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Introduction
In previous years there has been massive interest in the use of unstructured web data 
such as tweets [1–6], web searches [7] and images for disease surveillance [8]. This inter-
est is spurred by the unprecedented growth of user generated content through social 
platforms like Twitter and facebook. In the studies cited it has been shown that disease 
reports made by users in their public social posts correlate with actual disease activ-
ity on the ground and can therefore be employed as a basis for so-called internet based 
syndromic surveillance. The integration of these systems into the public health surveil-
lance process confers several advantages. First of all these systems have global reach 
for instance facebook, the largest service has 1.47 billion daily active users who gener-
ate unsolicited information at a rate of 293,000 status updates, 510,000 comments and 
136,000 photo updates a minute [9] and Twitter which is the subject of this paper has 
about 330 million daily active users who generate more than 500 million tweets a day 
[10].

A system capable of sifting through this deluge of real time user information for men-
tions of disease occurrence has a very high chance of detecting outbreaks far quicker 
than traditional surveillance approaches moreover at a fraction of the cost due to the 
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fact that process elements like data collection can essentially be kept external to the sur-
veillance process. Most modern social systems allow some form of access to their data 
through APIs (Application programming interfaces)1 and barring the costs of API imple-
mentation the data is completely free as it is provided by unpaid users motivated by the 
need to communicate with each other in the form of status updates. In addition social 
APIs usually provide additional utilities like keyword and location based filtering making 
a lot easier to obtain fairly dense location specific samples for any topic of interest.

However, the vast majority of systems have been limited in scope to particular dis-
eases such as the flu and dengue fever [11]. The general approach entails the use of large 
lists of keywords in conjunction with keyword lookup approaches. To monitor multiple 
diseases the same technique has simply been extended by incorporating multiple defi-
nitions into hierarchical taxonomies or ontologies [12, 13]. For both cases systems rely 
on a priori definitions of disease events that are supplied by system implementers. True 
general threat detection systems like Promed-Mail and the Global Public Health Intel-
ligence Network (GPHIN) [14, 15] have had to rely on human mediation.

However ongoing advances in machine learning and natural language processing are 
making it increasingly feasible to deploy fully automated disease surveillance and mini-
mize the need for human mediation. The key merits of an automated approach include 
the fact that it would have a significantly lower operational cost than a human mediated 
approach coupled with a very high throughput. Given the interconnected nature of the 
modern world and the speed at which epidemics may disperse it is important to process 
as much data as possible and as quickly as possible. However, the need to dictate the epi-
demiological focus of such systems by predetermining diseases of interest means that it 
is not possible to accommodate new health concerns such as emerging diseases2 without 
significant rework. In this paper we demonstrate an ontology boosted neural architec-
ture for generalized automated disease name extraction from Twitter messages.

Related work

Previous attempts to detect disease names in natural language text have been made on 
less noisy technically oriented sources such as discharge summaries, echocardiogram, 
radiology, and ECG reports [16] and specialized databases such as DistiLD [17] and 
COSMIC (Catalog of Somatic Mutations in Cancer) as described in [18]. In natural lan-
guage parlance this task is referred to as named entity recognition. For disease named 
entity recognition techniques such as machine learning methods like Conditional Ran-
dom Fields (CRFs) [16] and dictionary lookup techniques [19] have been employed. In 
these cases because the text originates from predominantly technical writers semantic 
annotation is fairly straight forward using any of the several publicly available medical 
thesauruses like UML (Unified Medical language)—SNOMED-CT.3

Work on tweets is limited, previous work has employed CRFs and log linear mod-
els. For most work involving named entity recognition several features are required to 

1  Programming libraries that allow external code to make calls to a system.
2  Infectious diseases that have recently appeared within a population or those whose incidence or geographic range is 
rapidly increasing or threatens to increase in the near future.
3  https​://www.snome​d.org/snome​d-ct.

