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Introduction
Crowd disasters have taken many human lives. The Love Parade disaster in Duisburg, 
2010, the Ellis Park Stadium disaster in Johannesburg, 2001, the PhilSports Stadium 
stampede in Manila, 2006, are just a few examples. One of the major factors contribut-
ing to crowd disasters are critically dense spots [1–3], which are difficult to detect due to 
lack of macroscopic overview of the crowd [1]. In this paper we address the problem of 
estimating the crowd density distribution in situations such as indoor dance events, to 
enable prevention of crowd disasters.

A lot of research on estimating crowd density concerns processing video records 
from security cameras [4, 5]. However, this approach does not suffice to detect critically 
raised crowd density. Firstly, as mentioned before, it is difficult to obtain macroscopic 
overview of the crowd. Secondly, the lighting conditions at a concert might not be suf-
ficient for video-based crowd analysis. Finally, the error of counting people increases 
with the increase of the actual crowd density [6] due to the so-called occlusion effects. 
Another way to monitor the crowd density is by using RFID technology [3]. Each par-
ticipant is asked to wear a tag, and RFID readers are distributed across the venue. 
This approach, however, requires participation from the crowd and deployment costs. 
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Similar requirements exist for other wireless tracking technologies, like Bluetooth or 
GPS-based. In addition, GPS is not so suitable for indoor localization. (For more infor-
mation on crowd monitoring services, we refer the reader to [3].).

In our approach, which can complement the video-based analysis, we exploit the ubiq-
uity of smart phones, as it has been done in [7–13]. More concretely, our approach is 
non-participatory, that is, it does not require participation from the crowd, and uses the 
already existing Wi-Fi network at the venue.

Despite the recent success in using wireless technologies for indoor positioning and 
crowd counting, several problems remain open. Firstly, there is the problem of ambi-
guity when attempting wireless indoor localization [14–17], which is a major source of 
localization errors. Secondly, when a phone is not ‘connected’, its Media Access Con-
trol (MAC) address may change (be “randomized”) over time [18], complying to privacy 
policies, thus making it impossible to track the user over time. Finally, since we do not 
rely on crowd participation, the signals from the phones are quite irregular in time [19], 
meaning that real-time tracking of a device is also challenging.

In this paper we address the aforementioned three problems as follows. To address the 
ambiguity problem, we apply concepts from statistical mechanics: rather than estimat-
ing the most likely position of a visitor in real time, we create an evolving probability 
distribution over all possible positions of the visitor. We rely on the fact that we have 
a lot of data (or visitors), to estimate the crowd density by aggregating the individual 
distributions. We use the abundance of data again and the fact that the structure of the 
MAC address reveals whether it has been randomized, to account for the fact that a por-
tion of the devices are not trackable. Finally, we deploy a time-out based memory model 
for dealing with the volatile signal rates.

Applying primarily the law of large numbers leads to our main result; namely, that our 
estimation becomes more (rather than less) precise when the crowd size increases, even 
without requiring crowd participation. This property is crucial for being able to detect 
critically raised crowd density.

The rest of the paper is organized as follows. “Background” section explains briefly 
our data collection process and the Wi-Fi localization methods that we use. “Prob-
lem statement” section introduces in more detail the problems related to crowd den-
sity estimation. “Method” section proposes a new method for crowd density estimation 
that addresses the mentioned problems. In “Results and discussion” section the perfor-
mances of our method are analyzed and discussed, including comparing the method to 
related work. “Concluding remarks” section ends with conclusions and directions for 
future work.

Background
Data collection and privacy protection

The in-house data and videos used in this paper were collected during the sensation 
2015 dance event in the Amsterdam ArenA (today Johan Cruijff ArenA) football sta-
dium. More than 30,000 visitors were present, and 28847 MAC addresses were detected 
in the range of the Wi-Fi access points (AP’s). We used 30 AP’s distributed in the east 
corner and in the west side of the stadium. (The white dress code of this particular dance 
event in 2015 made it suitable to evaluate with video data.) We processed the Wi-Fi 



Page 3 of 23Georgievska et al. J Big Data            (2019) 6:31 

signals and estimated the coordinates of the Wi-Fi enabled devices using a method simi-
lar to trilateration, that we explain in the next subsection.

Usage of smart phones to identify the user’s locations inevitably raises the question of 
privacy concerns. The system that we use has been designed from the ground up with 
privacy in mind—no privacy-sensitive data is ever stored. Only a minimal set of data 
is collected (timestamp, access point, signal strength and identifier). The unique MAC 
identifiers of the phones are hashed (anonymized) on reception. The data is not stored 
on site, but passed on streaming to a trusted third party. The third party maps the hashed 
identifiers once again. The final identifier is stored in an environment accessible only to 
the data scientists participating in this project. As a result, none of the involved parties 
has sufficient information to recover the original MAC address.

Following the European Union General Data Protection Regulation (GDPR) and the 
Dutch law for handling personal data, laid down in the Personal Data Protection Act 
(Wbp) (Section 12.2) [20], we do not publish any part of the data, and only reveal sta-
tistical and aggregated results about the crowd. The data analytics Jupyter Notebook 
scripts together with the output (aggregated results) that led to the insights and research 
results presented in this paper can be found in [21].

Localization of smart phones using Wi‑Fi sensors

Smart phones transmit Wi-Fi signals which are captured at the Wi-Fi access points. The 
captured signals contain information about the measured received signal strength (RSS). 
Widely used methods for positioning using RSS values are multilateration and finger-
printing [22]. In what follows we give a brief overview of the two methods.

