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Introduction
One of the greatest scientific challenges of the 21st century is to understand the plethora 
of information from the various Big Data sources. Therefore, finding new information 
and patterns in Big Data is the current imperative [1]. Large-scale data driven applica-
tions are on the rise, and so is the need to extract useful information from terabyte and 
petabyte scale data sets (Big Data). Additionally, the amount of data from large scientific 
instruments as well as the resolution of large images are also increasing which creates 
visualization challenges that require a larger viewing area to capture the details [2]. So, 
visualizing multidimensional, time-varying data sets is both a challenge to the computa-
tional infrastructure and to the current display wall technologies.

Large tiled-display walls are enabling a new era in large-scale visualization and sci-
entific explorations, for the various research and scientific communities. These large 
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display walls are very useful in order to interpret and visualize the enormous amount 
of experimental data that is being collected by large science experiments. These tiled-
display walls allow users and researchers to explore features that are either very hard or 
practically impossible to identify using a conventional PC monitor.

This paper focuses on a novel visualization and display wall technology for displaying 
large high resolution images from very large data sets. A single computer monitor can 
constrain the way in which we can analyze large volumes of data. We can view either a 
low-resolution image that represents the entire extent of the data and thus risk missing 
the smaller details, or we can view small portions of the data in high resolution while 
losing the full context. In order to extract new information from Big Data, we need 
advanced visualization and new data analytics tools for Big Data environments [3]. In 
general, scientific data can be meaningless if it cannot be represented in a meaningful 
way, not only to the scientific community, but also to the general public. With Hiperwall, 
we can see both the broad view of the data sets and the details concurrently which ena-
bles the shared view of complex results. With our Hiperwall visualization system, we can 
display very large high-resolution images, conduct interactive analysis of large data sets, 
view multiple images or parameters of large data sets, and conduct a comparative view 
of many data sets at once and stream HD videos from remote collaborators (e.g. from 
CERN and LSST) [4, 5].

Methods
Visualization methods

Data visualization refers to the techniques that help the user transform data in the form 
of visual objects contained in graphics. Visualization is defined as a mental image or vis-
ual representation of an object or scene or person or abstraction that is similar to visual 
perception [6]. Visualization of the data can be a challenge to the user’s perception and 
capabilities [7]. Other definitions of visualization most commonly used in the literature 
are “the use of computer-supported, interactive, visual representation of data to amplify 
cognition”, where cognition is the acquisition or use of knowledge [8].

Over the past decades, data visualization has evolved and it has been categorized dif-
ferently by different authors. This section presents a summary of the information visu-
alization techniques and some of the data visualization categories used in this analysis. 
More categories could be found in the periodic table of visualization, which is an inter-
active chart displaying various data visualization methods [9]. Information visualization 
is an interactive interface of data to increase cognition or perception ability. It utilizes 
graphics to assist people in comprehending and interpreting the data [7, 10]. Data vis-
ualization represents quantitative data with or without axes in schematic or diagram-
matic form such as a table, line chart, pie chart, histogram, etc. These methods become 
more important when the data is massive, which needs to be analyzed and represented 
in a meaningful form, which is easy to understand and interpret [10]. A recent research 
study in the white paper by the SAS Institute showed that 98% of the most effective com-
panies working with Big Data are presenting results of the analysis via visualization [11].

Visual Analytics combines both visualization and data analysis [12–14]. In data visu-
alization, a variety of techniques are commonly used by data scientists. A table is the 
simplest and the easiest data representation technique. The information is structured in 
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rows and columns. Rows represent variables and columns represent records with a set 
of values [15]. The role of the table is the essential part of research and data analysis 
[10]. Next, pie charts, which is a circle divided into number of slices. Each of the slices 
describe a numerical proportion. Pie chart visualization could be difficult when compar-
ing different sections of different pie charts. The next category is 2D/3D representations. 
This category includes various types of graphs and bar charts [16], histograms, and line 
charts. Bar charts represent a single data series, and related data points are grouped in 
one series [10]. Histograms, which are commonly used in statistics, represent an accu-
rate distribution of numerical data. Line charts represent information in connected 
points or “markers” by straight line segments. Line charts are often used to visualize a 
trend in data over time intervals [10]. These techniques however, offer some limitation 
when complex data structures need to be visualized. Next, there is geometric transfor-
mation techniques which include the scatter plot and parallel coordinate plot. Scatter 
plot is a graphical display of a set of data using Cartesian coordinates to display the rela-
tionship between two variables for a set of data. Typically, one of the variables repre-
sents the horizontal axis, and the second variable represents the vertical axis of the data 
points. These plots are useful to determine trends in data and to identify outliers easily 
[10, 17]. The parallel coordinate plot helps the user to visualize multi-dimensional data 
[18]. Next, we have hierarchical image plots, which is a great method to visualize hierar-
chical structure data [19]. Finally, we have methods that focus on pixels, which is a visu-
alization technique that focuses on the pixels [20]. The main purpose of this technique 
is display a single value per pixel. In our case, this is an excellent technique to visualize 
large data sets using the big display walls such as the Hiperwall (see "Visual and data 
analytics with Hiperwall").

Information Visualization focuses on the use of visualization methods to help the 
user understand the data. Information visualization is the transmission of abstract data 
through the use of interactive visual interfaces [21]. Olshannikova et al. [7] presents a 
detailed list of visualization techniques such as tree map, tag cloud, clustering, motion 
charts and dashboard which is used in text analysis to depict keyword metadata, typi-
cally on websites [7].

The third area for data visualization is interactivity techniques. In these techniques, 
the user interacts directly with the data through mechanisms that make it possible to 
manipulate visualization effectively. When the user needs to reveal more details hidden 
in the data, the zooming technique is a great choice, or when the users need “zoom-in” 
capabilities, a big display wall such as the Hiperwall is an excellent visualization tool for 
this technique (see "Visual and data analytics with Hiperwall"). Another technique is the 
overview + detail which uses multiple views at the same time. This technique works for 
2D and 3D views. Others methods such as zoom + pan, focus + context or fish eye, offer 
different interaction techniques to users [10].

Visual and data analytics with Hiperwall

Large display walls have traditionally been the domain of air-traffic control cent-
ers, NASA command centers, and a few big budget corporations [22]. Nowadays, 
large high-resolution display walls that show large quantities of information at a 
single glance can be seen everywhere—in shopping malls, airports, athletic arenas, 
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museums, large corporations, and at TV/News stations and broadcasting studios. The 
uses of display walls are indeed very broad. In the commercial arena, digital signage 
is by far the most common usage of display walls. In recent years, a number of uni-
versities have also installed these display walls in sports arenas and VIP lounges to 
help attract students and sports fans to their institution to create a better fan experi-
ence and for advertising from sponsors. In academia, in the past few years, a number 
of universities have installed display walls in classrooms, libraries and lobbies. A few 
universities have installed display walls mostly for conducting interactive data visuali-
zation and analysis in a collaborative research environment.

Our tiled-display wall setup, known as Hiperwall (Highly Interactive Parallelized 
Display Wall) was inspired by an earlier tiled-display wall design architecture, called 
the OptlPortal that was developed almost 10 years ago [23]. The OptlPortal design 
used regular LCD PC monitors that were driven by PCs (which was attached to back 
of each LCD monitor), with optimized graphics processors and network interface 
cards. Our Hiperwall display was built using commercial-brand 55″ Samsung LED 
(backlit) HDTVs (instead of LCD PC monitors used in the OptlPortal design) and is 
driven by a separate rack-mount PCs—one PC for each Hiperwall display tile (instead 
of each PC attached to back of each display-tile). Hiperwall Inc. is a spinoff com-
pany that was created from the NSF funded OptlPuter project at UC Irvine’s Cali-
fornia Institute for Telecommunications and Information Technology (Calit2) [24, 
25]. It was designed to be a collaborative visualization platform capable of displaying 
information in real time. The Hiperwall software runs as an application operating on 
standard PCs connected via a standard 1 Gbps network switch (see Fig. 1 for termi-
nology/topology overview of the Hiperwall visualization system).

Hiperwall is a high performance, high resolution visualization system. Hiperwall’s 
visualization system software architecture applies parallel processing techniques to 
overcome the performance limitations typically associated with the display of large 
multiple images on multiple display devices (flat-panel tiles) simultaneously. Hiper-
wall is a collaborative visualization platform that is designed to visualize enormous 
data sets and allows viewers to see the details, while retaining the context of the sur-
rounding data. This allows a group of scientists/researchers/students to collaborate 
and share detailed information. The Hiperwall system allows the user to display a 
wide variety of high-resolution 2D and 3D images, animations, movies, and time-
varying data in real time all at once on multiple display-tiles that can be configured 
according to the needs of the user. Users can project a single image across the entire 
display area or many different images simultaneously. Hiperwall’s middleware even 
allows researchers in geographically diverse locations to collaborate on Big Science 
Experiments that generate Big Data.

Members of this research team from Bellarmine University (BU) have recently 
joined the Large Synoptic Survey Telescope (LSST) project and are part of LSST’s 
Dark Energy Science Collaboration (DESC). Equipped with a 3.2 Gigapixel cam-
era (the world’s largest digital camera), the goal of the LSST project is to conduct a 
10-year survey of 37 billion stars and galaxies that will deliver large volumes of images 
and data sets (astronomical catalogs) that is thousands of times larger than previously 
compiled to address some of the most pressing questions about the structure and 
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evolution of the universe, such as understanding the mysterious Dark Energy that is 
driving the acceleration of the cosmic expansion.

Starting from 2022, LSST will produce 15 Terabytes of raw data images per night, 
that’s about 200 Petabytes of imaging data over the 10 years of operation, which will be 
the largest data set in astronomy/astrophysics and cosmology [29, 30]. BU’s Hiperwall 
visualization system will be used for some of the LSST data analysis tasks to study and 
visualize some of these large LSST images in order to extract useful and specific infor-
mation from these large high resolution images. Table 1 shows the current single display 
technology resolutions which are much smaller than most current astronomical cam-
eras’ full resolution. Figure 2 shows a portion of a high resolution image of a supernova 
remnant displayed on the Hiperwall Display Wall.

In the field of experimental High Energy Physics (HEP), the four big HEP experiments 
(ATLAS, CMS, LHCb, and ALICE) at the Large Hadron Collider (LHC) at CERN in 
Switzerland are producing colossal volumes of data (Big Data). As of June 2018, these 
HEP experiments at the LHC have recorded over 250 Petabytes of raw data that are 
stored permanently at the CERN Data Center (DC) [31].