https://www.snomed.org/snomed-ct
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obtain good performance. These features include the words themselves, word prefixes, 
word suffixes, part of speech tags of words, semantic category of word in reference 
ontology, word surface form etcetera. These approaches, with the exception of work by 
Magumba et al. [20], implicitly assume that the lexical composition of training data and 
target data is similar and have generally employed very small data sets. However, Twit-
ter text is known for its large, unbounded lexicon in addition to other distortions like 
misspellings and made up words but even in these experiments which assume a fixed 
lexicon, the performance of automated named entity recognition approaches for disease 
name extraction significantly lags the state of the art on Twitter for instance Jimeno-
Yepes et al. [21] report an F1 score of only 0.63 on a dataset of only 1300 tweets in which 
1200 tweets are used for training and 100 for testing. In addition it is difficult to reliably 
obtain some of the most informative features such as part of speech tags and chunk tags 
on Twitter messages due to the afore-mentioned problems.

Materials and methods
Our approach builds on previous work by Magumba and Nabende [22], in which an 
ontology is used to successfully obtain state of the art performance for classification of 
messages about diseases using a single model for lexically divergent data. The approach 
generates conceptual representations which are used to create classification models that 
generalize better than word based models over the held out test datasets. The training 
data comprises messages about the flu whereas the test data comprises messages about 
an arbitrary selection of other diseases. In this paper we build on the observation that 
neural word embeddings can be learned over these conceptual representations and that 
similarly to word level models they significantly improve message classification perfor-
mance. In particular, the Doc2Vec [23] algorithm is applied which extends the word-
2vec algorithm [24] by applying similar reasoning to entire documents. In this work we 
investigate if similar gains can be obtained for the named entity recognition task given 
the combination of deep learning and neural embeddings has produced state of the art 
results in other domains.

General rationale

To arrive at the ontology we employ two key intuitions; firstly that for the purpose of 
communicating disease incidence some words are more important than others. Sec-
ondly, that words themselves are representative of some higher mental concepts and 
that in the bounds of a given topic of discourse there is a fairly small number of con-
cepts but a possibly infinite number of words and ways to express them. So, what we 
have attempted is to identify these higher concepts that communicate illness and train 
classifiers on them rather than words to achieve low performance variance across lexi-
cally divergent data sets. Figure  1 is an informal, visual proof of these intuitions. The 
figure comprises word clouds generated from four datasets containing messages about 
conjunctivitis, the flu and common cold, gastroenteritis (stomach flu) and norovirus. To 
arrive at these visualizations we exclude stop words and the names of the diseases them-
selves. In essence this is a visualization of the word level context of the disease names.

As is evident the word “eye” is prominent for conjunctivitis in Fig. 1a as is the word 
“stomach” for gastroenteritis in Fig. 1c and with some domain knowledge we can easily 
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infer that these symbolize the sites of infection for the respective diseases. Furthermore, 
these words would appear as distinct elements of information to a word level model but 
may actually serve an equivalent purpose for a generalized concept-level model. For 
instance we can create a category for anatomical references and any mentions of “eye” 
and “stomach” would account as mentions of this category rather than as unique data 
points allowing models to employ knowledge about the conceptual context of one dis-
ease to messages about another disease. Furthermore, even though we do not encounter 
the word “leg”, as humans we can easily predict that it too is a member of this category 
and hence extend it.

In addition, even though the term “interstitium” refers to a part of the body it is way 
too technical and specific to expect it to occur in casual Twitter posts with signifi-
cant regularity and it is our opinion that we can safely ignore it and simply register it 
as a noun. We can therefore identify such concept categories and almost exhaustively 
describe them by creating lists of words that describe that category. In deriving con-
cepts for the ontology we simply repeat this process several times until we obtain a set 

Fig. 1  Empirical word frequencies for context words for different diseases names: a conjunctivitis, b 
flu + common cold, c gastroenteritis, d norovirus
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of concepts that we think are representative of the domain. In general we avoid technical 
terminology and names of specific diseases and drugs and focus on the basic linguistics 
of communicating illness by leveraging domain knowledge to identify those words that 
are likely to be in the same contexts as names of diseases.

