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Introduction
With the vast growth of information volume and variety in the recent years, many 
organizations focus on big data platforms and technologies [6]. In order to train machine 
learning algorithms on big data there is a need for a distributed framework such as 
MAPREDUCE, which can induce in parallel multiple models out of small subsets of 
massive-scale training data, which cannot fit into the memory of a single machine. Here, 
we limit our discussion to the model combining phase of distributed data processing, 
known as REDUCE. More specifically, we focus on induction of decision tree models. 
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ative of the entire dataset. The similarity-based approach is implemented with three 
different similarity metrics: a syntactic, a semantic, and a linear combination of the 
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Due to their simplicity and classification effectiveness [7], decision trees are among 
the most popular models for data mining analysts and users. In addition, they provide 
human-readable classification rules, which is considered important in data analytics. 
The goal of our methodology is to reduce the classification (inference) complexity of 
tree ensembles by choosing a single representative model out of multiple decision trees 
induced by ensemble methods. This is an extreme case of a lazy ensemble evaluation 
scheme [5] that uses a minimal subset of ensemble members to make a fast and accurate 
prediction.

In [38], we have introduced the SySM (Syntactic Similarity Method) approach, which 
chooses the model, which is syntactically most similar to other decision-tree models, 
as the best representative of the entire big dataset. In this paper, we compare it to the 
semantic similarity approach as well as to a combination of the semantic and the syn-
tactic similarity metrics. In addition, we compare SySM results to a randomly chosen 
decision tree and to the most accurate tree on a validation set. This paper also evaluates 
the accuracy of a reduced ensemble of the top five most representative decision trees. 
The similarity-based approach to selecting a single representative decision tree is more 
computationally efficient than algorithms like [26, 33] that use time consuming activities 
in the REDUCE phase such as sorting of attribute values or [31] that calculates covari-
ance between the induced models. One of the advantages of using a single represent-
ative decision tree is a higher inference (classification) speed. In this way, we save the 
computational effort needed for traversing multiple trees in the ensemble approach or 
going back to the raw data for additional computation like in [4]. Such evaluation effi-
ciency is an important issue when dealing with big data environments and massive data 
streams. The popular ensemble methods yield a relatively high accuracy, yet their model 
is not necessarily interpretable [15]. An additional advantage of the similarity approach 
is related to data privacy preservation, since there is no need to expose the local training 
data (e.g., belonging to different hospitals) after the distributed induction phase. Only 
the representative model is retained for classifying new records. Moreover, there is no 
need to reveal the source of the selected model, which provides an additional privacy 
level.

Panda et  al. [30] present PLANET, a scalable distributed framework for merging 
induced decision trees into one decision tree. PLANET involves a significant com-
munication overhead for data transfer between computing nodes. Magana-Mora and 
Bajic [25] offer OmniGA, a framework for the optimization of omnivariate decision 
trees based on a parallel genetic algorithm, coupled with deep learning structure and 
ensemble learning methods. Since the framework involves deep learning, it has a lim-
ited interpretability. The decision tree merging approach of [4] needs extensive compu-
tational resources in the model combining phase due to manipulation of decision trees 
and the original dataset. In contrast, the similarity-based approach introduced by us in 
[38] needs a smaller amount of computational resources, since it only chooses one of the 
trees induced in the distributed training phase.

Another method proposed for dealing with multiple decision trees and fitting them 
all together to the entire dataset is presented in [22]. The proposed approach transforms 
induced decision trees into Fourier spectra and merges them by vector addition in the 
dual space. This approach is complete and technically sound; however, it is difficult to 
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extend to non-binary trees. In addition, it is unclear how such extension will affect the 
algorithm performance, which is an important metric in the big data framework. An 
additional method, CMM, introduced in [13] is aimed at improving the model stability. 
This is achieved by providing the base learner with a new training set, composed of a 
large number of examples generated and classified according to the ensemble, plus the 
original examples, which would be infeasible in the big data framework. The described 
approach consumes extensive computational resources, especially in the combining 
phase and in the phase of running all models.