When proton beams collide head-on at high energies inside the LHC detectors, new 
subatomic particles are created that decay in complicated ways as they travel through 
layers of the detector. The collision energy is converted into mass that create these short-
lived subatomic particles. Currently, protons collide head-on inside the LHC detectors 
at an unprecedented rate of 1 billion times per second [31]. Most (99%) of the raw data 
events are filtered out by the LHC experiments, and the “interesting” data events are 

Fig. 1  Hiperwall terminology/topology overview [119]
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stored for further analysis. The filtered LHC data are stored at the CERN Data Center, 
where the initial data reconstruction is performed [31]. Even after this data reduction, 
the CERN Data Center (Tier0 Grid site) processes on average about one petabyte of data 
per day the equivalent of around 210,000 DVDs [32]. As of June 2018, even after filter-
ing out 99% of the raw data, around 50 Petabytes (50 PB) of data have been stored [33] 
for data analysis. That’s 50,000 Terabytes of data, the equivalent to nearly 15 million HD 
movies [33]. This 50 PB of data that have been stored can be retrieved and accessed by 
thousands of LHC physicists worldwide for analysis via the Worldwide LHC Computing 

Table 1  Table adapted from  Meade et  al. [26] shows the  increasing resolution 
in Megapixels of instrument/imaging devices versus the resolution of common displays

Note that no current display format can display a complete image at the original resolution

Resolution Megapixels (MP)

Instrument/Imaging Device

HST Advanced Camera for Surveys [26] 2× 2048× 4096 16

The QUEST Large Area CCD Camera [27] 112× 600× 2400 116

Skymapper [26] 32× 2048× 4096 268

DECam [26] 62× 2048× 4096 520

Subaru Hyper Suprime-Cam [26] 104× 2048× 4096 870

LSST Camera [28] 189× 4096× 4097 3200

Display Device

Standard desktop display 1680× 1050 1.7

Full high-definition (FHD) desktop display 1920× 1200 2.3

iPad (with retina display) 2048× 1536 3.1

Dell UltraSharp desktop display 2560× 1600 4.1

Laptop (Macbook Pro) 2880× 1800 5.2

4K ultra-high definition (UHD) display 3840× 2160 8.3

Fig. 2  A high resolution picture of a Supernova remnant [34] displayed on the Hiperwall Display Wall
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Grid (WLCG) and the Open Science Grid (OSG) cyberinfrastructure that is based on 
tiered grid computing technology. On any given day, on average, more than two million 
grid jobs run on WLCG and OSG for the LHC experiments. These subatomic particles 
that decay within the detector, leaves tracks or signatures of their presence that are reg-
istered by converting the particles’ paths and energies into electrical signals to create a 
digital snapshot of the “collision event”.

The control node

The control node (labeled as DN CN in Fig. 3) is the brain of the Hiperwall system. The 
control node gives the user the ability to control what, where, how, and when the con-
tents are displayed. The user interface shows a miniature view of the eight Hiperwall 
display-tiles. The interactive Hiperwall drag-and-drop simplicity gives the user the abil-
ity to place contents on the display-tiles. 

The secondary control node

The secondary control node provides the user the ability to control the Hiperwall system 
(nodes) remotely from a distant location via a portable device, such as a tablet. The sec-
ondary control node is not shown in Fig. 3.

The display node

The 8 display node PCs in the rack (labeled as DN A1 through DN D2) as shown in 
Fig.  3.F.1 are connected to the Hiperwall display-tiles (one display node for each dis-
play tile). Each display node consists of a display device that is driven by a PC (mini-
tower or rack-mount) running the Hiperwall software. The Hiperwall software runs as 

Fig. 3  Advanced Visualization and Computational Lab (AVCL) schematics. See Table 2 for description of 
components
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an application operating on a standard PC connected via a standard 1 Gbps network 
switch. Hiperwall’s tiled display system software architecture applies parallel processing 
techniques to overcome the performance limitations typically associated with the dis-
play of large multiple images on multiple display devices (flat-panel tiles) at once. A dis-
play node software receives content over a 1 Gbps network switch from a sender or a 
streamer node and projects it on the display wall tile via a HDMI cable. All display-node 
computers work in parallel, thus giving flexibility and scalability while also allowing the 
user to place contents on one or more multiple display-tiles all at once.

The display wall

Each of the 8 display-tiles (labeled as DN A1 through DN A2) as shown in Fig. 3.F.6 are 
connected to the corresponding display node PC in the rack. The display wall projects 
the contents from the user’s Workstation (sender and streamer nodes) onto the display 
wall (flat-panel tiles) via the control node. Each tile is a high-end commercial-brand 55″ 
(UD55C) Samsung LED (backlit) HDTV with a very narrow bezel size. The top and the 
left bezel size is 3.7 mm (about 0.15″), whereas the bottom and the right bezel size is 
1.8 mm (about 0.07″). Each of the display node PCs are responsible for displaying and 
rendering a portion of the overall image that is being shown/displayed on the Hiperwall. 
Thus, all the PCs work in parallel to render the total image.

The Hiperwall software runs on each display node and renders images though the 
control node which transfers the data displayed on Hiperwall display-tiles via the dis-
play nodes. The Hiperwall system provides robust visualization of multiple forms of dis-
play and monitoring capabilities simultaneously with a lot of user flexibility. With the 

Table 2  Hiperwall visualization system hardware components and specifications as shown 
in Fig. 3

Figures Hiperwall visualization system hardware components and specifications

Figure 3.F.1 Hiperwall Visualization Cluster (1 Control and 8 Display Nodes)
A. Rack-Mounted Control and Display Nodes 9 Dell Optiplex 7010 PCs on a 40U Rack (1 Control Node 

and 8 Display Nodes) Specs for each node: 3rd Gen Intel Core 3.4 GHz i7–3770 Processor; 4 GB 
1600 MHz DDR3 RAM; 1 GB RAM AMD RADEON HD 7570 Graphics Card; 500 GB Hard Drive (Total 
RAM: 9 GB; Total Hard Drive Space of 4.5 TB). Operating System: Windows 7 (64-bit)

B. Secondary Control Node (Not Shown in Figure 3) Dell Latitude 10 Tablet. Specs: 1.8 GHz Z2760 Intel 
Atom processor; 2 GB RAM; 533 MHz Intel Graphics Media Accelerator Graphics Card; 2 GB DDR2 
SDRAM RAM; 64 GB Hard Drive. Operating System: Windows 8 Pro (32-bit)

Figure 3.F.2 1 Gbps 24-port Network Switch 1U Rack-Mount Dell 1 Gbps 24-Port PowerConnect 2824 Switch

Figure 3.F.3 Audio Digital Signal Processor Biamp Nexia-CS-10 mic/line inputs and 6 mic/line outputs

Figure 3.F.4 Audio Power Amplifier 2U Rack-Mount TOA 900 Series-II P-912MK2

Figure 3.F.5 Ceiling Speakers 6 Ceiling-Mounted Speakers, Atlas Sound FAP62T (Strategy-II series) 6″, 32W

Figure 3.F.6 Display Wall 8 commercial-brand 55″ Samsung LED (backlit) HDTV (Model UD55C). Left/Top Bezel 
Size = 3.7 mm and Right/Bottom Bezel Size = 1.8 mm. Display Wall Layout: 4× 2 ; Total resolution 
( 4× 1920 ) × ( 2× 1080) = 7680× 2160 (16.5 MP)

Display Wall Dimensions: Width = 16 ft (4.9 m) and Height = 4.5 ft (1.4 m); Bezel-to-Bezel Size = 
0.2’’. (5.5 mm)

Connection from Control/Display nodes to display wall: HDMI

Figure 3.F.7 Sender/Streamer Nodes (9 Data Analysis Workstations)
9 Dell T5600 Workstations each connected to three 24″ monitors
Specs for each Workstation: Each Node has a Dual-Four Core 3.3 GHz Xeon E5–2643 processor; 64 

GB DDR3 RDIMM RAM; 2GB× 2GB RAM NVIDIA Quadro Graphics Cards; two CUDA-768 cores 
(1536 CUDA cores) per workstation; 4 TB Hard Drive (Total RAM: 576 GB; Total Hard Drive Space: 36 
TB). Operating System: Dual-Boot Windows 7 (64 bit) and Scientific Linux 6.4
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Hiperwall visualization system we can display various types of images (1 GB or larger) 
and contents on the display wall. We can add, resize, scale, rotate, zoom and reposition 
large images, charts, plots and HD video feeds for visualization, simultaneously. Users 
can spread one large piece of image or spread a variety of images across the entire dis-
play wall. In our setup, the 8 display-tiles are arranged in a 4 × 2 format. The 16′ × 4.5′ 
display wall has an effective bezel-to-bezel size of only 5.5 mm (0.2″). The total reso-
lution of the display wall is 7680× 2160 pixels which is about 16.5 Megapixels (MP). 
Figure  4 shows an actual 24457× 24576 pixels (600  MP) large astronomical image of 
a supernova remnant. In comparison, the total viewing area of our Hiperwall Display 
Wall and a standard HD 1920× 1080 (2 MP) monitor are shown as white boxes. A single 
LSST image [34] will be about five times larger than this astronomical image.

The sender/streamer nodes

The sender and streamer nodes deliver content to the Hiperwall display-tiles via the 
1 Gbps network switch. The sender/streamer nodes are high-end workstations. It is 

Fig. 4  The total viewing area of the 7680× 2160 pixels (16.5 Megapixels) Hiperwall Display and a standard 
HD 1920× 1080 (2 Megapixels) monitor superimposed (shown as white boxes) on top of a 24457× 24576 
pixels (600 Megapixels) large astronomical image of a supernova remnant (SNR) [34]. Note that a single LSST 
image [120] will be about five times larger than this astronomical image 
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called a sender node if it is running the Hiperwall sender software license for display-
ing still images and animations. A streamer node runs the Hiperwall streamer soft-
ware license for displaying HD videos. Sender nodes allow users to view the contents 
of the monitor(s) connected to the users’ workstation. The sender/streamer nodes can 
run multiple applications of the Hiperwall sender/streamer software. A Java applica-
tion allows the output of the user’s application to be transported across the network 
for viewing on the Hiperwall display wall tiles. Users can send the entire screen to 
the display wall or divide it up into rectangular regions (tiles) and deliver each region 
to the Hiperwall as an independent object. Figure 5 shows a high resolution picture 
of the surface of Mars taken by NASA’s Curiosity rover that was displayed/projected 
from one of the sender nodes (workstation) onto the Hiperwall Display Wall. Figure 6 
shows students analyzing particle tracks from HEP proton-proton collision events 
from the ATLAS experiment using the Hiperwall Display Wall.

The screen sender software can also run remotely. At BU, we have 11 sender licenses 
and 1 streamer license, that allows us to have up to 12 display projections at a time. 
Streamer software can provide high frame rate feeds to the Hiperwall displays and 
are used for HD videos and animations. The streamer system can stream up to 60 
frames per second (FPS) at a resolution of 1080P or higher. FPS is the frequency (rate) 
at which an imaging device produces consecutive images. 60 FPS is typically used 
because high definition televisions (HDTV) are designed around 60 Hz signals as a 
common base capability. 60 FPS is optimal to the eye and gives a much more realistic 
sense of motion for what is happening on the screen [35]. A high resolution image or 
HD video feed can be enlarged and stretched across the entire display wall or multiple 
arrangements of many images or HD video feeds can be arranged in any size or posi-
tion across the display-tiles and zoomed without loss of clarity.