An ontology for disease incidence detection on Twitter

The ontology models the minimum set of semantic concepts required to communi-
cate disease incidence. These concepts are of two broad categories, those that directly 
describe disease incidence such as references to disease causing organisms such as bac-
teria and general linguistic terminology like words that imply negation and references to 
temporality and descriptions of space and time. As depicted in Fig. 2, at the top of the 
hierarchy everything is conceptualized as an object, there are two types of objects that 
is, real objects and abstract objects. Real objects refer to tangible things and abstract 
objects refer to concepts like time, negation and events.

Living things comprise the key biological actors such as hosts (the organism that 
suffers disease which in this case is a person), pathogens (disease causing organisms) 
and vectors (disease spreading organisms). Inanimate objects are of two major classes 
namely environments and substances. There are three types of concepts namely rela-
tionships and properties and actions. Relationships describe interactions between con-
cept classes in the object hierarchy and correspond to OWL (Web Ontology Language) 
object properties whereas properties describe object and relationship attributes and cor-
respond to OWL data properties. Actions describe object behavior for certain objects 

Fig. 2  Partial object hierarchy for disease communication ontology
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like people where a typical action is to exercise and can be thought of as data properties 
for which the range and domain are the same.

Concept dictionaries

Finally, for each conceptual object be it a relationship, property or action there is a corre-
sponding concept dictionary. Figure 3 depicts a partial decomposition for the people con-
ceptual object with corresponding concept dictionaries indicated in curly brackets. In the 
figure we use a UML class diagram notation as opposed to the more relevant RDF schema 
diagram for compactness. The figure depicts the “People” concepts and the “government”, 
“care provider” and “patient” as sub classes of the “People” object. The reason these are 
depicted as such is because we think in terms of the conceptual context of disease men-
tions and these concepts generally have the same context at the conceptual level and the 
same or similar relationships and properties. For instance governments and government 
agencies like the CDC or the Department of Health can be viewed as special collections of 
people and in fact within the context of disease occurrence will perform typically human 
actions like investigating, apologizing and reporting. In addition there are other interac-
tions between concepts for instance the directed line from government to people indicates 
an unspecified interaction between the government and the individual.

The concept dictionary is simply a list of words related to the concept. Roughly 
speaking the members of a given concept dictionary are related by three relation-
ships namely synonymy, hyponymy/hypernymy and meronymy. Synonymy refers to 
semantically equivalent words such as “skin” and “dermis”, hypernymy is refers to 
increasing generalization for instance “location” is a hypernym of “house”, hypon-
ymy is the inverse of hypernymy as in “house” would be a hyponym of “location”. The 
full ontology along with a description is publically available in OWL/XML format at 
this Github repository.4 Also the process of creating and populating concepts with 

Fig. 3  People object sub hierarchy with corresponding concept dictionaries indicated in curly braces

4  https​://githu​b.com/MarkM​agumb​a/Twitt​er-Disea​se-incid​ence-Descr​iptio​n-Langu​age-Ontol​ogy.

https://github.com/MarkMagumba/Twitter-Disease-incidence-Description-Language-Ontology
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concept dictionaries is largely independent of the data. At the conceptual level the 
ontology is intended to be a static and reusable resource.

Recurrent neural networks

A recurrent neural network is a form of neural network in which sequential informa-
tion is retained as opposed to a basic feed forward neural network. A neural network 
is a form of computational graph that approximates some target function by minimiz-
ing the error on a provided set of examples. A neural network breaks down the learn-
ing problem by defining a set of computational units or neurons organized into layers. 
Assuming the most basic neural network comprising a single layer with a single neu-
ron, where x is the input, w is the weight, y is the output also referred to as the activa-
tion, b is some bias and the target value is τ and φ is some activation function and E is 
the error Eq. 1 describes the basic architecture of a neural network.