Localization by multilateration

Using the Friis equation for the relationship between an RSS and the distance between 
a transmitter and a receiver, the distance between a smart phone and an AP can be esti-
mated. When we have the exact distances from a smart phone to at least three AP’s, the 
position of the smart phone can be uniquely determined at the intersection of three cir-
cles (Fig. 1a) [23].

However, in practice the measured RSS values contain unpredictable variation due to 
noise and interference such as absorption and reflection by obstacles (e.g. human bod-
ies). As a result, the circles do not intersect at a unique point (see e.g. Fig. 1b). In this 
case, an optimization procedure is undertaken for positioning the smart phone using 

Fig. 1  Estimating position with trilateration: a precise, b rough
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more than three APs and, in our case, all received RSS values within 500 ms. We use the 
least-squares optimization method, which in our case has the form of a Chi-square data 
fit. An exact description of the method is beyond the scope of this paper, and we refer 
the reader to [24, 25] for details. We note, however, that the statistical estimation of the 
position provides us also with the standard deviation, which we will use in “Method” 
section.

Localization by fingerprinting

Traditional fingerprinting is also RSS-based. There are ‘offline’ and ‘online’ phase of the 
localization. In the ‘offline’ phase, for a moving client device, the signal strengths from 
several access points in range are continuously recorded and stored in a database, along 
with the known coordinates of the device [26, 27]. During the ‘online’ tracking phase, the 
current RSS vector of a device at an unknown location is compared to the vectors stored 
in the fingerprint, and the closest match is returned as an estimation of the location. 
The closest match is usually determined through probabilistic methods (e.g. expectation 
maximization, KL-divergence), or through machine learning techniques (e.g. k-nearest 
neighbors, Support Vector Machines, neural networks).

Problem statement
Under ideal circumstances, the positioning itself would suffice to estimate the spatial 
crowd density distribution: every second we would only need to count the number of 
detected devices per square meter. However, Wi-Fi based localization comes with the 
following challenges, which are not related to the mathematical methodology behind the 
‘positioning’ step, and that prevent us to apply direct counting.

1.	 Issue 1: Ambiguity of the localization procedures It has been argued that one of the 
biggest source of errors, when using RSS values for localization, is the absence of 
a single global optimum [15]. In the fingerprinting approaches the phenomenon is 
called “fingerprinting twins” [14, 15], while in the multilateration approaches it is 
known as “flip ambiguity” [16, 17, 28]. We also sampled randomly 20 MAC addresses 
from the sensation data, under various crowd conditions, and plotted the estimations 
of their coordinates through time. We plotted only the estimations with a relatively 
small (conditional) uncertainty. We observed persistent bi-modal distributions of the 
estimations through time (as if the device is being tele-ported constantly), an exam-
ple of which can be seen in Fig. 2a. This figure shows the estimated x-coordinates 
(in meters) through time of a static MAC device that was persistent for 24 h (most 
probably an AP). The “twins” phenomenon originates from the fact that the envi-
ronmental settings and the temporal variations in the RSS create opportunities for 
multiple local optima [17], in case of trilateration, or geographically distant positions 
to share the same RSS vectors [15], in case of fingerprinting. (Note: we call them 
‘twins’ because the empirical evidence suggests so far that there are no ‘triplets’; how-
ever, theoretically the latter are not excluded.) To understand the problem, consider 
Fig. 2b. In the center of every ring there is an access point with an estimated signal 
strength to a particular MAC device, with a certain error range. The error range is 
represented by the width of the ring. Then, there are two possible regions where all 
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three rings overlap (A and B), and that are equally good candidates for positioning 
the MAC device. Note that this problem can arise regardless of the width of the rings 
and the number of APs, and that it cannot be alleviated without using additional 
information or assumption about the visitors or the environment. For example, cur-
rent solutions require crowd participation [15], or assume crowd mobility [14].

2.	 Issue 2: Volatility of packet rates When a MAC device is connected to a Wi-Fi net-
work, it sends packets with a relatively stable and frequent rate. However, when the 
device is not connected, it is in a “probing” mode, i.e. searching for a network, and in 
this case the packet rate is quite volatile, ranging from a few seconds to a few minutes 
[19]. This introduces challenges when trying to estimate the total number of devices 
present at a certain moment.

3.	 Issue 3: MAC address randomization Due to the ever-increasing privacy concerns 
and possibly other business reasons, starting from 2014, Apple has introduced ‘rand-
omization’ of the MAC addresses of the phones, when the latter are in probing mode 
(not connected to the internet) [19]. This means that the devices not connected to 
the internet are continuously changing their MAC addresses and cannot be followed 
over time. (It is worth noting, however, that from the format of a MAC address itself 
it can be determined whether the address is authentic or randomized).

Method
In this section, as a main contribution of the paper, we propose solutions to the issues 
stated in the previous section.

Estimation under localization ambiguity

Creating statistical ensembles In order to deal with the localization ambiguity, let us 
start with the following observation: we are not interested in the individual locations of 
the MAC devices, but rather in the density of the crowd. In addition, for prevention of 
crowd disasters, it is very important to have a precise estimation when the number of 
people in a stadium is large and dense spots are likely [1, 2]; at the same time, obtaining 
precision at a low crowd density is of less priority.