Fig. 5  A high resolution picture of the surface of Mars taken by NASA’s Curiosity rover displayed on the 
Hiperwall Display Wall [121]
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Hiperwall user portal

The original version of the Hiperwall software had numerous challenges as described 
further in section challenges while using the Hiperwall in educational and research pur-
suits. When any user needs to display an image from any one of their monitors to the 
display-tiles, the user first clicks on the Sender Icon on their workstation’s taskbar to 
open a window as shown in Fig.  7. Then the user selects the “Configure Source Win-
dows” button to open a window, labeled HiperSource Sizer (shown in Fig.  8), which 
the user can move and resize to select full space or “dragged area” of their workstation’s 
monitors to send to the Hiperwall control node. The user has a choice to select the con-
tents of one monitor, two monitors, or all three monitors. The layout of the worksta-
tion’s three monitors are shown in Fig.  9. Regardless of how many monitors the user 
sends or the contents of each of the monitors, Hiperwall treats them as a single image. 
Users can use the HiperSource Sizer window in Fig. 8 to resize and maximize the Hiper-
Source Sizer to send the contents of a single monitor (any one of the workstation’s three 
monitors) to the control node. Users can also click and drag the HiperSource Sizer win-
dow border to select any two or all three adjacent monitors’ display area. The Hiper-
Source Sizer allows a click and drag operation to select any subset of the total viewing 
area, but for simplicity, we only present to our users the options of one, two or three 

Fig. 6  Students analyzing particle tracks from HEP proton-proton collision events

Fig. 7  Hiperwall sender window
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monitors. Besides resizing to customize the sent area, there is also a button for sending 
all screens, “Full Desktop (All Screens)” as shown in Fig. 8. This will skip the “Commit 
All” step and immediately broadcast all three monitors. For the other methods of resiz-
ing, the user needs to click “Commit All” after they have determined and selected what 
they want to send to the control node.  

Once the user has used the sender software (see “The sender/streamer nodes”) to 
choose what they will broadcast to the Hiperwall, they can then use the Hiperwall User 
Portal to decide how the broadcast will be displayed or placed on the display-tiles as 
shown in Fig. 10. We modified Hiperwall’s environment settings and developed our own 
User Portal, starting from the workstations and building from the Hiperwall software’s 

Fig. 8  HiperSource sizer window. Users use this window to control what they send to the Hiperwall

Fig. 9  Naming convention of each workstation’s three monitors, labeled as 1, 2, 3 from left to right
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own environment. We were able to individually make display environments for each 
specific workstation that has access to the Hiperwall as shown in Fig. 11a–c. In Fig. 11a, 
the user is given the links to choose how to display on the Hiperwall their broadcast, 
depending on if the user is sending one, two, or all three of their workstation’s moni-
tors. We had to decrease some of the control features of the control node for the users 
in order to make the system more user friendly. For example, they are not able to rotate 
or resize or manually move the displayed areas on the Hiperwall. Figure 10 shows the 
nomenclature of Hiperwall’s 8 display-tiles, Fig. 10b shows an image from any one of the 
monitors displayed on the center 4 display-tiles, Fig. 10c shows an image from any one of 
the monitors displayed on the left 4 display-tiles, Fig. 10d shows an image from any one 
of the monitors displayed on the right 4 display-tile, and Fig. 10e shows an image from 
all three monitors displayed on all 8 tiles. Fig. 12 shows the scenario where the user has 
selected to send all three monitors and then choose the LCR option in Fig. 11b to center 
the broadcast on the Hiperwall. This leaves black bands on the top and the bottom of the 
displayed image which can be removed by using the Zoom link option in Fig. 11b. 

Results and discussion
Display wall cost benefit analysis

In the US, planar-tiled projected displays were first built in the 1990s at Princeton Uni-
versity and at Argonne National Laboratory [25]. These display walls were all prototypes. 
The first screen display, called PowerWall was built in 1994 at the University of Minne-
sota in collaboration with Silicon Graphics as a single 6′ × 8′ screen illuminated from the 
rear by a 2× 2 matrix of video projectors that were driven by 4 RealityEngine2 graphics 
engines [36]. Around the same time a number of academic research groups began build-
ing display walls using commodity DLP or LCD projectors [37].

Fig. 10  a shows nomenclature of Hiperwall’s 8 display-tiles (A1, A2, B1, B2, C1, C2, D1 and D2); b shows an 
image from any one of the monitors displayed on the center 4 dislay-tiles (B1, B2, C1 and C2) by selecting 
P209-07-C.hwe from Fig. 11c; c shows an image from any one of the monitors displayed on left 4 display-tiles 
(A1, A2, B1 and B2) by selecting P209-07-L.hwe from Fig. 11c; d shows an image from any one of the monitors 
displayed on the right 4 display-tiles (C1, C2, D1 and D2) by selecting P209-07-R.hwe from Fig. 11c; e shows 
an image from all three monitors displayed on all 8 display-tiles by selecting P209-07-LCR.hwe in Fig. 11b
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One of the first-generation display walls was built by Princeton University in 1998, 
that used a 18′ × 8′ rear projection screen and eight Proxima LCD commodity projec-
tors [38]. This system had a resolution of 4096× 1536 pixels (6.3 MP) that was driven 

Fig. 11  Hiperwall user portal. a shows the first screen of the portal where the user needs to select how 
many monitors they are sending, b shows the screen position choice for all monitors and c shows the screen 
position choice for one monitor

Fig. 12  Image showing the selected LCR (centered) choice from the Hiperwall User after the user has 
selected to send all three monitors
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by a network of eight Pentium II PCs running Windows NT. In 2000, this display was 
later scaled up to a resolution of 6144 × 3072 pixels (19 MP) with 24 Compaq MP1800 
digital light-processing (DLP) projectors and a network of 24 Pentium III PCs running 
Windows 2000 [38].

A notable early LCD tiled-display wall was built in August 2002 at the NASA Ames 
Research Center as a 7× 7 array flat panel LCD screens powered by a Beowulf cluster 
[23]. In September 2002, the Electronic Visualization Laboratory (EVL) [39] at the Uni-
versity of Illinois at Chicago built a 100 MP LambdaVision display wall with NEC moni-
tors using custom-built PCs [23]. In 2005, a group at UC-Irvine built a 200 MP 50-tiled 
display wall out of 3000 Apple Cinema displays and Apple Power Mac G5s that was 
later adopted by the OptIPuter project that used PCs driving the 24″ LCD monitor dis-
plays. In 2008, a group at UC-Irvine’s California Institute for Telecommunications and 
Information Technology (Calit2) received funding from NSF for their OptlPortal open-
source project [25] and built a 27 MP 12-tile OptlPortal display wall. The OptlPortal pro-
ject used desktop LCD tiles, PCs to power the display-tiles (one PC per tile), graphics 
card, and local networking to build a 200 MP OptlPortal tiled display wall at a cost of 
about $1000/MP [23]. So the 200 MP OptIPortal display wall would have costed about 
$200,000. Since the OptIPortal 50-tiled display used regular 1920× 1080 (2  MP) 24″ 
LCD displays for desktop computers, the group at Calit2 was able to keep the cost down. 
The main disadvantage with the OptIPortal tiled-display was that the LCD displays had 
thick bezels size that created broad mullions (horizontal and vertical strips where there 
is no visible image) in between two adjacent tiles which the users found to be distracting 
[23]. Back then, the typical 24″ desktop LCD monitors had a bezel size of 15 mm (about 
0.6″); so bezel-to-bezel size was 30 mm about (1.2″).

A notable display wall, later dubbed as the “IQ-Wall” was installed at Indiana Univer-
sity’s (IU) Advanced Visualization Laboratory (AVL) in 2004, utilizing relatively expen-
sive high-end components and a professional audio/video integrator for uses varying 
from research visualization to collaborative presentations to artistic creations [40]. The 
“IQ-Wall” struck a balance between cutting-edge technology, good performance, and 
cost [40]. IU has been a pioneer in building display walls in academia. From 2004 to 
2015, various groups at IU have built nine separate display walls  
with 2×2 (8′×4.5′), 3×3 (10′×6′), 3×4 (10′×8′), 4×4 (13.5′×8′), 6×2 (24′×4.5′),

6× 4 (24′ × 9′), and 8× 2 (27′ × 4′) tile configurations and size, with display wall resolu-
tion ranging from 2.1 MP to 42 MP [40].

As mentioned earlier, our 16′ × 4.5′ ( 4 × 2 tile configuration) 16.5 MP custom-made 
tiled-display wall setup was built upon the OptlPortal display wall’s PC-based architec-
ture to power each display tile. The installation of our Hiperwall visualization system 
was completed by October 2013 in the Advanced Visualization and Computational Lab 
(AVCL). Since we received $209,347.00 from our NSF grant, our total budget for every-
thing (including the shipping and handling costs, and other miscellaneous expenses) had 
to be within that amount.

The cost for the hardware components of the BU’s Hiperwall set-up that includes 
the 8-tiled display-tiles (each display tile is a 55″ Samsung commercial-brand UD55C 
HDTV), Rack-Mounted Control and Display Node (9 Dell Optiplex PCs), Secondary 
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Control Node (1 Dell Latitude Tablet), 1 Gbps Dell 24-port Network Switch, Audio 
Digital Signal Processor, Audio Power Amplifier, Ceiling Speakers, plus the HDMI and 
Network cables and wires was $70,830. We also paid $54,194 ($10,839/year) for the 
Hiperwall software licenses and full-technical and software support for 5 years, of which 
$33,884 ($6777/year) was for the Hiperwall software licenses and $20,310 ($4062/year) 
was for the full-technical/software support for 5 years. The Hiperwall software license 
cost is for the Hiperwall Master license, 1 Secondary Control license, and 11 Sender 
licenses for the 9 Sender nodes (Data Analysis workstations), the Hiperwall Control 
Node and the Secondary Control Node, and 8 Display licenses for the 8 Hiperwall Dis-
play Nodes. Additionally, the hardware installation cost was $11,285. So all the Hiper-
wall hardware components, software licenses and technical/software support, including 
the installation expenses was $136,309.

We also purchased 9 high-end Dell T5600 Data Analysis Workstations (Sender/
Streamer Nodes) each with 64 GB RAM, Dual-CUDA-768 cores and 4TB HD with triple 
24″ monitors that is separate from the Hiperwall display wall at a cost of $64,846. These 
Data Analysis Workstations were configured to run on both Windows and the Linux OS 
environments, simultaneously. Therefore, the total of cost of the 8-tiled 16′ × 4.5′ ( 4 × 2 
configuration) 16.5 MP ( 7680× 2160 pixel) Hiperwall visualization system that includes 
the 9 Dell T5600 Data Analysis Workstations and the Hiperwall software licenses and 
full-technical/software support for 5 years and the installation expenses was $201,155. 
The most expensive hardware component of our Hiperwall setup was  the eight 55″ 
1920× 1080 pixel resolution (2 MP or 2K) Samsung commercial-brand UD55C HDTV 
for the 8 display-tiles, which was $5994 each ($47,952 for the eight HDTVs). The rea-
son we decided to go with these 55″ Samsung commercial-brand UD55C HDTV was 
due to its narrows bezel size. Bezel size is perhaps the single most critical aspect of any 
display wall since thick bezels can be distracting when viewing images that create the 
appearance of a mullion between two adjacent display-tiles. Moreover, there is loss of 
information from displayed images in the bezel sections when images are displayed on 
multiple display-tiles. Even though these HDTVs were pricey, at that time these was the 
least expensive 55″ commercial-brand HDTVs in the market which had the narrowest 
bezel size (Left/Top bezel size of 3.7 mm and Right/Bottom bezel size of 1.8 mm); so 
a bezel-to-bezel size would be 5.5 mm (about 0.2″). We also looked at the non-com-
mercial-brand (regular) 55″ (2 MP or 2K) Samsung UE55A HDTV which were cheaper 
($3750 each) but these UE55A models have twice the bezel size, a bezel-to-bezel size of 
10 mm (about 0.4″) compared to the UD55C model that has a bezel-to-bezel size of 5.5 
mm (about 0.2″).