Our approach does not affect the distributed processing phase and hence does not 
change the amount of data traffic between computation nodes.

According to [7, 8] the challenge of large-scale learning is to cope with the increas-
ing ratio between the amount of available data to the processing time constraints. Our 
algorithm decreases the computational effort of the REDUCE phase by making only 
one pass over the induced decision trees with no need to reprocess the original data. 
We propose a novel tree selection approach, which does not follow a centralized tree-
growing schema and does not need any significant computation resources for tree merg-
ing. According to [7], the classical merging methods for building one tree from induced 
trees re-sort all numerical attributes of the original dataset for node splitting decisions. 
This becomes costly in terms of running time and memory size, especially when decision 
trees are induced from large datasets.

According to [4], distributed learning approaches should also consider the practical 
limitations imposed by the computing environment, including constraints on the mem-
ory of individual nodes, size of exchanged messages, and the communication patterns 
influencing scalability. This can be done by reducing memory and data transfer require-
ments at the cost of accuracy. The similarity-based algorithms add only a minor com-
putational effort to the REDUCE phase and, hence, add only a slight overhead to the 
processing time. Thus in case of the syntactic approach (SySM), the only additional step 
is transformation of the trees into the tree bracket format and comparing them to each 
other. As a result, the tree selection phase (REDUCE) takes less time than the tree merg-
ing methods such as [4].

To sum-up, the original contributions of our approach are the following:

•	 We present a computationally-efficient solution for the challenge of selecting repre-
sentative decision tree models induced in a distributed framework, including secured 
environments, where confidentiality of local data is required.

•	 The representative tree is chosen out of an ensemble of induced trees rather than 
built from the global dataset.

•	 The representative tree is found by computing pairwise syntactic and \or semantic 
similarity of induced trees.

•	 The proposed methods are evaluated in terms of their testing accuracy and classifica-
tion (inference) time on six benchmark datasets.

Part of this work was presented at the 6th International Workshop on Big Data, Streams 
and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and 
Applications, KDD 2017, August 14, Halifax, Nova Scotia, Canada.
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The rest of this paper consists of four sections. “Background and related work” sec-
tion discusses the possible ways of inducing global decision tree models from big data. 
“Methodology” section presents the tree selection algorithms based on syntactic and 
semantic similarity measures. “Empirical evaluation” section discusses the experimental 
results obtained on six benchmark datasets using two popular decision-tree algorithms. 
Finally, “Conclusions” section summarizes the presented work and the future research 
directions.

Background and related work
The challenge of the REDUCE phase in big data processing is to build a global model 
that will be both accurate and interpretable and that can be induced and applied to new 
records with minimal computing resources.

Usually, there is a trade-off between all these characteristics and there is no perfect 
solution that excels in all. We can categorize the approaches dealing with decision tree 
induction from big data as follows: building one big tree [2, 4, 11, 14, 17, 28–30, 32, 
35, 41], transferring all decision trees into one rule base and back into a decision tree, 
ensemble approaches [9, 18, 23, 24], and other approaches like [22] that do not build any 
tree and use a combination of tree results. According to [7], another way to categorize 
the different types of algorithms for handling large datasets is to divide them into the 
following two groups: pre-sorting of the data and using approximate representations of 
the data. Under the first category we can mention SLIQ [26], its newer version SPRINT 
[33] and ScalParC [21]. The second group includes algorithms that approximate repre-
sentations of the data by sampling and histograms construction. This group includes 
the following algorithms: BOAT [16], CLOUDS [1], and SPIES [20]. Usually, pre-sorting 
techniques are more accurate but they are computationally intensive when running on 
big data sets.

