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Introduction
The computing environment for human learning is changing rapidly, due to the emer-
gence of new information and communication technology such as big data [1] and cloud 
computing [2]. Furthermore, the learning methods are changing every day. Therefore, 
e-learning systems need to develop more techniques and tools to meet the increased 
needs of millions of learners around the world.

This article exposes a smart recommender system applied in an online learning envi-
ronment in order to be able to provide personalized courses and guide students to select 
more suitable courses. For example, emailing or sending notifications through the user 
interface of distance learning platform, to students who follow courses in a specific field 
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and recommend the suitable educational resources that are likely to be interesting for 
them. Also, learners can be guided to enroll in the latest courses in their interest areas 
based on historical data of all users over a large dataset of courses enrollments. In this 
article, we are interested in improving learning platforms through a recommender sys-
tem. Our system uses association rules for extracting more interesting relationships 
between learners’ behaviors. Indeed, it aims to find similarities between courses enroll-
ments in the transaction database. Thus, discovering association rules enables us to 
target students who learn two or more courses together, i.e. finding a list of frequent 
courses enrollments to determine those that are more likely chosen by the learners. So, 
based on the discovered patterns, we can guide students to take specific courses. The 
pedagogical team can also improve the quality of non-frequent courses or create new 
ones.

The rest of the article is organized as follows: In “Background” section, we present a 
state of the art of recommender systems for e-learning environments. In “Method” sec-
tion, we introduce the basic concepts of the association rules technique. Then we give a 
detailed description of the FP-growth algorithm. It also presents briefly the set of tech-
nologies employed in this work including spark and Hadoop. In “Conclusion” section, 
we implement the course recommender system and illustrate the experiments results of 
the historical data analysis. Then, we evaluate the performance of our solution compared 
to other machine learning tools including Weka and R. Finally, the article shows some 
monitoring tools for tracking the execution of the spark jobs.

Background
Related work

Many research works have conducted in the field of distance learning in higher educa-
tion using big data techniques and including data mining and machine learning meth-
ods. There are a lot of applications of these techniques. Particularly, recommendation 
engine which is used in several areas such as basket analysis (Amazon), social networks 
(LinkedIn, Twitter), government, education, etc. In this section we provide a brief over-
view of the previous researches regarding the development recommender based on 
machine learning models.

Mihai et al. [3] proposed the prototype of a recommender system based on associa-
tion rules for the distributed learning management system. The article uses distributed 
data mining algorithms and data obtained from Learning Management Systems (LMS) 
database in order to identify strong correlations between sets of courses followed by 
students. It also gives a brief description of the architecture and methodology of the 
course recommender system without providing an implementation of the proposed 
architecture.

Jooa et al. [4] focused on implementing a recommender system using association rules 
and collaborative filtering. The proposed system uses the distance data from the Global 
Positioning System (GPS) to recommend products that customers are likely to purchase 
based on their preferences.

Perušić Hrženjak et al. [5] applied association rules technique in learning management 
system of the Rijeka University. They use students from MudRi e-learning database, 
which is based on the Moodle open source software. Then, they apply the FP-growth 
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algorithm for finding connections between various actions. They find that students have 
better success in the course when they are using videos course. Also, they identify which 
lessons seem to have a greater connection to the final grades.

In another related work, Panigrahi et  al. [6] proposed a hybrid solution to imple-
ment recommender a system using collaborative filtering and clustering techniques like 
K-means. It is based on in-memory computation of Apache Spark as big data platform 
allowed speed up the running time to make recommendation. Next, this work aims to 
alleviate the cold start problem of traditional Collaborative Filtering by correlating the 
users to products through features.

Li et al. [7] proposed an algorithm to parallelize the frequent itemset discovery bi find-
ing hidden pattern to support query recommendation of large dataset. This algorithm 
enables to reduce computation cost by spreading calculation between cluster nodes in 
such a way that each node executes an independent set of mining tasks. They achieved 
best performance through distributing the processing using MapReduce infrastructure 
over cluster of computers.

Zhou et al. [8] implemented an alternating least squares (ALS) algorithm by utilizing 
the collaborative filtering approach for the Netflix Prize. ALS is a simple parallel algo-
rithm which aims to tackle the scalability issue with very large datasets. It used for build-
ing a large-scale movies recommender system for predicting user ratings. The results 
achieved show a performance improvement of 5.91%.

Jiahui et al. [9] developed a large-scale recommender system in order to offer person-
alized news based on past click behavior of users. Their work combines both content-
based recommendation and collaborative filtering methods to suggest most relevant 
news articles. The experiment results showed that the hybrid approach enhance the 
quality of news recommendations by attracting more readers to visit Google website 
news.

Many recommender systems for social networks have been developed using the user 
interactions and behaviors. An approach is suggested in [10] to analyze the users’ inter-
est of twitter platform. They combined sentiment analysis and classification of tweets 
by analyzing the topics discussed by the users. The implementation of their work gives 
encouraging results.

