
Automatic schema suggestion model
for NoSQL document‑stores databases
Abdullahi Abubakar Imam1,2,3*  , Shuib Basri1,2, Rohiza Ahmad1,2, Junzu Watada1,2
and María T. González‑Aparicio4

Introduction
In big data research and database machineries, new concerns been debated increasingly
are the storage capabilities of the non-conventional applications. For decades, tradi-
tional databases have dominated every aspect of data storage. They provide engines that
enforce database schema, eliminate inconsistencies, and centrally control data as well as
redundancy [1]. With the rise of big data coupled with its unconventional features has
demanded the creation of more advanced databases called NoSQL [2–4]. They are more
flexible, highly scalable and low-latent. The term NoSQL originates from “Not only SQL”,
which means they do not emerge to eliminate tradition database but to supplement
them as a result of rapid increase in data size, variety, complexity and variability [5].

NoSQL databases have since become very popular world-wide due to their robust-
ness. They are the new storage technologies used by big companies like Facebook,

Abstract 

New generation databases also called NoSQL (Not only SQL) databases are highly scal‑
able, flexible, and low-latent. These types of databases emerge as a result of the rigidity
shown by traditional databases to handle today’s data which is voluminous, highly
diversified and generated at a very high rate. With NoSQL, problems such as database
expansion difficulties, low query performance and low storage capacity are addressed.
However, the inherent complexity of contemporary datasets coupled with program‑
mers’ low NoSQL modeling competence are increasingly making database modeling
and design vastly challenging, especially when parameters like consistency, availability
and scalability are to be balanced in accordance with system requirements. As such,
a schema suggestion model for NoSQL databases is posed to address this balancing
issue. The proposed model aims to abstractly suggest schemas at the initial stage of
system development based on user defined system requirements and CRUD (Create,
Read, Update and Delete) operations among others. This is achieved through the adap‑
tation of exploratory and experimental approaches of research. Also, few mathemati‑
cal formulas are introduced to calculate clusters availability during entity mappings.
A comparison was conducted between the schema produced using the proposed
model and the one without. Results obtained shows substantial improvement in the
areas of security and read–write query performance.

Keywords:  NoSQL databases, Big data, Database modeling, Schema suggestion,
Document-model databases, Data security

Open Access

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Imam et al. J Big Data (2018) 5:46
https://doi.org/10.1186/s40537-018-0156-1

*Correspondence:
aiabubakar3@gmail.com;
abdullahi_g03618@utp.
edu.my
1 Computer and Information
Sciences Department,
Universiti Teknologi
PETRONAS, Bandar Seri
Iskandar, 32610 Seri Iskandar,
Perak, Malaysia
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0003-2076-1109
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-018-0156-1&domain=pdf

Page 2 of 17Imam et al. J Big Data (2018) 5:46

Google, Amazon and many others [6]. However, the ever-changing characteristic of
today’s data creates difficulty in modeling these flexible databases appropriately. This
is as a result of issues like traditional modeling mindset, increasingly complex data-
sets, as well as low competency [7–9]. For these reasons, both industry and academia
focused on finding practical solutions to assist NoSQL novice data modelers. Never-
theless, some of the available solutions concentrate on dissimilar NoSQL databases
rather than document-model databases [10] despite the wide use of the document-
model databases (please see “Overview of the NoSQL Databases” section), while oth-
ers are considered to be vendor specific as reported in [6].

Prior to this study, two separate but related studies were conducted by the authors
of this paper as a foundation to NoSQL database modeling. The said earlier studies
were motivated by the industrially proven problems, theoretically grounded with
basic modeling facts, and empirically validated through repeated and rigorous experi-
ments. One of the aforesaid studies, focuses on cardinality notations and styles [11],
while the other presented modeling guidelines [12]. The two studies scoped at NoSQL
document-store databases. The current study derived its strength and solid founda-
tion from the earlier described studies especially in the aspects of relationship prior-
itization and semantic mapping of related documents. In addition, our earlier studies
significantly contributed in balancing and prioritizing user requirements in relations
to system requirements.

Subsequently, in this paper, a schema suggestion model which is applicable to
NoSQL databases is proposed. The main aim of this model is to further simplify the
modeling process of the NoSQL databases. As earlier mentioned, the first step taken
to address the NoSQL modeling challenge was to extend the existing cardinality nota-
tions to handle highly complex datasets. Next, NoSQL modeling guidelines were pro-
duced, categorized and prioritized to guide modelers on best modeling practice. To
effectively implement these solutions, substantially high level of expertise is required;
thus inspired the creation of the proposed model with which, schemas can be auto-
matically generated rather than writing from scratch. To initiate the process, pro-
grammers are only required to provide some values into the proposed model, and the
rest like embedding related documents and referencing highly volatile documents,
etc. is handled by the model. The following are the main contributions of this paper:

A schema suggestion model for NoSQL document-model databases. This model
balances between consistency, availability and scalability. It also accepts param-
eters such as list of entities, CRUD operations etc. which are used in the produc-
tion of NoSQL database schemas.
New formulations for calculating cluster availability which is categorized as Paral-
lel, Serial and Partial. This availability options help in defining consistency levels.
New translatable algorithms which are compatible with any of the available pro-
gramming languages.
Benchmark between the security of NoSQL database and read–write perfor-
mance of queries using both the schema suggested by the proposed model and the
schema produced using the conventional methods.

