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Introduction
In big data research and database machineries, new concerns been debated increasingly 
are the storage capabilities of the non-conventional applications. For decades, tradi-
tional databases have dominated every aspect of data storage. They provide engines that 
enforce database schema, eliminate inconsistencies, and centrally control data as well as 
redundancy [1]. With the rise of big data coupled with its unconventional features has 
demanded the creation of more advanced databases called NoSQL [2–4]. They are more 
flexible, highly scalable and low-latent. The term NoSQL originates from “Not only SQL”, 
which means they do not emerge to eliminate tradition database but to supplement 
them as a result of rapid increase in data size, variety, complexity and variability [5].

NoSQL databases have since become very popular world-wide due to their robust-
ness. They are the new storage technologies used by big companies like Facebook, 
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Google, Amazon and many others [6]. However, the ever-changing characteristic of 
today’s data creates difficulty in modeling these flexible databases appropriately. This 
is as a result of issues like traditional modeling mindset, increasingly complex data-
sets, as well as low competency [7–9]. For these reasons, both industry and academia 
focused on finding practical solutions to assist NoSQL novice data modelers. Never-
theless, some of the available solutions concentrate on dissimilar NoSQL databases 
rather than document-model databases [10] despite the wide use of the document-
model databases (please see “Overview of the NoSQL Databases” section), while oth-
ers are considered to be vendor specific as reported in [6].

Prior to this study, two separate but related studies were conducted by the authors 
of this paper as a foundation to NoSQL database modeling. The said earlier studies 
were motivated by the industrially proven problems, theoretically grounded with 
basic modeling facts, and empirically validated through repeated and rigorous experi-
ments. One of the aforesaid studies, focuses on cardinality notations and styles [11], 
while the other presented modeling guidelines [12]. The two studies scoped at NoSQL 
document-store databases. The current study derived its strength and solid founda-
tion from the earlier described studies especially in the aspects of relationship prior-
itization and semantic mapping of related documents. In addition, our earlier studies 
significantly contributed in balancing and prioritizing user requirements in relations 
to system requirements.

Subsequently, in this paper, a schema suggestion model which is applicable to 
NoSQL databases is proposed. The main aim of this model is to further simplify the 
modeling process of the NoSQL databases. As earlier mentioned, the first step taken 
to address the NoSQL modeling challenge was to extend the existing cardinality nota-
tions to handle highly complex datasets. Next, NoSQL modeling guidelines were pro-
duced, categorized and prioritized to guide modelers on best modeling practice. To 
effectively implement these solutions, substantially high level of expertise is required; 
thus inspired the creation of the proposed model with which, schemas can be auto-
matically generated rather than writing from scratch. To initiate the process, pro-
grammers are only required to provide some values into the proposed model, and the 
rest like embedding related documents and referencing highly volatile documents, 
etc. is handled by the model. The following are the main contributions of this paper:

A schema suggestion model for NoSQL document-model databases. This model 
balances between consistency, availability and scalability. It also accepts param-
eters such as list of entities, CRUD operations etc. which are used in the produc-
tion of NoSQL database schemas.
New formulations for calculating cluster availability which is categorized as Paral-
lel, Serial and Partial. This availability options help in defining consistency levels.
New translatable algorithms which are compatible with any of the available pro-
gramming languages.
Benchmark between the security of NoSQL database and read–write perfor-
mance of queries using both the schema suggested by the proposed model and the 
schema produced using the conventional methods.
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With the above described model, parameters together with their associated data can 
be supplied into the proposed model to produce initial schema based on solid theoreti-
cal and empirical foundations adopted from [11, 12]. It should be unequivocally noted 
that, the proposed model does not produce fully functional schema which can be 100% 
copy-pasted, rather produce a schema with basic modeling concepts that can be used at 
the initial stage of database design. This means, expert review or additional program-
mers inputs might be required on schemas generated through the proposed model. This 
review should be conducted before the commencement of system development.

The remainder of this paper is organized as follows: “Overview of the NoSQL data-
bases” section explains the overview of the NoSQL databases. While the related litera-
ture with respect to NoSQL data modeling is discussed in “Literature review” section. 
“Proposed model” section presents the proposed model, its architecture, algorithms, and 
components which include the formulas for calculating cluster availability. “Results and 
discussion” section shows and explains the experimental results with regards to security 
and read–write query speed. “Conclusion and future focus” section concludes the paper 
and indicates possible future direction.