As shown in Fig. 1, distributed decision tree construction algorithms can be grouped 
by different approaches to parallelism: task parallelism, data parallelism and hybrid par-
allelism [3, 36]. Task parallelism distributes the decision tree nodes among the proces-
sors in a dynamic way. Data parallelism distributes the training set among the processors 
in a way that each processor is responsible for a distinct part of the data. This category 
may be divided into two sub categories: horizontal partitioning and vertical partitioning. 
The parallel strategy based on vertical data distribution [3, 12] splits the data by letting 
each processor test different attributes whereas horizontal parallelism partitions the data 

Fig. 1  Taxonomy of parallel decision tree construction algorithms
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so that different processors see different rows. The hybrid parallelism uses data parallel-
ism as a combination between horizontal and vertical approaches. Its decision whether 
to use horizontal or vertical parallelism is a function of the processing capability of each 
computing node and the constraints of communication volume between them. The tree 
selection algorithms presented in this paper deal with decision trees constructed by the 
horizontal parallelism approach.

Building a new decision tree from several induced decision trees is a well-known 
approach in big data. This approach usually excels in accuracy but needs significant 
computing resources [7]. The computing resources are needed for controlling the dis-
tributed stage and for dividing the database in a specific way [30] as well as for merging 
subtrees in the post-processing phase [4, 29, 30, 41]. The need for extensive computa-
tional resources and the long processing time are considered as major disadvantages in 
cases where fast results are needed for decision making.

A framework for comparing between induced decision trees is proposed in [27]. They 
use two types of similarity: semantic similarity and dataset similarity. Semantic similar-
ity is computed in terms of the agreement of class predictions the decision trees return 
over the attribute space. The dataset similarity is based on the attribute space probability 
distribution, attribute-class joint probability distribution, and attribute conditional class 
probability distribution. The presented framework can be used to decide when to update 
the global decision tree nodes and values as a result of a change in data. In addition, 
there is a need to go back to the raw data in order to compute probabilities.

Most of the methods mentioned above do not treat the induced decision trees as 
final entities. They use the induced decision trees as a basis for additional computations 
that go back and forth to the original dataset. From a computational point of view, this 
approach causes redundant work since it requires going back to the decision tree induc-
tion phase that was already completed.

Miglio and Soffritti [27] present a tree similarity algorithm is based on semantic 
approach. Their approach is based on [34]. The RTED algorithm [32] used in our meth-
odology is more robust than the approach [34] and it works well for different decision 
tree structures. Moreover, the tree selection phase of the semantic approach requires 
additional running time for applying each induced decision tree to the validation 
instances.

Methodology
Our goal is to select the best single tree that can represent the entire massive dataset 
after it was partitioned horizontally into multiple slices. The similarity-based approach 
to tree selection assumes that the most representative tree should be most similar to all 
other induced trees.

The tree similarity can be calculated by syntactic and semantic metrics or their combi-
nation. Following [40], we calculate the syntactic similarity of two trees by a simple and 
fast editing distance algorithm called RTED (Robust Tree Edit Distance).

The RTED algorithm [32] counts the node edit operations that transform one tree into 
another.

We measure the syntactic similarity of internal nodes in the two compared deci-
sion trees using the following two parameters: the tested attribute name and the node 
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postorder position in the tree. These two parameters practically determine the tree 
structure. The node’s position determines its interrelation to other nodes in the tree and 
hence its influence on the model outcome. Since we assume the two trees to be induced 
from random subsets of the same dataset, we also expect the derived split values of the 
same continuous attribute to be close to each other.

An alternative tree similarity measure is the semantic similarity. We use it instead 
of the syntactic similarity in Algorithm  2, since decision trees induced from different 
slices of the same dataset may still have a different structure. This is because decision 
tree algorithms are known to be instable, i.e. small variations in the data may result in 
significant changes in the tree structure. This problem can be mitigated by ensemble or 
semantic similarity approaches.