Page 3 of 17Imam et al. J Big Data (2018) 5:46

With the above described model, parameters together with their associated data can
be supplied into the proposed model to produce initial schema based on solid theoreti-
cal and empirical foundations adopted from [11, 12]. It should be unequivocally noted
that, the proposed model does not produce fully functional schema which can be 100%
copy-pasted, rather produce a schema with basic modeling concepts that can be used at
the initial stage of database design. This means, expert review or additional program-
mers inputs might be required on schemas generated through the proposed model. This
review should be conducted before the commencement of system development.

The remainder of this paper is organized as follows: “Overview of the NoSQL data-
bases” section explains the overview of the NoSQL databases. While the related litera-
ture with respect to NoSQL data modeling is discussed in “Literature review” section.
“Proposed model” section presents the proposed model, its architecture, algorithms, and
components which include the formulas for calculating cluster availability. “Results and
discussion” section shows and explains the experimental results with regards to security
and read–write query speed. “Conclusion and future focus” section concludes the paper
and indicates possible future direction.

Overview of the NoSQL databases
Not only SQL (NoSQL) databases are powerful databases that have recently penetrated
large industries to supplement Relational Databases. These databases differ from rela-
tional databases in many significant ways, such as their avoidance of tables for storage
structure and SQL as a query language. In addition, join operations are indirectly per-
formed or not allowed in some cases; ACID properties are not guaranteed, and they
are scaled horizontally rather than vertically, as in the case of traditional databases.
NoSQL databases may be classified in many ways; however, the most important fac-
tor for NoSQL classification is the data model, i.e., the way data is organized and stored
[13]. The most common are key-value, document-store, column family, and graph data-
bases [14, 15]. In this research, we focus on document-store databases because they are
open-source and share several features with relational databases, which has attracted the
attention of relational experts [8]. Table 1 highlights the connection between relational
databases and NoSQL databases.

The technical interception between SQL and document DB, as well as the storage and
performance enhancement in document DB, as highlighted in Table 1, strongly contrib-
utes to its wide acceptance and usage in the industry, as developers are well versed in
similar skills for SQL databases [6, 16]. Figure 1 shows the level of acceptance of docu-
ment-store databases according to DB engines.

Document-store databases, also known as aggregate databases or document-oriented
databases, use documents as entities for data storage as well as for queries. The word
“document” does not only imply MS Word or PDF but also JSON (Javascript notation)
or XML (extensible markup language). Such types of documents do not require pre-
defined fields and often have a distinctive structure that can be queried. These databases

Page 4 of 17Imam et al. J Big Data (2018) 5:46

are considered to be ideal for storing large amounts of information of all sorts. Due
to their flexibility and simplicity, document databases have become the most popular
NoSQL databases across the globe [17]. Table 2 summarizes the key features of some of
the top document databases.

Table 1  How SQL databases relate to some NoSQL databases

Heading level SQL databases Tables Hbase Document DB

Data model Relation-al Key/value store Column family store Document-store

Max size of data-
base

100 s of GB 100 s of TBs 100 s of TBs 100 s of TBs

Storage concept Tables, rows, col‑
umns

Tables, entities,
partitions

Tables, rows, cells,
column families

Collections, docu‑
ments

Language for query SQL Subset of OData
queries

None Extended subset of
SQL

Transaction support Rows and tables in a
database

One partition for all
entities

One row for all cells All documents in one
collection

Secondary indexes Yes No No Yes

Triggers/stored proc T-SQL based None Java based JavaScript based

Valuing Unit of throughput 1 GBs of storage GBs of storage + VMs
per hour

Unit of throughput

Fig. 1  Ranking scores per data model in percentage [30]

Page 5 of 17Imam et al. J Big Data (2018) 5:46

It can be observed from Table 2 that, although document-store databases support
some traditional database features such as Triggers and Index, SQL language, joint
query, foreign keys, etc. are not sustained in document-stores. This makes it challenging
to model document-store databases using relational database modeling techniques such
as 1:M [7]. It is also considered imperative to model document-store databases with sim-
ilar modeling techniques to optimize concurrency when updating redundant data stored
across different participating nodes [6].

Literature review
NoSQL databases, particularly document-stores are vastly flexible [18]. They allow the
client side application developers to write and manage schemas because they based on a
flexible model [5, 19]. However, this flexibility may potentially lead to incorrect NoSQL
schema design particularly in the aspects of modeling relationships within and between
datasets and entities [5, 6]. Several efforts have been made to address these challenges as
reported below.

In the work of [5], Formal Concept Analysis (FCA) was used to propose a concep-
tual model in which its main aim is to assist programmers to model document-model
databases. This model adopted three cardinality notations from relational databases for
its relationship modeling which are (i) one-to-one → 1:1, (ii) one-to-many → 1:M, and
(iii) many-to-many → M:M relationships. These notations are inherited directly from
SQL based database onto NoSQL document-model databases. The method used in this
model reveals positive impact of the aforesaid cardinalities when applied to NoSQL doc-
ument-model databases using FCA. However, the complexity and the size of data used
in the experiment are very low which may not expose the limitation of the cardinali-
ties used in traditional databases. It’s a known fact that NoSQL databases handle much
more complex and bulkier datasets; thus require extra cardinality breakdowns. In addi-
tion, document-store databases do not directly support foreign key enforcements. Also,
other factors such as embedding and referencing which contribute to effective modeling
of the NoSQL document-store databases are not considered in this study in spite of their
significance to NoSQL modeling practice.

