
A parallel and distributed stochastic gradient
descent implementation using commodity
clusters
Robert K. L. Kennedy1*, Taghi M. Khoshgoftaar1, Flavio Villanustre2 and Timothy Humphrey2

Introduction
Training neural networks effectively and efficiently is an important component of Deep
Learning. Large neural networks can consist of dozens, hundreds or even thousands of
layers each with thousands of artificial neurons. Depending on the network’s architec-
ture, each of these neurons is connected to a large number of other neurons, where each
connection has a trainable weight parameter that determines how the network responds
to input signals. In the context of this paper, the effective training of these large com-
plex networks is accomplished through the use of the computationally expensive process
of backpropagation. Additionally, neural networks benefit from training on Big Data, as
typically more data produces more performant models [1]. For example, the ImageNet
database AlexNet was trained on roughly 1.2 million images, and at the time achieved
state of the art results [2]. Problems of this magnitude are common and thus researching
parallel network optimization on distributed and parallel systems is highly important.

Abstract 

Deep Learning is an increasingly important subdomain of artificial intelligence, which
benefits from training on Big Data. The size and complexity of the model combined
with the size of the training dataset makes the training process very computationally
and temporally expensive. Accelerating the training process of Deep Learning using
cluster computers faces many challenges ranging from distributed optimizers to the
large communication overhead specific to systems with off the shelf networking
components. In this paper, we present a novel distributed and parallel implementation
of stochastic gradient descent (SGD) on a distributed cluster of commodity computers.
We use high-performance computing cluster (HPCC) systems as the underlying cluster
environment for the implementation. We overview how the HPCC systems platform
provides the environment for distributed and parallel Deep Learning, how it provides
a facility to work with third party open source libraries such as TensorFlow, and detail
our use of third-party libraries and HPCC functionality for implementation. We pro-
vide experimental results that validate our work and show that our implementation
can scale with respect to both dataset size and the number of compute nodes in the
cluster.

Keywords:  Parallel stochastic gradient descent, Parallel and distributed processing,
Deep learning, Big data, Neural network, Cluster computer, HPCC systems

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

METHODOLOGY

Kennedy et al. J Big Data (2019) 6:16
https://doi.org/10.1186/s40537-019-0179-2

*Correspondence:
rkennedy@fau.edu
1 Florida Atlantic University,
777 Glades Road, Boca Raton,
FL 33431, USA
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0179-2&domain=pdf

Page 2 of 23Kennedy et al. J Big Data (2019) 6:16

Massively powerful computers are required to efficiently train large neural networks
on large amounts of data. Thus, training neural networks in a parallel and distributed
manner on large cluster computers or large shared memory supercomputers, is an active
area of research.1 As the models and datasets grow, it is possible to not only improve the
hardware of the computer (such as more memory, faster CPU, faster GPU2, etc.) but to
also increase the number of computers simultaneously training a single model. Possible
parallel methods for training a neural network include splitting the data across multi-
ple computational nodes and splitting the neural network itself across multiple nodes,
known as Data Parallelism and Model Parallelism, respectively. Each have their benefits,
but both aim to reduce training time by spreading out the required computations across
many different computers.

The distributed systems themselves are an important factor when trying to parallelize
the neural network training [1, 3]. For example, a supercomputer can have thousands
of individual processors that are connected via specialized high speed interconnects.
In contrast, a cluster computer system is comprised of multiple individual computers,
each with their own processor, memory, and disk and are connected together via high
speed networking interfaces using standard networking protocols. Both of these systems
require specialized software to handle the synchronization across nodes (CPU, GPU, or
individual computers), the communication between nodes, the distribution of the data,
and the distribution and synchronization of processes. In addition to the distributed sys-
tem, an efficient optimizing algorithm is required to train models with a large number of
parameters, as found in large neural networks. SGD, and many of its derivatives, is one
such neural network optimizer. It is used extensively in machine learning in part because
it is simple to implement and is fast when there are a lot of training instances, as found
in Big Data datasets.

In this paper, we present a novel implementation of Parallel SGD on the HPCC sys-
tems platform, specifically, a distributed implementation of Parallel SGD. It is both a
distributed and parallel approach in that it distributes data and executable code to sepa-
rate computers (nodes in the cluster), as well as coordinates the training across all nodes
towards a single objective. This is in contrast to a distributed only approach where indi-
vidual nodes train toward different objectives. This would be useful for creating several
models at the same time for statistical analysis but not when trying to output a single
trained model. Previously, HPCC systems had only more traditional machine Learning
algorithms, some Deep Learning algorithms that worked on a single node and a single
algorithm that worked in a distributed fashion. Najafabadi et al. [4] proposed a distrib-
uted L-BFGS algorithm on HPCC systems but their approach was limited to the capa-
bilities of HPCC systems. Since, Deep Learning is well suited for Big Data analytics [5]
and HPCC excels at Big Data processing [6], our approach leverages the capabilities
of both HPCC systems and different third-party Python libraries to train single Deep
Learning networks using multiple nodes in parallel. HPCC systems is an open source,

1  In this paper, we distinguish between the “parallel” and “distributed” when concurrent training of a single neural net-
work by different computational resources occurs, and the latter denotes when the computational nodes are physically
separated rather than multiple cores in a single physical processor.
2  Central processing unit (CPU) refers to the main processor of a computer and graphics processing unit (GPU) refers
to a discrete graphics card connected to the computer via a high speed bus.

Page 3 of 23Kennedy et al. J Big Data (2019) 6:16

parallel, cluster computing system designed to run on off the shelf commodity servers
using standard networking protocols for connections between cluster nodes. HPCC pro-
vides its own distributed file system, its own parallel data processing language, called
Enterprise Control Language (ecl), ECL compiler, and ECL IDE. Additionally, HPCC
provides a facility to integrate with third-party languages, such as Python, which pro-
vides an effective and efficient environment for distributed Deep Learning by leveraging
TensorFlow, a popular open source Deep Learning library.

The remainder of this paper is as follows. In “Methods” section, we discuss related
work in the distribution and parallelization of neural network optimizers. “HPCC sys-
tems” section provides some background on the HPCC systems platform, a cluster
system, as well as details its capabilities as it relates to the implementation of the par-
allel SGD algorithm. Next, we present details of the parallel neural network optimizer
in “Parallel stochastic gradient descent” section. In “Implementation” section, we pre-
sent our implementation of Parallel SGD on the HPCC systems Platform. “Results and
discussion” section provides experimental results that evaluate and validate the imple-
mentation. Finally, in “Conclusion” section, we conclude our work and discuss possible
avenues for future work.

Methods
Parallelization strategies

Training a neural network in parallel has two main factors that contribute to the training
time. First is the communication cost between nodes and second is the computational
time cost. Increasing the number of parallel nodes reduces the system’s computational
time but at the expense of high communication costs. A balance between the two factors
results in decreased training time and is dependent on the architecture of the physical
system as well as the methodology of splitting up the computations.