Overview of the NoSQL databases
Not only SQL (NoSQL) databases are powerful databases that have recently penetrated 
large industries to supplement Relational Databases. These databases differ from rela-
tional databases in many significant ways, such as their avoidance of tables for storage 
structure and SQL as a query language. In addition, join operations are indirectly per-
formed or not allowed in some cases; ACID properties are not guaranteed, and they 
are scaled horizontally rather than vertically, as in the case of traditional databases. 
NoSQL databases may be classified in many ways; however, the most important fac-
tor for NoSQL classification is the data model, i.e., the way data is organized and stored 
[13]. The most common are key-value, document-store, column family, and graph data-
bases [14, 15]. In this research, we focus on document-store databases because they are 
open-source and share several features with relational databases, which has attracted the 
attention of relational experts [8]. Table 1 highlights the connection between relational 
databases and NoSQL databases.

The technical interception between SQL and document DB, as well as the storage and 
performance enhancement in document DB, as highlighted in Table 1, strongly contrib-
utes to its wide acceptance and usage in the industry, as developers are well versed in 
similar skills for SQL databases [6, 16]. Figure 1 shows the level of acceptance of docu-
ment-store databases according to DB engines.

Document-store databases, also known as aggregate databases or document-oriented 
databases, use documents as entities for data storage as well as for queries. The word 
“document” does not only imply MS Word or PDF but also JSON (Javascript notation) 
or XML (extensible markup language). Such types of documents do not require pre-
defined fields and often have a distinctive structure that can be queried. These databases 
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are considered to be ideal for storing large amounts of information of all sorts. Due 
to their flexibility and simplicity, document databases have become the most popular 
NoSQL databases across the globe [17]. Table 2 summarizes the key features of some of 
the top document databases.

Table 1  How SQL databases relate to some NoSQL databases

Heading level SQL databases Tables Hbase Document DB

Data model Relation-al Key/value store Column family store Document-store

Max size of data-
base

100 s of GB 100 s of TBs 100 s of TBs 100 s of TBs

Storage concept Tables, rows, col‑
umns

Tables, entities, 
partitions

Tables, rows, cells, 
column families

Collections, docu‑
ments

Language for query SQL Subset of OData 
queries

None Extended subset of 
SQL

Transaction support Rows and tables in a 
database

One partition for all 
entities

One row for all cells All documents in one 
collection

Secondary indexes Yes No No Yes

Triggers/stored proc T-SQL based None Java based JavaScript based

Valuing Unit of throughput 1 GBs of storage GBs of storage + VMs 
per hour

Unit of throughput

Fig. 1  Ranking scores per data model in percentage [30]
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It can be observed from Table  2 that, although document-store databases support 
some traditional database features such as Triggers and Index, SQL language, joint 
query, foreign keys, etc. are not sustained in document-stores. This makes it challenging 
to model document-store databases using relational database modeling techniques such 
as 1:M [7]. It is also considered imperative to model document-store databases with sim-
ilar modeling techniques to optimize concurrency when updating redundant data stored 
across different participating nodes [6].

Literature review
NoSQL databases, particularly document-stores are vastly flexible [18]. They allow the 
client side application developers to write and manage schemas because they based on a 
flexible model [5, 19]. However, this flexibility may potentially lead to incorrect NoSQL 
schema design particularly in the aspects of modeling relationships within and between 
datasets and entities [5, 6]. Several efforts have been made to address these challenges as 
reported below.

In the work of [5], Formal Concept Analysis (FCA) was used to propose a concep-
tual model in which its main aim is to assist programmers to model document-model 
databases. This model adopted three cardinality notations from relational databases for 
its relationship modeling which are (i) one-to-one → 1:1, (ii) one-to-many → 1:M, and 
(iii) many-to-many → M:M relationships. These notations are inherited directly from 
SQL based database onto NoSQL document-model databases. The method used in this 
model reveals positive impact of the aforesaid cardinalities when applied to NoSQL doc-
ument-model databases using FCA. However, the complexity and the size of data used 
in the experiment are very low which may not expose the limitation of the cardinali-
ties used in traditional databases. It’s a known fact that NoSQL databases handle much 
more complex and bulkier datasets; thus require extra cardinality breakdowns. In addi-
tion, document-store databases do not directly support foreign key enforcements. Also, 
other factors such as embedding and referencing which contribute to effective modeling 
of the NoSQL document-store databases are not considered in this study in spite of their 
significance to NoSQL modeling practice.

