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Introduction
Anomaly detection for analysing spatio-temporal data remains a rapidly growing prob-
lem in the wake of an ever-increasing number of advanced sensors that are continu-
ously generating large-scale datasets. For example, vehicle GPS tracking, social media, 
financial network and router logs, and high resolution surveillance cameras all generate 
a huge amount of spatio-temporal data. This technology is also important in the context 
of cyber security since cyber data carries with it an IP address which can map to a spe-
cific geolocation and a timestamp. Yet, current cybersecurity approaches are not able to 
process this kind of information effectively. To illustrate this deficiency, consider the sce-
nario of a distributed denial-of-service (DDoS) attack in which the network packets may 
come from different IP addresses with sparse locations. In such a case, a spatio-temporal 
analyzing system [1] is required to analyse the spatial pattern of the DDoS attack. Yet, 
user oriented analytic environments for cyber security with spatio-temporal marks are 
currently limited to traditional statistical methods like spatial-temporal outlier detec-
tion and hotspot detection [2].1 Furthermore, much of the current work in large scale 

Abstract 

In this paper, we propose a framework for processing and analysing large-scale spatio-
temporal data that uses a battery of machine learning methods based on a meta-data 
representation of point patterns. Existing spatio-temporal analysis methods do not 
include a specific mechanism for analysing meta-data (point pattern information). In 
this work, we extend a spatial point pattern analysis method (the Morisita index) with 
meta-data analysis, which includes anomaly behaviour detection and unsupervised 
learning to support spatio-temporal data analysis and demonstrate its practical use. 
The resulting framework is robust and has the capability to detect anomalies among 
large-scale spatio-temporal data using meta-data based on point pattern analysis. It 
returns visualized reports to end users.

Keywords:  Spatio-temporal data, Point pattern, Data mining, Unsupervised learning, 
Morisita index

Open Access

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Yang and Japkowicz ﻿J Big Data  (2018) 5:23  
https://doi.org/10.1186/s40537-018-0133-8

*Correspondence:   
japkowic@american.edu 
Department of Computer 
Science, American University, 
Washington D.C., USA

1  A spatial outlier refers to a point whose non-spatial attribute values are significantly different from the values of their 
spatial neighbors [3]. A hotspot refers to points that show intermittent spatial repetitiveness [4].

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-018-0133-8&domain=pdf


Page 2 of 28Yang and Japkowicz ﻿J Big Data  (2018) 5:23 

analytics focuses on automating analysis tasks, such as detecting suspicious activity in 
a wide area motion and time interval. But these approaches do not provide analysts of 
cyber security data with spatio-temporal marks the flexibility to employ creativity and 
discover new trends in the data while operating over extremely large datasets. Current 
solutions are prohibitive because they require a multidisciplinary skillset.

One possible solution to performing analytics on such large scale spatio-temporal data 
is to retrieve the metadata of spatial point patterns [5], and apply metadata processing 
and storage approaches [6], together with domain knowledge derived by machine learn-
ing and statistical means. An added advantage of this method is that meta-data hides 
the details of the point patterns thus providing privacy while still supporting a variety of 
analytics.

We, thus, propose a framework for performing analytics with spatio-temporal data 
that has the following properties:

• • Privacy protection: We use a meta analysis of tracking data as an indicator of sub-
jects’ behavior. The geolocation of the subject will not be exposed to the system user.

• • High scalability: We are able to retrieve the behavior pattern for different amounts of 
data since the Morisita index provides the scalability adapted to different amounts of 
tracking data.

• • Convenience: We designed a convenient way to map the anomaly event of the cyber 
threat to the physical threat since the cyber threat can be visualized on the real map.