There are six different dimensions of parallelization for neural networks introduced by
Nordstrom et al. [7], each with increasing communication costs. In the simplest dimen-
sion, training session parallelism, there exists virtually no communication costs. Each
node in the system gets an entire copy of the dataset and model, each initialized with
different weights. Each of the nodes trains a model and at the end of training, the model
that performs the highest is selected. This technique, although rather trivial in concept,
can be useful because training neural networks have the propensity to get stuck in local
minima. The multiple, initialized models aim to widen the search to hopefully find a
global minimum [8]. Another advantage to this approach is its parallelism is unbound,
i.e. the increase in nodes and the decrease in training time (for that many different mod-
els) is nearly perfectly linear. The next dimension, training example parallelism, also
known as Data Parallelism, splits the training data onto multiple nodes. Each node then
computes on a smaller data size, reducing training time. This approach is examined
in more detail in the coming sections and is the parallelization paradigm used in this
paper’s work. The final dimension that is suitable for a cluster computer environment is
Node Parallelism, which is similar to model parallelism. In model parallelism, the neu-
ral network model is divided up and distributed across multiple nodes where each node
only trains its portion of the model. For completeness, layer parallelism, weight parallel-
ism, and bit parallelism are the remaining three dimensions. Node parallelism utilizes

Page 4 of 23Kennedy et al. J Big Data (2019) 6:16

pipelining to increase the throughput of the training instances being calculated through
the network (either during forwardpropagation or backpropagation). Weight parallelism
refers to the simultaneous calculations of all neurons in a given layer. Lastly, Bit parallel-
ism is the bit level parallelization and Nordstorm et al. states it is often taken for granted.
However, these three dimensions are outside the scope of this paper and are generally
addressed, to some degree, by the optimizations in the neural network libraries used and
the optimizations in the underlying computer operating system.

Data parallelism

In general, Data parallelism is the paradigm, during the training phase of creating a
machine learning algorithm, where the data used for training is partitioned and dis-
tributed evenly across several nodes of a system, along with a copy of the initialized,
untrained model, which is also distributed to each node or worker. All workers will con-
currently train on their partition of the data and at the end of the training processes, the
models are aggregated in some way to have the system produce a model that was trained
on the entire dataset. This effectively reduces the amount of work required by each node
by a factor of how many workers are used. This method is one of the oldest practical
implementations of training an artificial neural network [9]. There are several different
data parallel approaches, mainly differing by how the workers’ contributions are aggre-
gated. They can be categorized into two main groups: synchronous and asynchronous
data parallelism.

Synchronous data parallelism

Synchronous data parallelism, as its name implies, is a training paradigm where the
training steps are executed in a synchronous and sequential way. It is identifiable by a
series of locking mechanisms during the training runtime. The synchrony ensures model
consistency between training steps. Using mini-batch gradient descent as an example
on a single machine, the dataset is partitioned into a series of mini-batches where each
mini-batch is consumed in sequence until all the data has been consumed (see Algo-
rithm 1). Then the weights for each mini-batch are averaged by summing all the mini-
batch’s gradients and dividing the total by the number of mini-batches. The locking
mechanism in this case is the aggregation after each pass through the data and makes
mini-batch SGD synchronous in nature. Even on a single machine, mini-batch SGD has
been shown to optimize the training time [10].

A distributed adaptation of mini-batch SGD, where each node in a system computes
on a single mini-batch, is also a synchronous approach. Each worker calculates its weight
updates on its partition of data and a master node, or parameter server, aggregates the

Page 5 of 23Kennedy et al. J Big Data (2019) 6:16

weights. The locking mechanism comes from the fact that after each pass through of
the data, the parameter server has to aggregate the weights before continuing onto the
next iteration. If each worker in the system takes exactly the same time to train, the syn-
chrony is not an issue. However, if one or more workers takes longer than the rest, the
synchrony becomes a significant bottleneck in the training time. The workers can have
varying training times for several reasons such as a cluster system with heterogeneous
hardware, slightly different data partition sizes, network latencies, etc. Careful consid-
eration needs to be taken to minimize the chances for this type of bottleneck. Further-
more, this approach requires parameter updates to happen on each mini-batch iteration.
This results in large communication costs in a cluster computer.

One of the most challenging aspects of large scale distributed machine learning is the
parallelization of neural network training when using SGD [11]. One key challenge is
coordinating multiple computational nodes to optimize a single model toward a single
goal without increasing overhead to the point of decreasing training time or model per-
formance. There have been many studies that attempt to parallelize SGD [1, 7, 8, 12,
13]. Many of these are designed to use some form of a shared memory computer. Often
referred to as a supercomputer, these systems have the benefit of tightly controlled com-
munications between different processing units, either CPU’s, CPU cores, or GPU’s.
However, this paper’s work focuses on parallelization methods that are well suited for
use on a cluster computer, the main difference being the communication between nodes
is not a specialized serial bus, but rather a standard ethernet connection. This presents
a high cost of communication due to the slower ethernet connections and standard net-
working protocols. The network itself introduces a bottleneck. Consider the scenario
when all workers need to communicate their updates for aggregation concurrently. The
network can become easily saturated, leading to increased training time. Careful consid-
eration of the communication strategy of the parallelization is critical [14].

Parallel stochastic gradient descent

Designing a parallelization method that considers the high communication costs found
in cluster computers has been extensively studied [8, 13, 15]. Parallel SGD, introduced
by Zinkevich et al. [12] and shown in Algorithms 2 and 3, is one such technique and
can be viewed as an improvement on model averaging. Model averaging convergence is
dependent on the degree of convexity as a result of regularization. However, regulariza-
tion decreases with increases in data size which makes it less useful in practice, espe-
cially since data sizes continue to grow. Parallel SGD improves upon this by combining
the benefits of low network communication of model averaging and that of online learn-
ing [12, 16].

In practice, Parallel SGD is a Data Parallel method and is implemented as such. There
are two different types of computers (or nodes) used in this optimizer, a parameter
server and a worker node. The parameter server is where the Deep Learning model is
defined, where the aggregation from the worker nodes occurs and is responsible for
communicating the Deep Learning model and training data to the worker nodes. The
worker nodes are responsible for training the model on the training data, communicat-
ing the changes to the model back to the parameter server and perform the bulk of the
computations throughout the training process. A strict implementation of Parallel SGD

Page 6 of 23Kennedy et al. J Big Data (2019) 6:16

uses the SGD optimizer for the localized training. Our implementation uses HPCC sys-
tems to handle which computer is the parameter server and which computers are the
worker nodes, as well as the communication between them. Specifically, the entire train-
ing data is divided into N parts, where N is the number or worker nodes in the cluster,
and each part is sent to only one worker node. A single neural network model is then
defined and copied to each of the nodes. Importantly, each worker node has a subset of
the training data and each has an identical copy of the model. Then each of the worker
nodes trains its model on its subset of the training data. This paper uses a mini-batch
SGD for the localized training which is an efficient and popular derivative of SGD.

Once all workers are done with their training process, all nodes transmit, to the
parameter server, the new model they just trained. Since, training a neural network
model modifies just the weights between nodes, it is only the weight changes that are
sent to the parameter server. Specifically, each node’s weight updates are divided by the
number of nodes, see Algorithm 3. Since the weights are aggregated only after all nodes
processed their subset of the training data, the communication cost is constant and is
kept to a minimum. The result is a new neural network model (incrementally trained)
that is then redistributed to the worker nodes and the process then repeats itself for the
desired number of iterations, called epochs. It is important to note that this aggregation
and redistribution of the model is how this implementation utilized multiple computers
to train a single neural network model in a coordinated way as well as how this imple-
mentation is a synchronous one . The time required to train is only dependent on the
size of the data and the number of epochs selected for training which makes this an ideal
method for systems with communication bottlenecks, such as in cluster computing.

HPCC systems

HPCC systems is an open source software platform developed in 2000, and currently in
use and maintained by LexisNexis, as a solution for data-intensive computing. HPCC is
an integrated system environment that excels at extract, transform, load (ETL) opera-
tions, complex analytics, and provides efficient querying of large datasets by a large
number of uses with its own data-centric parallel processing language called ECL [6].
It combines the benefits of MapReduce or Hadoop, its high-level languages, and other
additions such as HBase and Hive. The system is comprised of newly developed system

Page 7 of 23Kennedy et al. J Big Data (2019) 6:16

software and middleware components that are layered on top of the Linux operating sys-
tem, also open source. This combination provides an execution environment and distrib-
uted file system that is required by data-intensive computing.