To incorporate the parallel processing and advanced analysis of machine learning 
techniques in education field, especially online learning environment, we propose a 
smart courses recommender system using association rules method and the latest big 
data technologies such as Spark and Hadoop ecosystem. Moreover, the system presented 
in this article is deployed in a distributed computing environment. It runs on a cluster 
of nodes which reduces the time spent on extracting the recommendations results. This 
approach is efficient especially when the size of the data size is very large.

Methods
Association rules [11] is an unsupervised learning method that is widely used in many 
fields including recommendation engines, retail analysis of the transaction, and click-
stream analysis across web pages [12]. It aims to discover hidden patterns in large 
amounts of data, in the form of interesting rules.
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The term Association rules is often referred to as Market Basket Analysis application. 
Because the first time used was in 1993 by Agrawal et  al. [13] in order to find useful 
relationships between items through a large database of customer transactions. Each 
transaction consists of items purchased by a customer. In order to discover all significant 
connections between items bought by a customer over a period of time not necessarily 
consist of items bought together at the same time. In general, the commendation sys-
tems consist of three principle steps; first, collect data from large transaction database; 
second, find similarities between users behavior’s, according to more frequent item set, 
and finally, recommend more suitable items for users.

Considering C = {c1, c2, c3, . . . , cn} a set of all items or courses enrollments stored in 
database and L =

{

l1, l2, l3, . . . , ln
}

 a set of learner profiles. Each learner li enrolls into 
k courses, where k is a subset of courses chosen from set of items C. In association 
rules, we define a rule as an implication of X ⇒ Y , where X, Y ⊆ C (X and Y are sets of 
courses) and X ∩ Y = ∅ , which means when course X is followed by the learner li , course 
Y is likely followed as well with a high probability. The set of attributes X is called ante-
cedent or left-hand-side (LHS) of the rule; the set of attributes Y is called consequent or 
right-hand-side (RHS) of the rule [13].

Generally, The association rules technique produce a large number of rules X ⇒ Y , 
but to select interesting rules from the set of all generated rules, there are two important 
measures to determine the quality of an association rule, the most known are minimum 
thresholds of support and confidence. The support is the percentage (%) of transactions 
in the dataset that contain the itemset X while confidence is defined as the percentage 
(%) of transactions that contain X, which also contain Y. The formal definition of the 
confidence is: conf(X ⇒ Y) =

supp(X∪Y)
supp(X)  . Therefore, a strength association rule X ⇒ Y 

should satisfy: supp(X ∪ Y) ≥ σ and conf(X ⇒ Y) ≥ δ , where σ and δ are the minimum 
support and minimum confidence, respectively.

In the context of our research, we apply association rules technique in the online 
learning. Accordingly, a transaction in our case is represented by the student’s profile. 
Similarly, items are replaced by courses followed by a given student during the learning 
process. So, we can define the support and confidence respectively as follows:

Support is the first criteria which is defined as the percentage of transactions that con-
tain X, It means, support is an indication of how frequently the itemset appears in the 
database. On the other hand, confidence is defined as the percentage (%) of transactions 
(students profiles) that follow X, which also follow Y.

Traditional FP‑growth algorithm

There are several algorithms for implementing association rules method to determine 
the most interesting relationships between variables or items in a large database, through 
finding frequent itemsets. FP-growth (frequent pattern growth) [14] is an efficient and 

(1)supp(X ⇒ Y) =
number of learners following X and Y courses

total number of learner enrollments in database

(2)conf(X ⇒ Y) =
number of learners following X and Y courses

number of learners profiles following X courses
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scalable algorithm for extract items that more likely appear together in a large trans-
action database. We find other algorithms such as Apriori [15], MAFIA (Maximal Fre-
quent Itemset Algorithm) [16] and Eclat [17]. But FP-growth is the fastest one because it 
allows frequent itemset discovery without candidate item set generation which is more 
expensive in both memory and time. Moreover, candidate generation and test require 
multiple database scans. In fact, by using FP-growth the number of database scan is 
reduced to two. The first scan counts the support of each item; the infrequent items 
are deleted while the frequent items are sorted in decreasing support counts as a list 
of frequent items (L) as shown in Fig. 1. And in the second scan, FP-growth constructs 
FP-tree. Those operations form the first step of the algorithm. On the other hand, the 
second step aims to extract frequent itemsets from the constructed FP-tree.

Let’s consider the following transaction database which contains 5 transactions and 
16 items or courses. Suppose that minimum support is 3. In the beginning, FP-growth 
algorithm scans the transaction dataset for the first time to count the support of each 
item and find frequent items as list L, in which items sorted according to the support 
descending order. Then, the frequent items of all transactions are reorder based on list 
(L) order. Next, FP-growth scans the database for the second time and constructs FP-
tree. After creating the root (“null”) of FP-tree (T). It reads the first transaction then 
build the first branch {(f:1), (c:1), (a:1), (m:1), (p:1)} of the tree (the number after item 
indicates the support). The second transaction T002 shares a common prefix (f, c, a) 
with the path of the first transaction (T001). So FP-growth algorithm increments by 1 
the count of each node belong to the prefix, i.e. the accounts of first path become {(f:2), 
(c:2), (a:2), (m:1), (p:1)}. And a new node (b:1) is inserted in the tree and linked as a child 
of node (a:2); also another new node (m:1) is created that has as a parent the node (b:1). 
This operation is recursively repeated for each transaction in the dataset until scanning 
and mapping all the transactions to a path in the FP-tree, as is illustrated in Fig. 2. In 
general, the insertion of a new transaction in FP-tree performed as follows. If T (FP-tree) 

