculations based on mate-
rialized results. The advantage over UDFs can be seen when processing is iterative and 
queries do not contain complex, temporal query aspects. But also in this case, the lack of 
a temporal query optimizer becomes painfully apparent.

Lesson 3—Performance tuning of Spark on real-world problems remains challenging:  
The query plans for complex analytics cause memory issues that require manual inter-
vention or do not successfully terminate at all —which is in stark contrast to expectations 
of dynamic memory management. Hence, detailed performance analysis of the work-
loads and manual optimization techniques such as task repartitioning based on work 
load characteristics is often the best solution to overcome Spark’s memory management 
problems.

In the following we give an outlook of a research agenda to make the computations 
presented in this paper even more efficient.

•	 Since nearly all financial analytics makes use of time-related operations in one form 
or the other, the implementation of temporal SQL in Spark seems to us of utmost 
priority. Ideally it should be based on the definition of general time series operators. 
A more adequate name may be Time Series SQL, which should support all operators 
used in common time series models such as Autoregressive Model, Moving-Average 
Model, Generalized Autoregressive Conditional Heteroscedasticity and combina-
tions thereof.

•	 Another useful innovation would be the extension of SQL such that the contract 
algorithms, i.e., the (non-linear) simulation step described in Eq. (1), could be 
expressed directly in SQL. Since financial contracts are pervasive in the financial 
industry and all analytics is eventually based on cash flows as input, such an exten-
sion would contribute to the diffusion of the contract-based simulation and analysis 
techniques and thus be a contribution to increased efficiency and transparency of 
financial analysis. We are inclined to call this extension Financial Contract SQL.

•	 Another element missing in SQL is the ability to automatically evaluate net present 
value by summing up the discounted cash flows. This would require a combination 
of time series operations already discussed (which should include, among others, 
weighed moving average operators) and the evaluation of the discount factors from 
yield curves provided as input. The latter is another extension that in our view is fun-
damental for SQL-based automated financial analytics.

•	 One of the advantages of the previously mentioned SQL extensions would be the 
possibility of automated query optimization, which is possible because of the declar-
ative nature of SQL. This is similar as in the case of multi-query optimization. In 
our example, each financial calculation can be considered as a query. Since different 
financial calculations are based on the same data sets, there is a considerable oppor-
tunity for optimization that have not taking into account yet, since we treated all cal-
culations as independent operations.

•	 In this work we have focused on the Spark platform for Big Data computations and 
have found almost optimal scalability characteristics for existing financial kernels. 
It would be interesting to compare these results with the performance achieved on 
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other platforms such as Flink,6 Drill,7 Impala,8 or Presto.9 In particular, the finan-
cial analytics and research community could profit from insights into the stability of 
memory management for these other platforms and whether they run into similar 
issues when executing complex queries as summarized under Lesson 3 above.

We believe that the extensions sketched above are innovations that will be beneficial for 
the automation of the analytics in the whole financial industry and thus will have wide-
spread applications and impact.
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