Alternatively, a study of techniques and patterns was carried out by Arora and 
Aggarwal [20] to get the optimal mapping state of entities. These findings were used 

Table 2  Features of document-model databases

Features MongoDB DynamoDB Couchbase CouchDB

Document-store Yes Yes Yes Yes

Schema-free Yes Yes Yes Yes

Secondary index Yes Yes Yes Yes

Triggers No Yes Yes Yes

Foreign keys No No No No

Predefined data type Yes Yes Yes No

APIs JSON RESTful HTTP Memcached RESTful RESTful HTTP/JSON

SQL No No No No

Partitioning methods Sharding Sharding Sharding Sharding

Replication methods Master (M)–Slave (S) Yes M–M
M–S

M–M
M–S
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to provide an approach to modeling different categories of NoSQL databases. How-
ever, this approach lacks an engine which is capable of generating NoSQL schema for 
novice developers. Similarly in [6] and [21], solutions to data modeling were provided 
for MongoDB database which uses JSON technology and adopted UML Diagram 
class. Though these approaches are suit MongoDB but they are considered vendor 
specific since they cannot be applied elsewhere even within the document model 
databases.

In relation to NoSQL storage optimization to house geographical data, less atten-
tion was given in recent years to improve the efficiency and retrieval performance in 
spite its importance to GIS and other related fields. As a result, several techniques for 
geographic IS and OMTEXT were proposed with the aim of minimizing data incon-
sistencies across NoSQL databases. The proposed techniques are data modeling using 
GISER [22], GMOD [23], Modeling Technique for Geographic Applications [24] 
(OMT-G), and Object-Oriented Analysis (GeoOOA) [25].

On the other hand, some technical experts such as from mongoDB [6] and JSON [9] 
companies explained how good data modeling relationships can be achieved as their 
contribution towards best modeling practice. These approaches are however focused 
on the NoSQL database functionalities of which they set to promote. This limits the 
options for programmers and companies to select only the databases that have such 
support. Therefore, there is need to have a solution that can be compatible with at 
least one category of NoSQL databases [5, 7, 26].

This leads to the proposal of few NoSQL modeling tools. In [26], cost-driven approach 
for query optimization is proposed. This approach uses the cost of workload execution 
for mapping the physical schema to the application data model. While this approach cre-
ated several opportunities for data modelers, it does not provide any working model, or 
tool that can directly assist the NoSQL modelers. Also, it focuses on column databases 
only. While in [10], an improved cost-based approach for modeling schema is proposed. 
The approach first estimate target application performance and recommends a candi-
date schema. Using this approach modeling practice is improved, however, the approach 
focuses on query performance only and it’s limited to column family databases. Clearly, 
there is need for a friendlier working model and tool that takes into account all modeling 
technicalities and directly propose schemas to NoSQL database modelers.

As can be observed, the approaches discussed earlier gave much attention to spatial 
data which is suitably managed by graph databases while others are concerned with 
fundamental principles only, excluding the automated process of NoSQL database 
modeling. Generating schemas automatically not only simplify modeling process but 
also makes it more accurate and secure.

Proposed model
In this section, a model that aims to minimize data modeling hardship facing nov-
ice programmers is presented. The model focuses on balancing between critical sig-
nificant factors of data modeling such as consistency, availability, and scalability. The 
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section is further separated into three subsections, that is to say the architecture of 
the proposed model, its algorithm and finally its associated components.

Model architecture

Figure 2 represent the architecture of the proposed model. There are four phases or lay-
ers in the architecture which are represented by rectangle shapes. Document schemas 
are depicted with curly brackets symbols, while the flow directions are indicated using 
arrowed-lines. Other symbols are labeled as shown in the diagram.

The above presented architecture (in Fig. 2) comprises of four interconnected layers, 
having the first layer as the presentation layer (Client Side). At this point, modelers are 
expected to supply values to the parameters that are non-selectable (e.g. entity name as 
they are peculiar to different systems), and also choose from the selectable parameters. 
Semantic mappings of the recorded entities are then initiated by the model itself starting 
from third layer. This is achieved partly using modeling guidelines [12] and new genera-
tion cardinalities [11]. The following algorithms explain the logic.