Fig. 1  Transaction database and support count: This figure shows a dataset of learner’s activities in which 
the data of courses enrolments that belong to each learner are aggregated into a single row as an array of 
enrollments. It gives the count support for itemsets that satisfy the minimum support threshold
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has a child N such that item name of N has the same as the one of the item name of 
the scanning transaction, then increment N’s count by 1; else create a new node M, and 
initialize its count to 1, its parent link be linked to T, and its node-link be linked to the 
nodes with the same item name [14].

The second step of the FP-growth algorithm consists in mining frequent patterns 
using FP-tree. In brief, this step including the construction of conditional pattern base 
for each item in the header table, the construction of the conditional FP-tree from each 
conditional pattern base, and recursively mine conditional FP-trees and grow frequent 
patterns. The mechanism of mining frequent pattern is described in details in the paper 
of Han et al. [14].

Parallel FP‑growth

There are several implementations of the FP-growth algorithm, the best one is that 
which implements a parallel version of this algorithm called parallel FP-growth (PFP). 
PFP is based on a novel computation distribution scheme. Indeed, it distributes the job 
across a cluster of nodes using the MapReduce model. So, it is more scalable and fast 
than its traditional implementation based on single-machine.

The library Spark MLlib (spark.ml) [18] provides an in-memory implementation of 
PFP algorithm that facilitates the use of Association rules techniques in a distributed 

Fig. 2  FP-tree construction: It represents the transaction database in tree form. Each transaction is read and 
then mapped to a path in the FP-tree
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computing environment. The PFP provided by Spark available in 4 programming lan-
guage, including Scala, Java, Phyton. In addition to default settings of conventional FP-
growth (minimum support and minimum confidence thresholds), spark.ml package also 
takes the numPartitions parameter which specifies the number of partitions used to split 
the job. The advantage of this algorithm is that it gives better performance in terms of 
execution time and scalability.

Apache Hadoop ecosystem

Apache Hadoop [19] is an open source platform that supports big data storage and pro-
cessing. It is a solution inspired by Google’s article “MapReduce: Simplified Data Pro-
cessing on Large Clusters” [20] as a model of distributed processing on large clusters. 
It is developed as a result of the limitations of traditional approaches to meeting the 
challenges of analyzing large volumes of data produced by companies. It is designed to 
be deployed on commodity hardware. Also, it supports three different modes including 
standalone, pseudo-distributed and fully-distributed mode. Actually, Hadoop ecosys-
tem contains several related-projects to deal with many problems ranging from anlysis 
(Spark), querying (Pig), loading (Apache Flume and Sqoop), and distributed real-time 
computation (Storm). It consists of two main components including Hadoop Distrib-
uted File System (HDFS), which manage data, and MapReduce used for processing large 
amounts of data, collected from various sources, in a distributed way across a cluster of 
machines [1]. Hadoop technology is already used by different companies and cloud pro-
viders such as Yahoo, Facebook, Amazon Web Sevices, and Microsoft Azure.

HDFS

The Hadoop distributed file system (HDFS) [21] is a file system for data management 
across large clusters with a master/worker architecture. Its development is inspired by 
the GFS (Google File System) file system. HDFS is highly fault-tolerant and is designed to 
be deployed on basic hardware. HDFS provides high-speed access to data and it is suit-
able for applications that have large datasets. It creates an abstraction of disk resources 
to allow the management of the distributed physical storage of several nodes as if there 
is a single hard disk. In HDFS architecture, the data are managed across the cluster in 
different Datanodes in the form of files structured in blocks. The locations of these blocs 
and namespace of files and directories are kept in Namenode.

Yarn

Yarn [22], yet another resource negotiator, is the successor of MapReduce (version 2). 
It is a framework dedicated to Job scheduling and cluster resource management. Yarn’s 
main idea is to separate resource management from the computation model. Such sepa-
ration allows its architecture to support a number of distributed processing frameworks 
such as Spark [23], Giraph [24], Storm [25]. It is consist of a master machine named 
ResourceManager (RM) and a set of workers named NodeManagers (NM), which forms 
a generic system for managing applications in a distributed manner. The Resource 
Manager is a scheduler responsible for tracking, sharing available resources between 
applications and optimizing cluster utilization. On the other hand, the NodeManager 
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is responsible for executing tasks and monitoring the use of resources by each worker 
node.

Spark

Apache Spark [23] is a unified analysis framework for distributed big data processing. 
It was originally developed by UC Berkeley University in 2009. The power of Spark is 
in its ability to perform calculations in-memory which allows it to be faster 100 times 
than MapReduce. Spark can be deployed in standalone mode, Hadoop Yarn, Mesos or 
Kubernetes. It supports several data management systems such as HDFS, HBase, Hive, 
Cassandra, Amazon S3 and several DBMS (Oracle, Mysql). Spark APIs provides a rich 
collection of libraries to support a variety of advanced analysis use cases. Among its 
components, there are Spark SQL (structured data processing), Streaming (real-time 
processing), MLlib, GraphX, SparkR. In addition, it supports several programming lan-
guages, including Scala, Java, Phyton, R.