Fig. 2  a Estimation of the x-coordinate in meters of a static MAC device through time; b RSS-based 
positioning can lead to multiple local optima
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To this end, we propose a probabilistic model for crowd density estimation. To explain 
our idea, we use the scenario depicted in Fig. 2b. We can say that the particular MAC 
device is located in region A with a probability of 0.5 and in region B with a probability of 
0.5 (we assign the probabilities in a trivial way for the purpose of illustration). Although 
this approach does not provide us with very useful information about the location of the 
MAC device, if we apply the same reasoning for all MAC devices, and we add together 
the spatial probability distributions of all MAC devices, we end up with a spatial dis-
tribution of the crowd density. If we assume that the locations of all MAC devices are 
mutually independent and identically distributed, we can apply directly the standard law 
of large numbers and conclude that, for a large crowd, the error of estimation of the den-
sity per square meter will vanish. (The diffusion animation in [29] provides a nice visual 
demonstration of the concept.) However, we cannot make those assumptions, because 
e.g. people tend to go to concerts in groups, that is, their locations are correlated [30, 
31]. In this case, the variance of the estimation in the limiting case is equal to the average 
covariance between the locations. In “Results and discussion” section we will show that 
the average covariance still tends to zero as the crowd size increases, because for a regu-
lar concert crowd, the group size is relatively small compared to the entire crowd.

Computing individual probability distributions Next, for an arbitrary MAC device m 
and region R, we proceed with defining Prob(m ∈ R) , that is, the probability that m is 
located in R, in order to be able to evaluate the estimated crowd density per region.

The localization (“fitting”) provides us with a series of estimated positions for a mobile 
device. We estimate the spatial probability distribution for the device along a moving 
time window. Our first step at time t is to select the N estimated positions whose time 
stamps fall within a specified time window [t −�t, t] from the data. A natural way to 
construct a two-dimensional probability distribution is to create a histogram, by binning 
the N positions and normalizing by N. In case the positions have been estimated with 
multi-lateration, the optimization procedure provides also for a Gaussian error ( σxi , σyi ) 
of any estimate (xi, yi) (see “Localization of smart phones using Wi-Fi sensors” section). 
Therefore, we first “smooth” each of the (xi, yi) positions into a bivariate distribution, 
using a Gaussian kernel with standard deviation ( σxi , σyi ). Then, for a MAC device m we 
generate a two-dimensional probability density function (pdf) by adding up the separate 
‘bumps’ and normalizing by N (see Fig. 3 for an example of smoothing a histogram.)

Formally, the implementation of our method is similar to that of kernel density esti-
mation [32, 33]. In our case the amount of smoothing is determined by the uncertainty 
values σx and σy . The pdf for a MAC device m at a location (x, y) is defined by

where the kernel function K is given by

and (xi, yi) is the result of positioning at step i ∈ {1,N }.

(1)f̂m(x, y) =
1

N

N
∑

i=1

K ((x − xi), σxi)K
(

(y− yi), σyi
)

(2)K (u, σ) = 1

σ
√
2π

exp

(

− u2

2σ 2

)
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In order to evaluate Prob(m ∈ R) , we need to integrate f̂m(x, y) for (x, y) ∈ R . The final 
crowd density estimation at point (x, y) is given by

Finally, in order to estimate the number of people in region R, we need to integrate 
f̂T (x, y) over the region R.

Remark 1  In our implementation we scale up the individual probability distribution, 
such that it integrates to one inside the region of the stadium (the concert venue). We 
assume that if a device is detected by the AP’s, it is inside the stadium, and thus the 
probability that it is in the stadium should be one. (It is very unlikely that the AP’s have 
detected devices that are outside, due to the thick walls of the stadium.) In the future we 
also plan to include the map of the stadium in the calculations, to incorporate the fact 
that the probability that a visitor is in an inaccessible region is zero.

Note that so far we assumed that in every time window there is at least one estimate 
for every MAC device present in the stadium. In what follows we explain how we cap-
ture the cases when this assumption does not hold.

“Conservation of mass” under packet rates volatility

To address the second issue raised in “Problem statement” section, Volatility of packet 
rates, we ensure that we do not forget about the MAC devices that were not observed 
in the last time window. In fact, for every MAC device that was ever observed, until it is 
observed again, we maintain the old probability distribution. However, we also apply a 
time-out, that is, if a MAC device has not been observed in a long enough time interval 
(called ‘memory’ parameter), it is simply removed from the pool of MAC devices.

Estimation under MAC address randomization

The previous discussion assumes that a MAC device does not change its identifier over 
time. However, as we noted in the last issue in “Problem statement” section, a device in 
a probing mode might randomize its address during a time window, leading to it being 
counted twice. To address this problem, we rely once again on the fact that we have a 

(3)f̂T (x, y) =
∑

m

f̂m(x, y).

Fig. 3  Smoothing a histogram with Gaussian kernels. a Original histogram. b Smoothed histogram
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lot of data, and on the fact that we can derive from the structure of the MAC address 
whether it has been randomized or not. Figure 4a shows the time series of numbers of 
non-randomized and randomized addresses observed per minute from midnight until 
around 6:00 a.m. during the sensation concert. We observe that their ratio is stable 
through time (Fig.  4b); the Pearson correlation coefficient between the time series of 
randomized and non-randomized addresses is 0.88.

Therefore, when estimating crowd density, we ignore the MAC devices that have rand-
omized addresses and at the end we multiply the crowd density by a factor to account for 
the discarded MAC devices. This factor is derived from the slope of the linear regression 
fit of the two time series (Fig. 4b), which in our case turns out to be 0.2, with a standard 
error of 0.006.