Fig. 2  Schema suggestion model architecture
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Schema generator algorithms

The step-by-step procedure of the proposed model is presented in this section. The 
model follows this procedure in order to generate any desired schema

Schema Generator Algorithm.
Input: E = List of entities and ENR = Expected number of 

records per entity.
CRUD Operations Cr (C, R, U, D).
System Requirements SR(A=Availability,C L,M,H= Con-

sistency S=Security).
Output: Schema for NoSQL document-store databases.
Definitions: C L,M,H(Low, Medium and High Consistency)

begin
variables (E(E + ENR), CRUD, SR, i)
if E.size != : then
SR get preferred requirement
Cr get selected CRUD operation
while i < E.size do
ENR get ENR of an entity 
for each item in E do
if SR = CH and (Cr = C or U) then
if item(ENR)[i]>0 and item(ENR)[i]<1000,000 then
embedding is preferred;

else if item(ENR)[i] > 100,000,000 then
referencing is preferred; but…
call RollBack(series);

end;
else if SR = CL and (Cr = C or U) then
referencing is preferred; but…
call RollBack(parallel);

else if SR = Cm and (Cr = C or U) then
referencing is preferred; but…
call RollBack(partial);

end;
//Availability section (retrieval)
if SR = A and (Cr = R) then
pg newPg[i];
Tpg = ROUND(ENR / RecordsPerPage);
foreach(range(1, Tpg) as pg)
if(pg=1 or pg=Tpg or(pg>=newPg and pg<=newPg))
pg newPg (+ or - 1);

end;
end;

end;
//var a ENR + ROUND((ENR / 100) * 20) / 

end;
end;

else
return null;

end;

Algorithm RollBack(method).
Input: Series, Parallel, Partial.
Output: Cluster availability.
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Definition: C = cluster and X is the cluster counter

begin
if method = series then
Av = False
for (i = 1; i <= 3; i++)
Check availability of C1, C2, C3 ... Cn

if availability is = 100% (CX1Cx2...Cxn) then
Av = True;
return Av; set i = 4; exit();

else
repeat

end;
else if method = parallel then
Av = False
for (i = 1; i <= 3; i++)
Check availability of C1, C2, C3 ... Cn

if availability is = 50% (1-(1-CX)
2) then

Av = True;
return Av; set i = 4; exit();

else
repeat

end;
else if method = partial then
Av = False
for (i = 1; i <= 3; i++)
Check availability of C1, C2, C3 ... Cn

if availability is = 75% (Formula as in Eq(3)) then
Av = True;
return Av; set i = 4; exit();

else
repeat

end;
end;

.

Next, the components that assist the entities mapping module are presented, they 
include formulas for calculating availability and storage for storing selected values.

Model components

The components that are used in the semantic mapping module are highlighted in this 
section. We started by describing the storage area and then followed by formulas.

Central storage area

This is a centralized area where the selectable parameters and values which are supplied 
to the non-selectable parameters are saved. These records are important and used for 
the availability computations, systematic and semantics mappings. The structure of this 
storage is described below:
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•	 Project_ID: this is one of the important attributes that uniquely identifies a project. 
The proposed model is design in such a way that one user can have multiple NoSQL 
modeling projects and as such project identifier is required to distinguish between 
projects.

•	 User_ID: since the model can be further centralized to handle projects from different 
users, unique identification need to be extended to all users of the model. This will 
help to avoid interchanging schemas between users.

•	 Entities: entity names are saved here as they are being provided by modelers.
•	 ENR (Expected Number of Records): this attribute saves ENR for each entity and are 

considered when choosing between referencing and embedding a document.
•	 CRUD: Create, Read, Update and Delete (CRUD) operations choices are saved under 

CRUD attribute. The first level iteration process is controlled by this attribute like C 
for create.

•	 SR (System Requirements): the choice of SR such as consistency, availability, or scal-
ability is housed under this attribute.

•	 Relations: if entities are related, this attribute is used to keep the type and the chain 
of the relationship like parent → child → grand-child etc.

•	 Con_active: not all entities are related in some cases, this indicates whether an entity 
is active or not.

•	 Flag: as iteration takes place, this attribute keeps the mappings and computational 
status. This is achieved by using digits 0 as completed and 1 as not attended.

Formulas

Mathematical formulas are also introduced to standardize the computation process. 
This is to provide accurate mappings of entities, especially while checking document 
or cluster availability for different level of consistency requirements. The formulas are 
described as follows.

Equation 1 is used when the required consistency level is very high. In other words, 
it’s applied for highest level of consistency. This level of consistency can be explained as 
having all nodes (Availability (A) of cluster x and cluster y) available before any CRUD-
operation transactions can be allowed to take place, if the consistency level is not met, 
the operation is either retried up to three times (or any number defined by modeler) 
or terminated using roll back function. However, the roll back function is automatically 
called when the number of trials is = the maximum number of iteration set by modeler.