In brief, Spark job consists of a set of transformations. These transformations build 
up a Directed Acyclic Graph (DAG) of operations. During the execution of a work sub-
mitted by a client, spark runs a graph of instruction as a single job by breaking it down 
into stages. Each stage contains a set of parallel tasks to be executed across the cluster. 
We can summarize the big data technologies used to build our recommender system in 
the following diagram (Fig. 3). Actually, there are 3 layers: First, Storage and replication 
layer represented by HDFS. In the second level, we find Yarn as cluster resource man-
ager of nodes. And, the top layer is Spark, responsible for data processing and analyz-
ing. This work use Spark SQL (JDBC) and MLlib (parallel FP-growth) libraries of Spark 
Framework.

Fig. 3  Big data technologies: This approach uses a combination of several big data Framework that 
communicates with each other for running the course recommender system in a distributed environment
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Experiments
ESTenLigne project

The present work is a part of the ESTenLigne [26] project, which is the result of several 
years of experience for the development of e-learning in the Sidi Mohamed Ben Abdel-
lah University of Fez. It was started since 2012 by the EST network of Morocco, which 
aims the development of distance education based on new information and communica-
tion technologies through the implementation of open, adapted and free online learning 
platform, and taking into account the dimensions of exchange, sharing and mutualiza-
tion of pedagogical resources [27, 28]. Several works have been done as part of this pro-
ject including the training of experts across e-learning in the context of the Coselearn I 
project, and teacher training through Franco-Moroccan EST [29] and IUT [30] coop-
eration [28, 31]. Furthermore, there are some researches that have been done around 
this project such as the analysis of the use of educational resources where the objective 
was to analyze the use of pedagogical resources in some courses namely the algorithmic 
course [32]. Also, a case study for collaboration analysis of online course based on activ-
ity theory [33].

In fact, the students have a lot of difficulties and are lost in the diversity of educational 
resources, particularly the large number of available courses. This requires the adapta-
tion of the teaching to meet the needs of students. To solve these problems, we develop 
a course recommender system to promote learning to learners through creating a smart 
solution. It is able to generate the most appropriate courses automatically based on his-
torical data of learner’s activities.

Experiment dataset

For the experiment purposes, we have used an operational database of ESTenLigne plat-
form that is built on LMS Moodle [34]. Indeed, it is an open source learning manage-
ment system. It uses a relational database which has around 250 tables. We focus only 
on student’s enrollments into courses. Especially, we focus on four tables that represent 
the information we need to implement our recommender system. The class diagram 
depicted in Fig. 4 shows the structure, the attributes, and the relationships between the 
four classes used in the experiments.

The class diagram, as seen in Fig. 4, describes four important tables for collecting data 
about historical data of learner’s enrollments. First, there is mdl_user that gives informa-
tion about the student’s profile. Second, all user enrollments have recorded into mdl_
user_enrollments table. Third, mdl_enrol table contains data of courses enrollments. For 
the same course, there can be different enrollment start and end dates. Some students 
may require a course for one period of time but other users may want to enroll in the 
same course for a different period of time. Fourth, mdl_course table stores all the details 
of the courses that are uploaded to the learning management system. It stores the names 
of the course, category, full name, short name, summary, time created, time modified 
etc. [35]. This database contains 1218 learners study in different fields (computer sci-
ence, electrical, chemistry, mechanics, economics, energy, etc.) at High School of Tech-
nology of Fez. Furthermore, it also provides 153 courses proposed by teachers from 
various areas of education.
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System architecture

In general, our approach consists in finding hidden patterns from historical learners’ 
activities. So, the input of the system is courses enrolments of the students. Actually, 
the commendation process consists of the following steps:

In the beginning, we have to load the data produced by the ESTenLigne platform. 
Then the data loaded by Spark SQL library are processed in a distributed way using 
the Spark framework which is executed on Hadoop cluster and managed by Yarn 
resource manager. In fact, we process data using the FP-growth algorithm by employ-
ing Spark MLlib which provides a large-scale implementation of association rules 
techniques. Next, Spark as much as a framework for distributed computing will con-
nect with Hadoop HDFS for storing the data on clusters of machines. Finally, the out-
put is the catalog of recommended courses that match the learner interests. Then, we 
can display the result of the recommendation engine to the user in order to guide and 

Fig. 4  Class diagram of ESTenLigne database: It shows relationship between the four tables used to collect 
appropriate data of historical learners’ enrolments from Moodle dataset
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suggest them relevant pedagogical resources, after that the learner can browse these 
courses and start learning new and suitable courses, as shown Fig. 5.

On the technological side, our architecture uses a combination of several technol-
ogies of big data ecosystem that communicates with each other to load, aggregate, 
process, and store historical data of learner’s courses activities. Actually, it is an archi-
tecture that implements 3 mainly frameworks, include:

1.	 Apache Spark: as a unified engine for the distributed computing of data collected 
from e-learning (ESTenLigne) dataset. To do this, it uses JDBC interfaces to connect 
to e-learning database. Additionally, Spark provides a particular library dedicated to 
Machine Learning techniques, called MLlib. Indeed, this library gives an implemen-
tation in Scala language of parallel FP-growth algorithm which is used in this article.