Data-intensive computing is defined as software applications that are limited by I/O
(input and output) or applications that need to process large amounts of data [17, 18].
These types of applications spend a large percentage of time processing and moving
around data; in this case, between nodes in a cluster. A distributed implementation of
neural network training would fall under this definition as it needs to both move around
data between nodes and process large data. HPCC systems was developed to be a data-
intensive computing system. It collocates the data and programs, on each node, to
reduce the movement of the data which increases performance and parallelism [6, 18]. It
uses a high-level language abstraction (ECL) to make the system machine independent
which allows for deployment on different types of systems [19]. As a result, the underly-
ing hardware on which an HPCC system is deployed can be scaled linearly as the data
and processing requirements grow [6]. HPCC is designed to run on commodity comput-
ing3 clusters (cluster computer) with each node running a Linux operating system. A
cluster computer is a group of individual computers, each connected via a network. This
is in contrast to a supercomputer which for the purposes of this paper is a system with
multiple processing units using specialized hardware to allow for random-access mem-
ory (RAM) memory to be shared. A benefit to the cluster computer is it is relatively easy
to add another computer to the system. In a super computer, low-level hardware consid-
erations are needed for adding another computational unit, whereas a cluster computer
simply needs another node added to the cluster network. It could prove difficult in some
cluster systems to integrate the additional node, but HPCC systems makes it trivial to
add another node to the system, provided it is network reachable. This is especially easy
and advantageous when using cloud computing, such as Amazon Web Services (AWS)
or Microsoft Azure. An additional computer instance simply needs to be created and
turned on [20–22] and HPCC easily adds it to the cluster.

The HPCC systems platform excels at both ETL tasks and analytics using its own pro-
gramming language, ECL. ETL operations are used to read data from external sources,
cleaning and pre-processing the data so it is in a consistent format for use in a system,
and loading that data into the internal database [6]. ECL adheres to the Dataflow para-
digm and similar to many other approaches, HPCC is designed to use a cluster of com-
modity computers. HPCC systems consists of two cluster types, a rapid data delivery
system known as Roxie, and a data refinery known as Thor. Roxie [6] is used for high
throughput delivery of data that is prepared by Thor and is out of scope of this paper.

The Thor cluster [6] uses a master/slave design with a single master Thor process and
multiple slave Thor processes. HPCC systems is designed to run a cluster of Linux based
computers which can be configured to have either single Thor processes per physical
node, or multiple Thor processes per physical node and can scale to thousands of pro-
cesses across thousands of physical nodes4, as seen in Fig. 1. A Thor cluster uses its own

3  Commodity computing is defined as a cluster computing system comprised of individual, relatively cheap and easy to
obtain computers connected with standard networking protocols.
4  For the purpose of this paper, the configured system has one Thor process per physical node and the term node is used
interchangeably with the term process and worker.

Page 8 of 23Kennedy et al. J Big Data (2019) 6:16

distributed file system (DFS). It can include data from many different types of sources
and different formats such as, CSV, XML, numeric, strings, and even Binary Large
Object (BLOB). The data is in a record format which is different than the block type
found in a MapReduce based system. A dataset consists of multiple records, each of
which can be different value types and can be variable in length as well as having nested
records. When a dataset is uploaded to a Thor cluster, it is split across all of its pro-
cesses no matter how big the data. HPCC systems automatically handles exactly how the
data is partitioned without user input, meaning it will do its best to keep the distribu-
tion, of the data partition sizes, across all nodes the same; i.e. a 400-node system would
have the dataset distributed across all nodes into 400 equal or nearly equal parts. It uses
the nodes’ operating system for physical file storage and does not separate individual
records. The master Thor node is responsible for monitoring each slave’s processes, han-
dles the network I/O for distributing data and distributes ECL code (which is compiled
into C++ for execution) to each slave node for execution.

ECL language

HPCC systems uses its own programming language called ECL [6]. ECL is an implic-
itly parallel declarative language that compiles into C++ and is based on the Dataflow
model. As with all declarative languages, execution is not determined by the order of the
statements, but rather the sequence of operations on the data defined by the Dataflow, as
described in previous sections. The high-level nature of the language lends itself to high
reusability and extensibility and enables users to efficiently generate complex runtimes.
HPCC systems includes an Integrated Development Environment (IDE) for ECL and an
optimized compiler that compiles ECL into C++, optimized for distributed parallelism
across the Thor nodes. As a result, ECL is easily extended by any standard C++ libraries
or .DLL’s.

ECL has extensive capabilities for data management, filtering, transformation,
and has built in functions that facilitate user defined transformations functions
that transform records. Some of the built-in functions include: PROJECT, ITER-
ATE, ROLLUP, JOIN, COMBINE, FETCH, NORMALIZE, DENORMALIZE, and
PROCESS. In addition, users can embed C++ code directly in line with ECL. Users

Fig. 1  Visualization of an example HPCC systems cluster

Page 9 of 23Kennedy et al. J Big Data (2019) 6:16

are also able to embed other languages, through HPCC plugins, such as R, JavaS-
cript, and Python, and any of their available libraries. This paper’s main contribu-
tions rely on the combination of ECL and parallel embeddings of other languages
and libraries. The Thor cluster allows for these ECL capabilities to function on all
of the records distributed across the system or to function on each data partition on
each node locally. This is either explicitly defined by the user or implicitly defined
by which function is used. This differentiates HPCC from MapReduce where in a
MapReduce setting each operation is done locally only. For example, a local sort in
HPCC would sort the records on each node individually, without regard to other
parts of the dataset on other nodes, a global sort would be performed on the entire
distributed dataset and HPCC systems handles all the data transfers between the
nodes to accomplish the sort.

TensorFlow

TensorFlow is an open source programming library created by Google [23]. Like
ECL, TensorFlow implements the dataflow model that represents programs as
directed graphs. Fundamentally, TensorFlow is a symbolic math library that is pri-
marily used for building and training artificial neural networks. It is not only used
for development and training of neural network models but also the deployment of
the models for practical use.

The Google Brain team created TensorFlow to solve their need for very large-scale
models. Its predecessor is DistBelief [1], a software library used for training neu-
ral networks internally at Google. DistBelief was designed for large scale distributed
training of neural networks which had two algorithms that were asynchronous in
nature and were well suited for a shared memory system. DistBelief, and now Ten-
sorFlow, has been used at Google for a wide range of research problems such as
unsupervised learning, language representation, image recognition, speech recog-
nition, models for playing Go [24], and reinforcement learning among others [25–
30]. They have deployed models for practical use in widely used Google products
like YouTube, Google Maps, and others [23]. TensorFlow is the second generation
machine learning library and it improved upon DistBelief by being more flexible,
more performant, and being able to train a wider gamut of models all while being
used on heterogeneous systems. TensorFlow is not only the standard machine learn-
ing library in use at Google, it is also one of the most popular Deep Learning librar-
ies in the community [31]. Thus, it is the machine learning library used in our work.

TensorFlow is a Python library, written in Python and C, and can be imported and
used as any other Python library. A TensorFlow example is provided below for com-
pleteness. This TensorFlow logic defines a Multi-Layer Perceptron (MLP) [32] used
for classifying the MNIST dataset.

Page 10 of 23Kennedy et al. J Big Data (2019) 6:16

Implementation

The coding contribution of this paper is twofold. First are the contributions writ-
ten in Python and second are the ECL contributions that follow a parallelism para-
digm, in this case, Data Parallelism. When HPCC distributes the data to a worker
node, that data is then processed by the embedded Python code. However, initially
the data is formatted for HPCC systems in an ECL Record, detailed in “ECL lan-
guage” section. In order for the Python code to process it, there needs to be a set of
functions that interprets between the ECL Record and the python data types (in the
embedded Python code) and vice versa. Similarly, since HPCC handles the commu-
nication between the nodes, the neural network model itself needs to be interpreted
between the embedded Python code and ECL. Additionally, any function parameters
and any meta-data that needs to be passed between nodes also needs to be handled
by a Python-ECL interpreter. We created, along with the ECL counterparts, various
functions to handle these interpretations.