The learning task attempts to learn the most suitable values for w given some train-
ing data by minimizing E via an iterative procedure with two components namely for-
ward and back propagation. During forward propagation, the value of y is computed 
for each training example and the error obtained via Eq. 2. During back propagation 
the error is used to adjust the weight, w, as described by expression 3. The adjustment 
is scaled by η, the so called learning rate. This is important since in practice, neural 
networks do not learn the exact target function but rather the best approximation 
given the provided parameters and data. The error term is computed over all exam-
ples as a root mean squared error. It is critical that the learning rate is not too big 
as this may cause the learning routine to overshoot the optimal solution and hence 
never “converge” on the other hand too small a learning rate results very large train-
ing times. For modern machine learning libraries, this is handled by the backend with 
optimization methods such as adam.

It turns out that neural networks are very powerful learners often obtaining state of 
the art results in machine learning tasks such as image recognition, natural language 
processing and speech recognition. It has been shown that a two layer neural network 
can be used to approximate any function [25]. In the case of multiple layers, the layers 
between the input and output layers are referred to as hidden layers. As demonstrated 
in Fig.  4, given alk is the activation of the kth neuron in the lth layer and wl

i,k is the 
weight between the ith neuron of the lth layer and the kth neuron of the l + 1th layer. 
The following equation holds for a neural network in which the l −1th layer contains 
n neurons.
 

(1)y = φ(w ∗ x+ b)

(2)E = −
(

y− τ
)

(3)w ← w+ ηE

(4)alk = φ

{

i=n
∑

i=1

(al−1
i ∗ wl

i,k + bi)

}
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Different activation functions are possible each with their own distinct characteristics 
such as Rectified linear units (ReLUs), tanh, sigmoid units and softmax units. Stacking 
additional layers allows neural networks to learn finer decision boundaries and create 
better approximations of the target function. The weight update rule in Eq. 3 can be gen-
eralized as follows for multi-layer neural networks:

In this case the error is computed in the forward pass and then each weight is updated 
by subtracting the product of the derivative of the error with respect to that weight and a 
scalar (the learning rate). In addition the error is defined such that it is differentiable and 
for n training examples takes the form:

The derivatives for shallower layers are obtained by repetitive application of chain rule. 
As an example the first layer 1 gradient in Fig. 4a is computed as follows:

(5)w ← w+ η ∗
∂E

∂w

(6)E =
1

n

i=n
∑

i=1

(

y− τ
)2

(7)
∂E

∂w1
11

=
∂E

∂w2
11

∗
∂w2

11

∂w1
11

Fig. 4  Feed forward neural network, a shows the inputs and output at a single neuron, b depicts a 
multi-layer neural network
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In the case of the feed forward neural network time is considered static and the 
inputs independent, however this is suboptimal for certain tasks like sequence tag-
ging. In this case the input is considered to be sequential and the results of previ-
ous steps are important in determining the current state. Recurrent neural networks 
introduce the idea of time steps. For instance for the input sequence, “we are very 
sick”, the input a time t = 0 is the token “We”. In this case Fig. 5 summarizes the effec-
tive model architecture for a one layer recurrent neural network:

The following equations describe forward propagation for the architecture:

At each time step, two outputs are computed the “history” and the current predic-
tion. The history is given by Eq. 8 and the current prediction by Eq. 9. The weights Wy, 
WR, Wl and bias vector bh are shared across the layer. In this case f is referred to as 
the recurrence formula; it is common to use tanh activation function for f. The output 
layer employs softmax activations allowing the output to be interpreted as probabili-
ties. The error is interpreted as a cross entropy error, however the total error from all 
time steps is considered as the loss. Similarly the gradients with respect to Wy, WR, Wl 
for all time steps are summed up into a single gradient since Wy, WR, Wl are shared 
across time steps.