In more detail, we propose a framework to store and process large-scale spatio-temporal 
data over a “metadata based point pattern” infrastructure, while providing users with 
a metadata analysis that hides the details of large-scale spatio-temporal data and pro-
vides them with a front-end interface that allows them to run a variety of security checks 
including outlier detection for a single subject, anomaly group detection, anomaly 
behavior detection and anomaly event detection. Furthermore, the spatio-temporal data 
is stored in various data stores. As a result, this framework provides high-performance 
analytical features, flexibility, and extensibility.

The theoretical contribution and novelty of our work lies in the combination of meth-
ods from the areas of spatio-temporal analysis, machine learning and statistical analysis. 
By extracting relevant methods from these three fields of research, we created an effec-
tive and efficient tool for anomaly detection by monitoring the cyber and physical levels, 
simultaneously.

Background
Spatio-temporal data differs from traditional data since both spatial and temporal attrib-
utes are available in addition to the actual measurements/attributes.

In this work, we treat the spatio-temporal data as a time series of spatial data. We are 
using spatial point patterns as the “snapshot” of spatial data within a specific time frame. 
The Morisita index has been used as the measure of the spatial point patterns.
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Spatial point patterns

Spatial point patterns can be stored in a two-dimensional data format to which a variety 
of analytical methods can be applied to discover useful data patterns in large-scale spa-
tial data. Extracting exact patterns from geospatial data is more complicated than doing 
so with ordinary data sets because of the nature of geospatial data sources and their 
associated data structures, which refers to the two or three dimensional data structure.

Figure  1 represents 6 possible spatial distributions of points: random, semi-regular, 
aggregated, random with a density trend, semi-regular with a density trend, aggregated 
with a density trend [5].

Common spatial analysis packages use real numbers [e.g. geospatial POIs (Point of 
Interest) with uncertainty information] like GPS navigation data with errors, categorical 
values (e.g. fishery production by species) and logical values (e.g. saline water/freshwa-
ter) to mark the point patterns [7]. These point patterns are composed of a huge number 
of points that follow distributions such as those illustrated in Fig. 1 [8]. The region of 
spatial data can represent a complicated shape, such as an arbitrary polygon or a irregu-
lar pixel image pattern. In this work, the spatial data-mining functions are implemented 
in R.

Morisita index

The Morisita index is a common method for analyzing spatial patterns. It is a statistical 
measure of dispersion based on the spatial Poisson process. To compute the Morisita 
index, the function will first calculate the quadrat counts of the spatial point pattern.2 
Then the generated index of spatial aggregation for the previous pattern will be the 

Fig. 1  Spatial point patterns [5]

2  The term quadrat in ecology and geography means a plot to isolate a standard size of area to study the distribution 
of an item over a large area [9].
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Morisita index. In more detail, the algorithm divides the spatial domain into Q quadrats 
of equal size and shape.

Then the algorithm counts the number of points falling in every quadrat. Finally, the 
n[i] number of points in the ith quadrat will be counted as a vector of values called the 
Morisita index. The sum of the number of points is represented as the N value.

We can also plot the result of this analysis and the Morisita index of dispersion can 
calculate the overlap between samples.

The formula used in the analysis package is

ni : number of points in the ith quadrats, N: total number of points [10].
This formula is based on the assumption that increasing the size of the samples will 

increase the diversity because it will include different habitats (i.e. different faunas) 
[11]. The Morisita index is used to compare the similarity between different samples. 
The advantage of the Morisita index is that it is a vector of data that only varies with 
size of quadrats, not with population density. For more information about the statistical 
description of the Morisita index, please see [11].

Related work

In his seminal book “statistics for spatio-temporal data [12]”, Cressie et al. characterizes 
the process of statistical spatio-temporal data analysis in the presence of uncertain and 
(often) incomplete observations. This work includes prediction in space (interpolation), 
prediction in time (forecasting), assimilation of observations and mechanistic mod-
els and inference on controlling process parameters. The concept of the poisson point 
process in the book is also the foundation of our research which relies on the Morisita 
index. However the Morisita index was originally designed for ecological research by 
Morisita [11]. The method has been implemented by Baddeley et al. [7] in R to analyze 
spatial point pattern data. Our work intends to extend Baddeley et al. [7] work to spatio-
temporal data type by retrieving characteristic value using Morisita index.