Page 11 of 23Kennedy et al. J Big Data (2019) 6:16

Python

At the beginning of the training processes a neural network needs to be created. We use
Python libraries Keras and TensorFlow to define our neural network architecture, create
our loss functions, and to train the models. Our implementation is designed to be flex-
ible and extensible and can support any architecture supported by either TensorFlow
or Keras. This includes neural networks with various types of dropout layers, fully con-
nected layers, and convolutional layers that would be used to design a neural network
architecture. Once a neural network architecture is decided upon, it needs to be rep-
resented in code along with the desired optimizer and loss functions. Defining an MLP
[32–34] in Keras is shown below. It is important to note the difference between defining
a model in Keras and in TensorFlow, with the former being considerably fewer lines of
code and consequently, quicker.

Once the neural network has been defined, it needs to be trained. Following a Par-
allel SGD approach, the initialized model needs to be distributed to each worker node
along with its partition of training data. The embedded Python code, that runs on each
node, accepts as parameters the training data5, model, and meta-data. At the start of
the training process, the neural network model will be initialized with random weights.
After each iteration of the training process (called epochs), the model becomes further
trained. The first interpreter enables the embedded Python code to receive the training
data. The training data is stored locally on each node, after being distributed by HPCC,
in an ECL Record format with at least one attribute that corresponds to the y value and
some arbitrary number of values that corresponds to the x value, or the features which
to learn from. Recall that the y value is the variable, or category, that the model is trying
to learn. For example, if the model is being trained on images of hand written digits, the
y value would be the numeric digit that is visually represented by the image and the x
value would be the image in some encoded format. In the case of MNIST (hand written
digits database [35]) it is the individual grey scale pixel values represented as an integer
between 0 and 255. The interpreter then takes the data passed in by the HPCC Python
plugin and converts it into a usable format for training using Keras functions. The final
step is to then locally cache this data to disk using the highly optimized HDF5 format
[36]. Using this specialized file format to cache data between epochs drastically reduced
increased performance between epochs.

5  The first iteration receives the training data, and every iteration after that uses a locally cached partition of data.

Page 12 of 23Kennedy et al. J Big Data (2019) 6:16

On each worker, as seen in Example 3, the model needs to be defined identically to
other workers, then the weights need to be set. The weights will be either the initial-
ized weights, or weights of the partially trained model. In the case of Parallel SGD,
all workers start with the same weights. The weights are then returned after training
as shown in the last line.

Once the data is in a format consumable by Keras, the model training can start. In
Keras, the process of training the neural network is very flexible. Various optimizer
settings, such as batch size, number of epochs, logging, among others, are passed
into the Keras function by the meta-data handler. The implementation of this han-
dler was designed to be flexible and extensible to be able to handle a wide variety of
model types and training scenarios. The Keras function then starts the TensorFlow
training on the TensorFlow model created by the Keras Application Programming
Interface (API). After the training process, Keras is used to get the model weight
updates from the newly trained model. The workers return the updated model
weights in the same format as it received it, so it can run in a recursive fashion.

At this point, all nodes have completed training and the weights need to be aggre-
gated. The way the weights are aggregated is dependent on which parallelization
scheme the user defines. The scheme can have the model recursively trained for a
number of more epochs, or its performance can be evaluated on unseen test data. To
properly evaluate a model, it must be used to make predictions on unseen test data.
Unseen test data is simply data that has not been directly used in training the model.
A performance metric, depending on the nature of the model, is used to show how
well the neural network can generalize. The evaluation simply predicts a class based
on the features in the test data and compares them against the ground truth of that
data point. Consequently, since this is essentially using the model, at this point the
model can easily be saved to disk for later deployment and consumption by HPCC
systems.

Page 13 of 23Kennedy et al. J Big Data (2019) 6:16

ECL

Our implementation uses ECL code to partition and distribute the training data to each
node, the distribution of the embedded Python code, the execution of the Python code
on each node, and the communication of the model between the nodes.6 As discussed
previously, there needs to be an ECL-Pyembed handler to bridge the gap between
the two different languages. Thus far, we have only discussed the Python side of the
implementation.

We employ the data parallel paradigm for distributed neural network training. The
entire dataset is partitioned into smaller sets and is distributed to each node. The num-
ber of partitions is dependent on two factors, an individual node’s memory and the
number of nodes in the system. The dataset is first divided by the number of nodes
so that each of the N nodes gets 1/N of the data. If this 1/N of the whole dataset can
fit into memory, only N partitions are created. If the underlying hardware results in a
memory constraint, further partitions are created on each node. For example, if we have
a 10 node cluster, dataset with 100,000 rows, and each node can only fit 5000 rows in
memory, there will be 20 data partitions where each node gets 2 of the partitions. This
partitioning is done dynamically and provides flexibility when choosing datasets, train-
ing tasks, and hardware. Each partition, or partitions, is then communicated from the
master node to the slave nodes, adhering to Data Parallelism.

Along with the data partitions, ECL transmits the pyembed code to each node for pro-
cessing. Once the pyembed code processes its partition, or multiple partitions if mem-
ory is limited, the neural network updates are aggregated from the workers to the master
node, in the form of an ECL record. Sample ECL code is detailed below. It is important
to note that the following code is written only once, and HPCC distributes the code as
needed to any necessary Thor nodes.

6  HPCC systems provides a facility, named pyembed, that allows for the use of embedded Python code.

Page 14 of 23Kennedy et al. J Big Data (2019) 6:16

Example 5 denotes an ECL record type definition. A record of this type would have
some number of rows, for each image in the database, each with two attributes: a one
byte integer representing the image class, and a block of hexadecimals 784 bytes long,
representing each of the 784 grey-scale pixels in the 28 × 28 MNIST image.

Example 6 illustrates how ECL can be used to distribute and partition the data and
pyembed code from the Thor master node to the Thor slave nodes. The first lines define
an ECL dataset from the MNIST file and distributes it across the nodes. Remember that
ECL is a declarative language, not an imperative language, so the actual distribution of
the data might not happen at this particular point. The next group of code partitions the
dataset into N partitions, where N is the number of nodes. The last group of code parti-
tions the data into groups of M, where M is chosen by the programmer to avoid memory
constraints.

Example 7 takes the actions denoted in Examples 5 and 6, and performs the distri-
bution and aggregation as outlined by the Data Parallelism paradigm. It can be read as
ROLLUP executes runPy locally, on each node in the cluster, and waits to receive weight
updates from all of the nodes before populating weightUpdates (which is an ECL record
type). weightUpdates would then be further processed according to the parallel optimi-
zation scheme.

Results and discussion
Medicare Part B dataset

The dataset used in our case studies is a Medicare Part B fraud dataset. It consists of
Medicare Part B claims and is used for finding fraudulent physicians. Medicare Part B is
a U.S. government program that was created to cover some costs associated with medi-
cal procedures, primarily for people age 65 years and older. The dataset is a labeled data-
set containing Medicare claims each identified as a fraudulent Medicare claim (by the
physician) or not. In general, the claims process is as follows. A physician will perform
one or more medical procedures on a patient and the physician then submits a claim to
Medicare, rather than directly to the patient, for payment. Additional information can

Page 15 of 23Kennedy et al. J Big Data (2019) 6:16

be found in [37–39]. The original data was released by the Centers for Medicare and
Medicaid Services [40] as a result of a new policy by the U.S. Department of Health and
Human Services [41] in an attempt to identify Medicare fraud, waste, and abuse. While
the original 2015 Medicare Part B data is publicly available, it has been reworked to a
high degree by members of our research group, see Bauder et al. [42, 43]. Thus, the data-
set used in this paper’s experiments is proprietary in nature. It consists of over 3.3 mil-
lion records each with 29 attributes that are then one-hot encoded for use in our neural
networks. There are 15 attributes that correlate to the physicians themselves, such as ID
number, name, gender, state, and what type of physician they are. In addition, there are
14 more attributes that correlate to the claim’s procedure, such as where the procedure
was performed, medical procedure codes, and different statistical metrics for the Medi-
care payments. These include, average of the charges that the provider submitted for the
service, standard deviation of the Medicare payment amount (the difference from the
average cost of this procedure), and others [44].