Alternatively, a study of techniques and patterns was carried out by Arora and
Aggarwal [20] to get the optimal mapping state of entities. These findings were used

Table 2  Features of document-model databases

Features MongoDB DynamoDB Couchbase CouchDB

Document-store Yes Yes Yes Yes

Schema-free Yes Yes Yes Yes

Secondary index Yes Yes Yes Yes

Triggers No Yes Yes Yes

Foreign keys No No No No

Predefined data type Yes Yes Yes No

APIs JSON RESTful HTTP Memcached RESTful RESTful HTTP/JSON

SQL No No No No

Partitioning methods Sharding Sharding Sharding Sharding

Replication methods Master (M)–Slave (S) Yes M–M
M–S

M–M
M–S

Page 6 of 17Imam et al. J Big Data (2018) 5:46

to provide an approach to modeling different categories of NoSQL databases. How-
ever, this approach lacks an engine which is capable of generating NoSQL schema for
novice developers. Similarly in [6] and [21], solutions to data modeling were provided
for MongoDB database which uses JSON technology and adopted UML Diagram
class. Though these approaches are suit MongoDB but they are considered vendor
specific since they cannot be applied elsewhere even within the document model
databases.

In relation to NoSQL storage optimization to house geographical data, less atten-
tion was given in recent years to improve the efficiency and retrieval performance in
spite its importance to GIS and other related fields. As a result, several techniques for
geographic IS and OMTEXT were proposed with the aim of minimizing data incon-
sistencies across NoSQL databases. The proposed techniques are data modeling using
GISER [22], GMOD [23], Modeling Technique for Geographic Applications [24]
(OMT-G), and Object-Oriented Analysis (GeoOOA) [25].

On the other hand, some technical experts such as from mongoDB [6] and JSON [9]
companies explained how good data modeling relationships can be achieved as their
contribution towards best modeling practice. These approaches are however focused
on the NoSQL database functionalities of which they set to promote. This limits the
options for programmers and companies to select only the databases that have such
support. Therefore, there is need to have a solution that can be compatible with at
least one category of NoSQL databases [5, 7, 26].

This leads to the proposal of few NoSQL modeling tools. In [26], cost-driven approach
for query optimization is proposed. This approach uses the cost of workload execution
for mapping the physical schema to the application data model. While this approach cre-
ated several opportunities for data modelers, it does not provide any working model, or
tool that can directly assist the NoSQL modelers. Also, it focuses on column databases
only. While in [10], an improved cost-based approach for modeling schema is proposed.
The approach first estimate target application performance and recommends a candi-
date schema. Using this approach modeling practice is improved, however, the approach
focuses on query performance only and it’s limited to column family databases. Clearly,
there is need for a friendlier working model and tool that takes into account all modeling
technicalities and directly propose schemas to NoSQL database modelers.

As can be observed, the approaches discussed earlier gave much attention to spatial
data which is suitably managed by graph databases while others are concerned with
fundamental principles only, excluding the automated process of NoSQL database
modeling. Generating schemas automatically not only simplify modeling process but
also makes it more accurate and secure.

Proposed model
In this section, a model that aims to minimize data modeling hardship facing nov-
ice programmers is presented. The model focuses on balancing between critical sig-
nificant factors of data modeling such as consistency, availability, and scalability. The

Page 7 of 17Imam et al. J Big Data (2018) 5:46

section is further separated into three subsections, that is to say the architecture of
the proposed model, its algorithm and finally its associated components.

Model architecture

Figure 2 represent the architecture of the proposed model. There are four phases or lay-
ers in the architecture which are represented by rectangle shapes. Document schemas
are depicted with curly brackets symbols, while the flow directions are indicated using
arrowed-lines. Other symbols are labeled as shown in the diagram.

The above presented architecture (in Fig. 2) comprises of four interconnected layers,
having the first layer as the presentation layer (Client Side). At this point, modelers are
expected to supply values to the parameters that are non-selectable (e.g. entity name as
they are peculiar to different systems), and also choose from the selectable parameters.
Semantic mappings of the recorded entities are then initiated by the model itself starting
from third layer. This is achieved partly using modeling guidelines [12] and new genera-
tion cardinalities [11]. The following algorithms explain the logic.