Some pilot study in spatial statistics like Kriging [13, 14] are methods of interpola-
tion of spatial data. The values interpolated conform to the Gaussian process. The meta-
Morisita index is different as it actually calculates the density of the clusters in each 
quadrats. Although the two methods appear related, they have different functions. The 
function of Kriging is to interpolate the predicting points into the insufficient (usually 
undersized) geospatial data set, which may contains missing points and irregular spa-
tial objects like polygons. These predicted values are generated by the model of spatial 
autocorrelation. The function of Morisita index is to exploratory analyze the large scale 
(usually oversized) geospatial data set by different measures (defined by the diameter of 
the quadrats). That means, the Kriging method predicts the unknown values (making a 
prediction) [15]. The Morisita index does not insert any extra values into the raw geo-
spatial data set.

Other spatial statistical models have been established for spatio-temporal processes 
and spatial point processes. Examples of temporal models of point process include Cox 

(1)MI = Q

∑Q
i=1

ni(ni − 1)

N (N − 1)
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and Isham [16]; Daley and Vere-Jones [17]. Examples of spatial models of point process 
include Cressie [18]; Diggle [19]; MØller and Waagepetersen [20]. The model of spatio-
temporal process is not as well defined a field as the spatial model. Pioneer work in this 
area includes Diggle [21], Diggle and Gabriel [22]. Literature reviews like Zhuang et al. 
[23] can be used as references for this field. Some work like Illian et al. [24] introduce 
models such as goodness-of-fit tests, calculation of summary statistics to process the 
single realization of the point process.

Our study, however, is functionally closer to clustering work in Machine Learning 
than the spatio-temporal analyses just mentioned. Performance comparisons will be 
described in the "Results and discussion" section on quantitative evaluation. Typical 
clustering algorithms in machine learning including K-means [25], density-based spatial 
clustering of applications with noise (DBSCAN) [26], expectation maximization (EM) 
[27]3 are efficient methods to detect the cluster of spatial point patterns.

The advantage of K-means and its derivatives K-mediods [28], CLARANS (Cluster-
ing Large Applications based on RANdomized Search) [29], K-modes [30], ISODATA 
(Iterative Self-Organizing Data Analysis Technique) [31], FCM (fuzzy-c-means) [32] is 
scalability for large data and efficiency. However the k value is difficult to predict. The 
expectation maximization (EM) also has disadvantages—the convergence is slow and 
not capable to provide estimation of the asymptotic variance-covariance matrix of the 
maximum likelihood estimator (MLE). The density based algorithms like DBSCAN 
(density-based spatial clustering of application with noise) and their derivatives [26], 
GDBSCAN [33], DBRS [34], ST-DBSCAN [35], OPTICS (ordering points to identify the 
clustering structure) [36] have some advantage like to detect the outlier efficiently. How-
ever it is hard to set the global parameter. Also DBSCAN is not precise enough to meas-
ure the clusters adjacent to each other (neck problem).

We now describe how machine learning and clustering has previously been applied to 
spatio-temporal analyses and contrasts these works with our proposed approach. Yang 
et  al. [2] highlights the demands of analysing human mobility data and detecting hot 
spots. The author proposes a framework to identify human mobility hotspots that repre-
sent the status of human mobility in local areas and group these hotspots into different 
classes by clustering their temporal signatures. Their work focuses on converting spatio-
temporal data to convergent hotspot and dispersive hotspot. Clustering analysis follows 
based on the temporal characteristics. Their work focuses on the trajectory of human 
mobility. It models behaviour but it does so in a short time window such as one hour. 
Izakian et al. [37] considers Fuzzy C-means (FCM) as a conceptual and algorithmic set-
ting to deal with the problem of anomaly detection. Their work is also based on small 
size of time series which contains only 10 data points. Our work uses 1 day as the time to 
calculate the behaviour indicator, which can represent the pattern of the subject over a 
long period of time and large scale data set.