Each record is roughly 850 bytes long in memory, making this a 2.8 gigabyte file. The
dataset is then divided into several different size datasets for experimental validation.
For example, one of the derived datasets has a 1:1 class ratio imbalance. This equates
to roughly 2240 records with a total of roughly 2 megabytes in memory. This is done
to generate multiple different datasets of varying size to measure the implementation’s
scalability, measured in training time, with respect to dataset size and cluster size. A suf-
ficiently large dataset is required to see training time reductions due to the increased
communication cost of large clusters. The actual size in bytes to be considered “suffi-
cient” is dependant on the cluster’s underlying hardware. Class imbalance has been
shown to present unique challenges and negative effects to model performance [45–48].

Random under‑sampling (RUS)

The datasets used in this paper’s results are derived from the Medicare Part B dataset,
see “Medicare part B dataset” section. We created 10 different size datasets by perform-
ing random under-sampling (RUS) on the entire Medicare Part B dataset. In this dataset,
there are roughly 1400 instances belonging to the minority class, and the rest belong to
the majority class. During RUS, a random selection of the majority class is combined
with the entire majority class to create a new dataset with a specified class imbalance
ratio. For example, if the desired class ratio is 1:1, all of the minority class is combined
with a random 1400 instances from the majority class, to produce a dataset total of 2800
instances (1400 minority and 1400 majority). Importantly, during RUS, the distribution
of all other attributes is maintained between the original and the newly RUS-created
dataset, with respect to the majority class. The minority class is not modified during this
procedure. The random under-sampling technique has been shown to improve model
classification performance, as compared to training on the entire dataset without RUS
[47, 49].

Training time scalability

In this case study, we seek to observe how the training time scales with respect to data
size and cluster size. We conduct 50 different experiments of varying data sizes on dif-
ferent sized clusters each with 20 trials for statistical analysis. For each experiment, and

Page 16 of 23Kennedy et al. J Big Data (2019) 6:16

on each cluster size, we train an identical MLP model on increasing dataset sizes and
compare the training time of each. As the dataset size increases, we expect to have the
training time increase. Additionally, we expect to see an inverse relationship between
training time and cluster size.

In addition to any limitations of the individual algorithms, systems, or frameworks,
the combination poses the possibility of introducing additional limitations. One such
limitation is with memory size. Since the training computations are being executed by
a Python interpreter, controlled by HPCC, and the code itself is run through the pyem-
bed, there exists additional memory constraints when training a model as compared to
training outside of the HPCC environment. This was considered in the implementa-
tion, and a setting is provided to the user that would be dependent on the underlying
hardware, neural network being trained, and the data, to overcome the systems short-
comings. Additionally, this adds to the robustness of the implementation since it can
easily be adapted to different hardware, different data sizes, and different neural network
architectures. However, due to these limitations, we expect our implementation to slow
with increases in data sizes up until a node’s partition of data is too large for the pyem-
bed memory allocation.

We use the Medicare Part B dataset with Random Undersampling (RUS) to generate
our different dataset sizes. First, the whole dataset is divided into two partitions with
80% for training and 20% for testing. RUS is performed on the training partition to gen-
erate the training datasets of varying sizes. Each experiment uses the same testing data-
set size with an even class ratio (e.g. 1:1 ratio). A RUS ratio is used and is in the form
of Minority class to Majority class. Each generated dataset uses the same number of
instances from the minority class (1120 instances). For example, the dataset 1:25 would
have 1120 minority instances and 28,000 majority instances (1120 * 25 = 28,000) for a
total dataset size of 29,120. Our generated datasets used in this study range from 1:1
(2240 total instances) to 1:2000 (2,241,120 total instances).

In Fig. 2, it can be observed that both the training data size and number of nodes have
a large impact on the training time. For a given cluster size, the training time increases
with data size. Inversely, for a given dataset size, training time decreases as cluster size
increases. Our implementation allows the user to reduce the necessary training time of a
model by simply adding nodes to the system. However, it does follow Amdahl’s Law7 [50]
in that there is diminishing returns in training time as nodes are added to the cluster. So
the benefits of additional nodes would only be realized with sufficient increases in data
size. Specifically, a larger cluster should not be slower than a smaller one with enough
data.

Consider the scenario where there is either a small training data size or it is not suf-
ficiently large for a certain number of nodes. Additional nodes will in fact increase
training time by a constant. Figure 3 illustrates this. Looking at the smallest dataset
size, clusters with 8 and 16 nodes are orders of magnitude slower than the other clus-
ter sizes. Interestingly, their training time is constant for several of the smaller data
sizes. The dataset size that is large enough to increase training time, for a given node

7  Amdahl’s Law is a formula that defines the maximum theoretical speedup in execution of a fixed task with increases in
performance of the computer.

Page 17 of 23Kennedy et al. J Big Data (2019) 6:16

count, is the same size at which we start to see a benefit of using a cluster of that
size. This very clearly shows the situation when the constant communication cost out-
weighs the benefits of the increased processing power, see “Parallelization strategies”
section. It is important to note the X scale of Fig. 3 is logarithmic. This provides a sec-
ond perspective on the results, as well as clearly illustrates the constant communica-
tion overhead for each increase in cluster size.

It is interesting to note the difference between the training time vs. cluster size
curve between the datasets with 1:2000 and 1:1500 class ratio. Figure 3 illustrates that
there is very little, if any, difference between the two training time curves. Comparing
any other two sequential datasets (i.e. any two datasets that are closest in size) there is

0

2000

4000

6000

150010005000

Training Dataset Size (thousands)

Tr
ai

ni
ng

 T
im

e
(s

ec
on

ds
)

of Nodes
1
2
4
8
16

Training Time Comparison

Fig. 2  Visualization of training time with respect to training data size in thousands. Each line represents
results from a cluster with N number of nodes. Note that the X and Y scale are linear

64

512

4096

4 32 256 2048
Training Dataset Size (thousands)

Tr
ai

ni
ng

 T
im

e
(s

ec
on

ds
)

of Nodes
1
2
4
8
16

Training Time Comparison

Fig. 3  Visualization of training time with respect to training data size in thousands. Each line represents
results from a cluster with N number of nodes. Note that the X and Y scale are logarithmic, and clearly shows
the constant overhead of the larger clusters on small datasets

Page 18 of 23Kennedy et al. J Big Data (2019) 6:16

a significant change in training time when the training size is increased. This is due to
the relationship between the physical hardware specifications and the size of the data-
set on disk in this paper. Recall that the implementation allows for larger than mem-
ory datasets to be trained. To accomplish this, the dataset is partitioned into smaller
segments and sequentially trained on by a given node. The small percentage differ-
ence between the 1:1500 dataset and the 1:2000, as compared to the percentage dif-
ferences between other pairs, combined with the fact that on every experiment, those
two datasets ended up being on the same size partitions are why their training time
curves are so similar. Additionally, the increased communication time, with increased
cluster size, can be observed by the upward sloping line segments correlating to the
smaller dataset sizes, see Fig. 3. Only after a certain size will the time curve continu-
ally slope downward; in this figure, the dataset with 1:500 class imbalance.