Fig. 2  Schema suggestion model architecture

Page 8 of 17Imam et al. J Big Data (2018) 5:46

Schema generator algorithms

The step-by-step procedure of the proposed model is presented in this section. The
model follows this procedure in order to generate any desired schema

Schema Generator Algorithm.
Input: E = List of entities and ENR = Expected number of

records per entity.
CRUD Operations Cr (C, R, U, D).
System Requirements SR(A=Availability,C L,M,H= Con-

sistency S=Security).
Output: Schema for NoSQL document-store databases.
Definitions: C L,M,H(Low, Medium and High Consistency)

begin
variables (E(E + ENR), CRUD, SR, i)
if E.size != : then
SR get preferred requirement
Cr get selected CRUD operation
while i < E.size do
ENR get ENR of an entity
for each item in E do
if SR = CH and (Cr = C or U) then
if item(ENR)[i]>0 and item(ENR)[i]<1000,000 then
embedding is preferred;

else if item(ENR)[i] > 100,000,000 then
referencing is preferred; but…
call RollBack(series);

end;
else if SR = CL and (Cr = C or U) then
referencing is preferred; but…
call RollBack(parallel);

else if SR = Cm and (Cr = C or U) then
referencing is preferred; but…
call RollBack(partial);

end;
//Availability section (retrieval)
if SR = A and (Cr = R) then
pg newPg[i];
Tpg = ROUND(ENR / RecordsPerPage);
foreach(range(1, Tpg) as pg)
if(pg=1 or pg=Tpg or(pg>=newPg and pg<=newPg))
pg newPg (+ or - 1);

end;
end;

end;
//var a ENR + ROUND((ENR / 100) * 20) /

end;
end;

else
return null;

end;

Algorithm RollBack(method).
Input: Series, Parallel, Partial.
Output: Cluster availability.

Page 9 of 17Imam et al. J Big Data (2018) 5:46

Definition: C = cluster and X is the cluster counter

begin
if method = series then
Av = False
for (i = 1; i <= 3; i++)
Check availability of C1, C2, C3 ... Cn

if availability is = 100% (CX1Cx2...Cxn) then
Av = True;
return Av; set i = 4; exit();

else
repeat

end;
else if method = parallel then
Av = False
for (i = 1; i <= 3; i++)
Check availability of C1, C2, C3 ... Cn

if availability is = 50% (1-(1-CX)
2) then

Av = True;
return Av; set i = 4; exit();

else
repeat

end;
else if method = partial then
Av = False
for (i = 1; i <= 3; i++)
Check availability of C1, C2, C3 ... Cn

if availability is = 75% (Formula as in Eq(3)) then
Av = True;
return Av; set i = 4; exit();

else
repeat

end;
end;

.

Next, the components that assist the entities mapping module are presented, they
include formulas for calculating availability and storage for storing selected values.

Model components

The components that are used in the semantic mapping module are highlighted in this
section. We started by describing the storage area and then followed by formulas.

Central storage area

This is a centralized area where the selectable parameters and values which are supplied
to the non-selectable parameters are saved. These records are important and used for
the availability computations, systematic and semantics mappings. The structure of this
storage is described below:

Page 10 of 17Imam et al. J Big Data (2018) 5:46

•	 Project_ID: this is one of the important attributes that uniquely identifies a project.
The proposed model is design in such a way that one user can have multiple NoSQL
modeling projects and as such project identifier is required to distinguish between
projects.

•	 User_ID: since the model can be further centralized to handle projects from different
users, unique identification need to be extended to all users of the model. This will
help to avoid interchanging schemas between users.

•	 Entities: entity names are saved here as they are being provided by modelers.
•	 ENR (Expected Number of Records): this attribute saves ENR for each entity and are

considered when choosing between referencing and embedding a document.
•	 CRUD: Create, Read, Update and Delete (CRUD) operations choices are saved under

CRUD attribute. The first level iteration process is controlled by this attribute like C
for create.

•	 SR (System Requirements): the choice of SR such as consistency, availability, or scal-
ability is housed under this attribute.

•	 Relations: if entities are related, this attribute is used to keep the type and the chain
of the relationship like parent → child → grand-child etc.

•	 Con_active: not all entities are related in some cases, this indicates whether an entity
is active or not.

•	 Flag: as iteration takes place, this attribute keeps the mappings and computational
status. This is achieved by using digits 0 as completed and 1 as not attended.

Formulas

Mathematical formulas are also introduced to standardize the computation process.
This is to provide accurate mappings of entities, especially while checking document
or cluster availability for different level of consistency requirements. The formulas are
described as follows.

Equation 1 is used when the required consistency level is very high. In other words,
it’s applied for highest level of consistency. This level of consistency can be explained as
having all nodes (Availability (A) of cluster x and cluster y) available before any CRUD-
operation transactions can be allowed to take place, if the consistency level is not met,
the operation is either retried up to three times (or any number defined by modeler)
or terminated using roll back function. However, the roll back function is automatically
called when the number of trials is = the maximum number of iteration set by modeler.

Contrariwise, if the choice of consistency is low CL, Eq. 2 is applied. Level of consist-
ency can be considered low if parallel operations or transactions are allowed. This means
in the absence of cluster x, cluster y can proceed with transaction while waiting for clus-
ter x to be online and synchronize afterwards. Having two separate clusters holding
different status or version of information can be catastrophic in many contexts such as
system access security.

(1)Cs = AxAy

(2)CL = 1− (1− Ax)
2

Page 11 of 17Imam et al. J Big Data (2018) 5:46

Equation 3 can be adopted if the choice of consistency C (as system requirement) is
medium m. Each cluster C..N availability is calculated separately. For instance, consider
a parent-cluster P with C number of child-clusters, such cluster P is considered avail-
able if at least C-N child-clusters are available. This in contrast means, not more than N
clusters can fail. The number of N can be set to any value less than C (which is the total
number of clusters in a collection).