Even though the hardware expenses for our Hiperwall set up was relatively low, the 
only added expense with Hiperwall is the cost for the annual software license and tech-
nical/software support of the Hiperwall Master license, 1 Secondary Control license, and 
11 Sender licenses for the 9 Sender nodes (Data Analysis workstations), the Hiperwall 
Control node and the Secondary Control Node, and 8 Display licenses for the 8 Hiper-
wall Display Nodes which is $10,839/year. For the future, when we renew our license for 
another 5 years from October 2018 to October 2024, we will not purchase the technical/
software support since we are now very familiar with the Hiperwall software and the 
system.
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Additionally, since we rarely used the Secondary Control Node (the Tablet) to control 
the Hiperwall, we will no longer renew the license for the secondary control. Moreo-
ver, we hardly used all 9 sender nodes (the 9 Data Analysis workstations) all at once to 
display images and contents to the display-tiles for visualization. So, we have decided 
to purchase 6 sender licenses for the next 5 years from 2018 to 2024. Therefore, we will 
be spending $5237 annually (which is reasonable) from 2018 to 2024 for the Hiperwall 
Master license, 7 Sender licenses for the 6 Sender nodes (Data Analysis workstations) 
and the Hiperwall Control node, and 8 Display licenses for the 8 Hiperwall Display 
nodes.

Before we decided to go with Hiperwall, we explored RGB Spectrum visualization sys-
tem’s MediaWall 4200 Display Processor for the same 8-tiled 16′ × 4.5′ ( 4 × 2 tile config-
uration) 16.5 MP ( 7680× 2160 pixel) display wall. At the time, the cost of this expensive 
high-end display wall processor was $50,000. The total cost of RGB Spectrum’s Media-
Wall would have been about $20,000 more than our budget amount of about $200,000 
(excluding shipping/handling and any miscellaneous expenses) for a comparable 8-tiled 
16′ × 4.5′ ( 4 × 2 tile configuration) 16.5 MP ( 7680× 2160 pixel) Hiperwall visualization 
system that includes the nine Dell T5600 Data Analysis Workstations using the same 
eight Samsung commercial-brand UD55C display-tiles.

Recently this year, the School of Computing at Weber State University set up a com-
parable 8-tiled 16.5 MP ( 7680× 2160 or 8K× 2K pixel resolution) Visualization system 
from Extron Electronics [41], along with four T5600 Dell Data Analysis Workstations 
(each with 16 GB RAM and 0.5TB HD) at a cost of $95,913. Their 16′ × 4.5′ display wall 
uses the Extron Quantum Connect Display Wall Processor [42] to power the 8 display-
tiles that cost $17,815, which is relatively inexpensive for a display wall processor. For the 
display-tiles, Weber State University purchased the latest 55″ Panasonic TH55LFV70U 
commercial display ( 1920× 1080 pixel) HDTV at $5190 apiece, that has a Left/Top bezel 
size of 2.25 mm and Right/Bottom of 1.25 mm; so bezel-to-bezel size would be 3.5 mm 
(about 0.14″) which is considered among the very best for a tiled-display wall. The main 
advantage is that there are no annual license fees for the Extron display wall which is 
a significant cost saving. This Extron display wall is a very good option for a control/
surveillance command center. The setup can be easily expanded up to 14 display-tiles. 
Unlike Hiperwall, Extron is not the best display wall to conduct research tasks as a group 
to carry out visualization studies of images to study rare events in high resolution since 
zooming an image on the display wall across all the 8 tiles results in a reduction of the 
resolution image since Extron’s software does not run on each display tile to render the 
images, instead projects the source images to the display wall. Even though, the Extron 
display wall has some limitations in retaining the resolution of zoomed images, it gives 
the best bang for the buck as a general-purpose display wall due to its ultra-narrow bezel 
size of the display-tiles, the relatively cheap display wall processor and no annual license 
fees.

In the US, in academia, in the past few years, Hiperwall display walls have been 
installed at Clemson University, La Sierra University, Gonzaga University, UC-Irvine, 
and Arizona State University. Hiperwall is also being used in Command and Control 
Centers at Santa Ana Police Department, Kansas City Police Department, Los Angeles 
Metro-Rail and Bus System, Western States Information Network (WSIN), and at the 
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US Department of Veterans Affairs. Notably, in entertainment, the Blue Man Group uses 
Hiperwall to enhance the entertainment experience to transform their digital signage at 
their Las Vegas venue and by the T3 Enterprise in Media and Advertising.

In recent years, some of the universities have already installed display walls (from 
other vendors) for teaching and research, notably, the University of Michigan 
(75 MP—12′ × 7′ in a 3× 3 tile configuration), Georgia State University’s Collaborative 
University Research & Visualization Environment Lab (25 MP—14′ × 4.5′ in a 6× 2 tile 
configuration), Dartmouth College (16.5  MP—16′ × 4.5′ in a 4 × 2 tile configuration), 
Brown University’s Digital Lab (24 MP—16′ × 7′ in a 4 × 3 tile configuration), Univer-
sity of Texas at Austin’s Texas Advanced Computing Center (328  MP—36.5′ × 8′ in a 
16× 5 tile configuration with 30″ Dell monitors), Stanford University’s Rumsey Center 
(33 MP—16′ × 7′ in a 3× 3 tile configuration), University of Oregon’s Visualization Lab 
( 50 MP− 24′ × 9′ in a 6× 4 tile configuration), and Weber State University’s School of 
Computing ( 16.5 MP− 16′ × 4.5′ in a 4 × 2 tile configuration).

In Table 3 we have provided a detailed comparison chart of Hiperwall and eight other 
leading display-wall products [43]. The cost comparisons are for the display wall hard-
ware only. Based on the hardware and the features of these eight display wall products, 
only one company (Userful Corporation) best matches the Hiperwall’s features and 
capabilities. Based on our assessment, the PC cluster-based distributed display software 
architecture to power the display-tiles is an improvement over the display wall Proces-
sor-based systems. As evident by the comparison chart in Table 3, Hiperwall’s features 
and capabilities are broader than others.

In summary, the final cost will depend on the physical size of the display wall, the num-
ber of pixels that can be packed into the wall (pixel density, i.e. pixel count per screen 
area) based on the HDTV model, the bezel size of the displays, and any custom-made 
features added to the display wall.

Big Data analytics and techniques

Today large data sources are ubiquitous throughout the world due to the dramatic 
increase in human and machine generated data [7]. Big Data is generated from the large 
Big Science experiments/instruments such as LHC in HEP and LIGO in Gravitational 
Wave Astrophysics, other measuring devices, radio frequency identifiers, social media 
and social network portals such as Facebook, Twitter, and Instagram, search engines like 
Google, meteorological and remote sensing instruments, and data from various mobile 
devices, including a plethora of audio and video recordings from various devices. Cur-
rently, there are a number of different Big Data analysis techniques in use in a wide vari-
ety of areas that generate Big Data that are primarily based on tools used in statistics and 
computer science [7].

The Big data analysis tasks involving visual analytics is an emerging area in visuali-
zation. A typical visual analytics problem is often complex and could require multiple 
data analysis and visualization task. Visual analytics of Big Data requires both automated 
analysis and interactive visualizations for effective understanding, reasoning and deci-
sion making on the basis of a very large and complex dataset [53, 54]. A number of Big 
Data Visual Analytics techniques have been developed over the years. The rapid techni-
cal developments have greatly enhanced the use of visual analytics techniques to solve 
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Table 3  Tiled-display wall comparison chart [43]

Hiperwall 
[44]

Christie 
[45]

RGB 
Spectrum 
[46]

Planar 
[47]

Barco 
[48]

Userful 
[49]

Datapath 
[50]

Jupiter 
[51]

Cinemassive 
[52]

Cost ($ 
low) ($$$ 
high)

$ $$$ $$$ $$$ $$$ $ $$$ $$$ $$$

Max.source 
resolu-
tion

No limit 4K 4K 4K 4K 8K 4K 4K 4K

Multiple 
users

Yes Yes No No No Yes No No Yes

User 
authenti-
cation

Yes Yes No No Yes Yes No No No

KVM 
control

Yes No Yes No Yes Yes Yes Yes Yes

Multiple 
video-
wall 
control

Yes No Yes No No Yes No Yes No

Advanced 
schedul-
ing

Yes No No No No Yes No No No

API Yes No Yes No Yes Yes No Yes Yes

Local/
remote 
access

Yes No No No No No No No No

Source 
process-
ing

Yes No Yes Yes No Yes Yes No No

Unre-
stricted 
content 
manipu-
lation

Yes No No No No No No No No

Multiple 
simulta-
neous 
sources

Yes Yes Yes No Yes Yes No Yes Yes

Setup com-
plexity

Low High High Medium High Low High High High

Server 
location 
and relay 
anywhere 
within 
LAN 
*(within 
330’)

Yes Yes Yes Yes* Yes Yes Yes* Yes Yes

Maximum 
num-
ber of 
displays

400+ 128 56 16 64 100 32 N/A N/A

Seamless 
24/7 fault 
tolerance

Yes Yes No No Yes No No No No

Non-pro-
prietary 
hardware 
(display, 
PCs)

Yes No No No No Yes No No No

Mix of 
display 
sizes and 
aspect 
ratios

Yes No Yes Yes No Yes Yes No Yes
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real-world problems. Due to the growing need for visual analytics, there is an increasing 
need for a comprehensive survey covering the recent advances of the field.

As the data acquisition and processing rates are growing, traditional data analytics 
methods are being replaced by advanced Big Data analytics and visualization techniques 
using Big Data technologies such as Statistical Analysis System (SAS) [55, 56] for data 
visualization from a business and corporate perspective. In the scientific arena, there are 
number of data-driven advanced data analysis techniques used today to analyze large 
amounts of data (Big Data) such as Neural Networks (NN) [57–61], Data Mining [62–
65], Signal Processing [66–68], Visualization Methods [69–71], and Machine Learning 
[72–74] that includes various Multivariate Analysis (MVA) techniques such as Boosted 
Decision Trees (BDT) [75–84], Likelihood [81, 84], Artificial Neural Networks (ANN) 
[62, 85, 86], and Bayesian Neural Network (BNN) [81, 87–89].

In HEP, to search for new and rare subatomic particles in ever larger data sets at the 
LHC experiments at CERN indeed challenges our ability to analyze and visualize more 
scientific information in a timely manner than we had ever encountered in science where 
we need to extract the maximum available information from the datasets. Extracting 
rare “discovery” signals by separating (filtering) background events from a large number 
of parameters in the petabyte-scale datasets is indeed a very challenging task both in 
terms of data analysis and visualization at the TeV scale LHC energies.

The subatomic particles that decay within the detector, leaves tracks or signatures 
of their presence that are registered by converting the particle paths and energies into 
electrical signals to create a digital snapshot of the “collision event”. At the LHC, data 
recorded by the ATLAS detector corresponding to proton-proton annihilation events 
can typically consist of about 2000 measurements of position, deposited energy and 
timing for a large number of tracks, etc. During each collision, many new particles are 
created. After passing through the reconstruction algorithm, and after being combined 

Table 3  (continued)

Hiperwall 
[44]

Christie 
[45]

RGB 
Spectrum 
[46]

Planar 
[47]

Barco 
[48]

Userful 
[49]

Datapath 
[50]

Jupiter 
[51]

Cinemassive 
[52]

Mixed 
display 
orienta-
tion 
support

Yes No Yes YesYes No Yes Yes No Yes

Full 
desktop/
browser 
capture

Yes No No No No Yes No No No

Native sup-
port for 
real-time 
content

Yes Yes Yes Yes Yes Yes Yes Yes Yes

Drag and 
drop 
content 
manager

Yes No No Yes No No No No Yes

Mobile 
device 
access

Yes No No No No Yes No No No

Bezel cor-
rection

Yes Yes Yes No Yes Yes Yes Yes Yes
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with calibration constants, these measurements are typically reduced to about 200 
reconstructed objects, such as tracks from all decay products, electromagnetic clusters, 
hadronic clusters, etc.