Note also that this proportion should be re-computed periodically, to account for the 
changing conditions at the smart phones market. In fact, when the crowd is large like in 
our sensation scenario, the randomization factor can be updated in real time, during the 
concert hours, by using all data that arrived in e.g. the last hour.

We envision, however, that in the future more people will be connected to the Wi-Fi 
(and thus the proportion of randomized addresses will become smaller) due to the fact 
that an increasing number of stadiums across the world offer “smart” services, but also 
due to the increasing usage of social media to post photos and videos of an event in 
real-time.

Some studies [19, 34] suggest that it is still possible to follow devices despite MAC 
randomization, and it would be interesting in the future to see if we can improve our 
methodology taking those studies into account.

Results and discussion
In this section we analyze our method for crowd density estimation in various manners: 
analytically, with simulations, and using two real-life datasets. (Note: “Theoretical analy-
sis under correlated groups” section offers a formal validation that readers uninterested 
in technical details can skip without loss.)

Fig. 4  a Number of non-randomized and randomized addresses observed per minute; b linear regression 
plot of randomized and non-randomized addresses observed per minute
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Theoretical analysis under correlated groups

We show formally that the relative error of the crowd density estimation converges to 
zero when the crowd size increases, despite having correlated groups of visitors (e.g. 
friends).

Let {mac1,mac2, . . .macn} be all n MAC devices detected in the stadium at time t. 
Due to the results in “Estimation under MAC address randomization” section, where 
we show how we can safely discard the randomized addresses from the analysis, we can 
assume here that all n MAC addresses are fixed. In what follows we omit t from the 
notation for clarity. Let R be an arbitrary region of the stadium. Denote by maci ∈ R the 
statement “the device maci is in region R”. Let Xi be a random variable defined by

Denote by X the total number of devices in R detected at time t. Clearly, X =
∑n

i=1 Xi . 
Then E(X), the expected value of X is

where by Prob(maci ∈ R) we denote the probability that maci is in the region R at time t. 
We will show that the variance of X/n, that is, the variance of the proportion of devices 
detected in region R out of all detected devices, diminishes when n becomes large (note 
that the variance of X in the limiting case is out of our interest because in this case E(X) 
is also potentially infinite). This suffices to show that our method for estimation of crowd 
density is theoretically sound, given the probabilities Prob(maci ∈ R) . We have

Let γ be an upper limit on the number of people going to a concert together (i.e. whose 
locations are correlated). Note that, because the random variables {Xi}ni=1 take values in 
{0, 1} , the covariances Cov(Xi,Xj) take values in [−1, 1] . Thus, the covariances are upper-
bounded (by 1). Denote by κ ≤ 1 the maximal covariance between any Xi and Xj and let 
us write i ∼ j if and only if the owners of the MAC devices maci and macj are in the same 
group of friends. Then,

Here the inequality holds because the maximal number of groups is n and the maximal 
number of pairs (i, j) in a group is γ (γ − 1)/2 . Let us denote by ν = 1

n

∑n
i=1 Var(Xi) the 

(4)Xi =
{

1 ifmaci ∈ R
0 ifmaci /∈ R

(5)

E(X) = E

(

n
∑

i=1

Xi

)

=
n

∑

i=1

E(Xi)

=
n

∑

i=1

(1 · Prob(maci ∈ R)+ 0 · Prob(maci /∈ R)) =
n

∑

i=1

Prob(maci ∈ R),

(6)Var

�

X

n

�

= 1

n2
· Var

�

n
�

i=1

Xi

�

= 1

n2
·





n
�

i=1

Var(Xi)+
�

i �=j

Cov
�

Xi,Xj

�





(7)

∑

i  =j

Cov(Xi,Xj) = 2
∑

1≤i<j≤n

Cov(Xi,Xj) = 2
∑

i,j:i∼j

Cov(Xi,Xj)

≤ 2n · γ (γ − 1)

2
· κ = nκγ (γ − 1).
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average variance of X1,X2, ...,Xn (note that ν ≤ 1 from the definition of {Xi}ni=1 ). From (6) 
and (7) we have

which tends to 0 when n → ∞ . Note that we have greatly overestimated the covariance 
with the inequality in (7), which means that in practice the variance converges to 0 much 
faster than presented.

With the above, we have proven a version of the law of the large numbers that is gener-
ally applicable. We formalize our results in the following proposition:

Proposition  Let {X1,X2, ...Xn} be random variables that always take values in a 
bounded real interval. Suppose that the set {X1,X2, ...Xn} can be partitioned into subsets 
of maximal size γ (a fixed constant independent of n), such that if Xi and Xj belong to dif-
ferent subsets, then Cov(Xi,Xj) = 0 . Let Sn = 1

n

∑n
i=1 Xi . Then

Remark 2  In our proof we have assumed that correlation happens only within groups 
of friends. Note that this is a sufficient, however not a necessary condition for the con-
vergence of the variance. A necessary condition is that the average correlation in the 
crowd tends to zero as the crowd size increases. This allows for (positive) correlations 
outside groups of friends. Moreover, in a crowded situation negative correlation is more 
likely to happen, where people move away from the crowd, looking for empty spots [35], 
which reduces the variance further. In respect of this discussion, however, it is worth 
noting that there is one singularity scenario, a “crowd crush”, when the crowd is so dense 
(> 6 persons per m2 ) [2] that people cannot move freely anymore and the entire crowd 
becomes a “group” (as in the Love Parade disaster), implying that all visitors locations are 
(positively) correlated. In this work we aim to detect high density with our method way 
before this saturation happens, to be able to react preventively; otherwise, it is too late.