2.	 Hadoop Yarn: cluster resources manager enabling job scheduling between the nodes 
of a cluster.

3.	 Hadoop HDFS: The default distributed file system of Hadoop software.

The architecture shown in Fig. 6 describes the mechanism of functioning of the pro-
posed system which operates on a cluster of machines manager by Yarn framework. 
In general, Spark is used as a framework for the distributed computing to develop 
the courses recommender application. It consists of a number of elements that work 
together to perform the job, submitted by a client (jar). In fact, Spark application 
runs as a set of independents processes on a cluster of machines, coordinated by the 
SparkContext object.

Fig. 5  Course recommender system architecture: It describes different steps and framework used within the 
recommendation process
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Furthermore, Apache Spark applications consist of two essential components which 
are driver process, Spark Master and executor processes. The driver process maintains 
the relevant information about SparkSession during the lifetime of the Spark application; 
it runs also the user main() function, declares transformations and actions, and submit 
the job the Spark Master. The second element in this architecture is Spark Master who 
creates the Tasks and distributes it to the worker’s nodes to be actually executed (parallel 
operations). Spark Master also coordinates between the job Stages across the executors 
on the cluster. On the other hand, executors processes are responsible for carrying out 
the work assigned to them by the master and returning the state and the results of data 
processing to the master. When the driver process needs resources to execute a job, it 
requests master to allocate the required resources from the workers. Next, each worker 
node creates executors to perform the tasks. Then driver process runs the job on these 
executors.

The distributed computing environment of the proposed system consists of a cluster 
of multi-nodes. Typically, one machine in the cluster is defined as the master node. The 
master has two components Namenode for distributed storage (HDFS daemon) and 
ResourceManager as computing management services (Yarn daemon). The rest of nodes 
in the cluster are designated as Workers or Slaves. Each worker composed of Datanode 
and NodeManager.

There is another component used to build this architecture, it is Hadoop Distributed 
File System that aims to manage the data during the life cycle of our system. Indeed, 
First, Namenode represents the master node that keeps the namespace system of files 

Fig. 6  Hadoop cluster architecture: It is a distributed computing environment based on Hadoop cluster of 
three nodes



Page 13 of 23Dahdouh et al. J Big Data             (2019) 6:2 

and directories of Hadoop cluster the naming system and control access to data man-
aged by workers. While, Datanode read and write the data in physical files in the form of 
blocks; it is responsible for block creation, deletion; replication, etc.

Experiment setup

For experimental tests, we have prepared a cluster composed of tree virtualized nodes. 
Virtual Box is used as hypervisor which is a powerful virtualization solution. It is an 
Open source Software that offers a rich set of tools and allows access to virtual machine 
resources like virtual disk, memory, Ethernet and so on.

With the available computing resources, we created 3 virtual machines by installing 
Ubuntu 18.04.1 LTS operating system across all nodes of the cluster. These nodes are 
connected with each other using a virtual private local network. The capacity and con-
figuration of all the virtual machine are described in Table 1 and Fig. 7 via the Web User 
Interface of Hadoop Yarn resource manager.

After the clusters’ virtual network configuration is finished, we have unpacked and 
installed Hadoop 3.1.1 and Spark 2.3.1 in the cluster node. Then, we have transferred the 
installation folder of both Frameworks into the slaves’ nodes using SSH protocol, espe-
cially, Secure Copy (SCP) function in order to have the same copy of Apache Hadoop 
and Spark. Also in every node has been installed the java version 1.8.0_181, and we set 
up passwordless ssh between the nodes such that Hadoop master can connect, start, 
stop and execute jobs in different workers.

Spark application development

In Spark, an application is the combination of two things: a Spark cluster to runs jobs, 
and code source that implements higher-level APIs namely SparkSQL, DataFrames, 
and Datasets. In the development of the course recommender system, Spark cluster 

Table 1  Cluster nodes configuration

Machine Network Cores Memory (GB) Disk 
(GB)

Master 192.168.56.101 (master.domain.com) 8 Core i5 (7th Gen) 8 32

Woorker1 192.168.56.102 (worker1.domain.com) 8 Core i5 (7th Gen) 8 32

Worker 192.168.56.103 (worker2.domain.com) 8 Core i5 (7th Gen) 8 32

Fig. 7  Apache Yarn Web UI for cluster resource manager: It shows the configuration of a cluster that contains 
three nodes. One node defined as a master and the rest are the workers
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is manager by Hadoop Yarn. On the other hand, the program code is written in Scala 
which represents a native programming language of Spark Framework. Moreover, the 
application is managed using Apache Maven as building and packaging tool; and it cre-
ated and compiled via Eclipse 4.7.0 (Oxygen) IDE that provides Scala 2.12.6 plug-in.