Birant et  al. [38] proposes a three-step approach: clustering, checking spatial neigh-
bours, and checking temporal neighbours to detect spatio-temporal outliers in large 
databases. Cheng et al. [39] proposes a multiscale approach to detect the spatio-temporal 

3  EM is a much broader statistical estimation method than simple clustering algorithm. It is a general modelling pro-
cess which can be applied to clustering.
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outliers by evaluating the change between consecutive spatial and temporal scales. Their 
work is based on classification, aggregation, comparison, verification. These two works 
both focus on detecting the spatio-temporal outliers in large data set. They do not ana-
lyse the behaviour pattern as our framework does.

Saligrama et al. [40] proposes a novel graph-based statistical notion called MAX-LCS 
(local neighborhood-based composite scores) that unifies the idea of temporal and spa-
tial locality. Their work focuses on detecting local anomalies but not for large scale group 
detection, as in our work.

Young et  al. [41] proposes scalable time-series models so that geographically aggre-
gated call volume can accurately identify the onset of major events when the approx-
imate time and location of the event is known. Their work is based on known event. 
Our work, which is based on unsupervised learning, does not require any prerequisite 
information.

Liu et  al. [42] presents a new data-driven framework for a spatiotemporal feature 
extraction scheme built on the concept of symbolic dynamics for discovering and repre-
senting causal interactions. The extracted spatiotemporal features are then used to learn 
system-wide patterns via a restricted Boltzmann machine (RBM). Their work is imple-
mented on an energy system with intelligent sensing and control systems. The limit of 
their work is based on anomalies of sensor data. They don’t design the behaviour indica-
tor for tracking data like our work.

Capdevila et  al. [43] discusses the mining events using the twitter data. The author 
proposes the Warble, which is a new probabilistic model and learning scheme. Their 
work focuses on event detection by probabilistic model. The origin of our work is based 
on spatial analysis. It is a different way to analyze geospatial data. Anagnostopoulos et al. 
[44] also discusses the twitter data. However this paper focused on targeted outdoor 
advertising.

Pappalardo1 et  al. [45] highlights the Ditras (DIary-based TRAjectory Simulator), 
which is a framework to simulate the spatio-temporal patterns of human mobility. The 
author proposes the framework to identify human mobility by diary and trajectory gen-
erators. Their work focuses on the statistical properties of real trajectories. Our work is 
not based on the trajectories but on the characteristic value from the statistical model.

The framework design
The purpose of this section is to present the essential elements of our study: the charac-
teristics of the method on which our work is based; the data sets we employed to dem-
onstrate the usefulness of these characteristics and the framework we built to exploit 
the basic method to the fullest. In more detail, we first describe the way in which the 
Morisita index can be used to detect anomalous events on a synthetic example. We then 
describe the data sets on which we conducted our actual study. The first one of these 
data sets contains a large number of taxi trajectories over a week. It is a physical security 
problem chosen to illustrate the usefulness of our network on a large data set. Most of 
our subsequent analysis was conducted on that data set. The second data set is based 
on Twitter data and contains spatio-temporal information about tweets. As such, it is 
a cyber dataset and shows how our framework allows cyber and physical security to be 
considered jointly, as it should be in order to improve real safety. However, the individual 
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Twitter user information is not available from the data set which restricts the type of 
analysis that can be conducted on it. This is why the Taxi data set was used to demon-
strate the versatility of our approach. The third part of this section introduces our frame-
work and explains its functionality.

In this work, we use the spatstat [7] package which is capable of analysing three or 
more dimensional point pattern datasets. This spatial analysis package supports a variety 
of statistical analysis methods such as model fitting, spatial data sampling, and statistical 
formulation. The particular method used in this work is the Morisita index value which 
was presented in "Morisita index" section. Other models will be explored in future work.