Remark 3  In our proof we assumed that all MAC addresses are fixed, i.e. that there 
are no randomized addresses. However, as discussed in “Estimation under MAC address 
randomization” section, in reality we omit the randomized addresses from the analysis 
and at the end we multiply the estimation by a so-called randomization factor. Note that, 
again due to the law of the large numbers, the larger the crowd, the more precise is the 
estimation of this factor, when it is re-estimated in real time. This means that the above 
convergence would not be affected by the randomization factor. However, in the follow-
ing subsection we also confirm this experimentally.

Analysis with simulations

“Theoretical analysis under correlated groups” section gives a theoretical validation of 
the method. We proceed with analyzing the method experimentally, i.e. quantitatively. 

(8)Var

(

X

n

)

≤ 1

n2
(nν + nκγ (γ − 1)) = 1

n
(ν + κγ (γ − 1))≤ 1

n
(1+ γ (γ − 1)),

lim
n→∞

Var(Sn) = 0.
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We are especially interested in how our method performs at dangerously high densi-
ties, i.e. more than 4 persons per square meter. Such densities are however difficult to 
obtain from real life scenarios; moreover, if we use video data as ground truth, the lat-
ter is inaccurate at high densities [6]. On the other hand, controlled experiments with 
thousands of participants and high induced crowd density are beyond the scope of a 
research paper because of security risks. To validate the method at high densities, we 
use data-driven stochastic simulations [36].

Simulations setup

For linearly increasing crowd size in a football stadium (playfield) we simulate the 
localization data and apply the proposed method on it. We use the sensation dataset 
to derive the probability distributions of the uncertainties of the localization proce-
dure that were discussed in “Problem statement” section. Concretely, our analysis of 
the dataset shows that (i) Median packet inter-arrival time for non-randomized MAC 
devices is 33  s at the most overloaded AP, and the time is exponentially distributed 
(Fig. 5); (ii) Mean distance (obtained by random sub-sampling) between the modes of 
the two Gaussians from “Problem statement” section for static devices (APs) is circa 
20 m (see also Fig. 2a), and the standard deviations of the Gaussians are on average 
around 3 m, regardless of the crowd size; (iii) the average Gaussian error of the posi-
tioning process is also 3 m and the distribution of all errors is exponential.

The crowd simulation is performed as follows. Every person moves in a zig–zag 
motion, in a random direction, because it has been discussed [35] that under high 
density visitors try to escape in a sort of zigzag motion, without any preference on 
direction, but only taking any free space nearby. The velocity is limited by the cur-
rent crowd density via the Weidmann’s equation [7, 37]. We also introduce correlated 
positions: for crowd size of n, the number of groups is n/4, and every person is ran-
domly assigned to a group (thus the average group size is 4).

After recording the original simulated positions for every second, we create the 
synthetic localization data. The “twins” or “teleportation through time” effect is intro-
duced by displacing the positions randomly, following the distributions in (ii) above. 
The positioning errors are sampled following (iii). The packets (and thus location fits) 

Fig. 5  Distribution of packet inter-arrival times for a non-randomized address
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are sub-sampled randomly with inter-arrival time drawn from an exponential distri-
bution with a median 33 s, following (i) above. Each MAC address is randomized with 
a probability of 0.15, following the results in “Estimation under MAC address rand-
omization” section. The randomized addresses change their MAC values in every sent 
packet.

Remark 4  We opted to implement our own crowd simulation instead of using avail-
able crowd simulators or models, because the latter are built for different purposes. In 
other words, in crowd simulators it is challenging to implement high crowd density [35] 
and correlated groups of friends [38]; on the other hand, we are clearly not interested in 
the exact pattern of movement of the visitors, which is the focus of crowd simulators—
any positive effect from simulating visitors movement on a fine scale is flattened by the 
uncertainties of circa 20 m and the signal sparseness introduced by the Wi-Fi data.

Deriving the optimal parameters values

Our method requires two parameters: the length of the time window, in which the loca-
tion estimates for a device are counted towards its probability distribution, and the time-
out, in terms of number of windows, for keeping the old distributions (‘memory’).

We argue that the value of the time window �t should be a compromise between the 
following requirements: (1) having a window long enough such that we can expect to 
localize each present non-randomized MAC device at least once in it (which should suf-
fice since we also have the memory parameter to make sure that we don’t miss devices) 
and (2) having a window that is not too long, because of the crowd mobility. In order 
to estimate �t , we combine (1) the median packet inter-arrival time per non-rand-
omized MAC address at the most overloaded access point, which from our data is 33 s, 
and (2) the results from [19], where the author concludes that, while in probing mode, 
on average smart phones send probing requests 55 times per hour. We choose as intu-
itively good value for �t to be roughly 40  s. For high crowd density this value is still 
small enough to not cause outdated positioning. For example, if the crowd density is 4 p/
m2 , the maximum distance that a person can travel in 40 s according to the Weidmann’s 
equation is 8 m [7], which is acceptable given the localization uncertainties. If the crowd 
density is 5 p/m2 , the maximum distance that a person can travel in 40 s is 2 m.

Having chosen a window size of 40 s, we need to decide how often to update the win-
dows. In practice this would depend on the available computing infrastructure and how 
often one would want to update the probability distributions. For our experiments we 
chose to have slightly overlapping windows. The overlap is 10 s and thus the ‘timestep’ 
or ‘stride’ is in this case 40− 10 = 30 s. Thus, probability distributions are updated every 
30 s.