Back propagation works similarly to back propagation in feed forward neural net-
works but is commonly referred to as back propagation through time since gradients 
are computed with respect to weights at previous time steps in addition to the current 
time step. It is also common to limit the length of the sequence through which to back 
propagate for the sake of memory efficiency and in this case it is referred to as trun-
cated back propagation through time.

(8)ht = f
(

WlX
t
+WRh

t−1
+ bh

)

(9)yt = f
(

Wyh
t
+ by

)

Fig. 5  Recurrent neural network
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A key advantage of recurrent neural network is that it can use the full context of the 
entire sequence. For methods such as CRFs and log linear models the complexity is 
quadratic in the length of the sequence and length of the label set requiring most imple-
mentations to limit the context, however for recurrent neural networks this is not an 
issue as the entire history at time t is represented in the vector ht.

Vanishing and exploding gradients

Recurrent neural networks can result in arbitrarily long gradient computations particu-
larly in the computation of errors with respect to WR and Wl as these are obtained by 
the gradient chain rule as opposed to the error with respect to Wy which depends only 
on values at the current time step. In situations where the result of these computations 
is a consecutive sequence of numbers greater than or less than 1.0 it can result in arbi-
trarily large or exceedingly small gradients referred to as exploding and vanishing gradi-
ents respectively. In either case the effect is to impede further learning as weight updates 
become too small or too large. Several solutions exist for this problem including making 
changes to the architecture, gradient clipping (for exploding gradients) in which mini-
mum and maximum bounds are defined for the gradient a priori and employing special 
learning units referred to as gates, in particular LSTM (Long Short Term Memory) gates 
and GRUs (Gated Recurrent Units).

Experimental setup
Data sets

We employ the same dataset used in Magumba et al. [20]. These tweets were obtained 
via basic Twitter account using a python script through Twitter’s Streaming API [26]. 
The tweets are marked as public by the authors; which is the default security level, mak-
ing them available to third party applications like ours. We employ simple keyword fil-
ters to extract the desired tweets. These keywords are names of diseases like flu and pink 
eye.

Not all messages mentioning diseases necessarily talk about them in the context of 
reporting active cases of disease incidence and since this is the context we are interested 
in, we see no point in training our model on tweets that talk about diseases in these 
alternative contexts. Therefore, we further examine the tweets manually to extract only 
those that report ongoing or recent cases of disease activity within some time window 
of up to a few weeks where we assume that diseases may still be in their communica-
ble period. Using this approach we generate three datasets: An influenza + common 
cold + Listeria data set which comprises 73,848 tokens in 7835 tweets which we employ 
as the training data set, a mumps + measles + pneumonia data set which comprises 3866 
tokens in 316 tweets a pink eye data set which comprises 3428 tokens in 267 tweets.

The mumps + measles + pneumonia and the pink eye data sets are used for testing. 
The former is used to test the models on cases where the disease name is a singular word 
and the latter to assess the performance where the disease name is a multi-word expres-
sion. In addition we eliminate duplicates by removing retweets, (tweets with the “RT” 
tag) and also manually checking for duplicates that may not be marked as “RT”. Finally 
we remove all punctuation except the “#” and “@” symbols where they appear at the 
beginning of tokens where they are used to denote hashgtags and users respectively.
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Annotation

For each word in our data set, we assign a label of ET (Entity True) or PERS for persons 
or ORG for organizations or PLACE for geo-political entities or MC (Miscellaneous cat-
egory) for everything else. The Entity True labels refer to words that are part of a disease 
name.