Statistical analysis

We grouped the experiments into three distinct groups. The first group presents a data-
set with a 1:1 class ratio. This group shows how the implementation performs on a small
dataset. The second group presents the datasets with 1:5 and 1:10 class ratios. These two
datasets are grouped since they are the smallest datasets in which the addition of worker
nodes proves beneficial. The final group presents the datasets with 1:25, 1:50, 1:100,
1:500, 1:1000, 1:1500, and 1:2000 class ratios. These are grouped because each succes-
sive dataset has the same trend of reduced communication costs and increased utility
of additional nodes as the previous one. The trends are presented in a series of box plots
in Additional file 1: Figures 6 and 7. We use Analysis of Variance (ANOVA) [51] and
Tukey’s Honestly Significant Difference (HSD) tests [52] to determine if dataset size and
number of training nodes in the cluster significantly impact model training time [53]. All
of the experiments are included in the ANOVA tables and HSD tables. In the fist subsec-
tion, “Dataset 1:1 class ratio analysis”, we include the ANOVA and HSD tables inline. For
the remainder of this paper, all remaining ANOVA and HSD tables are found in Addi-
tional file 1.

Dataset 1:1 class ratio analysis

First, we examine the case where the dataset has a 1:1 class ratio, the smallest size used
in our paper. This dataset has 1120 majority records and 1120 minority records. We dis-
cussed previously that a dataset needs to be sufficiently large to benefit from more nodes
and can even run slower if there are too many parallel nodes. In our case study, clusters
with 1, 2, and 4 worker nodes all have statistically similar training times for the dataset
1:1. We plot the results of training time vs node count in a box plot format (such as in
Fig. 4). Each box depicts the 20 trials for each experiment. Outliers are denoted by single
points, and the box itself denotes the mean, median, and 25th and 75th percentiles. The
box plot is testing for the significance of the number of nodes in a cluster with respect
to training time of a given model trained on a given dataset. Boxes that are similar in Y
values denote no significant difference in training time between those two cluster sizes.
Boxes that have different Y values, have significant difference in training time between
those two cluster sizes. The results are illustrated here, and are numerically analyzed
below.

Page 19 of 23Kennedy et al. J Big Data (2019) 6:16

As shown in Fig. 4, the cluster with 8 nodes is statistically and significantly slower than
the smaller clusters, and the 16 node cluster is slower still. The results are tested with an
ANOVA and are presented in Table 1 showing that the number of nodes has a significant
effect on training time. In addition to the ANOVA values, we present the Tukey’s Hon-
estly Significant Difference test (HSD) [52] to compare and rank the factors. Tables 1 and
2 show that our assumptions from the visualizations in Figs. 3 and 4 are valid.

21

32

42

53

64

75

1 2 4 8 16
Node Count

Tr
ai

ni
ng

 T
im

e
(s

)

Dataset: 1:1
Time vs. Node Count

Fig. 4  Depicts a box plot comparing the training time vs. node count for the dataset size 1:1

Table 1  ANOVA Table showing the number of nodes in a cluster is a statistically significant
factor regarding training time training time on the 1:1 dataset size

Df Sum Sq Mean Sq F value Pr
(> F)

Nodes 4 35,419.46 8854.87 3968.24 0.0000

Residuals 95 211.99 2.23

Table 2  Tukey’s HSD test with groupings

The slowest is the 16 node cluster, second slowest is the 8 node cluster, and all clusters in group “C” have no difference in
training time

Training time vs. # nodes, 1:1

Training time Groups

16 71.06 a

8 36.74 b

1 22.82 c

4 22.78 c

2 21.98 c

Page 20 of 23Kennedy et al. J Big Data (2019) 6:16

Datasets: 1:5 and 1:10 class ratio analysis

Next, we examine the case where the dataset size is 1:5 and 1:10, the next smallest data
sizes. Recall that the 1:5 dataset is 6720 records long and the 1:10 is 12,320 records long,
both relatively small training set sizes. However, the results show that these are the first
sufficiently large datasets to benefit from an increase in nodes. Additional file 1: Figure 5
shows a drop in training time when comparing a 1 node cluster to a 2 node cluster, for
the 1:5 dataset (a) and the 1:10 (b) dataset, respectively. Similar to the previous dataset
size, 1:1, the clusters with larger numbers of nodes are showing a significant increase
in training time due to the communication costs. Additional file 1: Tables 3 (1:5) and 5
(1:10) again show the number of nodes is a significant factor in training time. Additional
file 1: Tables 4 and 6 show a single node cluster or clusters with 16 or 8 nodes take sig-
nificantly longer to train on both the 1:5 dataset and the 1:10 dataset. In this case, the 4
node and 2 node clusters perform similarly, for each dataset. Thus, training times would
be sped up by adding nodes, with similar results, for both datasets.

Datasets: 1:25, 1:50, 1:100, 1:500, 1:1000, 1:1500, and 1:2000 class ratio analysis

Next, we examine the rest of the datasets (1:25, 50, 100, 500, 1000, 1500, 2000), rang-
ing from a size of 29,120 records to a size of 2,241,120 records. The previous trend of
increasing utility per additional node as the dataset grows, continues with these larger
datasets. Additional file 1: Figures 6(a) and (b) for datasets 1:25 and 1:50 show that the
larger clusters sizes’ utility are steadily increasing, though still negative (i.e. larger clus-
ters are slower). Referring to Additional file 1: Table 10 and Figure 6(b), a dataset of at
least 57,120 is needed before an 8-node system is worth considering. Though training
time for an 8-node and a 4-node cluster are grouped together, indicating they train in
the same amount of time, any larger dataset than this would train significantly faster
with a cluster of at least 8 nodes, see Additional file 1: Tables 12 and 14. Finally, it can
be observed from Additional file 1: Table 16 and Figure 7(a) that a training dataset of
1,121,120, or greater is sufficiently large to warrant the use of a cluster with at least 16
nodes.

Conclusion
Training state-of-the-art neural networks require very large datasets and large amounts
of computing power. As the dataset sizes increase and deep neural networks grow in
complexity, so too do the computational and memory demands. One approach to solve
this is to train a model across multiple computers in a distributed and parallel fashion. By
dividing up the required computations across a cluster of computers, the overall training
time can be reduced. We implemented Parallel SGD on HPCC systems to achieve this.
We combined the popular neural network training library TensorFlow with the powerful
distributed cluster system, HPCC, to achieve a synchronous data parallel SGD method
for training neural networks.

We examined how our proposed implementation reduces the required training
time for a neural network with respect to dataset size and cluster size. We show the
training time with respect to each additional node in a cluster is dependent on both
its addition of computational power and its addition of communication overhead.
Thus, the training time is highly dependent on both the data size and cluster size. We

Page 21 of 23Kennedy et al. J Big Data (2019) 6:16

presented the balance between cluster size and dataset size to minimize the training
time using Medicare Part B data that clearly illustrated sufficiently larger datasets are
required for increases in cluster size. The implementation is effective across a wide
range of dataset sizes and is capable of scaling across several cluster sizes. However,
since the implementation is highly dependent on the underlying cluster hardware, the
size of the cluster must be carefully decided based upon the size of the training data
to achieve optimal training time reductions.