When choosing a single representative model out of multiple decision trees, we are 
not interested to go back to the original training data or to modify the induced decision 
trees.
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The SySM algorithm (Algorithm  1) transforms each of the induced decision trees 
into the Bracket Tree Format (BTF). This is done by scanning the tree nodes from 
top down. The BTF is a way of representing the tree as one sequence of node labels, 
where the nodes are separated from each other using bracket symbol. Different levels 
of the nodes can be distinguished by the bracket symbol as well. Calculating the dif-
ference between the number of open brackets to the close ones determines the level 
of the specific node in the tree. For example, for the following BTF: {a{b}{c{d}{e}}} 
we can deduce that b and c are at the same level since the difference between open 
brackets to close brackets before b is 2 and before c is 2 as well. We can also infer 
from the bracket locations of the BTF that both d and e are siblings and children of 
c. In BTF representation of a tree, each node is labeled by the name of the corre-
sponding tested attribute, is more compact than the visual and the textual decision 
tree representations. Using the SySM algorithm, we refer only to the structure of the 
induced trees and hence there is no need to make any change to the tree structure or 
to perform additional computations on the raw data. The RTED [32] algorithm, which 
is the core of our similarity calculation procedure, computes the distance between 
each pair of induced trees by finding the mismatches of each node label in the equiva-
lent positions of the compared trees. In case of such mismatch there are three edit-
ing operations: deleting an existing node, inserting a new node or changing the label 
of an existing node. The amount of relevant changes is accumulated. The total edit 
distance between the trees represents the similarity metric. Practically, one induced 
tree is transformed into another tree. The RTED [32] is symmetric with respect to the 
order of the compared trees. For multiple comparisons between one decision tree to 
the rest of the induced decision trees, we add an overall distance matrix where each 
cell represents the edit distance between the tree represented by the row number to 
each of the trees represented by the columns. For each row, the average of the edit 
distances represents the similarity of the tree to the rest of decision trees. The repre-
sentative model chosen by our algorithm is the model with the minimal average edit 
distance to other models.

As an alternative for SySM we propose two more approaches for calculating the tree 
similarity: semantic similarity and combined distance. The semantic similarity imple-
mented by Algorithm  2 is calculated as the classification agreement ratio between 



Page 8 of 17Weinberg and Last ﻿J Big Data            (2019) 6:23 

each pair of induced decision trees over a development (validation) set. The combined 
approach shown in Algorithm 3 calculates the distance results using both approaches, 
normalizes them, and takes their average as the distance between trees.

The tree selection procedure can be deployed on a single machine, since it deals 
with the REDUCE phase of processing all models, which have been induced in the 
distributed (MAP) phase on multiple local machines. Therefore, the proposed 
approach does not affect in any way the amount of data traffic required by the dis-
tributed phase. From the computational complexity perspective, the REDUCE phase 
of the similarity-based algorithms has a training complexity of O(n2) where n is the 
number of induced trees/computation nodes, since the algorithm calculates the aver-
age distance/similarity of each induced tree to the rest of the trees. RTED has the 
complexity of O(m2) where m is the number of tree nodes which implies that SySM 
has the complexity of O(m2n2) . When using the semantic approach or choosing the 
most accurate tree, unlike SySM, we apply each decision tree to every record in the 
development (validation) set. Hence, the tree selection complexity of the semantic 
and the most accurate tree approaches is O(vn2) , where v is the number of validation 
records. For finding the most accurate decision tree, instead of O(n2) for SySM and 
the semantic approach, the complexity is O(nlog(n)) as it requires sorting the accura-
cies of n trees. The evaluation (classification) complexity of using a single representa-
tive tree is O(log(t)) per one testing instance, where t is the number of terminal nodes.

In contrast, the evaluation complexity of the ensemble approach is O(nlog(t)) per 
instance, since it requires traversing n trees for classifying each new instance.

In addition, from the practical perspective, if classification is done on parallel 
machines, we still have to add the network transportation time from each machine to 
the central server, which then requires the majority voting time.

As for the combined approach, we can run the SySM and the semantic approaches 
in parallel, because they do not depend on each other. In that case, the running time 
will be the maximal between the both.

Empirical evaluation
In this section, we perform experiments to evaluate the performance of the proposed 
tree selection algorithms.

Design of experiments

Our experiments are aimed at comparing the following approaches to classifying each 
new instance:

1.	 Ensemble (baseline): majority voting over an ensemble of all induced trees.
2.	 SySM (Syntactic Similarity Method): using a single tree, which is most similar syn-

tactically to other induced trees.
3.	 Semantic similarity: using a single tree, which is most similar semantically to other 

induced trees over a development (validation) set.
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4.	 Combined similarity: using a single tree, which is chosen based on a linear combina-
tion of the syntactic and the semantic similarity measures. An equal weight of 0.5 is 
assigned to each similarity measure.