In the following section, the results of the proposed model and also the traditionally
generated schemas are presented and discussed.

(3)Cmc,n =

n∑

i=0

c!

i!(c − r)!
× C(c−i)

× (1− A)i

Fig. 3  Rate of record creations C: a performance comparison between schemas produced using the
proposed model and conventional method

Page 12 of 17Imam et al. J Big Data (2018) 5:46

Results and discussion
In this section, results of our experiment and comparison are presented. The experi-
ment was conducted in a controlled environment where few experts within our network
are tasked to generate three different NoSQL schemas for small scaled software. First
one was generated through the proposed model, while the remaining were generated
using the conventional modeling methods. The two schemas are tested on two different
factors such as security and performance in terms of query-writing speed. C and U of
CRUD operations are considered during the experiment. Also, medium m consistency
(as in Eq. 3) is used to check the consistency requirement. Schemas are implemented on
mongodb and couchbase NoSQL databases, while Java was used as the programming
language and SQL as a query language. Also, a core i7 32 GB-RAM 4 GHz computer
was used for the experiment, which runs Apache on windows platform. Next, the results
obtained from both schemas are compared, analyzed and reported. The results are cat-
egorized as follows based on the aforesaid factors, starting with performance in the con-
text of query-writing speed.

Results on performance (query‑writing speed)

Performance of two different schemas was measured in terms of write-query speed in
this section. The comparison is between the schemas generated using the proposed
model and the schemas produced using the conventional method. Results are presented
as follows.

By referring to Fig. 3a, b, it can be noticed that, between 5000 and 100,000 records of
data size, there is insignificant difference in data-creation-query-speed between the two
schemas. This possible explanation of this trivial performance is the fact that when the
size and complexity of data is low no much difference can be recorded. However, as data
size increases to around 500,000, the gap between the schemas begins to be consider-
ably high. In addition, it can also be observed from Fig. 3a, b that the speed increment of
data creation is maintained (from around 4 s to 16 s maximum) by the proposed model
across different sizes of records, while the traditionally generated schema performed

Table 3  Hacking using NoSQL-injection method; success (1) and failure (0) for IS, CS1
and CS2

1,000,000R 2,000,000R 3,000,000R

IS CS1 CS2 IS CS1 CS2 IS CS1 CS2

0 1 1 0 1 1 0 1 1

0 0 1 0 0 1 0 1 1

0 1 0 1 1 1 1 1 1

1 0 1 0 1 1 1 1 0

0 1 1 0 1 1 0 1 1

0 1 1 0 0 0 0 1 1

0 0 1 0 1 1 0 1 1

0 1 0 1 1 1 0 0 1

0 0 0 0 1 1 1 1 1

0 1 1 0 1 1 0 1 1

9/1 4/6 3/7 8/2 2/8 1/9 7/3 1/9 1/9

Page 13 of 17Imam et al. J Big Data (2018) 5:46

oppositely, it has performed as low as nearly 60 s as data size increases exponentially (10,
20 and 50 million records).

This significant and consistent difference can be attributed to the effective use of the
proposed model in general and appropriate adaptation of relationship style such as ref-
erencing and embedding when modeling NoSQL document-model databases. An exam-
ple of using this relationship styles can be explained as follow: consider having entity
Ex which is related to entity Ey and entity Ez as child entities, in this case, embedding is
highly discouraged since both Ey and Ez can function simultaneously which also means
one can function in the absence of the other. Such scenario is controlled by Cm formula
as defined in Eq. 3. Instead, referencing type of relationship modeling is strongly encour-
aged in such scenario. This is because, documents can be separately created and relate
them using their identifiers (ID).

Results on security

Security and privacy of data stored in any database is considered challenging [27]. This
is not different with NoSQL databases; it is even more challenging because of their
extreme flexibility. With NoSQL, mere record insertion can automatically expand a col-
lection by creating a new schema within the collection [28]. This is achieved in most
cases using NoSQL-injection hacking method [29]. As a result, this method was used
to test the security loopholes in the schemas produced using the proposed model (rep-
resented as IS), and the two separate schemas (represented as CS1 and CS2) generated
using the conventional method. The results are as follows.

At first, during our control experiment, the three produced schemas are subjected
to rigorous security challenge using the same NoSQL-injection method. This is done
to see the possibility of hacking into the developed databases through the insert query.
The method tries to inject a foreign schema (document) into the queries being executed
by all schemas. Using this method, the hacking is considered successful if at least one

Fig. 4  Hacking using NoSQL-injection method; success and failure counts for IS, CS1 and CS2

Page 14 of 17Imam et al. J Big Data (2018) 5:46

foreign document is successfully created, because, presence of a single unauthorized
document within a collection can provide subsequent unauthorized queries.

The experiment was conducted evenly and repeatedly for each of the three produced
schemas. Each schema, was tried ten times under three different data-size categories,
explicitly 1,000,000, 2,000,000, and 3,000,0000 records. The reason for this increment
in data size is that, large datasets take longer execution time during insertion and it’s
believed that, the longer the execution time of a query the higher the chances of a suc-
cessful NoSQL-injection. 0 represents failed hacking attempt while 1 represents success-
ful hacking. This means, for any successful insertion of foreign document into a query
during data insertion, digit 1 is recorded; otherwise digit 0 is recorded as presented in
Table 3.