Feature engineering

We transform each tweet into a vector of features as follows. Firstly, we flatten out our 
ontology into a list of its constituent concepts. As stated in “General rationale” section 
each concept is associated with a group of words or tokens referred to as the concept 
dictionary. Each concept is effectively a list of words and the full ontology is basically a 
list of lists. In this sense it is a heavily redacted English dictionary containing only words 
we consider to be of epidemiological relevance. To obtain the feature vector we sim-
ply tokenize each tweet and for each token we do a dictionary look up in our flattened 
ontology.

If the token exists in the ontology, we simply replace it with the concept in which it 
occurs. As an example the sentence “I have never had the flu” is encoded as “SELF_REF 
HAVE FREQUENCY HAVE DT NN”. SELF_REF refers to “Self references” which is the 
concept class for terms that persons use to refer to themselves such as “I”, “We” and “Us” 
used as an indicators of speaking in the first person, “HAVE” is the concept class for 
“have” or “had” which is a special concept class since the verb “to have” is conceptually 
ambiguous as it can legitimately indicate two senses that is falling sick or possession. 
The “FREQUENCY” terms refers to a reference to the “FREQUENCY” concept which 
denotes temporal periodicity. Figure 6 depicts the derivation for the statement “@DBig-
Daddy I think I have the #flu”.

To arrive at the concept representation we merely perform a simple list lookup; for each 
token we iterate through all concepts to see if it exists in any concept’s dictionary. If it 
does, then that concept’s label is returned otherwise the token is replaced with its part of 
speech tag. The original version of our ontology has 136 concepts corresponding to 1531 
tokens versus a vocabulary of about 59,000 tokens for our full corpus (or several billion 

Fig. 6  Derivation of conceptual CNF representation from plain tweet
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words in English). Needless to say, most words are out of vocabulary. We have found that 
replacing these terms with their part of speech information rather than ignoring them 
produces better results particularly on message classification tasks. To obtain the part of 
speech tag we employ the GATE twitter tagger [27] which uses the Penn Treebank tag set 
[28] in addition to three more tags “HT”, “USR” and “URL” corresponding to twitter spe-
cific phenomenon namely hashtags, users and URLs. We refer to this form as the Concept 
Normal Form (CNF). Figure 7 is a concrete example of a tweet and its representation in 
CNF which is used as the input for our named entity recognition models, and the corre-
sponding named entity tags per token that are the training targets.

Embedding derivation

To obtain the embeddings to be used as input for the neural network we use the Doc2vec 
algorithm over unlabeled examples of our entire corpus in the conceptual representa-
tion. From the Doc2Vec model we can extract word2vec embeddings which are able to 
preserve non trivial semantic relationships between words. For instance where v(King) is 
the vector for king it has been found that the expression v(King) − v(Man) + v(Woman) 
returns a vector that is roughly equivalent to v(Queen). We do not train the word2vec 
algorithm directly but extract out word2vec vectors from the best performing Doc2Vec 
model in Magumba and Nabende [22]. We do this to demonstrate that a single model 
may be used for multiple purposes.

The Doc2Vec algorithm may be implemented using two alternative architectures 
namely distributed memory (PV-DM) or distributed bag of words (PV-DBOW) which 
are analogous to the two alternative word2vec architectures namely continuous bag of 
words (CBOW) and skipgram. Unlike the PV-DBOW architecture in which there is no 
joint training of word vectors and paragraph vectors the PV-DM architecture generates 
word vectors as a by-product of training. The experiments in Magumba and Nabende 
[22] employ the PV-DM architecture. It is for this reason that we are able to extract 
word2vec concept vectors for this experiment. Figure 8 depicts the word2vec skipgram 
model (on the left) alongside the Doc2Vec PVDM model (on the right).