5.	 Most accurate: using a single tree, which is most accurate on a development (valida-
tion) set.

We evaluate the above approaches in six different experiments by the following perfor-
mance metrics: accuracy, running time, and interpretability. We also evaluate a reduced 
ensemble of top five trees chosen by each methodology.

In the first experiment, we compare the accuracies of the evaluated approaches. We 
expect the ensemble to yield higher accuracy levels since its classification is based on all 
dataset shards while the similarity-based approaches consider one representative shard 
only.

In the second experiment, we evaluate the running time of the algorithms. The evalu-
ated methodology has three phases: inducing the local models from the training data, 
choosing a representative model, and applying the selected model to new records. We 
expect the similarity-based approaches to be computationally cheaper in the third (test-
ing) stage, since they classify the new data by only one model, whereas an ensemble 
needs to classify each incoming record by multiple models.

The third experiment evaluates the accuracy of a selected tree compared to a ran-
domly chosen decision tree. We find the percentile of the selected model accuracy in the 
cumulative distribution of all models. The proposed model selection methodology can 
be considered useful if the percentile of the selected model accuracy exceeds 50% (the 
median) of all models.

In the fourth experiment, we evaluate the correlation between the syntactic and 
semantic distance metrics. We expect a positive correlation, since the greater the 
structural difference between the trees there should be less agreement between their 
predictions.

We train the algorithm over 80% of each dataset (the training set), which is split it into 
chunks. For calculating the semantic similarity and choosing the most accurate decision 
tree, we run the decision trees over the development set that is 10% of the dataset. We 
estimate the testing accuracy of all algorithms by running the selected decision tree over 
the testing set that is the rest 10% of the dataset.

In the same way, we choose a small ensemble of the top five decision trees based on 
each similarity-based methodology and use majority voting for classifying new records. 
We expect such a small ensemble to have better results than a single selected tree for 
datasets that have a higher variance between the local data chunks.

We evaluate our methodology over six big multivariate datasets from the UCI reposi-
tory, which are used as benchmarks in other papers on big data such as [37] and which 
are shown in Tables 1, 2.

The representative trees are selected and evaluated on a computer having the follow-
ing characteristics:

Processors: i7-4710MQ, Cores: 8 per processor (16 threads), Clock speed: 2.50 GHz, 
Cache: 256 MB, Hard drive: 240 GB, RAM: 64 GB
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We run the algorithms in experiments one to five over each dataset in six variations 
of horizontal partitioning: 32-folds, 64-folds, 128-folds, 256-folds, 512-folds, and 1024-
folds. The folds are equal-size slices of the training dataset assigned to different compu-
tation nodes. J48 and CART decision trees are induced from each fold of every dataset 
using relevant packages in R.

Our algorithm can be implemented either over distributed parallel framework or on 
single machine as described in Ye et al.  [39].

In order to meet the RAM capacity we searched for a parameter that yields decision 
trees with the number of leaves and the tree size that fits in computer memory. There-
fore, we searched for the minimum value of the minimum number of instances per leaf 
(M parameter in J48 and minbucket parameter in CART) that allows the induced trees 
to fit in computer memory. J48 tree is induced from POKER dataset by setting the M 
parameter to 30. For SUSY dataset as well as KDDCUP, we used M = 40 . For RLCP 
dataset, J48 is induced using the default value of (M = 2).

For GAS Sensors and Household Electric Power the M = 2500 and M = 3500 whereas 
the minbucket = 3500 and minbucket = 3000 , respectively. In addition, for HIGGS 
dataset we used randomly chosen 4 million records out of 11 million. The M values are 
determined for each dataset using sensitivity analysis. The best value of M is chosen by 
analysing two random slices of 32-folds. For each M value, we found the model accuracy 
over training and validation datasets, the number of the tree leaves, and the total size of 
the induced tree.