The implementation presented in this paper provides the basis for future research
and development of distributed parallel neural network training on HPCC systems.
Our implementation is currently a synchronous, data parallel method. Additionally,
our results are validated using one type of neural network architecture and data from
one domain. One possible avenue of future work is to research, design and implement
a Model Parallel method of distributed training on HPCC systems. Model Parallel
methods are advantageous when the model architectures become huge, specifically,
when it is larger than the memory resources of individual computational nodes. Sec-
ond, a combination of Model and Data parallelism, a hybrid approach that uses dif-
ferent paradigms during specific training phases, would benefit HPCC systems by
allowing it to train both very large models on very large datasets on commodity hard-
ware. Lastly, implementation of complementary Data Parallel optimizers on HPCC
systems would be worthwhile, specifically, implementation of various asynchronous
optimizers. Though these methods present new complexities, such as stale param-
eters and an increased communication overhead, implementations of asynchronous
and synchronous optimizers on HPCC systems would provide larger opportunities
for future research in Deep Learning.

Additional file

Additional file 1. Additional figures and tables.

Abbreviations
API: Application programming interface; BLOB: Binary large object; CPU: central processing unit; ECL: Enterprise Control
Language; ETL: extract, transform, load; GPU: graphics processing unit; HPCC: high-performance computing cluster;
IDE: integrated development environment; MLP: multi-layer perceptron; RAM: random-access memory; SGD: stochastic
gradient descent.

Authors’ contributions
RKLK carried out the conception and design of the research, performed the implementation, performed the evaluation
and validation and drafted the manuscript. TMK, FV, and TH provided reviews on the manuscript. TH provided expert
advice on ECL and deployment of HPCC systems. All authors read and approved the final manuscript.

Author details
1 Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA. 2 LexisNexis Business Information Solutions, 245
Peachtree Center Avenue, Atlanta, GA 30303, USA.

Acknowledgements
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Not applicable.

https://doi.org/10.1186/s40537-019-0179-2

Page 22 of 23Kennedy et al. J Big Data (2019) 6:16

Funding
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 3 December 2018 Accepted: 28 January 2019

References
	1.	 Dean J, Corrado GS, Monga R, Chen K, Devin M, Le QV, Mao MZ, Ranzato M, Senior A, Tucker P, Yang K, Ng AY. Large

scale distributed deep networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, editors. Advances in neural
information processing systems 25. Curran Associates, Inc.; 2012. p. 1223–31. http://paper​s.nips.cc/paper​/4687-large​
-scale​-distr​ibute​d-deep-netwo​rks.pdf.

	2.	 Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition; 2014. arXiv preprint.
arXiv​:1409.1556.

	3.	 Coates A, Huval B, Wang T, Wu D, Catanzaro B, Andrew N. Deep learning with cots hpc systems. In: International
conference on machine learning; 2013. p. 1337–45.

	4.	 Najafabadi MM, Khoshgoftaar TM, Villanustre F, Holt J. Large-scale distributed l-bfgs. J Big Data. 2017;4(1):22. https​://
doi.org/10.1186/s4053​7-017-0084-5.

	5.	 Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic E. Deep learning applications and
challenges in big data analytics. J Big Data. 2015;2(1):1. https​://doi.org/10.1186/s4053​7-014-0007-7.

	6.	 Middleton AM, Chala A. Hpcc systems: introduction to hpcc (high-performance computing cluster). White paper,
LexisNexis Risk Solutions; 2011. http://cdn.hpccs​ystem​s.com/white​paper​s/wp_intro​ducti​on_HPCC.pdf.

	7.	 Nordstrom T, Svensson B. Using and designing massively parallel computers for artificial neural networks. J Parallel
Distrib Comput. 1992;14(3):260–85.

	8.	 Pethick M, Liddle M, Werstein P, Huang Z. Parallelization of a backpropagation neural network on a cluster computer.
In: International conference on parallel and distributed computing and systems (PDCS 2003); 2003.

	9.	 Zhang X, Mckenna M, Mesirov JP, Waltz DL. An efficient implementation of the back-propagation algorithm on the
connection machine cm-2. In: Advances in neural information processing systems; 1990. p. 801–9.

	10.	 Le QV, Ngiam J, Coates A, Lahiri A, Prochnow B, Ng AY. On optimization methods for deep learning. In: Proceedings
of the 28th international conference on international conference on machine learning. Madison: Omnipress; 2011.
p. 265–72.

	11.	 Saad D. Online algorithms and stochastic approximations. Online Learning; 1998. p. 5.
	12.	 Zinkevich M, Weimer M, Li L, Smola AJ. Parallelized stochastic gradient descent. In: Advances in neural information

processing systems; 2010. p. 2595–603.
	13.	 Zhang S, Choromanska AE, LeCun Y. Deep learning with elastic averaging sgd. In: Advances in neural information

processing systems; 2015. p. 685–93.
	14.	 Serbedzija NB. Simulating artificial neural networks on parallel architectures. Computer. 1996;29(3):56–63.
	15.	 Chen J, Pan X, Monga R, Bengio S, Jozefowicz R. Revisiting distributed synchronous sgd. arXiv preprint; 2016 arXiv​

:1604.00981​.
	16.	 Murata N, Yoshizawa S, Amari S-i. Network information criterion-determining the number of hidden units for an

artificial neural network model. IEEE Trans Neural Netw. 1994;5(6):865–72.
	17.	 Johnston WE. High-speed wide area, data intensive computing: a ten year retrospective. In: Proceedings of the

seventh international symposium on high performance distributed computing (Cat. No.98TB100244), Chicago, IL,
USA, 31 July 1998. IEEE; 1998. https​://doi.org/10.1109/HPDC.1998.70998​2.

	18.	 Gorton I, Greenfield P, Szalay A, Williams R. Data-intensive computing in the 21st century. Computer.
2008;41(4):30–2.

	19.	 Bryant RE Data intensive scalable computing. Carnegie Mellon University; 2009. https​://www.cs.cmu.edu/~bryan​t/
pubdi​r/disc-overv​iew09​.pdf. Accessed 10 Aug 2008.

	20.	 Microsoft. Truly consistent hybrid cloud with microsoft azure. 2017. https​://azure​.micro​soft.com/media​handl​er/files​
/resou​rcefi​les/bf2fe​090-ec7c-4463-92e7-92501​d86dd​28/Truly​%20Con​siste​nt%20Hyb​rid%20Clo​ud%20wit​h%20Mic​
rosof​t%20Azu​re.pdf.

	21.	 Vaquero LM, Rodero-Merino L, Caceres J, Lindner M. A break in the clouds: towards a cloud definition. ACM SIG-
COMM Comput Commun Rev. 2008;39(1):50–5.

	22.	 Varia J, Mathew S. Overview of amazon web services. Amazon Web Services; 2014.
	23.	 Abadi M, Agarwal A, BarhamP, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M,Ghemawat S,

Goodfellow I, Harp A, Irving G, Isard M, Jia Y,Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R,Moore
S, Murray D, Olah C, Schuster M, Shlens J, Steiner B,Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V,Viégas F,
Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y,Zheng X. TensorFlow: large-scale machine learning on heteroge-
neousSystems. Software available from tensorflow.org; 2015 https​://www.tenso​rflow​.org/.

	24.	 Maddison CJ, Huang A, Sutskever I, Silver D. Move evaluation in go using deep convolutional neural networks. arXiv
preprint; 2014. arXiv​:1412.6564..

	25.	 Le QV. Building high-level features using large scale unsupervised learning. In: 2013 IEEE international conference
on acoustics, speech and signal processing (ICASSP). New York: IEEE; 2013. p. 8595–8.