Under the first data-size category (1,000,000R), it can be observed from Fig. 4 and
Table 3 that, out of the 10 trials, the Improved Schema (IS) failed to apply its protection
mechanisms once only, while the Competitor Schema 1 (CS1) and Competitor Schema
2 (CS2) failed 6 times and 7 times, respectively. This significant margin cut across all
data-size categories. In the second data-size category (2,000,000), IS continued to per-
form better having failed only 2 times, which significantly outperformed CS1 with 8
numbers of failures and CS2 with 9 numbers of failures. In the third category of data-
size (3,000,000), the two (both CS1 and CS2) did not record any success in preventing
NoSQL-injection hacking as the attack went through successfully in all the trials, while
in IS, the failure was recorded only three times out of the ten trials. This consistent mar-
gin across all categories and trials can be attributed to the following reasons.

Firstly, the IS was generated through the proposed model which adopted the new
cardinalities and styles [11]. The proposed model also incorporated modeling guide-
lines proposed in [12]. Secondly, the proposed mathematical formulas do not focus on
calculating only cluster or document availability but also provide consistencies across
schemas. Thirdly, both CS1 and CS2 used personal modeling expertise in modeling their
NoSQL schema; thus do not apply any hacking prevention technique. This expertise var-
ies across different levels of programmers, which is why some little but inconclusive dif-
ference (based on error margin) is noticed between CS1 and CS2.

With such recorded significant improvement in the aspects of performance and secu-
rity in NoSQL schemas, it can be conclusive enough to say that, despite having several
techniques on NoSQL modeling, the model that addresses basic modeling challenges in
the background and require less technical skills in front end is urgently needed in prac-
tice. This is not only for accurate mapping of entities but also alleviating modeling dif-
ficulties and producing desired schema always.

Conclusion and future focus
In this paper, a model that aims to minimize data modeling hardship and erroneous
modeling implementation facing novice programmers is presented. The model focuses
on balancing between critical significant factors of data modeling such as consistency,
availability, and scalability. The proposed model consists of three sections, that is to
say the architecture of the model, its algorithm and components which includes math-
ematical formulas used to calculate the availability of clusters. Controlled experiment

Page 15 of 17Imam et al. J Big Data (2018) 5:46

was conducted to generate schemas and assess their individual performances in terms
of security and read–write speed. Three separate schemas were produced, one of which
was produced through the proposed model and the others through the conventional
method. Mini systems were created to implement the three proposed schemas. There-
after, records are inserted in batches into the developed databases while monitoring the
behavior of each schema. Results of write-speed performance shows that, the schema
which is produced by the proposed model takes lesser time to write new records into
the database at incrementally different number of records. Also, the time take by pro-
grammers to model NoSQL database is considerably reduced, which again simplified
the modeling process. In addition, the schemas generated thought the proposed model
proved to be much more secure than those generated through the conventional meth-
ods. This improvement in NoSQL database modeling practice may continue to attract
researchers’ interest in the near future.

Abbreviations
SQL: Structured Query Language; NoSQL: Not only Structured Query Language; DB: databases; IS: Improved Schema; CS1
& 2: Competitor Schema 1 & 2; ENR: Expected Number of Records; CRUD: Create, Read, Update, and Delete; SR: system
requirement; ACID: Availability, Consistency, Isolation, and Durability.

Authors’ contributions
Following the International Committee of Medical Journal Editors (ICMJE) guidelines, AAI, SB, RA, JW, MTG have made
substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data; been
involved in drafting the manuscript or revising it critically for important intellectual content; given final approval of the
version to be published. Each author should have participated sufficiently in the work to take public responsibility for
appropriate portions of the content; and agreed to be accountable for all aspects of the work in ensuring that questions
related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All authors read
and approved the final manuscript.

Authors’ information
AAI is a Ph.D. student at the Petronas University of Technology, Malaysia. He received his B.Sc. and M.Sc. degrees in
Information Technology from Islamic University in Uganda (IUIU), and Petronas University of Technology, Malaysia. He
is a lecturer at the department of computer science, Ahmadu Bello University, Zaria-Nigeria, after working with IUIU as
a system developer and United Nations AFRI-Uganda as a database and network administrator. Imam is a recipient of
research grant from ministry of education Malaysia, and also 2 best paper awards from international conferences. He has
published many journal papers, conferences and a book chapter. His area of interest includes but not limited to, big data
analytics, SQL, NOSQL and distributed database, software engineering, heterogeneous mobile databases.