Considering the memory parameter, our experiments show that it depends on the 
average crowd density, and ranges from 0 windows backwards for expected average den-
sity < 1 p/m2 , to 5 windows for densities > 4 p/m2 . Intuitively this is justified by the fact 
that a crowd of low density can move faster and old distributions become soon outdated, 
while a dense crowd moves slowly and having higher memory enables not missing any 
visitors, for the reasons of being able to detect highly raised crowd density. On the other 
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hand, it can be checked that the probability that a device will send two signals within 5 
windows is greater than 99% and it is thus not necessary to keep old estimates for longer. 
Figure 6 gives examples of the performances of our method w.r.t. the ground truth and 
fitted data for various values of the memory parameter (we will analyze the case memory 
= 5 in “Results from simulations analysis” section). The measurements are taken after 
9 windows, to allow enough time for the system to ‘warm up’ [36]. The crowd density 
estimation in the case of fitted locations, where the fits are sparse, has been performed 
by making a snapshot of all devices that have been detected in the last 40 s. Note that 
the latter estimation already incorporates partly our method, regarding the window size; 
however we present it in the figure as it serves as a reference point.

Results from simulations analysis

To see the advantage of applying our method instead of counting directly the fitted posi-
tions, we first perform the following experiment. We simulate a ‘static’ crowd with regu-
lar packet rates and thus regular fits (every second), and no MAC randomization, where 
by ‘static’ we mean that nobody moves. In other words, we simulate only the ‘teleporta-
tion’ effect introduced by the bi-modal distributions of localization through time. Our 
goal is to check the effect of creating spatial probability distributions in the stadium. 
We test the performances of our method w.r.t. simple counting of fitted positions in a 

Fig. 6  Performances for full simulation, varying the ‘memory’ parameter

Fig. 7  Performances for the ‘static’ crowd scenario
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4 m × 4 m corner of the stadium. Figure 7 shows the performance of our method versus 
simple counting for 10 independent simulations with increasing total crowd size, that 
ranges between 5000 and 50,000. Our method performs well w.r.t. simple counting of 
last fitted locations. This is due to the fact that our method ensures that all detected 
devices are in the stadium by re-normalizing the corresponding probability distribu-
tions. Next, as discussed in “Deriving the optimal parameters values” section, we apply 
our method with window size of 40 s, time step of 30 s and memory of 5 windows to 
independent full simulations as explained in “Simulations setup” section (with correlated 
crowd movement, packet delays and MAC randomization), increasing linearly the total 
crowd size in every simulation, from 2000 to 64,000, which is the capacity of modern 
stadiums. The results computed in a 4  m ×  4  m square in the middle of the playfield 
are shown in Figs. 8 and 9. To contrast the performance for high crowd densities to the 
performance for low crowd density, we include an example of the latter in Fig. 10, which 
shows that the method can be expected to under-perform for low crowd density. (Note 
that this estimation is under a worse case scenario, where everybody moves all the time 
with a normal walking speed). However, we are focused on having precise estimation 
under high densities. Figure 11 shows the performances through time of our method for 
a fairly dense crowd in the same 4 m × 4 m region of the playfield. Again, for comparison 
we include also the plot of the fitted data in the last 40 s, noting that this calculation par-
tially implements our method.

Fig. 8  Full simulation, memory = 5

Fig. 9  Scatter plot of case in Fig. 8
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Note that so far we were assuming that the percentage of randomized addresses is 
15% , as observed from our real data from the sensation concert. For completeness, 
we also check the crowd density estimation by our method in the same 4  m ×  4  m 
region when the percentage of randomized addresses is high. The results, after per-
forming again independent full simulations with total crowd size between 2000 and 
64,000, are shown in Fig. 12. We can see that, although the variance of the estimation 
is higher when the randomization is higher, there is still good agreement between the 
estimation and the true value.

Fig. 10  Performance of our method for very low crowd density

Fig. 11  An overview of performance through time for one simulation

Fig. 12  Performance of our method under high percentage of randomized MAC addresses
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Analysis under a university campus scenario

With simulations we explored worse case scenarios and showed the effectiveness of the 
proposed method. In this subsection we explore how the method behaves in normal con-
ditions, with relatively low expected crowd density. We use the publicly available UJIIn-
doorLoc dataset [39] that has been designed for benchmarking fingerprinting methods for 
Wi-Fi positioning. The ground truth of the dataset is given by the GPS (Global Position-
ing System) locations of 25 devices worn by more than 20 participants. The participants 
moved across the Jaume university campus (Fig.  13). To generate positioning (“fitted”) 
data on which to apply our method, we use the software for Wi-Fi positioning based on 
RSS fingerprinting provided by [40, 41]. More concretely, we apply the affinity propaga-
tion method for clustering RSS fingerprints and the positioning method provided by [42] 
to generate the fits. To be able to have more test data and also because we are not inter-
ested in obtaining high precision fits, but rather to see the effect of our method applied to 
the latter, we use the small test dataset in [39] for training and the bigger train dataset for 
testing. (This is also in line with the reasoning in the design of the dataset in [41] where 
the training dataset is smaller than the testing dataset). We obtain fitted locations with an 
average error of 14 m. Note that this error is not of Gaussian type (it could be also due to 
the “twins” effect), and therefore we do not apply the kernel smoothing part of our method 
to the probability distributions. The memory is 0 in this low density case and the MAC 
randomization factor does not apply because this was a controlled experiment. Figure 14 
shows the results of applying our method to the ‘fitted’ data. We calculated 433 windows 
with a time step of 30 s and window 40 s. The first window starts at 1,804,000 s after the 
first recorded timestamp in the dataset (in this period the number of detected devices was 
the highest). For counting people based on detected phones sending GPS locations, we 
also apply a window of 40 s, that is, we make a snapshot of the last positions of the devices 
detected in the last 40 s (because the GPS locations are also not regularly recorded).