	26.	 Frome A, Corrado GS, Shlens J, Bengio S, Dean J, Mikolov T, et al. Devise: A deep visual-semantic embedding model.
In: Advances in neural information processing systems; 2013. p. 2121–9.

http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
http://arxiv.org/abs/1409.1556
https://doi.org/10.1186/s40537-017-0084-5
https://doi.org/10.1186/s40537-017-0084-5
https://doi.org/10.1186/s40537-014-0007-7
http://cdn.hpccsystems.com/whitepapers/wp_introduction_HPCC.pdf
http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1604.00981
https://doi.org/10.1109/HPDC.1998.709982
https://www.cs.cmu.edu/~bryant/pubdir/disc-overview09.pdf
https://www.cs.cmu.edu/~bryant/pubdir/disc-overview09.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/bf2fe090-ec7c-4463-92e7-92501d86dd28/Truly%20Consistent%20Hybrid%20Cloud%20with%20Microsoft%20Azure.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/bf2fe090-ec7c-4463-92e7-92501d86dd28/Truly%20Consistent%20Hybrid%20Cloud%20with%20Microsoft%20Azure.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/bf2fe090-ec7c-4463-92e7-92501d86dd28/Truly%20Consistent%20Hybrid%20Cloud%20with%20Microsoft%20Azure.pdf
https://www.tensorflow.org/
http://arxiv.org/abs/1412.6564

Page 23 of 23Kennedy et al. J Big Data (2019) 6:16

	27.	 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with
convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 1–9.

	28.	 Zeiler MD, Ranzato M, Monga R, Mao M, Yang K, Le QV, Nguyen P, Senior A, Vanhoucke V, Dean J, et al. On rectified
linear units for speech processing. In: 2013 IEEE international conference on acoustics, speech and signal processing
(ICASSP). New York: IEEE; 2013. p. 3517–21.

	29.	 Heigold G, Vanhoucke V, Senior A, Nguyen P, Ranzato M, Devin M, Dean J. Multilingual acoustic models using
distributed deep neural networks. In: 2013 IEEE international conference on acoustics, speech and signal processing
(ICASSP). New York: IEEE; 2013. p. 8619–23.

	30.	 Hinton G, Deng L, Yu D, Dahl GE, Mohamed A-R, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath TN, et al. Deep
neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal
Process Mag. 2012;29(6):82–97.

	31.	 GitHub.com: State of the Octoverse. https​://octov​erse.githu​b.com/ Accessed 10 July 2018.
	32.	 Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol

Rev. 1958;65(6):386.
	33.	 Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature.

1986;323(6088):533.
	34.	 Yann L. Modeles connexionnistes de lapprentissage. Ph.D. thesis, Ph.D. thesis, These de Doctorat, Universite Paris 6;

1987.
	35.	 LeCun Y. The mnist database of handwritten digits; 1998 http://yann.lecun​.com/exdb/mnist​/. Accessed 1 Aug 2018.
	36.	 Group TH. Hierarchical Data Format, Version 5. http://www.hdfgr​oup.org/HDF5/. Accessed 15 July 2018.
	37.	 U.S. Government, U.S.C.f.M., Services., M. The offical U.S. Governement Site for Medicare. https​://www.medic​are.gov.

Accessed 29 Oct 2018.
	38.	 CMS. Research, statistics, data, and systems https​://www.cms.gov/resea​rch-stati​stics​-data-and-syste​ms/resea​rch-

stati​stics​-data-and-syste​ms.html. Accessed 29 Oct 2018.
	39.	 U.S. Government, U.S. Centers for Medicare and Medicaid Services. What’s Medicare? https​://www.medic​are.gov/

sign-up-chang​e-plans​/decid​e-how-to-get-medic​are/whats​-medic​are/what-is-medic​are.html. Accessed 29 Oct
2018.

	40.	 CMS. Center for medicare and medicaid services. https​://www.cms.gov/. Accessed 29 Oct 2018.
	41.	 HHS. U.S. Department of Health and Human Services. http://www.hhs.gov/. Accessed 29 Oct 2018.
	42.	 Bauder RA, Khoshgoftaar TM. A survey of medicare data processing and integration for fraud detection. In: 2018 IEEE

19th international conference on information reuse and integration (IRI). New York: IEEE; 2018. p. 9–14.
	43.	 Bauder RA, Khoshgoftaar TM. A survey of medicare data processing and integration for fraud detection. In: 2018

IEEE international conference on information reuse and integration (IRI); 2018. p. 9–14. https​://doi.org/10.1109/
IRI.2018.00010​.

	44.	 Bauder RA, Khoshgoftaar TM. Medicare fraud detection using machine learning methods. In: 2017 16th IEEE interna-
tional conference on machine learning and applications (ICMLA). New York: IEEE; 2017. p. 858–65.

	45.	 Khoshgoftaar TM, Seiffert C, Van Hulse J, Napolitano A, Folleco A. Learning with limited minority class data. In: Sixth
international conference on machine learning and applications, 2007. ICMLA 2007. New York: IEEE; 2007. p. 348–53.

	46.	 Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A. Mining data with rare events: a case study. In: Ictai. IEEE; 2007.
p. 132–9.

	47.	 Van Hulse J, Khoshgoftaar TM, Napolitano A. Experimental perspectives on learning from imbalanced data. In:
Proceedings of the 24th international conference on machine learning. New York: ACM; 2007. p. 935–42.

	48.	 Herland M, Khoshgoftaar TM, Bauder RA. Big data fraud detection using multiple medicare data sources. J Big Data.
2018;5(1):29. https​://doi.org/10.1186/s4053​7-018-0138-3.

	49.	 Prusa J, Khoshgoftaar TM, Dittman DJ, Napolitano A. Using random undersampling to alleviate class imbalance
on tweet sentiment data. In: 2015 IEEE international conference on information reuse and integration; 2015. p.
197–202. https​://doi.org/10.1109/IRI.2015.39.

	50.	 Amdahl GM. Validity of the single processor approach to achieving large scale computing capabilities. In: Proceed-
ings of the April 18-20, 1967, spring joint computer conference. New York: ACM; 1967. p. 483–485.

	51.	 Berenson M, Levine D, Goldstein M. Intermediate statistical methods and applications: a computer package
approach. Englewood Cliffs: Prentice-Hall; 1983.

	52.	 Abdi H, Williams LJ. Tukey’s honestly significant difference (hsd) test. Encyclopedia of research design. Thousand
Oaks: Sage; 2010. p. 1–5.

	53.	 Seliya N, Khoshgoftaar TM, Van Hulse J. A study on the relationships of classifier performance metrics. In: 21st inter-
national conference on tools with artificial intelligence, 2009. ICTAI’09. New York: IEEE; 2009. p. 59–66.

https://octoverse.github.com/
http://yann.lecun.com/exdb/mnist/
http://www.hdfgroup.org/HDF5/
https://www.medicare.gov
https://www.cms.gov/research-statistics-data-and-systems/research-statistics-data-and-systems.html
https://www.cms.gov/research-statistics-data-and-systems/research-statistics-data-and-systems.html
https://www.medicare.gov/sign-up-change-plans/decide-how-to-get-medicare/whats-medicare/what-is-medicare.html
https://www.medicare.gov/sign-up-change-plans/decide-how-to-get-medicare/whats-medicare/what-is-medicare.html
https://www.cms.gov/
http://www.hhs.gov/
https://doi.org/10.1109/IRI.2018.00010
https://doi.org/10.1109/IRI.2018.00010
https://doi.org/10.1186/s40537-018-0138-3
https://doi.org/10.1109/IRI.2015.39

	A parallel and distributed stochastic gradient descent implementation using commodity clusters
	Abstract
	Introduction
	Methods
	Parallelization strategies
	Data parallelism
	Synchronous data parallelism
	Parallel stochastic gradient descent
	HPCC systems
	ECL language
	TensorFlow
	Implementation
	Python
	ECL

	Results and discussion
	Medicare Part B dataset
	Random under-sampling (RUS)
	Training time scalability
	Statistical analysis
	Dataset 1:1 class ratio analysis
	Datasets: 1:5 and 1:10 class ratio analysis
	Datasets: 1:25, 1:50, 1:100, 1:500, 1:1000, 1:1500, and 1:2000 class ratio analysis

	Conclusion
	Authors’ contributions
	References