Table 1  Big datasets used for empirical evaluation

ID UCI dataset name Samples Attributes Classes

DS1 Poker Hand—consisting of five playing cards 1,025,010 11 9

DS2 SUSY —Monte Carlo simulations of kinematic properties measured 
by the particle detectors

5,000,000 18 2

DS3 Record Linkage Comparison Patterns—decide from a comparison 
pattern whether the underlying records belong to one person

5,749,132 9 2

DS4 KDD Cup 1999—build a network intrusion detector 4,898,431 42 23

DS5 Individual household electric power consumption 2,075,259 9 Continuous

DS6 HIGGS—distinguish between a signal process, which produces 
Higgs bosons, and a background process

11,000,000 28 2

Table 2  Decision tree parameters for empirical evaluation

ID UCI dataset name J48 M CART minbucket

DS1 Poker Hand 30 250

DS2 SUSY 40 500

DS3 Record Linkage Comparison Patterns 2 500

DS4 KDD Cup 1999 40 7

DS5 Individual household electric power 
consumption

2500 3500

DS6 HIGGS 5500 3000
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Results

As mentioned above, one of the core steps in the proposed methodology is comparison 
between the induced decision trees. The semantic comparison focuses on the propor-
tion of identical classifications of validation instances, whereas the syntactic approach 
builds upon the tree structure. We expect the single-tree approach to yield shorter clas-
sification times than the ensemble due to the fact that there is no need to run all decision 
tree models over the testing data. In addition, we compare the accuracy of the models 
chosen by the different approaches.

In the first experiment, as can be seen in Fig. 2, we compare the testing accuracy of 
the tree chosen in semantic and syntactic mode and their combined results to ensemble 
majority voting and most accurate tree. The figure presents the results for DS3, which 
has the largest number of records out of the six benchmark datasets. In this dataset, 
the syntactic approach outperforms the semantic one for all J48 runs and 50% of CART 
runs. The ensemble approach, which employs multiple models in the classification stage, 
yields a slightly higher accuracy than the similarity algorithms based on a single model. 
We can also see that the most accurate tree has a very similar accuracy to SySM, whereas 
the combined approach has lower results in comparison to other approaches. As indi-
cated below, similar results are observed in most experiments with the other datasets.

We compare the accuracy of ensemble vs. SySM and SySM vs. the semantic approach 
for every dataset and each decision tree algorithm (J48 and CART) using the following 
formula:

where

SySMAccuracy − EnsAccuracy
√

F(SySMAccuracy)+ F(EnsAccuracy)

F(x) =
x(1− x)

number of testing rec

a J48-KDD b CART-KDD

c J48-RLCP  d CART-RLCP
Fig. 2  Accuracy results for KDDCUP and RLCP dataset
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We run 24 experiments for every dataset (for each fold: J48, CART). For POKER dataset, 
in 83.3% of cases the syntactic approach obtains a significantly higher accuracy than the 
semantic one (p-value = 0.05). The ensemble accuracy is significantly higher in compari-
son to SySM in 83.3% of cases. For SUSY, SySM has the highest accuracy in 50% of cases. 
The syntactic approach yields significantly higher accuracy results than semantic in 75% 
of cases. In RLCP, there is no significant difference between ensemble accuracy and 
SySM, whereas the syntactic outperforms significantly the semantic in 58.3% of cases. In 
KDDCUP, ensemble has a significantly higher accuracy than SySM in 41.7% of cases. In 
addition, SySM is significantly more accurate than semantic in 50% of cases.

For HOUSEHOLD ELEC dataset, SySM has a higher accuracy than ensemble in 83.3% 
of cases. In HIGGS dataset, in 87.5% of cases, SySM approach obtains a significantly 
higher accuracy than the ensemble approach.