Contrariwise, if the choice of consistency is low CL, Eq. 2 is applied. Level of consist-
ency can be considered low if parallel operations or transactions are allowed. This means 
in the absence of cluster x, cluster y can proceed with transaction while waiting for clus-
ter x to be online and synchronize afterwards. Having two separate clusters holding 
different status or version of information can be catastrophic in many contexts such as 
system access security.

(1)Cs = AxAy

(2)CL = 1− (1− Ax)
2
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Equation 3 can be adopted if the choice of consistency C (as system requirement) is 
medium m. Each cluster C..N availability is calculated separately. For instance, consider 
a parent-cluster P with C number of child-clusters, such cluster P is considered avail-
able if at least C-N child-clusters are available. This in contrast means, not more than N 
clusters can fail. The number of N can be set to any value less than C (which is the total 
number of clusters in a collection).

In the following section, the results of the proposed model and also the traditionally 
generated schemas are presented and discussed.

(3)Cmc,n =

n∑

i=0

c!

i!(c − r)!
× C(c−i)

× (1− A)i

Fig. 3  Rate of record creations C: a performance comparison between schemas produced using the 
proposed model and conventional method
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Results and discussion
In this section, results of our experiment and comparison are presented. The experi-
ment was conducted in a controlled environment where few experts within our network 
are tasked to generate three different NoSQL schemas for small scaled software. First 
one was generated through the proposed model, while the remaining were generated 
using the conventional modeling methods. The two schemas are tested on two different 
factors such as security and performance in terms of query-writing speed. C and U of 
CRUD operations are considered during the experiment. Also, medium m consistency 
(as in Eq. 3) is used to check the consistency requirement. Schemas are implemented on 
mongodb and couchbase NoSQL databases, while Java was used as the programming 
language and SQL as a query language. Also, a core i7 32 GB-RAM 4 GHz computer 
was used for the experiment, which runs Apache on windows platform. Next, the results 
obtained from both schemas are compared, analyzed and reported. The results are cat-
egorized as follows based on the aforesaid factors, starting with performance in the con-
text of query-writing speed.

Results on performance (query‑writing speed)

Performance of two different schemas was measured in terms of write-query speed in 
this section. The comparison is between the schemas generated using the proposed 
model and the schemas produced using the conventional method. Results are presented 
as follows.

By referring to Fig. 3a, b, it can be noticed that, between 5000 and 100,000 records of 
data size, there is insignificant difference in data-creation-query-speed between the two 
schemas. This possible explanation of this trivial performance is the fact that when the 
size and complexity of data is low no much difference can be recorded. However, as data 
size increases to around 500,000, the gap between the schemas begins to be consider-
ably high. In addition, it can also be observed from Fig. 3a, b that the speed increment of 
data creation is maintained (from around 4 s to 16 s maximum) by the proposed model 
across different sizes of records, while the traditionally generated schema performed 

Table 3  Hacking using NoSQL-injection method; success (1) and  failure (0) for  IS, CS1 
and CS2

1,000,000R 2,000,000R 3,000,000R

IS CS1 CS2 IS CS1 CS2 IS CS1 CS2

0 1 1 0 1 1 0 1 1

0 0 1 0 0 1 0 1 1

0 1 0 1 1 1 1 1 1

1 0 1 0 1 1 1 1 0

0 1 1 0 1 1 0 1 1

0 1 1 0 0 0 0 1 1

0 0 1 0 1 1 0 1 1

0 1 0 1 1 1 0 0 1

0 0 0 0 1 1 1 1 1

0 1 1 0 1 1 0 1 1

9/1 4/6 3/7 8/2 2/8 1/9 7/3 1/9 1/9
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oppositely, it has performed as low as nearly 60 s as data size increases exponentially (10, 
20 and 50 million records).

This significant and consistent difference can be attributed to the effective use of the 
proposed model in general and appropriate adaptation of relationship style such as ref-
erencing and embedding when modeling NoSQL document-model databases. An exam-
ple of using this relationship styles can be explained as follow: consider having entity 
Ex which is related to entity Ey and entity Ez as child entities, in this case, embedding is 
highly discouraged since both Ey and Ez can function simultaneously which also means 
one can function in the absence of the other. Such scenario is controlled by Cm formula 
as defined in Eq. 3. Instead, referencing type of relationship modeling is strongly encour-
aged in such scenario. This is because, documents can be separately created and relate 
them using their identifiers (ID).