With the emergence of such large and high dimensional data sets, the task of data visu-
alization has become increasingly important in both machine learning and data min-
ing [89]. So, visualization is crucial for analyzing and exploring such large-scale complex 
multivariate data. The footprints or electronic signals that are recorded by the detectors 
during a collision that can be visualized are called “Event Displays”. These Event Displays 
are very useful for pattern recognition of particle tracks. A visual representation of the 
data as an Event Display shows the correspondence between the data and the detector 
geometry that provides a snapshot of what has occurred inside the detector. These Event 
Displays are dynamic images that enable us to see the various parameters/features about 
the subatomic particle, and shows how these subatomic particles traveled through the 
detector. The recorded Event Displays of the collisions are stored in the XML file format. 
The visualization of these collision data is essential for conveying the underlying phys-
ics of these data events. The Event Display contains objects such as Tracks and Hits. 
They are usually represented by simple (Hits) or unique (Tracks) geometrical objects, 
which can be displayed in special (2D) projections. Detector Display contains Detector 
elements (Chambers, and the various Detector layers). They are usually represented by 
replicated complex geometrical objects.

Visualization is especially useful when the information being portrayed is positional 
in nature and the spatial correlations are important. For example, color and other vis-
ual cues are employed to convey information about the amount of energy deposited at 
the spatial points. For the ATLAS experiment, visualization of the Event Displays can 
be done by the data analysis software packages/toolkits- ATLANTIS and HYPATIA (a 
student version of ATLANTIS) in 2-dimension and in 3-dimension using CAMELIA 
using a built-in a XML event loader. All three visualization toolkits are a collection of 
software modules capable of displaying all types of data from the ATLAS experiment 
and have sophisticated graphics, GUIs, debugging tools and analysis capabilities for the 
visual investigation and physical understanding of all types of events inside the ATLAS 
detector.

All of these three data analysis toolkits are graphics packages for visual analytics that 
provides a graphical representation of what is happening in a collision event to under-
stand the underlying physics processes inside the ATLAS detector which displays the 
trajectories of the particles produced by the proton-proton collisions. These toolkits 
allow us to interact with the data visually and study the traces of the particles in dif-
ferent parts of the ATLAS detector in order to discover new particles by reconstruct-
ing them from their decay products. These toolkits also help to develop reconstruction 
and analysis algorithm and are also used for debugging. These toolkits display the tracks 
together with their signature in the different parts of the ATLAS detector and provide 
information about the particles, and their energy etc. These toolkits also provide real-
time interactive control of the display, processing and I/O of the data, and has all the 
basic modules of a complete visualization system that represent both the main data flow 
and the interactive links controlling program flow. The I/O streams are being accessed 
interactively.
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One can select specific tracks for analyses, display event properties for detailed study, 
filter events, and display them in perspective, orthogonal and cut views. The reconstruc-
tion code combines data from the experiment with calibration constants and geomet-
ric information about the detector from the database into reconstructed objects such as 
clusters in the calorimeters. The user can interact “locally” to manipulate the rendering 
of the contents of the display list, rotating, shading, zooming the image, etc. Two-dimen-
sional representations of the data are usefully employed to display a high resolution 
“fish-eye” view of the event so that a range of sub-detectors of vastly different sizes can 
be included in the same image panel [90, 91].

The Hiperwall visualization display wall allows us to carry out the visualization stud-
ies of the decay products of particle collisions using these data analysis software pack-
ages/toolkits installed in the workstations. In Hiperwall, these Event Display images 
can be displayed anywhere, within or across the display-tiles, in correct aspect ratio or 
stretched to fit, in whole or can be zoomed on specific features of an event to emphasize 
details and display its properties. A full array of features includes dynamic window siz-
ing and positioning, smooth zooming within the images, custom borders, titling, pro-
grammable presets, and backgrounds. CAMELIA offers browsing and manipulating 3D 
data with full functionality for 3D display, such as 3D visual operations, like Rotation, 
Translation, Zooming, Scaling, Sheering and Skewing. With CAMELIA, we can pick a 
track in a current display and zoom in to show the position of the track with respect to 
the recorded hits and detector elements. We can also move the view in 3D to inspect the 
track from all angles and display the reconstructed properties and parameters of the fit-
ted track.

At the LHC, pile-up (multiple interaction points) presents both a serious data analysis 
and visualization challenge when searching for new and rare types of subatomic parti-
cles from the complex and massive petabyte scale experimental datasets. At the LHC, 
decay particles containing electrons or muons provide clear trigger signals and rich 
event signatures for new particle searches but due to pile-ups, the identification of the 
correct interaction point to determine the origin of these electron and muon tracks is 
a challenge. Figure  13 shows the pile-up situation from the proton-proton collisions 
in the ATLAS detector at the LHC. The image in Fig. 13 that is part of the Event Dis-
play is a good example of visualization challenges in HEP. We are looking for only two 
particle tracks- a pair of muon and an anti-muon track from the decay of the Z Boson 
( Z0

→ µ−µ+ ) from just one interaction point where the rest of the tracks are simply 
background events. To complicate the scenario that creates a visualization challenge is 

Fig. 13  ATLAS Pile-up. a and b shows the pile-up (multiple interaction points) situation from proton-proton 
collision at the LHC inside the ATLAS detector in a region that is only about 5 cm wide. The pile-up in a has 25 
interaction points and in b has 17 interactions points, where only one interaction point produced the decay 
tracks from the Z Boson. Image courtesy ATLAS Collaboration at CERN 
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that very small (tiny) fraction of these background tracks are what we call “fake” muon-
antimuon pairs, since these have decayed from hadrons (which are called hadronic jets) 
and are not from the Z Boson. So these “fake” muon-antimuon tracks which are part of 
the background events have to be filtered out. Such a scenario requires a high-resolution 
display wall such as Hiperwall which can assist with the challenging visualization task to 
filter out the signal events from the myriad background events.

Using the Hiperwall, we are able to zoom in to this 5 cm region of the detector to a 
size of 16′ × 4.5′ using all 8 display-tiles to create a 16.5 MP image without losing any 
resolution to determine and identify the correct particle track pairs (a muon and an anti-
muon) from the decay of the Z Boson. Figure 14a and b show the full 2D Event Display 
of the corresponding to the Fig. 13a and b.

Signal extraction from large heterogeneous background events using Multivariate Analysis 

(MVA) techniques in HEP

Large-scale data driven applications are on the rise, and so is the need to extract use-
ful information from terabyte to petabyte scale data sets (Big Data). The main goal in 
data analysis is to obtain the maximal information and extract the best possible results 
from the data. Multivariate analysis (MVA) methods are discriminating techniques for 
extracting small signals based on machine learning to separate the signal from the back-
ground data in very large datasets that are very useful in fields that generate Big Data.

Each MVA technique is well characterized mathematically and use different algo-
rithms to approximate the same mathematical object. One of the reasons for applying 
MVA techniques is simply the lack of knowledge about the mathematical dependence of 
the quantity of interest on the relevant measured variables. So either there is no math-
ematical model at all and a detailed analysis is the only possibility of finding the correct 
dependence, or the known models are simply insufficient and MVA techniques provides 
a better description of the data.

Fig. 14  a and b shows the visualization of a full 2D Event Displays of the corresponding Fig. 13a and b using 
the ATLANTIS toolkit. Image courtesy ATLAS Collaboration at CERN. 
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In HEP, for the large-scale data analysis and visual analytics tasks to search for new 
subatomic particles, Machine Learning and MVA techniques are becoming ever crucial 
in extracting rare signal events (new subatomic particles) from huge number of back-
ground events in the complex experimental HEP environments. As HEP data analysis is 
becoming more and more challenging, MVA methods are routinely being used to sup-
press background and for parameter estimation (regression), where a physical quantity 
is extracted from a set of directly measured observables. Typically one in a trillion data 
events will lead to a new particle discovery, such as the recent discovery of the Higgs 
Boson at the LHC. The main challenge is to identify the rare signal events involving 
multiple processes in the presence of pile-ups and huge background events from the 
experimental data sets that contains over 100 trillion events with a plethora of multi-
ple and complex heterogeneous variables. The data analysis process, becomes even more 
challenging since some of the background events can look exactly like the signal events, 
which are “fake” signal events (signal-like events coming from various processes such 
as from other decay channels). The process of data analysis and visualization in HEP 
is indeed like a detective work. It’s like finding needle in a hay-stack. The key task is to 
intelligently search for the specific particle of interest by distinguishing it from the back-
ground particles and processes by filtering them using numerous detector filter param-
eters, without throwing out any of the particle of interest (i.e. signal events).

Moreover, pile-up (multiple interaction points) as shown in Fig.  13 presents a chal-
lenging visualization environment. Due to the high resolution of the Hiperwall visualiza-
tion display wall, we are able to zoom into this pile-up region of the HEP Event Displays 
and identify the right interaction point of these particle tracks. To obtain best possible 
results it is important to make use of maximum possible information in the data and 
hence employ optimal multivariate MVA methods for data analysis.

So, for the large-scale HEP data analysis tasks, MVA techniques are extensively being 
used for signal optimization studies in order to extract useful information about these 
rare and new subatomic particles from the myriad background events, thus maximizing 
the chances of a discovery. We have used MVA techniques to guide our signal optimiza-
tion and visualization studies. The main idea of the MVA is the choice of input variables, 
where we can simultaneously analyze multiple measurements (variables) on the object 
being studied. These variables can be correlated in various complex ways.

MVA techniques are particularly useful when dealing with large experimental data 
sets where multi-dimensional features of the data could be missed in a conventional data 
analysis. In conventional statistical techniques, one starts with a mathematical model 
and finds parameters of the model either analytically or numerically by using some 
optimization criteria. MVA addresses the problem of signal/background classification 
through supervised machine learning. Starting with samples of data of known type (sig-
nal or background), the data are divided randomly into training and testing sets, each 
of which consists of a mix of signal and background events. MVA techniques are also 
“trainable”, i.e. it can be designed to self-organize and optimize the classification ability 
by analyzing events of a known class. This trait makes MVA techniques very efficient 
for optimization of various parameters in order to separate signal from the myriad com-
plex and heterogeneous background events. For the data analysis tasks, MVA techniques 
help to  suppress the background  events without further reducing the signal events. 
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The training data set is used to fix the parameters of the MVA classifier, a function that 
assigns to each input event a measure of its consistency with the signal or background 
hypotheses. The parameters are chosen to achieve the best separation between the sig-
nal and background training events. The trained classifier is then applied to the testing 
data set to obtain an unbiased evaluation of the classifier’s detection performance from 
the number of correctly classified signal and background events. MVA techniques can 
mine the full parameter space of the events to better discriminate between signal and 
background.