In this study, we calculate the highest Morisita index value as the behaviour indicator 
in a long time slot (1 day) to avoid sampling bias. If the data is mostly distributed uni-
formly, the Morisita index value falls between 0 and 1. However, if the data is in clumped 
distribution then the Morisita value falls between 1 and n [10]. n is the maximum value 
of the Morisita index which means the density of points is > 1 suggest clustering.

Morisita index as the real‑time clustering indicator

In this study, we use the Morisita index method to process the point pattern before 
detecting an anomalous event. The Morisita index is designed to determine the density 
of point patterns according to their statistical characteristics; the method is extensively 
applied to classify and visualize data with geolocation. We chose this method to indicate 
the point patterns of crowds of people and mark each situation using the corresponding 
Morisita value to indicate the density of the crowd. Thus, the process includes meth-
ods from computational statistics. Given that we want to indicate that these point pat-
terns belong to different social events according to the statistical characteristics of their 
density values, the method will return Morisita values as a density value. For example, 
the density value of a downtown social event yields a large Morisita value, whereas the 
density value of a suburban social event yields a small value. For each social event, the 

Fig. 2  Crowd with tracking device uniformly distributed in metro area
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density value is correlated to the Morisita value in indicating the social event. This is 
illustrated in Figs. 2 and 3.

Figure  2 shows that a crowd with tracking devices is uniformly distributed in the 
metro area. Figure 4 shows the Morisita plot corresponding to Fig. 2. In this plot, the 
Morisita value falls into the [0,  1] range. That means that the point pattern is close 
to the uniform distribution. Figure 2, therefore, shows that the people with tracking 
devices are uniformly distributed.

Figure  5 shows a crowd with tracking devices gathering in the downtown area. Fig-
ure 3 shows the Morisita plot corresponding to Fig. 5. The highest value of the Moritisa 
plot is the highest density of the point pattern. The maximum value of Morisita index is 
close to 8. It shows that people with tracking devices are gathering in some area.

Fig. 3  Morisita plot shows crowd with tracking device gathering in the downtown area

Fig. 4  Morisita plot shows that crowd with tracking device uniformly distributed in metro area
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For the downtown case, the maximum of Morisita index values climbs up to 8, 
which means our raw data was clumped together. For the suburban case, the maxi-
mum of Morisita index values falls down to 1.5. The value is significantly smaller than 
the maximum value 8 in Fig. 3. The result means that the point pattern in this case 
was not as clumped as in the downtown case.

Figure 7 shows a crowd with tracking devices gathering in the suburban area. Fig-
ure 6 shows the Morisita plot corresponding to Fig. 7. The highest value of the Mor-
itisa plot is the highest density of the point pattern. The maximum value of Morisita 
index is close to 1.5.

Fig. 5  Crowd with tracking device gathering in the downtown area

Fig. 6  Morisita plot about crowd gathering in the suburban area
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It also shows that the crowd with tracking devices in Fig. 7 was not as clumped as in 
Fig. 5.

The Morisita index is superior for comparing the similarities between different sam-
ples. If the data is mostly uniformly distributed, the Morisita index value falls between 
0 and 1. However, if the data is in a clumped formation, then the Morisita value falls 
between 1 and N [7]. N is the highest positive number that indicates the highest degree 
of density. In this case, we use our framework to get the distribution and point pattern 
of the large-scale tracking data with spatio-temporal marks. Users should check the 
Morisita value as the real time indicator to determine if it is a gathering event or not. 
The gathering can be physical or cyber (with IP address mapping). This example shows 
the function that can help users find social events from point patterns.