Results on security

Security and privacy of data stored in any database is considered challenging [27]. This 
is not different with NoSQL databases; it is even more challenging because of their 
extreme flexibility. With NoSQL, mere record insertion can automatically expand a col-
lection by creating a new schema within the collection [28]. This is achieved in most 
cases using NoSQL-injection hacking method [29]. As a result, this method was used 
to test the security loopholes in the schemas produced using the proposed model (rep-
resented as IS), and the two separate schemas (represented as CS1 and CS2) generated 
using the conventional method. The results are as follows.

At first, during our control experiment, the three produced schemas are subjected 
to rigorous security challenge using the same NoSQL-injection method. This is done 
to see the possibility of hacking into the developed databases through the insert query. 
The method tries to inject a foreign schema (document) into the queries being executed 
by all schemas. Using this method, the hacking is considered successful if at least one 

Fig. 4  Hacking using NoSQL-injection method; success and failure counts for IS, CS1 and CS2
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foreign document is successfully created, because, presence of a single unauthorized 
document within a collection can provide subsequent unauthorized queries.

The experiment was conducted evenly and repeatedly for each of the three produced 
schemas. Each schema, was tried ten times under three different data-size categories, 
explicitly 1,000,000, 2,000,000, and 3,000,0000 records. The reason for this increment 
in data size is that, large datasets take longer execution time during insertion and it’s 
believed that, the longer the execution time of a query the higher the chances of a suc-
cessful NoSQL-injection. 0 represents failed hacking attempt while 1 represents success-
ful hacking. This means, for any successful insertion of foreign document into a query 
during data insertion, digit 1 is recorded; otherwise digit 0 is recorded as presented in 
Table 3.

Under the first data-size category (1,000,000R), it can be observed from Fig.  4 and 
Table 3 that, out of the 10 trials, the Improved Schema (IS) failed to apply its protection 
mechanisms once only, while the Competitor Schema 1 (CS1) and Competitor Schema 
2 (CS2) failed 6 times and 7 times, respectively. This significant margin cut across all 
data-size categories. In the second data-size category (2,000,000), IS continued to per-
form better having failed only 2 times, which significantly outperformed CS1 with 8 
numbers of failures and CS2 with 9 numbers of failures. In the third category of data-
size (3,000,000), the two (both CS1 and CS2) did not record any success in preventing 
NoSQL-injection hacking as the attack went through successfully in all the trials, while 
in IS, the failure was recorded only three times out of the ten trials. This consistent mar-
gin across all categories and trials can be attributed to the following reasons.

Firstly, the IS was generated through the proposed model which adopted the new 
cardinalities and styles [11]. The proposed model also incorporated modeling guide-
lines proposed in [12]. Secondly, the proposed mathematical formulas do not focus on 
calculating only cluster or document availability but also provide consistencies across 
schemas. Thirdly, both CS1 and CS2 used personal modeling expertise in modeling their 
NoSQL schema; thus do not apply any hacking prevention technique. This expertise var-
ies across different levels of programmers, which is why some little but inconclusive dif-
ference (based on error margin) is noticed between CS1 and CS2.

With such recorded significant improvement in the aspects of performance and secu-
rity in NoSQL schemas, it can be conclusive enough to say that, despite having several 
techniques on NoSQL modeling, the model that addresses basic modeling challenges in 
the background and require less technical skills in front end is urgently needed in prac-
tice. This is not only for accurate mapping of entities but also alleviating modeling dif-
ficulties and producing desired schema always.

Conclusion and future focus
In this paper, a model that aims to minimize data modeling hardship and erroneous 
modeling implementation facing novice programmers is presented. The model focuses 
on balancing between critical significant factors of data modeling such as consistency, 
availability, and scalability. The proposed model consists of three sections, that is to 
say the architecture of the model, its algorithm and components which includes math-
ematical formulas used to calculate the availability of clusters. Controlled experiment 
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was conducted to generate schemas and assess their individual performances in terms 
of security and read–write speed. Three separate schemas were produced, one of which 
was produced through the proposed model and the others through the conventional 
method. Mini systems were created to implement the three proposed schemas. There-
after, records are inserted in batches into the developed databases while monitoring the 
behavior of each schema. Results of write-speed performance shows that, the schema 
which is produced by the proposed model takes lesser time to write new records into 
the database at incrementally different number of records. Also, the time take by pro-
grammers to model NoSQL database is considerably reduced, which again simplified 
the modeling process. In addition, the schemas generated thought the proposed model 
proved to be much more secure than those generated through the conventional meth-
ods. This improvement in NoSQL database modeling practice may continue to attract 
researchers’ interest in the near future.
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