Analysis under a concert crowd scenario

To check how our method performs on the sensation dataset, we used video data posted 
online by visitors (security cameras are focused on detecting fire and are thus very 

Fig. 13  The location in the Jaume University in which measurements were taken (bounded by a red 
rectangle)
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sensitive to red light but not good enough for counting people). We have video frames 
available from the most interesting moment, towards the end of the concert, when the 
crowd size drops significantly in a short period of 15 min due to people leaving. From 
this material we extracted four time points from which counting could be done (see 
Fig. 15 for an overview).

Based on the frames selected from the video material, people are counted by manually 
clicking on their heads, using simple computer scripts to keep track of the number of 
mouse-clicks. Using multiple spatial reference points the people’s locations are projected 
from the perspective image to the 2D-coordinate system of the Wi-Fi measurements. We 
compare the manual people counts to our Wi-Fi based estimates on a 122.5 m2 region R 
that is an intersection of the region covered by Wi-Fi and the region covered by video 
(the upper triangle in the 15 m × 15 m2 of Fig. 16). The region R is located on the football 
field. At the center of the field the DJ stage was positioned. We used time window of 40 s 
and memory 0 as discussed in “Deriving the optimal parameters values” section. The 

Fig. 14  Performance of our method w.r.t. ground truth provided by the GPS locations of phones

Fig. 15  Overview of video frames used for manually counting people (all time points are + 2:00 UTC at July 
5, 2015). Videos and timestamps are courtesy of Jessey Helslijnen
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time step is 30 s. The results of estimation via the method and the video counts through 
time are given in Fig. 17.

Time complexity

An important practical implementation issue for an algorithm is its time complexity 
with respect to the input size. Note that our algorithm has a linear time complexity w.r.t. 
the crowd size, because we never consider people in relation to other people. More con-
cretely, let us first recap the steps needed to compute the crowd density distribution: 
(1) compute the randomization factor; (2) discard the randomized addresses using the 
available flags; (3) for every remaining MAC device compute the individual probabil-
ity distribution; (4) aggregate all m probability distributions and multiply the result by 
the randomization factor to derive the crowd density distribution. To compute the ran-
domization factor, one needs to keep track of the percentage of randomized addresses 
detected in e.g. every minute of the last hour, i.e. to update a counter every time a new 
MAC address is detected in the last minute. Since the number of signals that arrive per 
minute is linear to the crowd size, this step has linear time complexity. To compute the 
individual probability distributions, one needs to keep track of the individual fits in the 
last time window. Note that the computation of the individual distribution does not 

Fig. 16  Visualization of a manual people counts, and b the Wi-Fi-based crowd density estimate, both within 
the comparison region (upper triangle), at time point 05:32:04 ( + 2:00 UTC) (see also Fig. 15 )

Fig. 17  Performances of our method w.r.t. video based counting in a 112.5 m2 near the main stadium exit, 
last 15 min of the concert
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depend on the other MAC devices, that is, this step is running in linear time as well, 
which also holds trivially for the last step.

Comparison to previous work

In “Introduction” we mentioned the benefits of using smart phones data over video 
based approaches for density estimation of indoor concert crowd; in fact, it is our 
opinion that the two approaches complement each other and in the future we plan to 
integrate both techniques in real time. Thus, in this section we contrast our method 
to previous work that estimates crowd density using wireless technologies.

A number of approaches [43–45] estimate crowd density based on variations of the 
received signal strength indicator (RSSI) values of a Wi-Fi network. Under controlled 
experiments they observe that the more people (obstacles) are present, the greater 
the RSSI variations. Fadhlullah and Ismail [43] apply analysis of variance, Yuan et al. 
[44] apply k-means clustering to obtain clusters of similar crowd density based on 
similar RSSI variations, while Yoshida et  al. [45] apply linear and support vector 
machines regression. Our work also deals with the fact that greater crowd leads to 
greater RSSI variation (represented by the width of the rings in Fig.  2b). However, 
with our method the relative error of estimation of crowd density decreases as the 
(indoor) crowd increases, whereas the relative error of estimation of crowd density in 
the above approaches increases as the crowd increases. Having a decreasing error is 
essential for being able to detect dangerous crowd density.

Other approaches rely on an assumption that pedestrians move from point A to 
point B in order to estimate crowd density. More concretely, in Wirz et  al. [7] the 
authors follow a participatory sensing approach in which pedestrians share their GPS 
locations on a voluntary basis. Since only a fraction of all pedestrians share loca-
tion information, they infer the crowd density from the walking speed, based on the 
assumption that the maximal walking speed of pedestrians depends on the crowd 
density (and thus they assume that the crowd tends to reach a certain destination). 
A participatory sensing approach is also followed by Anzengruber et al. [8]. They use 
time series to predict mobility patterns in crowds of spectators, and related to the 
event agenda over time. Schauer et al. [9] focus their attention to airport pedestrians, 
without requiring crowd participation, but exploiting the predetermined direction of 
movement of passengers. They count unique MAC devices detected with strong sig-
nals by two sensors (nodes) at both sides (public and security) of a security check 
inside a major airport, to estimate pedestrian densities and pedestrian flow. Versi-
chele et al. [10] use Bluetooth scanners at strategic locations during 10-day festivities, 
to analyze spatio-temporal dynamics of pedestrians. Their methodology is proxim-
ity-based, which is suitable under mobility assumption. Delafontaine et al. [11] apply 
sequence alignment methods for the extraction of behavioural patterns within Blue-
tooth tracking data. Higuchi et al. [46] use a participation based approach to estimate 
the number of people and make advantage of the fact that people move in groups to 
correct the estimations of individual traces.