Subatomic particles that decay to produce multiple hadronic jets (e.g. quarks from 
Mesons and Baryons) such as in the decay of the Top quark and in the search for the 
charged Higgs ( H+ ) Boson, a high resolution visualization display wall that can zoom 
into the various parts of the detector in high resolution to identify the particle tracks is 
crucial during data analysis. Using the Hiperwall, we can simultaneously analyze up to 
eight Event Displays at a time (each with a resolution of 2 MP) one on each of the eight 
display-tiles (as shown in Fig. 15) or two Event Displays one at a time (each with a reso-
lution of 8 MP) on all eight of display-tiles (i.e. one event display per four display-tiles) 
or 1 event displays on at a time (with a resolution of 16 MP) on all eight of display-tiles.

Integrated into our HEP data analysis framework ROOT [92] is the Toolkit for Mul-
tivariate Analysis (TMVA) [83] which is designed for machine learning applications in 
HEP. The TMVA toolkit unifies highly customizable MVA classification and regression 
algorithms in a single framework. The latest version, TMVA 4.0.1 also features more 
flexible data handling allowing one to arbitrarily form combined MVA methods [83]. 
TMVA is specially designed for the complex HEP data analysis environments.

In this paper we will describe the TMVA framework for our data analysis tasks in HEP. 
TMVA provides an environment for the processing, parallel evaluation and application 
of multivariate classification and multivariate regression techniques, where all multivari-
ate methods respond to supervised learning, i.e. the input information is mapped in fea-
ture space to the desired outputs [83]. The mapping function contains various degrees of 
approximations and may be a single global function, or a set of local models. TMVA pro-
vides an unbiased performance comparison between the various MVA methods using 
the same data. Training, testing, performance evaluation algorithms and visualization 
scripts of all available classifiers can be carried out simultaneously via the TMVA user-
friendly interfaces. TMVA analysis consists of two steps [83] as shown in Fig. 16.

Fig. 15  Shows eight event displays projected on Hiperwall’s eight display-tiles
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1. Training phase The ensemble of optimally customized MVA methods are trained 
and tested on independent signal and background data samples; the methods are 
evaluated and the most appropriate (performing and concise) ones are selected. In the 
training phase, the communication of the user with the data sets and the MVA meth-
ods is performed via a Factory object that is created at the beginning of the program. 
The user script can be a ROOT macro [92], C++ executable, or a python script. The 
TMVA Factory provides member functions to specify the training and the targeted 
data sets, to register the discriminating input variables, and to book the multivariate 
methods selected by the user. Subsequently the Factory calls for training, testing and 
the evaluation of the booked MVA methods. Specific result (“weight”) files are cre-
ated in XML format after the training phase by each booked MVA method and the 
evaluation histograms are stored in the output file [83].

2. Application phase Selected trained MVA methods are used for the classification 
of data samples with unknown signal and background composition, or for the estima-
tion of unknown target values (regression). The application of training results to a 
data set with unknown sample composition (classification)/target value (regression) is 
governed by the Reader object [83]. During initialization, the user registers the input 
variables together with their local memory addresses, and books the MVA methods 
that were found to be the most appropriate after evaluating the training results. As 
booking argument, the name of the weight file is given [83]. The weight file provides 
for each of the methods full and consistent configuration according to the training 

Fig. 16  a shows a schematic of the flow (top to bottom) of a typical TMVA training application. The TMVA 
analysis proceeds by consecutively calling the training, testing and performance evaluation methods of the 
Factory; b shows a schematic of the flow (top to bottom) of a typical TMVA analysis application. The MVA 
methods qualified by the preceding training and evaluation step are used to classify data of unknown signal 
and background composition or to predict a regression target [83]
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setup and results. Within the event loop, the input variables are updated for each 
event, and the MVA response values are computed [83].

During the Factory running, standardized outputs and dedicated ROOT [92] macros 
allow a refined assessment of each method’s behavior and performance for classification 
and regression. Once the appropriate MVA method(s) have been chosen by the user, it 
can be applied to data samples with unknown classification or target values. The inter-
action with the methods occurs through a Reader class object created by the user. A 
method is booked by giving the path to its weight file resulting from the training stage 
[83]. Then, inside the user’s event loop, the MVA response is returned by the Reader for 
each of the booked MVA method, as a function of the event values of the discriminating 
variables used as input for the classifiers. Alternatively, for classification, the user may 
request from the Reader the probability that a given event belongs to the signal hypoth-
esis [83].

In HEP, data analysis tasks, typically include (i) classification (the process of assign-
ing objects or events to one of the possible discrete classes), (ii) parameter estimation 
(extraction and measurements of track parameters, vertices, physical parameters such as 
production cross sections, branching ratios, and masses) and (iii) function fitting. Clas-
sification of objects or events is, by far, the most important analysis task in HEP, such 
as for example the identification of Electrons, Photons, Muons, Tau-leptons, etc. and 
the discrimination of signal events from those arising from background processes [81]. 
Optimal discrimination between classes is crucial to obtain signal-enhanced samples for 
precision physics measurements. In HEP data analysis, MVA techniques are mainly used 
for signal-to-background discrimination, variable selection (finding variables which give 
the maximum signal/background discrimination), finding regions of interest in the data 
and measuring parameters (regression). MVA algorithms can be also classified accord-
ing to two main classes: Supervised Training, where a set of training events with correct 
outputs is given, and Unsupervised Training, where no outputs are given and the MVA 
algorithm has to find them.

Boosted Decision Tree (BDT) analysis is similar to the machine learning technique. 
Let’s first start with a Decision Tree (DT) which is a binary tree structured classifier with 
two terminal nodes called leafs- the Signal “S” leaf and the Background “B” leaf. DT clas-
sifies events by following a sequence of decisions depending on the events variable con-
tent- S or B leaf node. Repeated “Pass/Fail” decisions are taken on one single variable at 
a time until a stop criterion is fulfilled [83]. The “tree” essentially provides a flowchart 
describing how to classify an observation. We start at the root of the tree, and the leaf 
ends up determining the classification as shown in Fig. 17.

The decision trees are robust in many dimensions but needs a boost and hence ref-
ereed as a Boosted Decision Tree (BDT). The boosting of a decision (regression) tree 
extends from one tree to several trees which form a forest of decision trees and an 
event is classified on the majority outcome of the classifications done by each tree in 
the forest [83]. In BDT, the training and building of a decision tree that starts with 
the root node is the process that defines the splitting criteria for each node, where an 
initial splitting criterion for the full training sample is determined. The split results in 
two subsets of training events that each go through the same algorithm of determin-
ing the next splitting iteration which is repeated until the whole tree is built [83]. At 



Page 28 of 45Saleem et al. J Big Data            (2018) 5:41 

each node, the split is determined by finding the variable and corresponding cut value 
that provides the best separation between signal and background. The node splitting 
stops once it has reached the minimum number of events which is specified by the 
person performing the data analysis. The leaf nodes are classified as signal or back-
ground according to the class the majority of events belongs to.

All trees in the forest are derived from the same training sample, with the events 
being subsequently subjected to so-called boosting, a procedure which modifies their 
weights in the sample. In BDT, the tree is split into many regions that are either clas-
sified as signal or background, depending on the majority of training events that end 
up in the final leaf node [83]. Boosting is done by re-weighting events in such a way 
(a weighted average of the individual decision trees) that higher weight is assigned 
for misclassified events and a lower weight for correctly classified events. Boosting 
thus increases the statistical stability of the classifier and also improves the separa-
tion performance compared to a single decision tree [83]. Once boosting is done it 
retrains and repeats the given set of classifiers thus classifies data by a weighted vote 
of the classifiers. Boosting stabilizes the response of the decision trees with respect 
to fluctuations in the training sample and is able to considerably enhance the per-
formance with respect to a single tree [83]. With the BDT technique, we are able to 

Fig. 17  Shows a schematic view of a decision tree. Starting from the root node, a sequence of binary splits 
using the discriminating variables xi is applied to the data. Each split uses the variable that gives the best 
separation between signal and background. The leaf nodes of the tree are labeled “S” for signal and “B” for 
background depending on the majority of events that end up in the respective nodes [83]



Page 29 of 45Saleem et al. J Big Data            (2018) 5:41 

detect signals that have different morphologies to those used in the classifier training, 
and improve on the false signal probabilities.

A simple illustration of a BDT is shown is Fig. 18 [81]: (a) characterized with two fea-
ture variables x1 and x2 with the resulting partition of the 2D feature space are shown in 
the schematics in (b).

BDT is especially useful to recover events that fail criteria in a traditional data analy-
sis. In the BDT technique, for each variable, we first have to find splitting value (called a 
“cut”) with best separation between two “entities”—mostly signal (signal-like) in one, and 
mostly background (background-like) in the other as shown in Fig. 19a and b. The termi-
nal node leaf is assigned a Purity Value = S/(S + B) . So the BDT output for each event 
is determined by the leaf Purity value which is closer to − 1 for background and closer 
to 1 for signal. The total of all trees in BDT is combined into a “score”. Once a variable 
(data parameter) is selected, it is then split into two values with the best separation to 
produce two “branches”. This process is repeated recursively on each node, which ends 

Fig. 18  a shows a simple illustration of a BDT characterized by two variables x1 and x2 and b shows an 
Illustration of the corresponding partitions of the 2D feature space [81]

Fig. 19  a shows a BDT plot for classifier output distributions for signal and background events from a Data 
sample using the BDT technique [83]. b Shows another example of a BDT plot which shows the optimal “cut” 
value to separate the signal-like events that have positive cut values from the background-like events which 
have a negative cut value as determined by the BDT technique [83]
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when there is no longer an improvement in the signal efficiency or when too few events 
are left. During the data analysis phase, we need to display this BDT plot of the datasets 
in high resolution using the full display-tiles so that we can accurately determine this 
splitting (“cut”) value that best separates the signal events from the background events. 
In that regard, high resolution visualization of the BDT plot is a critical task during data 
analysis.

By TMVA convention, signal events have a large classifier output value, while back-
ground events have small classifier output values. Hence, retaining the events with split-
ting value larger than the cut requirement selects signal samples with efficiencies that 
decrease with the cut value, while the significance of the signal increases. Since the split-
ting criterion is always a cut on a single variable, the training procedure selects the varia-
ble and cut value that optimizes the increase in the separation index between the parent 
node and the sum of the indices of the two daughter nodes, weighted by their relative 
fraction of events [83]. In principle, the splitting could continue until each leaf node con-
tains only signal or only background events.

BDT is used for signal optimization in our data analysis to determine the optimal fil-
ter parameters in order to efficiently extract signal events from the plethora of complex 
and heterogeneous background events in LHC datasets by improving the Signal to Back-
ground ratio. BDT allows us to study the complicated patterns and parameters in the 
datasets and make intelligent decisions about the signal extraction by finding new ways 
to tune and to combine classifiers for signal optimization and gain in performance.