To implement the parallel FP-growth algorithm, the developed Spark application 
needs two Spark APIs, which are: Spark SQL (org.apache.spark.sql) to connect to the 
data source, and MLlib (org.apache.spark.ml) for applying advanced analysis techniques 
and machine learning algorithms  (Additional file  1). In order to prepare the required 
data, before launching the execution of the analytical model, we collect data from 
ESTenLigne database. To do that, we develop a SQL query to extract the list of courses 
followed by all learners using database structure in Fig. 4. Indeed, we focus essentially on 
four tables includes mdl_user, mdl_user_enrolments, mdl_enrol and mdl_course. To do 
this task efficiently, we use Spark SQL library that allows JDBC driver to easily connect 
and execute SQL statements. Then, we need to record courses by student id (user_id), so 
the individual courses followed by a given learner are aggregated into a single record as 
an array of courses) which represent the input data of PFP-growth algorithm. Further-
more, it is important to split the ESTenLigne dataset into training (70%) and test (30%) 
datasets to evaluate the performance of the Association Rules model. The training data 
is used for learning and fit the model to identify frequent items, whereas the test data 
aims to examine the input items against all the association rules and summarize the con-
sequents as predictions.

Results and discussion
To distribute and execute the code on a cluster, Spark application must be packaged in 
a JAR file. Indeed, we create an assembly package containing the code and its depend-
encies. And in order to run jar package, we use spark-submit from the command line 
that allows scheduling the job across a cluster of three nodes. In fact, spark-submit is 
responsible for sending and launching the execution of spark application code on a Yarn 
resource manager. When running spark course recommender application, we create 12 
executors distributed across the three nodes of the Hadoop cluster, and the memory size 
of each executor is 2G. The script for submitting Spark application into a Hadoop cluster 
is shown below:

To run PFP-growth we should specify the minimum support and confidence thresh-
old, respectively, to find more strong relationships between courses enrollments. The 
number of interesting association rules changes according to the value of support and 
confidence and the database size. We use the minimum support threshold of 5% and we 
set 60% as a minimum confidence threshold. In fact, PFP-growth generates three types 
of results that satisfy the specified minimum support and confidence thresholds. First, it 
calculates the list frequent courses in e-learning database, as shown in Table 2 that dis-
plays the 10 top frequent itemsets.

bin/spark-submit –master yarn –deploy-mode cluster

–class org.karim.spark.sparkmaven.FpGrowth

–executor-memory 2G –num-executors 12 ′PFP

− growth-jar-with-dependencies.jar′



Page 15 of 23Dahdouh et al. J Big Data             (2019) 6:2 

Second, it gives a set of interesting relationships between courses enrolments rules. 
The top 10 useful rules ordered by the confidence measure are illustrated in Table 3.

According to the obtained results of confidence; as we can see from the experimental 
results in Table 3, the association between courses {11 and 46} and {45} has the highest 
confidence; also the association between courses {7} and {6} are the lowest. According to 
the most interesting rules extracted from transaction database and the calculated values 
of the confidence, it is clear which courses are more likely followed by learners and we 
can determine the suitable course to recommend for each learner. For example, the rule 
1 {11, 46} ⇒ {45} has the highest confidence, so our system recommend course 45 to stu-
dents who enroll in courses {11 and 46}. According to Table 3, the efficiency of rule 1 is 
100% because there are 56 students who enroll in courses {11 and 46} where 56 among 
them enroll also in course {45}. For course rule 2, there are 57 students in historical data 
of learners enrollments who take both of courses {11 and 45}, 56 among them follow 
course {46} in subsequent courses, so the efficiency of rule 2 is 98%. So the system rec-
ommends the course {46} to students who enrolled in courses {11 and 45}. With regard 
to rule 3, there are 123 learners enroll in course {46}, because a high proportion (118 
learners) of them enroll also in course {45} in subsequent courses, the efficiency of rule 
3 is 95%, so the system recommends the course {45} to students who enrolled in course 

Table 2  Frequent itemsets

Items Count

[43] 167

[11] 128

[9] 125

[42] 123

[14] 93

[15] 88

[45] 87

[46] 84

[9, 43] 80

[46, 45] 80

Table 3  Top 10 generated association rules

Rule Antecedent Consequent Confidence

[1] [46, 11] [45] 1.000

[2] [45, 11] [46] 0.975

[3] [46] [45] 0.952

[4] [45] [46] 0.919

[5] [6, 7] [18] 0.868

[6] [7] [18] 0.818

[7] [6, 18] [7] 0.785

[8] [7, 18] [6] 0.733

[9] [6] [18] 0.711

[10] [7] [6] 0.690
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{46}, and so on. For the top 10 rules, we notice that the values of confidence are between 
0.69 (69%) and 1.00 (100%), which proves that we have obtained good results. Thus, we 
can conclude that the proposed course recommender system provides the most appro-
priate pedagogical resources to learners.

Once the recommender model is established on training data (70%), it can be used to pre-
dict the outcome of course recommendations for learners using test dataset (30%). Then, 
the recommender system suggests a catalog of courses for each learner profile. Table  4 
shows the top 10 predictions among 48 predictions in total.