Junzo Watada. He received the B.Sc. and M.Sc. degrees in electrical engineering from Osaka City University, Japan,
and the Ph.D. degree from Osaka Prefecture University, Japan. After being a system engineer of basic systems and
application systems at Fujitsu Co. Ltd, he joined the Academia. Currently he is a professor of Petronas University of
Technology and an emeritus professor of Waseda University, after contributing as a professor at Graduate School of
Information, Production & Systems, Waseda University, Japan. Dr. Watada is a vice president of Forum of interdisciplinary
Mathematics, and a fellow and honorary member of Japan Society of Fuzzy Theory and Intelligent Informatics. He is a
recipient of Henri Coanda Medal Award from Inventico in Romania in 2002. Dr. Watada is the Principal Editor, a Co-Editor
and an Associate Editor of several international journals including IDT journal, ICIC Express Letters, Information Sciences,
International Journal of Systems and Control Engineering, JACIII, and Fuzzy Optimization & Decision Making. His profes‑
sional interests include soft computing, meta heuristic, model building tracking system, knowledge engineering and
management engineering. He is a senior member of the IEEE.

Rohiza Ahmad obtained her B.Sc. (Computer Science) from the University of Tennessee at Martin, USA in 1987, M.Sc.
(Computer Science) from the University of North Texas, USA in 1989 and Ph.D. from the University of Malaya in 2009. Cur‑
rently, she is a Senior Lecturer at the Department of Computer and Information Sciences, Universiti Teknologi PETRONAS,
Malaysia. Her research interests are in the area of database management, mobile database application as well as technol‑
ogy acceptance.

Shuib Basri received his bachelors degree in IT (BIT(Hons)) From Universiti Utara Malaysia, Masters degree in Software
System Engineering (MSSE) from Melbourne University, Australia, and Ph.D. degree in Software engineering from Dublin
City University, Republic of Ireland. He joined the Academia, after being an IT engineer of basic and application systems
at several IT based companies for several years. Currently he is a Senior Lecturer of Petronas University of Technology. His
research interest include Software Quality, Software Process Improvement, Agile method, Big Data analytics, knowledge
engineering and management engineering and several more area in software engineering. He is a member of ISO WG24,
IEEE and the IEEE Computer Society.

Maria Teresa Gonzalez-Aparicio. She received the B.Sc. and the Ph. D. degrees in Computer Science from Oviedo
University, Spain. Currently, she is an Associate Lecturer in Computing at the Department of Computer Science, Oviedo
University, Spain. She is involved in a National Spanish Research project supported by the Ministry of Economy and Com‑
petitiveness. She has published in international journals and conferences. She was part of the program committee of an

Page 16 of 17Imam et al. J Big Data (2018) 5:46

international conference. She was a reviewer of an international journal. Her research interests include NoSQL databases,
transactions in cloud and services computing and software testing. She is a member of the IEEE.

Author details
1 Computer and Information Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Seri
Iskandar, Perak, Malaysia. 2 SQ2E Research Cluster, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Seri
Iskandar, Perak, Malaysia. 3 Ahmadu Bello University, Zaria, Nigeria. 4 Computing Department, University of Oviedo, Gijon,
Spain.

Acknowledgements
This paper/research was fully supported by Ministry of Higher Education Malaysia, under the Fundamental Research
Grant Scheme (FRGS) with Ref. No. FRGS/1/2018/ICT04/UTP/02/04. Any opinions, findings, and conclusions stated in this
paper are those of authors and do not necessarily reflect those of the MOHE.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The data that support the findings of this study are available from PETRONAS university of Technology and CyberSecurity
Malaysia but restrictions apply to the availability of these data, which were used under license for the current study, and
so are not publicly available. Data are however available from the authors upon reasonable request and with permission
of PETRONAS university of Technology and CyberSecurity Malaysia.

Funding
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 1 September 2018 Accepted: 20 November 2018

References
	1.	 Ramez Elmasri A, Navathe Shamkant B. Fundamentals of database systems, vol. 6, no. 4, 6th ed. United States:

Addison-Wesley Publishing Company; 2010.
	2.	 Chouder ML, Rizzi S, Chalal R. Enabling self-service BI on document stores. In: Work Proceedings EDBT/ICDT 2017 Jt

Conf Venice, Italy; 2017.
	3.	 Atzeni P, Bugiotti F, Rossi L. Uniform access to NoSQL systems. Inf Syst. 2014;43:117–33.
	4.	 Enríquez JG, Domínguez-Mayo FJ, Escalona MJ, Ross M, Staples G. Entity reconciliation in big data sources: a system‑

atic mapping study. Expert Syst Appl. 2017;80:14–27.
	5.	 Varga V, Jánosi KT, Kálmán B. Conceptual design of document NoSQL database with formal concept analysis. Acta

Polytech Hungarica. 2016;13(2):229–48.
	6.	 William Z. 6 Rules of thumb for MongoDB schema design. MongoDB, 2014. https​://www.mongo​db.com/blog/

post/6-rules​-of-thumb​-for-mongo​db-schem​a-desig​n-part-1. Accessed: 23 Jan 2017.
	7.	 Atzeni P. Data modelling in the NoSQL world : a contradiction ? In: Int. Conf. Comput. Syst. Technol. CompSys‑

Tech’16. 2016; pp. 23–24.
	8.	 April R. NoSQL technologies: embrace NoSQL as a relational guy—column family store. DBCouncil. 2016. https​://

dbcou​ncil.net/categ​ory/nosql​-techn​ologi​es/. Accessed 21 Apr 2017.
	9.	 CrawCuor R, Makogon D. Modeling data in document databases. United States: Developer Experience & Document

DB; 2016.
	10.	 Mior MJ, Salem K, Aboulnaga A, Liu R. NoSE: Schema design for NoSQL applications. In: IEEE Trans. Knowl. Data Eng.