In addition to the recently discovered Higgs Boson, according to Minimally Super-
symmetric Standard Model (MSSM) [93–96], there ought to also be a charged Higgs 
Boson. Finding the charged Higgs Boson would be an enormous scientific breakthrough. 
Undoubtedly, the observation of the charged Higgs Boson, would indicate physics 
beyond the Standard Model and provide pathways to new frontiers in HEP. The MSSM 
models predict that the charged Higgs Boson will decay into a Tau Lepton and a Tau-
Neutrino as long its mass is less than the mass of the Top quark. The data analysis of 
the charged Higgs Boson is immensely challenging since the LHC produces a lot of Top 
quark events which will be a large background for the charged Higgs Boson search. So 
sophisticated MVA techniques such as Boosted Decision Trees (BDT) are needed to 
separate signal from background, by maximizing the signal acceptance. Figure 20a and 
b show the event topology of the charged Higgs Boson and Fig. 20c and d show the cor-
responding event topology of the Top quark decay, which mimics the charged Higgs 
Boson signal, and are therefore background events to the charged Higgs Boson search. 
The main difference between the data sample in the BDT plot in Fig. 19 and a data sam-
ple in the BDT plot of a charged Higgs Boson is that the background events will be over-
whelmingly large while the signal events will be very small.

Another example of the usefulness of the Hiperwall display system is for the search of 
the lightest Supersymmetric (SUSY) particles (LSPs) [97–111], such as the Neutralinos 
and the Charginos which remedies many of the shortcomings of the Standard Model 
in HEP involving the instability of the mass of the Higgs Boson. Fig. 21a shows a Top 
quark decay at the LHC which has strikingly very similar visualization characteristics 
of the lightest SUSY particles (LSPs), the Neutralinos and the Charginos, as depicted by 
the subtle purple and orange dots (for visualization purposes), respectively, as shown 
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in Fig.  21b. To detect these rare subatomic particles, the Neutralinos and the Chargi-
nos, the Top quark decay as depicted in Fig. 21a would be an overwhelming background 
when searching for these very rare SUSY particles-Neutralinos and the Charginos in the 
LHC data. Such complex data visualization studies for this search requires a high resolu-
tion visualization system like Hiperwall.

Another example of the usefulness of the BDT technique is for the separation of the 
different hadronic jets that are produced from the Top quark (t-quark) and other sub-
atomic particles, where we need to separate the hadronic jets that are coming from 
the Up, Down and the Strange quarks (u, d, and s quarks) called the “light-jets” from 
the hadronic jets that are coming from the heavy quarks- the Beauty and the Charm 
quark (b and c quarks), which is a very challenging task. We use a BDT based tech-
nique called b-tagging [112–114] to identify a jet associated with a b-quark by recon-
structing the decay vertex of a B-hadron within the jet. It turns out that the b-quarks 

Fig. 20  a and b show the event topology of the Charged Higgs Boson ( H+ ) and c and d show the 
corresponding event topology of the Top quark decay and the Anti-Top quark (the anti-matter of the 
Top-quark) that will be a large part of the background events
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form B-hadrons that result in b-jets, which then decay into lighter hadrons that result 
in the light-jets. This complex task of the identification of b-jets in presence of pile-
ups is a major visualization challenge in ATLAS. Since decays of the Top quark, Higgs 
Boson, and SUSY particles involves decay to b-quark, we need to tag the jets that 
come from a b-quark and from all other background tracks and light-jets. The identi-
fication of b-jets originating from b-quarks is an effective way to reject backgrounds 
events. Figure 21a and b show a sketch of two Top quark decay channels that shows 
the tagged b-jets from the other jets using the BDT-based b-tagging technique. Fig-
ure 22a and b show ATLAS Event Displays of a subatomic particles that has produced 
different jets (shown in different colors) which has been tagged using the BDT-based 
b-tagging technique. Figure 23 shows a 3D visualization using the CAMELIA toolkit 
displayed on the Hiperwall that shows a subatomic particle decaying into several had-
ronic jets and leptons inside the ATLAS detector and Fig.  24 shows a zoomed 3D 
visualization using the CAMELIA toolkit displayed on the Hiperwall that shows a 

Fig. 21  a shows the visualization characteristics of the Top quark decay at the LHC and b shows the 
visualization characteristics of the lightest SUSY particles (LSPs), the Neutralinos and the Charginos, as 
depicted by the subtle purple and orange dots, respectively. The Neutralinos and the Charginos signal 
events as depicted in b needs to be extracted from the background Top quark decay events using the BDT 
Multivariate Analysis (MVA) technique. Image courtesy ATLAS Collaboration at CERN 

Fig. 22  a and b show ATLAS Event Displays of a subatomic particles that has produced different jets (shown 
in different colors) which has been tagged using the BDT-based b-tagging technique. Image courtesy ATLAS 
Collaboration at CERN 
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subatomic particle decaying into several hadronic jets and leptons in presence of large 
background events inside the ATLAS detector.  

Collaborative research and learning environment using Hiperwall

As an extension of the desktop display environment, tiled displays are still an emerging 
technology for constructing custom-made visualization environments capable of dis-
playing high-resolution images and visualizing complex data. Tiled display technologies 

Fig. 23  A 3D visualization using the CAMELIA toolkit displayed on the Hiperwall that shows a subatomic 
particle decaying into several hadronic jets and leptons inside the ATLAS detector

Fig. 24  A zoomed 3D visualization using the CAMELIA toolkit displayed on the Hiperwall that shows a 
subatomic particle decaying into several hadronic jets and lepton in presence of large background events 
inside the ATLAS detector
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offer a wide range of opportunities for exploring scalable large displays for high-resolu-
tion scientific visualization. A high-resolution display wall can show the details much 
more clearly than a low-resolution display of the same physical size that could be critical 
in decision making and scientific discovery. These next-generation tiled-display walls are 
increasingly becoming affordable for building visualization display environments.

The implementation of the Hiperwall visualization system has facilitated an advanced 
visualization and data analysis environment beyond what is typically possible on desktop 
systems. In a single desktop monitor, we are limited by the resolution of a single dis-
play. The total viewing space (area) of the Hiperwall display wall is over 30 times larger 
than a 24″ desktop monitor and the total resolution of the Hiperwall display wall is eight 
times that of a typical 24″ desktop monitor. At BU, the Hiperwall visualization system 
has made a significant impact and has indeed created an inspiring vision of the future of 
interactive visualization studies.

Using Hiperwall, our users, mainly undergraduate students can resize images and jux-
tapose multiple windows to run applications and conduct interactive visualization. Stu-
dents can display word documents, excel spreadsheets, simulations, programming code, 
webpages, images, and videos, including video conferencing, on different display-tiles 
of the Hiperwall simultaneously. Nowadays, visual representation of Big Data is crucial 
for its interpretation. In that regard, Hiperwall has enabled students to display a lot of 
related information from various sources or applications at the same time that is not 
possible with a typical desktop monitor. Using Hiperwall students can visualize the 
ATLAS Event Displays in 3D, at a level of detail that is impossible to obtain on a single 
desktop monitor. Figure 25 shows students interacting with the high-resolution image 
displayed on the Hiperwall to determine and identify the specific particle tracks from 
the decay of the Higgs Boson from an ATLAS Event Display. In HEP, these Event Dis-
plays often provide the only means of communication between the complex and abstract 
world of particle physics and the general public. So, visualization is a valuable educa-
tional and public relations tool. As shown in Fig. 26, we have also used the Hiperwall 

Fig. 25  Students interacting with the high-resolution image displayed on the Hiperwall to determine and 
identify the specific particle tracks from the decay of the Higgs Boson from an ATLAS Event Display
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visualization System as an OSG Tier2 Operations and Command center at BU, like the 
NASA mission Operations/Command center. 

Visualization is increasingly becoming a requirement for computational-enabled 
discovery and is an essential component of data-intensive research fields, where col-
laborative visualization of very-large datasets across distributed sites is becoming ever 
increasingly important for making new discoveries. Visualization can enable us to 
analyze and understand unprecedented amounts of experimental and simulated data. 
Indeed, human-computer interaction is one of the most basic features of scientific visu-
alization. The insights provided through the interrogation of the data and the visuali-
zation of the observed objects will help in scientific discoveries, create new theories, 
techniques, and methods. Also, visualization facilitates learning, and increases commu-
nication among research collaborators.

In fields such as HEP and Astronomy, complex scientific data needs to be presented 
on a large screen with high enough resolution so that the finest of details are preserved. 
Current HEP datasets are too large to understand in any way other than statistical analy-
sis and visualization. So, HEP experiments must rely on sophisticated simulation and 
visualization systems for exploring large-scale, complex, multidimensional systems of 
subatomic particles. This is where our Hiperwall is very useful and also impressive, since 
in a tiled display, each tile displays a section of the total image which is displayed in high 
resolution. Interactive visualization requires high-resolution display walls. Using Hiper-
wall users can place and arrange images/objects in a desired location using anywhere 
from 1 to 8 display-tiles within the embedding space/frame of the display wall and can 
adjust the images to their preference for the interactive visualization. Tiled displays can 
increase both the quality and the granularity of displayed information and allow more 
information, more applications, and high-resolution images than that can be viewed on 
a typical single desktop monitor.

From the perspective of the students, the Hiperwall visualization system has made 
a significant impact to conduct their data analysis tasks. Before we implemented the 
Hiperwall visualization system, we only had just one Dell Precision T7500 workstation 
with dual 24″ monitors to conduct the data analysis tasks. We had issues when multi-
ple full-Events Displays did not fit on the two adjacent 24″ desktop monitors. Moreo-
ver, with just two desktop monitors, the complex physics processes in the Event Displays 
were too inadequate to be understood due to the limited viewing space of the 24″ desk-
top monitors.

Fig. 26  a shows Visual Analytics using Hiperwall Display Wall to monitor grid jobs. b shows Hiperwall Display 
Wall being used as a Open Science Grid (OSG) Tier2 Grid Operations Center at AVCL
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While the size of various datasets is still increasing, how to filter the large HEP 
datasets while visualizing them is a visualizing challenge. As shown in Fig.  20a and 
b, the discovery of the rare charged Higgs Boson will rely on correctly observing the 
decay patterns of the charged Higgs Boson from that of the background processes/
events that look similar to the charged Higgs Boson signal, which is in itself a visuali-
zation challenge. This is where our 16.5 MP 16′ × 4.5′ Hiperwall visualization system is 
very useful, since without the use of high resolution display wall, the identification of 
charged Higgs Boson signal events by filtering and separating these background events 
from the large terabyte-scale datasets can be a daunting task. Therefore, the acqui-
sition of this Hiperwall display has become an invaluable visualization platform for 
enabling scientific discovery. Using the Hiperwall visualization system, we can interact 
with the data visually and interpret the data efficiently, which can accelerate the dis-
covery process. Using Hiperwall, our students, are developing expertise in large-scale 
data analysis and visualization skills and techniques that will be highly valuable for 
their future careers as they become part of the 21st century STEM workforce.

This research team and our students have greatly benefited from having a large 
high-resolution visualization system that also enabled us to see in real-time Event 
Displays that are generated at CERN on BU’s Hiperwall. The Hiperwall visualization 
system has indeed created an exciting atmosphere for undergraduate students to par-
ticipate in data-intensive research and has created a multi-user collaboration environ-
ment with a sense of visual immersion.

At BU, using the Hiperwall Visualization System we have implemented the first 
classroom-based display wall system in a Physics Department at an undergraduate 
institution. Hiperwall has provided a rich and immersive learning environment for 
our students which has enabled sharing of information between the students’ data 
analysis workstations and the Hiperwall. Contents from student workstations can be 
displayed on the Hiperwall while they collaborate in small groups. The instructor also 
has the option to display the content of any of the student workstations on the Hiper-
wall at any time thus allowing the entire class to watch and discuss each others’ work. 
So due to Hiperwall’s flexibility, it enables the class to work collectively on challeng-
ing problems, as well as data analysis.