The high accuracy of the ensemble of decision trees is expected, since each induced 
decision tree that sees a local slice of the trained dataset takes part in voting for classify-
ing each tuple in the testing dataset. In this way, although each induced decision tree 
sees only part of the trained dataset the voting combines their predictions over the test-
ing dataset. However, the results of the ensemble algorithm are not easily interpretable, 
since they are not based on a single decision tree model. In addition, the classification 
phase of ensemble includes two computation steps: running the induced trees over the 
testing instances and computing the majority voting result. The number of runs of the 
induced trees over the testing instances is equal to the number of dataset slices. In a dis-
tributed system, the induction of decision trees is done over each training set in paral-
lel. However, for ensemble-based evaluation, there is a need to apply each decision-tree 
model to the same testing instances. This adds computational and memory complexity 
to ensemble algorithms.

In the second experiment, as can be seen in Fig.  3, the total running time over the 
testing dataset is indeed higher for ensemble than for SySM at the order of the number 
of shards.

In the third experiment, we find that the average percentile of the chosen trees accu-
racy in the syntactic mode (Algorithm 1) are 0.645 and 0.524 for J48 and CART, respec-
tively. This means that the syntactic mode performs better than choosing randomly one 
of the induced decision trees, especially when the trees are built by J48.

In the fourth experiment, we compare the semantic vs. syntactic distance values in the 
tree distance matrix for 32-folds (shards) of the Poker dataset. The semantic distance is 
calculated as (1 – semantic agreement percentage) as described in detail in Algorithm 3. 
The hypothesis that there is a significant correlation between the two is rejected as indi-
cated by the low R2 values in Table 3 and the raw data shown in Fig. 4.

Figure 5 compares the testing accuracy of different approaches for 128 shards. As can 
be seen the differences in accuracy between SySM and ensemble are minor for both J48 
and CART in all datasets.

Table 4 compares between the average accuracy of each algorithm per dataset. As can 
be seen in Table 4, the number of times that SySM has the best accuracy is about two 
times higher than choosing the most accurate tree (8 times out of 12). The averages of 
all results are almost the same (with a slight advantage for SySM): 0.764 vs. 0.762. When 
examining the results for majority voting over choosing the five best trees we can see 
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in Table 5 that choosing the most accurate trees has an accuracy advantage over SySM 
in 6 cases. The averages of all methods are almost the same (with a slight advantage for 
most accurate trees) 0.75 versus 0.753. When comparing between the most accurate tree 
to SySM, we use the Hodges Jr and Lehmann [19] test. We implement the test both for 
CART and J48. We deduce from the test that we can reject our initial hypothesis that 
there is a significant difference between the accuracies of results of the twoapproaches 
with p-value of 5%. 

Discussion
In the previous section, we have evaluated several alternative classification approaches 
based on decision-tree ensembles. Our empirical evaluation has focused on the follow-
ing two performance measures: classification accuracy and testing (inference) time. As 

a J48-KDD b CART-KDD

c J48-RLCP  d CART-RLCP
Fig. 3  Classification time over KDDCUP and RLCP testing dataset

Table 3  32 shards: correlation between semantic and syntactic distance metrics

ID UCI dataset name R
2 (J48) R

2 (CART)

DS1 Poker Hand 0.0243 0.2039

DS2 SUSY 0.0594 0.0015

DS3 RLCP 0.2318 0.7709

DS4 KDD Cup 0.1555 0.5613

DS5 Household Electric 0.1023 0.4741

DS6 HIGGS 0.0938 0.3617
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Fig. 4  POKER-J48: semantic distance vs. syntactic distance

 a J48  b CART
Fig. 5  128 shards: accuracy of a single selected tree across similarity types

Table 4  Comparison between accuracies of single best trees

In italics the most accurate per line

Algorithm name UCI dataset name Best SySM tree 
train 80%

Most accurate tree 
train 80%

Best SySM 
tree train 
90%

CART​ Poker Hand 0.517 0.528 0.530

CART​ SUSY 0.777 0.781 0.777

CART​ RLCP 0.997 0.997 0.998

CART​ KDD Cup 0.995 0.996 0.997

CART​ Household Elec. 0.678 0.691 0.713

CART​ HIGGS 0.995 0.996 0.997

J48 Poker Hand 0.550 0.574 0.531

J48 SUSY 0.673 0.736 0.783

J48 RLCP 0.999 1.000 0.999

J48 KDD Cup 0.998 0.999 0.998

J48 Household Elec. 0.627 0.638 0.646

J48 HIGGS 0.647 0.653 0.654
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expected, the ensemble approach is, in most cases, the most accurate one, but it requires 
more computational resources for classifying each new instance than any single deci-
sion-tree classifier or a reduced ensemble of five decision trees.