The result of RS prediction, as shown in Table 4, illustrates for each learner (id): list of 
course in which he or she is participating and catalog of courses predictions. For exam-
ple, the proposed course recommender system suggests courses 18 and 7 to the learner 
(id = 541) who are enrolled in courses 46, 6, 11 and 45 courses. Also, it recommends course 
14 to the learner (id = 720) who follows 45, 46 and 15 courses, and so on.

In order to measure quality of predictions produced by the courses recommender system 
about the most relevant set of courses for each learner, we need to evaluate the relevance 
of the recommended courses using several metrics. To do this, we have applied an offline 
evaluation methodology because it is very safe a more suitable for our use case. This type of 
evaluation doesn’t require any interaction with real users, so it hasn’t any risk on disturbing 
users. The offline evaluation estimates the prediction error generated by using an existing 
dataset of learners’ enrolments.

Essentially, we have employed two important measures include Precision and Mean 
Average Precision. They are respectively defined by the following equations:

where r : recommended document, D : set of ground truth relevant document, it can be 
defined as: Di =

{

d0, d1, . . . , dN−1

}

 , R : list of Q recommended documents, it can be 

(3)P(k) =
1

M

M−1
∑

i=0

1

K

min(|D|,k)−1
∑

J=0

relDi
(

Ri
(

j
))

(4)MAP =
1

M

M−1
∑

i=0

1

|Di|

Q−1
∑

J=0

relDi
(

Ri
(

j
))

j + 1

Table 4  Courses recommender system predictions

Learner ID Items Prediction

541 [46, 6, 11, 45] [7, 18]

720 [45, 46, 15] [14]

19 [6] [7, 18]

277 [18, 14, 6, 9, 3, …] [43]

287 [17, 43, 42, 9, 2 …] [6]

155 [15, 17, 42, 9] [14, 43]

1157 [6] [7, 18]

184 [40, 6, 43, 42] [7, 18]

274 [7, 6, 15, 4, 3, …] [43]

766 [15, 45, 46] [14]
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defined as: Ri =
{

r0, r1, . . . , dQ−1

}

 , relD : a function returns a relevance score for the rec-
ommended document, it is defined as:

Unfortunately Spark-ML doesn’t provide an implementation of these measures for fre-
quent pattern mining model. Waiting for the Spark community to provide one of the metrics 
to evaluate the FP-growth parallel prediction results, we will develop a trail implementation 
of these evaluation measures adapted to our use case by using Spark RDD data structure. 
Our future work aims to provide more detailed information about this implementation.

FP‑growth vs Apriori performance

In order to evaluate the performance of our course recommendation engine, we measure 
the result of the FP-growth algorithm compared to Apriori. Table 5 shows the difference 
in execution time between FP-growth and Apriori algorithm using to supports thresh-
olds ranging from 0.5 to 3%.

The results of the experiments show that the performance of FP-growth is much bet-
ter than the Apriori algorithm. Actually, Apriori needs more time to generate frequent 
itemset compared with FP-growth. This is because as the minimum support threshold 
decrease, the number and the length of frequent itemsets increase exponentially. As 
illustrated in the line chart (Fig.  8), for the support threshold of 2.5%, Apriori passes 
0.06  s to find interesting rules while FP-growth needs only 0.04  s. Because Apriori 

relD(r) =

{

1, if r ∈ D
0, otherwise

Table 5  FP-growth vs Apriori run-time

Support FP-growth Apriori

0.005 0.07 0.09

0.01 0.06 0.08

0.015 0.05 0.07

0.02 0.05 0.07

0.025 0.04 0.06

0.03 0.04 0.06

Fig. 8  Performance of FP-growth vs Apriori based on the support threshold: the experiments results shows 
that parallel FP-growth algorithm is more faster than Apriori
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requires many database scans, in other words transactions are scanned at each candidate 
itemset generation; whereas FP-growth reduces the number of scans to two. First, FP 
growth scans the database to determine the frequent itemsets in descending order based 
on their support, and infrequent itemsets are discarded; the second scan is done for the 
construction of FP-tree [8]. According to the obtained results, it clear that our recom-
mender system using FP-growth run faster rather than when we choose to work with the 
Apriori algorithm.

Apache Spark vs Weka and R performance

We establish a comparative analysis between execution time on Spark, R and Weka tool 
to show the scalability of our solution. For that, we increase the number of transactions 
in order to get a sufficient database size. Then, we measure the speed of the FP-growth 
algorithm using Scala and MLlib library compared to the same algorithm in Weka. Also, 
we measure the performance of our system using RStudio software. In fact, we have 
compared the running time of FP-growth in the cluster (spark) against single-machine 
(Weka). The results are plotted in Fig.  9 which illustrates the line chart of execution 
times of different environments.

As we can see from the line chart, running association rules model with Apache Spark 
is faster that Weka and R tools. It takes only 34  s to process 3000 transactions when 
Weka takes 86  s and RStudio 65  s. The parallel FP-growth algorithm of Spark Mllib 
achieves good scalability due to the distributed computing on cluster nodes. SparkM-
Llib processes data in less time because it splits the work into several tasks which are 
executed on workers nodes. From the above analysis, we may conclude that spark repre-
sents the best tool to implements the developed course recommender system.