Other approaches use additional devices distributed in the crowd to improve the 
density estimation. Weppner et  al. [12, 47] estimate crowd densities by distributing 
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volunteers in the crowd, who are carrying smart phones scanning for Bluetooth devices. 
The authors then use statistics to combine the different measurements in space and 
time. A recent non-participatory approach based on Wi-Fi fingerprinting is given by 
Tang et al. [13]. This approach proposes an online training phase (‘dynamic fingerprint-
ing’) in addition to the offline training phase, which allows for the localization to use the 
current environmental settings to update the fingerprints database. This requires distrib-
uting Wi-Fi devices among the crowd to capture the latest RSS values, which however 
does not apply to our case of high density crowd in the playfield of a football stadium.

Other participation-based approaches include the following. Li et al. [48] use neural 
networks to learn the relationship between RSS and the number of people (similarly to 
using WiFi fingerprinting for estimating individual locations). Martella et al. [49] deploy 
a participation-based visitors positioning system in a museum. Some visitors wear sen-
sor bracelets, but there are also sensors distributed across the museum. For every visitor 
a (discrete) probability distribution over all possible locations is maintained, after deter-
mining the most likely floor. The distribution is a weighted average of the neighboring 
sensors distributions, the weights corresponding to the signal strengths. Then the visitor 
is localized by computing the average of its spatial probability distribution. Note that, 
unlike the present paper, this approach implicitly assumes uni-modal spatial probability 
distribution. On another related note, the localization in [49] is more precise when there 
are more visitors wearing sensors. In our case data is collected from a fixed number of 
sensors; that is, our increase of precision with increased number of people is not related 
to increased number of sensors.

We summarize the added values of our method over previous work for estimating 
crowd density using wireless technologies as follows.

1.	 Our method does not require participation from the crowd;
2.	 It does not assume that visitors are moving in any particular direction;
3.	 It does not require extra hardware in addition to the available access points;
4.	 It does not assume existence of a global optimum in the localization procedure;
5.	 To the best of our knowledge, our method addresses for the first time the ambiguity 

problem in Wi-Fi localization in the context of crowd density estimation;
6.	 To the best of our knowledge, we address for the first time the MAC address rand-

omization while estimating crowd size based on Wi-Fi technologies;
7.	 The estimation of crowd density with our approach increases with the increase of the 

crowd size (without relying on participation from the crowd), which is an essential 
property for being able to detect critically raised crowd density. To the best of our 
knowledge, this property has not been addressed or shown before.

Concluding remarks
We proposed a new method for estimating indoor crowd density based on wireless 
technologies. Our method does not rely on participation or mobility of the crowd but 
rather uses a big data analytics approach. We addressed three known challenges: (1) 
the ambiguity of localization procedure due to noisy RSS values, (2) the MAC address 
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randomization when a device is in a probing mode, and (3) the irregularity of the packet 
interarrivial times. We used probabilistic models to address (1) and (2) and a memory-
based model to address (3). We showed formally that the error of our estimation tends 
to zero as the crowd size increases (which is essential for enabling disaster prevention), 
even in case when the locations of visitors are correlated as in groups of friends. We used 
data-driven stochastic simulations to evaluate quantitatively the effectiveness of our 
method for highly dense crowds, and we used two datasets to evaluate the performances 
on real scenarios. Finally, we positioned our work in the context of previous related 
work and showed the added values of our approach. To the best of our knowledge, the 
approach presented here is the first to address the ambiguity and MAC randomization 
problems in context of no-participatory and no-mobility assumption, and also the first 
that has effectiveness at high crowd density as one of its design principles and results.

While we propose solutions to several issues related to estimating crowd density based 
on wireless technologies, it is important to emphasize that methods involving human 
behaviour cannot be all-encompassing. This is because of the complex and unpredict-
able nature of the human behaviour itself [50]. For example, in “Simulations setup” sec-
tion we used the Weidmann’s equation to model the velocity of the people; however, it 
is known that this equation varies across cultures [7, 50]. In addition, the usage of Wi-Fi 
at public events is likely to change over time, affecting the method parameters. Thus, it 
is important to note that anytime a monitoring system is deployed at a different venue, 
a separate calibration process is necessary in principle [7]. Furthermore, one can also 
include the map of the venue in the calculations, so that the individual probability distri-
butions can be re-normalized to cover only accessible regions.

In this paper we discuss estimating crowd density to be able to detect critical den-
sity and prevent crowd disasters. We note that planning optimal evacuation and naviga-
tion of the crowd are separate research challenges and we refer the reader to [3] for a 
recent overview. Concretely in our case the crowd can be navigated using the large TV 
screens already present at the stadium, or apps that use the built-in compasses of the 
smartphones.

Other possibilities for future work include: integrating Wi-Fi based crowd analysis 
with video-based analysis, and investigating the performances under edge crowd scenar-
ios, like a crowd crush, and under different scenarios, like a crowd of pedestrians instead 
of concert visitors. A real-time implementation of our prototype model is also important 
future work.
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