Out of the three evaluated methods for choosing the best single decision tree model, 
the algorithm based on syntactic similarity of decision trees (SySM) is significantly more 
accurate than the semantic distance algorithms and in some datasets, it even outper-
forms the ensemble accuracy. However, when comparing SySM to the accuracy-based 
approach, we see that there is no significant advantage of either method in terms of test-
ing accuracy. Hence, both the syntactic and the accuracy-based approaches are expected 
to be a good choice for choosing a single representative model.

One way to improve the classification accuracy at a small computational cost is to use 
a small ensemble of five best trees instead of one. The accuracy-based ensembles of five 
representative trees have provided more accurate classification results, in most cases, 
than the SySM-based ensembles. Thus, when choosing an ensemble of five models, one 
should prefer the five most accurate decision trees.

Conclusions
In this paper, we propose and evaluate several methods for selecting one representa-
tive model out of multiple decision trees induced from different slices of the same 
massive dataset. These methods can be very useful for big data and secured environ-
ments due to having a higher inference (classification) speed than ensemble meth-
ods. First, we suggest a syntactic approach, named SySM, that is based solely on the 
induced decision trees structure. In addition we present the semantic similarity and 
the combined distance algorithms. All use the same similarity-based approach but 
calculate the tree similarity differently.

The accuracy of the similarity-based methods is compared to other well-known 
algorithms on six big benchmark datasets. Each dataset was divided to number of 
slices from 32 to 1024.

Table 5  Comparison between accuracies of five best trees

In italics the most accurate per line

Algorithm name UCI dataset name Five best SySM 
train 80%

Five most accurate 
trees train 80%

Five best 
SySM train 
90%

CART​ Poker Hand 0.529 0.536 0.519

CART​ SUSY 0.782 0.786 0.786

CART​ RLCP 0.997 0.998 0.998

CART​ KDD Cup 0.998 0.997 0.999

CART​ Household Elec. 0.998 0.997 0.999

CART​ HIGGS 0.998 0.997 0.999

J48 Poker Hand 0.557 0.589 0.531

J48 SUSY 0.693 0.737 0.783

J48 RLCP 0.999 0.999 0.999

J48 KDD Cup 1.000 1.000 0.998

J48 Household Elec. 0.557 0.556 0.555

J48 HIGGS 0.652 0.649 0.648
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When comparing the accuracy of SySM to semantic similarity and combined dis-
tance, we see that SySM has a higher accuracy in most cases. This is in addition to the 
fact the model selection phase is faster than semantic similarity oriented approaches. 
When comparing SySM to choosing the most accurate model there is no difference 
in the number of times where one approach is more accurate than the other and the 
mean accuracies of all results are almost the same. When choosing an ensemble of 
five models, there is a slight advantage for the accuracy-based approach.

In the future work, one may utilize the fast computation characteristics of the SySM 
algorithm for distributed data streaming environment. In this environment, SySM 
may save expensive I/O disk operations, since all induced decision trees can fit in the 
memory of a single computer without the need to re-process the raw data. The SySM 
approach can be combined with the most accurate tree approach in different varia-
tions. An additional future approach may use alternative data structures such as DAG 
(Directed Acyclic Graph) and additional similarity metrics between decision-tree 
models. The algorithm may also be extended for dealing with ensembles of decision 
trees generated by random subspace selection methods such as random forests [10]. 
One may also try to optimize the weights of the combined method.

Abbreviations
CART​: Classification and Regression Tree; SySM: Syntactic Similarity Method; DAG: Directed Acyclic Graph; RTED: Robust 
Tree Edit Distance.
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