Data sets

The first data set is a sample of the T-Drive trajectory dataset from Microsoft Research 
[46, 47] that contains a trajectory of 10,357 taxis from 02/02/2008 to 02/08/2008. The 
total number of points in this dataset is about 15 million and the total distance of the 
trajectories reaches 9 million km. Taxi drivers are experienced drivers who can usually 
drive around the metro area. The taxis with tracking devices are mobile sensors probing 
the behaviour pattern of the subject. So, the taxi tracking record contains the informa-
tion of both the spatio-temporal pattern and their behaviour patterns.

The second dataset is a twitter data set. It contains data derived from spatio-temporal 
information of tweets originated from the city of Milan during the months of November 
and December 2013 [48]. There is no content of the tweets included in this data set.

The simulated data set was used to indicate the behavior of the Morisita index on spe-
cific spatial point patterns. The taxi and twitter data set were used to show the Morisita 
index values generated by the spatio-temporal data.

Fig. 7  Morisita plot about crowd gathering in the suburban area
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The taxi and twitter datasets are both typical large scale spatio-temporal datasets. The 
statistical anomaly event detection and interpretation of new trends and spatio-temporal 
pattern changes in sequences of social and political events are hidden behind the large 
scale data. The taxi data is a typical tracking data set with spatio-temporal marks. The 
twitter data is a typical social media data set with spatio-temporal marks.

Meta‑Morisita index architecture

Figure 8 shows the system architecture of the meta-Morisita index based framework. As 
shown in the figure, we propose a framework able to handle three different tasks: outlier 
detection for a single subject, anomaly detection for a group of subjects and anomalous 
social event detection. The outlier detection for a single subject means that the system 
can detect some anomaly behaviour for a single person, for example, frequent credit 
card charges in an anomalous location. The anomaly detection for a group of subjects 
means that the system can identify anomalous subjects by their behaviour, for instance, 
the person who posts larger amounts of tweets than other people. The anomalous social 
event detection means that the system can detect social events, such as, network flow 
burst.

We will now describe each of the components of the flow chart of Fig. 8.

Fig. 8  System architecture of meta-Morisita index
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During data processing, we extract the highest Morisita value of taxi drivers for each 
day from the dataset. The Morisita value which is the indicator of density value can be 
treated as the indicator of behaviour.

First, to identify the outlier, a box plot is employed to generate an outlier list based 
on the box plot of Morisita values. Second, we employ a clustering method to classify 
taxi drivers into several groups according to the statistical characteristics of the Morisita 
value. A K-means algorithm is designed to extract the specific locally convergent and 
dispersive drivers from the meta-data of point patterns. Finally, we execute a time series 
analysis using a change point detection algorithm to extract the change point of human 
convergent and dispersive behaviours from the meta-data of point patterns. We now 
describe the data processing and anomaly detection parts of our framework in more 
detail.

Data preprocessing

For a taxi driver, we can construct an individual’s behaviour pattern by analysing the 
point pattern in the time sequence, where the longitude, latitude, and timestamp of a 
mobile tracking subject and the pattern represent the time when the spatio-temporal 
points are updated. For two adjacent Morisita values of the records, the time interval is 
1 day. We can identify the density of the point pattern during the interval. The Morisita 
value as the behaviour indicator can be extracted from the spatio-temporal data within 
every day. For example, the first Morisita index value was collected on 02/02/2008, 
and the second record was collected on 02/03/2008; we can extract one time series of 
Morisita value during 02/02/2008–02/08/2008. The time attributes of the two adjacent 
records are considered to be the time slot. Thus, we can extract the flow matrices (time 
slots) of Morisita value for 1  week. We use the time series of the Morisita index val-
ues to denote the behaviour pattern of taxi drivers in 1 week. For each day, we calcu-
late the Morisita value of each taxi driver, which represents the behaviour pattern of 
the taxi drivers’ moves from day to day during that week. We define the time series of 
the Morisita value as the largest difference observed during that week. The time series 
thus provides a behaviour pattern for the taxi driver during the week. The variation of 
Morisita values during a week can reveal the potential function of the anomaly detec-
tion. The clustering analysis of the Morisita values can be used as in the following sec-
tion to identify convergent and dispersive behaviours.