Monitoring tools

Several monitoring tools are used to help us to see the progress of running the submitted 
jobs and understand how Spark application runs on a Hadoop cluster. Spark UI [36] is a 
monitoring tool that tracks the execution process of Spark application on Hadoop clus-
ter. It shows important information about application execution, including jobs, stages, 

Fig. 9  Comparative study between Spark, Weka and R: As we can see from the histogram, Spark MLlib 
algorithm allows best performance compared to Weka and R tools
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and tasks. Also, it displays environment variables and allows DAG visualization. We can 
view the behavior of a job via a web browser, available at http//:master:18080.

As we can see from Fig. 10, a stage can have one of the three stages: active, pending 
and completed. Additionally, we have the possibility to displays Spark events in a time-
line (Fig. 11) such that the relative ordering, which is available on three levels: across all 
jobs, within one job, and within one stage. Also, Spark UI visualization allows display-
ing the execution DAG for each job. In Spark, a job is set of RDD organized in DAG 
(direct acyclic graph) that looks like the following (Fig. 12). Furthermore, Hadoop pro-
vides Web UI for HDFS and another for Yarn Resource manager. The job’s progress can 
be monitored via Yarn Web UI [37] (Fig. 13) of fully distributed mode which is available 
at http//:master:8088. We can observe the state of each job if finished with success or 
not. Yarn Web UI, we give us the possibility to kill a job during its runtime. In addition, if 
there are failed jobs will be listed in the failed section.

Ganglia monitoring tool

Ganglia [38] is a distributed and scalable open source tool for monitoring large com-
puting environments such as clusters and grids. It is a powerful solution for big data 
infrastructure for enabling to measure the performance and resources consumption cov-
ering lot of metrics including CPU, memory, storage of each node across the cluster. It 
allows also monitoring the network by knowing the use of bandwidth. Furthermore, it is 

Fig. 10  Spark Web UI: It displays useful information about the execution of Spark application which includes 
list of jobs, size memory usage, the running executors, and environmental information

Fig. 11  Timeline view of Spark events: It shows the events of one job. Spark gives also the possibility to 
visualize the timeline view across all jobs or within one stage
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graphically summarizes efficiently and clearly the overall resources utilization overview 
over the past hour, day, week, month and year. Figure 14 shows the main page of ganglia 
interface. It gives a clear overview of load, cpu, memory, network metrics of three moni-
tored nodes of our cluster.

Fig. 12  Direct Acyclic Graph (DAG): It represents the execution DAG for each job. Spark Job consists of a set 
of transformations. These transformations organized in a DAG of operations

Fig. 13  Yarn Web UI: It monitors the application submission ID, the user who submitted the application, its 
status, and other useful information about the execution of Spark application
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Ganglia can also show amount of data transferred across a network as illustrated 
in Fig. 15. It shows host bandwidth including bytes or packets sent and received. In 
fact, it provides statistics about the number of bytes received and sent of the master 
machine. Also, Ganglia gives important information about packets size.

Conclusion
Recent development in new information and communication technologies, especially big 
data paradigm provides powerful frameworks and techniques which can be used to deal 
with online learning problems. This paper aims to create a distributed course recom-
mender system for helping students’ to take more appropriate pedagogical resources. It 
recommends a catalog of more suitable courses to the students in order to improve the 
level of learner satisfaction and performance through suggesting them with personal-
ized and adapted recommendations and educational resources. The core concept behind 
the recommendation engine is analyzing past learners’ behavior and activities within the 
e-learning platform using association rules method. To facilitate parallel processing of data 
and reduce the computation cost we employed Spark Framework and Hadoop ecosystem. 

Fig. 14  Ganglia web interface

Fig. 15  Ganglia network utilization
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The implementation of the recommendation engine is built using the parallel FP-growth 
algorithm of MLlib machine learning library. Next, the deployment and execution of the 
proposed system are done across a distributed computing environment formed of a cluster 
of three nodes managed by Hadoop Yarn resources management. This system is based on a 
decentralized approach for data processing and analysis which gives the best performance 
compared to traditional machine learning tools which are running on a single machine. To 
validate our model, a real dataset of the e-learning platform of High School of Technol-
ogy of fez is employed for collecting historical learner’s activities. The results of the exper-
iment of our system and the comparative study with Weka and RStudio software shows 
that in-memory computation of Spark is the fastest and scalable solution. In addition, our 
recommendation system has the ability to manipulate a huge volume of data and support 
a significant scalability through intensive and massively parallel processing. Furthermore, 
the presented system can be applied and easily integrated into other learning environments 
such as MOOC (Massive Open Online Courses).

The presented work showed certain benefits of integrating Spark and Hadoop Frame-
work for improving online learning environments. However, it is still a lot of big data tech-
nologies and machine learning models to be implemented. In our future work will focus on 
incorporating Spark Streaming in the e-learning field. Actually, through real-time analysis 
of spark, it is possible to quickly extract value from live data streams. Accordingly, online 
learning professionals can assess rapidly the effectiveness of learning strategies in order to 
offer more personalized educational resources.

Additional file

Additional file 1. Spark application of the e-learning recommender system.
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