Fig. 7  Sample training data annotation
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Model training

We employ the following model architecture to train our named entity recognition 
model. The only input to the model is word2vec representations of tweets in the 
conceptual representation from “Embedding derivation” section. We employ a bi-
directional LSTM RNN. The architecture is depicted in Fig.  9. To achieve a bidi-
rectional neural network two layers are stacked with one layer learning the forward 
sequence and the other layer learning the backwards sequence. The outputs from 
both layers are then combined using some “merge mode” which describes how to 
combine the output from the bi-directional RNN. We use the python Keras5 pack-
age whose default merge model is “concat” which concatenates the output from both 

Fig. 8  Word2Vec skipgram architecture versus Doc2Vec PVDM architecture

Fig. 9  Model architecture for recurrent neural network

5  https​://keras​.io/.

https://keras.io/
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layers. We employ 150 units for each LSTM layer. The layers are interspersed with 
dropout layers. Dropout layers combat over-fitting by randomly switching off some 
units with a given probability. We use a dropout probability of 0.5. We train the 
model on an NVIDIA Quadro K610M GPU. We employ 20 training epochs.

We also perform two additional experiments to demonstrate the utility of our con-
cept level embeddings. The first experiment employs word level embeddings from a 
custom word2vec model trained from our corpus with a vocabulary of 59,000 words. 
However, we transform our corpus such that we transform any hashtags into “ht”, 
urls into “url” and user names into “usr” and ignore any tokens occurring less than 
2 times thereby truncating our corpus to 9206 tokens. The second employs word 
level embeddings from Google’s word2vec model trained from a 6 billion word cor-
pus with a vocabulary of 3 million unique words. For these additional experiments 
we essentially use the same architecture except the input shape is slightly differ-
ent because the optimal model with the custom word2vec model is obtained with 
100 dimensions and Google’s 6 billion word corpus word2vec model employs 300 
dimensions.

We do not perform any parameter tuning and employ what we expect to be typi-
cal values for dropout, number of layers and number of epochs. Since the goal is to 
obtain a model that performs reasonably well on multiple test datasets that are lexi-
cally divergent we deliberately try to employ a simple architecture. The full vocabu-
lary for the CNF representation is only 166 concepts.

Results and discussion
The results are summarized in the Table  1. In addition to the results from these 
experiments we also include the results from Magumba et  al. [20] who employed 
conditional random fields and log linear models on the same data.

The results show the precision, recall, and F measure of the different methods 
and representations with respect to the “ET” tag. The LSTM with concept level 

Table 1  Experimental results

Methods Measure Data set

Mumps + measles + pneumonia Pink eye

CNF + log linear model Precision 0.68 0.71

Recall 0.43 0.58

F measure 0.53 0.64

CNF + CRF Precision 0.79 0.68

Recall 0.58 0.63

F measure 0.67 0.65

LSTM + custom Word2Vecmodel Precision 0.00 0.74

Recall 0.00 0.05

F measure 0.00 0.02

LSTM + generic Word2Vec model Precision 0.55 0.35

Recall 0.04 0.17

F measure 0.08 0.23

LSTM + CNF Word2Vec Precision 0.78 0.71

Recall 0.67 0.82

F measure 0.72 0.77
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embeddings clearly outperforms word level embeddings in addition to previous 
experiments with CNF with CRF. In addition the LSTM model employs fewer fea-
tures. The results on the CRF and log linear models require part of speech tags and 
chunk tags in addition to the CNF concepts. These themselves require their own 
separate pipelines which owing to the issues pointed out in “Related work” section 
perform unreliably with Twitter text. On the RNN only the concept embedding is 
required. Assuming the CNF representation can be obtained directly this is probably 
a more reliable approach and definitely computationally cheaper particularly at run 
time.

What is remarkable is how poorly word level embeddings with the LSTM perform. 
This is significantly worse than even the previous work by Jimeno-Yepes et al. [21]. 
There are two ways to account for this. The first is that as far as we are aware there 
has not been any work in which there was a deliberate separation of training and test 
data such that test data and training data contained mentions of different diseases. 
The typical approach for separation of training and test data has been via a simple 
train/test split of the same dataset. Therefore in many cases it seems likely that at 
test time the models would simply be attempting to determine the correct labels for 
names of diseases that they had already encountered in training which is a far sim-
pler task than if all disease mentions in the test data are previously unseen and the 
test data potentially has a different lexicon. This we feel is a great omission since the 
most persuasive argument for applying machine learning based named entity recog-
nition in this scenario is the discovery of previously unseen ailments such as emerg-
ing diseases.