The Hiperwall visualization system has been instrumental in terms of both innova-
tive and collaborative approach to interactive classroom and laboratory instruction. 
Using the Hiperwall, we have tested the setup to successfully conduct virtual Phys-
ics labs and virtual Physics simulations, animations and demonstrations as shown in 
Fig. 27. Using the Hiperwall visualization system, we can thus develop on-line virtual 
Physics labs for lower-division Physics courses.

The Hiperwall visualization system at BU has made a significant impact at this 
institution. The acquisition of this visualization system has provided an exceptional 
opportunity to engage undergraduate STEM students in research involving Big Data 
that is at the forefront of data-intensive computational science, visualization and HEP. 
The Hiperwall system has created a state-of-the-art and a dynamic/interactive visu-
alization environment by engaging our students in inquiry-based visual learning, and 
exploratory data analyses activities. The Hiperwall technology has allowed students 
and researchers to study and visualize large-scale data events with high resolution 
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and conduct interactive analysis of very large datasets. One of our goals is to make 
visualization tools more transparent to the undergraduate students and ease usability 
and accessibility, and make it possible for a wider range of users to explore the large 
volumes of data generated by experiments in HEP.

We are continuing to train more undergraduate students on how to use the Hiper-
wall system for large-scale data analysis and visualization. Our plan is to convert the 
AVCL that houses the Hiperwall visualization system into a university-wide facility 
so that faculty and students from other departments that have visualization needs 
can use the Hiperwall display system. In fact, the School of Environmental Science 
is interested in using the Hiperwall visualization system to teach their Geographic 
Information System (GIS) course.

We have written a User’s Manual for the Hiperwall Visualization system with input 
from undergraduate students who are our primary users. We have also designed and 
developed a web-portal interface that allow users to select specific display-tile arrange-
ments for visualization at the click of a button, based on what is displayed on the user’s 
Data Analysis Workstation’s (sender/streamer nodes) triple monitors.

Challenges while using the Hiperwall in educational and research pursuits

While we have had success in using Hiperwall for both education and research at BU, 
there have been some challenges for the users. In this section, we will discuss some of 
these challenges and our solutions to overcome these challenges.

First, and most important, the control scheme for the Hiperwall software is not user-
friendly for the average user from the workstations (the sender and streamer nodes 
as shown in Fig. 1). Typically, an experienced Hiperwall user needs to actually sign in 
remotely to the Hiperwall control node in order to control the display contents on the 
Hiperwall (as shown in Fig. 1). While in the last couple of years Hiperwall has added a 

Fig. 27  Instructor using Hiperwall for conducting virtual Physics laboratory
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control panel-like app that is accessible from the workstations, this is still a non-intuitive 
control scheme. Every semester we have trained new incoming students and the non-
intuitiveness of the Hiperwall control environment was evident. The user of the sender/
steamer nodes must decide what they want to display and then to actually implement 
the broadcast, they then need someone–usually another experienced user–to log into 
the control node. Then the experienced user needs to control the Hiperwall software to 
implement how it is displayed on the main screen.

Second, the ability to control multiple workstations with a more intuitive control 
scheme (as described in section Hiperwall user portal) was written by our team that uti-
lizes a web-based approach to allow the workstation’s user to decide how the content 
of the workstation monitors are displayed on the Hiperwall as shown in Fig. 10. Based 
on the content environment already present in the Hiperwall software, our team added 
the ability for any user at a specific workstation to click on a link as shown in Fig. 11 
to display the contents of the monitors on the Hiperwall. These links are subdivided by 
number of screens the user is broadcasting, then by the location on the Hiperwall dis-
play-tiles where they want their screens to be shown. And finally, users can choose to 
zoom in so that one of their workstation’s monitors completely covers all the Hiperwall 
display-tiles. A significant drawback to this methodology is that a some of the power of 
the software is reduced in order to make the system more user friendly.

It must also be noted that the purpose of the Hiperwall is not about increasing the res-
olution. Once the original image has been created the resolution can not be changed. 
The Hiperwall can increase the image size by adding pixels by interpolation methods, 
but the original resolution is not increased. Therefore, the purpose of the Hiperwall is 
to be able to show more details while also showing more display area. The user gains 
more display area of the image without losing the details. However, the system does add 
or subtract the number of pixels displayed in the frame of view of the user on the main 
screen of the Hiperwall. While we do not have access to the propriety code of the Hiper-
wall software, one can intelligently assume [23] it uses a closest neighbors approxima-
tion for pixel values as pixels are added to the image as the image is zoomed larger than 
it’s inherent resolution. As an example, stretching and zooming into a small thumbnail 
image ( 240× 240 ) out to a full HD ( 1920× 1080 ) sized image requires the addition of 
about 2 million pixels that did not exist in the original image.

The pixel count or resolution of LCD-based displays are 2K (1020× 1080 pixels) for 
full HD  or 4K (3840× 2160 pixels)  for full UHD. However, since LED-based display 
walls are built with modular components, the resolution (total number of pixels) of any 
particular installation can vary, which is why the most common specification for pixel 
density is referenced in the industry as “pixel pitch”. Pixel pitch is the distance between 
the center of two adjacent pixels as shown in Fig. 28a. So the smaller the pitch, the more 
pixels one can fit into a fixed dimension of the display wall. The smaller the pixels, the 
more one can fit into the same physical dimensions and thus increase the pixel count 
which delivers more details and smoother edges to the image s. So finer pixel pitch 
means that more pixels can be packed closely together, thus increasing the pixel density 
and resolution as shown in Fig. 28b.

Also, as the pixel density increases, one can stand closer to the display wall without 
seeing the pixels, which is especially important as displays get bigger or people move 
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closer to the display wall with the addition of interactive technologies [47]. Table 4 shows 
the ideal viewing distance based on the pixel pitch of a display wall.

Finally, we have consistently run up against the situation with a lecturer not being able 
to control the Hiperwall while standing in front of the workstations (see Fig. 27) or off 
to the side. Currently, a guest speaker/lecturer needs to have a “helper” logged in onto 
one of the workstations or use a tablet to be able to control the Hiperwall. As a solu-
tion to this issue our team has attempted to implement two technologies coming from 
the recent Virtual Reality (VR) hardware revolution, HTC Vive’s hand controller [115] 
and an infrared hand tracking detector Leap Motion [116]. While we are still working 
to get the Vive controllers to control the Hiperwall system, we were able to get the Leap 
Motion hand-tracking system working with basic controls like “grab” this image stream 
and move it to another position on Hiperwall. It is still possible to add other features and 
options for even more advanced controls.

 Overall, the success and benefits of the Hiperwall greatly outweigh any of the draw-
backs and challenges we have expressed with using the Hiperwall display system either 
as a research or an educational tool. The authors would advise other institutions as they 
develop their own visualization system to keep the above issues of control, usage, and 
manipulation in consideration.

Fig. 28  a shows an illustration of Pixel pitch (the distance between the center of two adjacent pixels) and b 
illustrates how finer pixel pitch can increase the pixel density and resolution [47]

Table 4  Table shows the ideal viewing distance based on the pixel pitch of a display wall. 
Table adapted from [47]

Ideal viewing distance (ft) Pixel pitch

25 2.5

18 1.8

15 1.5

12 1.2

9 0.9
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Conclusion
Data visualization is growing in a rapid pace with new and evolving visualization 
methods. Visualization of useful information in Big Data can indeed significantly 
improve our understanding of the vast amount of information in large datasets. 
The transformation of data into graphical images that can be visualized on a high-
resolution display wall can be of significant benefit during data analysis of complex 
scientific data. It is often easier to extract specific information from images by inter-
acting with it. Scientific visualization and visual representations enhances the clarity 
of the displayed information and thus allow users to extract useful information from 
the vast amount of data from these large science experiments that are often complex 
and heterogeneous. Scientists often face the challenging task of uniting the abstract 
world of data and the physical world through visual representations. So, visualization 
techniques are a useful tool for transforming information into a understandable form 
for human perception. In science, 3D visual representation and 3D simulations that 
are  commonly used for scientific visualization applications can identify hidden pat-
terns or anomalies in the datasets from Big Data. As the number of petascale datasets 
is increasing, a combination of data analytics and data visualization will enable scien-
tific data exploration and allow improvements in outcomes and decision-making.

High resolution Tiled-Display Walls create an engaging and a pervasive collabora-
tive environment for research and active learning in academia. These visualization sys-
tems are especially helpful for research groups analyzing Big Data from large science 
experiments. We broke new ground by being the first undergraduate institution in the 
US (and the only institution in Kentucky) to implement the Hiperwall technology in the 
field of HEP. The Hiperwall technology has an architectural advantage since Hiperwall 
runs on standard PCs connected to standard Ethernet network, thus eliminating the 
need for specialized switches and servers. Each display node renders its own portion of 
the display, thus eliminating the bottlenecks associated with central servers that make 
Hiperwall a robust visualization system. This paper suggests a cost-effective solution for 
visualizing high resolution large-scale data-driven images and applications with a broad 
view using the Hiperwall visualization system based on the setup at BU’s AVCL.

We have described a novel Hiperwall visualization system setup at BU that 
increases the display size of large images in Astronomy and for interactive data analy-
sis of Event Displays in HEP from the ATLAS experiment at the LHC at CERN. The 
key breakthrough of the Hiperwall system is the distributed software architecture 
that overcomes performance limitations typically associated with the display of large 
contents on multiple display-tiles. The Hiperwall visualization system is an effective 
way to display a large image or multiple images on display-tiles. Hiperwall facilitates 
detailed data analysis tasks and the aggregation and juxta-positioning of a variety of 
information and allows the examination of details within the context of the entire 
data set. Hiperwall is ideal for scientific visualization, visual analytics, and for view-
ing high-resolution 2D and 3D images, models and simulations, virtual reality and 
streaming videos, including Google Earth, Google Maps, and Web browsers.

We have used the Hiperwall visualization system successfully for conducting work-
shops on virtual Physics Labs, as well as interactive workshops on Python in a class-
room setting. So, we have demonstrated that the Hiperwall visualization system can 
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also be used as a collaborative and interactive learning environment in classrooms. 
Hiperwall visualization system is also useful for collaborative research work with 
other institutions, where researchers, teachers, students can visualize and analyze the 
data with high resolution and to conduct interactive analysis for large data sets in 
real-time.

In summary, Hiperwall is a cost-effective option for implementing a tiled display wall 
that has the flexibility to run on both the Windows and the Linux platform. Hiperwall 
is a novel visualization technology that can be used in any discipline. The Hiperwall is 
an effective visualization system for Big Data applications and for conducting visualiza-
tion studies of large-scale images in Astrophysics and Astronomy, and Event Displays 
in experimental HEP. At BU, Hiperwall has indeed improved the data analysis tasks and 
has provided an ideal collaborative visualization environment that can accelerate the dis-
covery process. Our future plans are to continue to grow the number of Hiperwall users 
in classrooms and educational settings, including workshops/seminars and to enhance 
collaborative research environments.

Additional information about BU’s Hiperwall visualization system can be found on the 
AVCL webpage [117]. Research work of our students at BU using the Hiperwall system 
titled “Students tackle Big Data in Advanced Visualization and Computational Lab” that 
was written for the general audience was published in the Summer 2015 issue of BU Maga-
zine [118].
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