From 2016 IEEE 32nd Int. Conf. Data Eng. ICDE 2016. vol. 4347, 2016; p. 181–92.
	11.	 Imam AA, Basri S, Ahmad R, Abdulaziz N, González-aparicio MT. New cardinality notations and styles for modeling

NoSQL document-stores databases. In: IEEE Region 10 Conference (TENCON), Penang, Malaysia, 2017. p. 6.
	12.	 Imam AA, Basri S, Ahmad R, Aziz N, Gonzlez-aparicio MT, Watada J, Member S. Data modeling guidelines for NoSQL

document-store databases. In: IEEE Trans. Knowl. Data Eng. 2017. p. 1–14.
	13.	 Jatana N, Puri S, Ahuja M. A survey and comparison of relational and non-relational database. Int J Eng res Technol.

2012;1(6):1–5.
	14.	 Bhogal J Choksi I. Handling big data using NoSQL. In: Proceedings-IEEE 29th international conference on advanced

information networking and applications workshops, WAINA 2015. Piscataway: IEEE; 2015. p. 393–8.
	15.	 Tauro CJ, Aravindh S, Shreeharsha AB. Comparative study of the new generation, agile, scalable, high performance

NOSQL databases. Int J Comput Appl. 2012;48(20):1–4.
	16.	 Visigenic S. ODBC 2.0 Programmer’s Manual, Version 2. United States: TimesTen Performance Software, 2000.
	17.	 Gartner, Fowler M. The NoSQL generation : embracing the document model. MarkLogic Corp. In: Hype Cycle Big

Data. 2014.
	18.	 Han J, Haihong E, Le G, Du J. Survey on NoSQL database. In: Proc. 2011 6th Int. Conf. Pervasive Comput. Appl. ICPCA

2011. Piscataway: IEEE; 2011. p. 363–6.

https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-1
https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-1
https://dbcouncil.net/category/nosql-technologies/
https://dbcouncil.net/category/nosql-technologies/

Page 17 of 17Imam et al. J Big Data (2018) 5:46

	19.	 Alhaj TA, Taha MM, Alim FM. Synchronization wireless algorithm based on message digest (SWAMD) for mobile
device database. In: 2013 Int. Conf. Comput. Electr. Electron. Eng. synchronization. Piscataway: IEEE; 2013. p.
259–262.

	20.	 Arora R, Aggarwal R. Modeling and querying data in mongodb. Int J Sci Eng Res. 2013;4(7):41–144.
	21.	 Kaur K, Rani K. Modeling and querying data in NoSQL databases. In: IEEE international conference on big data.

Piscataway: IEEE; 2013. p. 1–7.
	22.	 Shekhar S, Coyle M, Goyal B, Liu D-R, Sarkar S. Data models in geographic information systems. Commun ACM.

1997;40(4):103–11.
	23.	 De Oliveira JL, Pires F, Medeiros CB. An environment for modeling and design of geographic applications. Geoinfor‑

matica. 1997;1(1):29–58.
	24.	 Borges KA, Davis CA, Laender AH. Omt-g: an objectoriented data model for geographic applications. Geoinformat‑

ica. 2001;5(3):221–60.
	25.	 Kosters G, Pagel B-U, Six H-W. Gis-application development with geoooa. Int J Geogr Inf Sci. 1997;11(4):307–35.
	26.	 Mior MJ. Automated schema design for NoSQL databases. In: Proc. 2014 SIGMOD Ph.D. Symp. SIGMOD’14 PhD

Symp. 2014. p. 41–45.
	27.	 Cinar O, Guncer RH, Yazici A. Database security in private database clouds. In: Int. Conf on Inf. Sci. Secur ICISS 2016.

2017.
	28.	 Obijaju M. NoSQL NoSecurity—security issues with NoSQL database. Perficient: data and analytics blog, 2015.

http://blogs​.perfi​cient​.com/dataa​nalyt​ics/2015/06/22/nosql​-nosec​uity-secur​ity-issue​s-with-nosql​-datab​ase/.
Accessed 21-Sept 2016.

	29.	 Ron A, Shulman-Peleg A, Puzanov A. Analysis and mitigation of NoSQL injections. IEEE Secur Priv. 2016;14(2):30–9.
	30.	 Matthias G. Knowledge base of relational and NoSQL database management systems: DB-Engines ranking per data‑

base model category. DB-Engines, 2017. https​://db-engin​es.com/en/ranki​ng_categ​ories​. Accessed 21 Apr 2017.

http://blogs.perficient.com/dataanalytics/2015/06/22/nosql-nosecuity-security-issues-with-nosql-database/
https://db-engines.com/en/ranking_categories

	Automatic schema suggestion model for NoSQL document-stores databases
	Abstract
	Introduction
	Overview of the NoSQL databases
	Literature review
	Proposed model
	Model architecture
	Schema generator algorithms
	Model components
	Central storage area
	Formulas

	Results and discussion
	Results on performance (query-writing speed)
	Results on security

	Conclusion and future focus
	Authors’ contributions
	References