The second and more concrete reason why we observe such poor results is the fact 
that LSTMs are extremely powerful learners. When we couple this with the fact that 
we have a very large number of features relative to the number of examples particu-
larly for the word level models means that there is a very large chance of over-fitting. 
For instance our training data comprises 73,848 tokens versus a vocabulary of 59,000 
tokens; furthermore nearly 85% of the tokens appear only once. In such a scenario it 
is very difficult to create representative training data for good general models since 
data annotation is a manual task which is always resource constrained. Therefore, 
the more powerful the learner the higher the chance of over-fitting, bearing in mind 
that ours is a very contrived experiment we would assume it only gets worse for live 
data. On the other hand the CNF form has only 166 features. Assuming these fea-
tures to be correct, it would be far easier to generate representative data for con-
cepts than for a vocabulary with millions of tokens. With the CNF representation 
the length of the word level vocabulary is inconsequential as the procedure always 
compresses it into a fixed size vocabulary of just 166 concepts.

Error analysis

Although it is important to maximize the performance in terms of precision, recall and 
F1 score, since it is impossible to obtain a perfect classifier we opine that it is equally 
important to be able to automatically determine false positives. We posit that given the 
classifier does not contain any systematic bias, its probability of incorrectly assigning the 
“ET” tag to tokens that are not names of diseases should be uniformly spread across all 
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non-disease names and it should also assign the “ET” tag to disease names with a signifi-
cantly higher probability than words referencing other entities.

Figure 10 is a plot of the token-wise frequencies for the “ET” tag revealing that indeed 
words referencing diseases are assigned the “ET” tag with a much higher frequency. 
Given this observation, it is possible to setup an automatic error detection solution by 
employing simple thresholding techniques. For instance if we decide to only consider 
those tokens for which the “ET” tag is assigned more than 5 times as true positives, we 
would essentially eliminate all false positives for our dataset.

Conclusion and future work
As far as we can tell the LSTM + Word2Vec + CNF is the best performing approach 
so far on this specific named entity recognition task in literature and unlike previous 
approaches we have shown that this method is generalizable to lexically divergent data 
sets. The typical experimental setup has relied on obtaining some examples, randomiz-
ing them to ensure a uniform lexical distribution and then splitting the data into training 
and test portions. In our setup we train a model on one set of messages talking about a 
given disease and test the model on data sets containing messages talking about other 
diseases. We find that the resulting model performs quite well and therefore the ontol-
ogy boosted approach makes an automated general threat detection system feasible.

Fig. 10  Token-wise assignment frequency for ET tag
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Regarding further reducing the computational cost of the pipeline, we propose a 
neural linguistic pipeline using a recurrent auto encoder–decoder architecture similar 
to the one used by machine translation systems like Google Neural Machine Transla-
tion (GNMT) to enable us to perform these tasks in fewer steps. That is word vectors 
of tweets may be trained directly against concept vectors of the CNF representation. 
Figure 11 is a depiction of the propositional setup. For additional robustness we can 
employ vectors of sub word units similarly to the setup used by GNMT. The method 
would require parallel data sets of tweets and their equivalent CNF form. With the 
current setup large datasets of these can be feasibly obtained. In addition, with the 
correct recurrent neural architecture it would also be possible to combine the classifi-
cation and named entity recognition tasks.

Finally, with the appropriate recurrent neural network architecture it is possible 
to combine the two tasks namely classification and named entity recognition. This 
would allow an end to end textual analytical pipeline in which we can simultaneously 
check if a message is relevant and also recover disease mentions in a single step.
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