Anomaly behaviour detection

Box plot method for outlier detection in a single subject In order to detect anomalies in a 
single subject’s behavior, we used a box plot and studied the outliers in that plot.

Clustering method for anomaly group detection For anomaly group detection, we used 
a clustering method, namely k-means [49]. k-means clustering is a method of vector 
quantization, originally from signal processing, that is popular for cluster analysis in data 
mining. k-means clustering aims to partition n observations into k clusters in which each 
observation belongs to the cluster with the nearest mean, serving as a prototype of the 
cluster. This results in a partitioning of the data space into Voronoi cells. In this work, 
k-means was used with the value k = 4 which provided the best visualization. Since the 
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box plot approach could also be used to detect anomalies in a group situation, we vali-
dated the results obtained by k-means with the output of the box-plot.

Time series analysis for social event detection In order to detect social events, we per-
formed time series analysis using the PELT (Pruned Exact Linear Time) [50, 51] algo-
rithm which is a change point detection method. The PELT algorithm is a multiple 
change point method that is both computationally efficient and flexible in its application 
[52]. It has been shown that under certain conditions, especially when the number of 
change points is increasing linearly with n, the computational efficiency of PELT is O(n). 
As a result, we can detect change points efficiently from the time series of the behaviour 
pattern of our data sets.

Experimental methods
We applied our full framework to the taxi driver data set and illustrated its usefulness on 
the Twitter data. The first two parts of this section describe our analysis on individual 
taxi drivers and groups of taxi drivers, respectively. The third part is an initial illustration 
of our framework on the twitter data set.

The “Experimental methods” section concerns the application of the meta-Morisita 
index. The “Results and discussion” section concerns the performance analysis of our 
meta-analysis method based on the Morisita index. The “Experimental methods” section 
describes the proposed process and demonstrates its effectiveness. The “Results and dis-
cussion” section evaluates our meta-Morisita based approach by comparing its perfor-
mance to that of the most popular clustering algorithms from machine learning.

Behaviour pattern for taxi driver

Table  1 shows spatio-temporal data from taxi driver records. The data was obtained 
from Microsoft Research [46, 47].

The first column in Table 1 is the ID of the Taxi. The second column is the timestamp 
of the tracking data. The third and fourth columns are the coordinates of the Taxi. The 
data was collected in 5 min intervals.

Table  2 shows the information from Table  1 mapped onto the Morisita representa-
tion. The first column in Table 2 is the ID of the Taxi. The second column is the highest 
Morisita value of tracking data per day for each driver. The third column is the date.

In this first study, we use the box plot method to process the metadata of point pat-
terns before detecting the anomalies. The metadata values are designed to determine the 
abnormal values according to their statistical characteristics; the method is extensively 

Table 1  Saptio-temporal tracking record of taxi driver

Taxi_ID TimeStamp Longitude Latitude

39 2008-02-02 13:37:30 116.29369 39.92272

39 2008-02-02 13:40:17 116.28015 39.92321

39 2008-02-02 13:45:17 116.28065 39.92330

39 2008-02-02 13:49:15 116.28012 39.92327

39 2008-02-02 13:54:15 116.30334 39.92250

39 2008-02-02 13:59:15 116.31801 39.93740



Page 14 of 28Yang and Japkowicz ﻿J Big Data  (2018) 5:23 

applied to classify and visualize the abnormal points in the metadata. We chose this 
method to indicate the outliers of the metadata of the point patterns and marked each 
outlier using the corresponding metadata value. Figure 9 shows the box plot of the track-
ing metadata of 30 taxi drivers.

Given that we want to indicate these outliers according to the statistical characteris-
tics of their density values, the method will return Morisita values as density values. The 
density value indicates that the taxi driver displayed anomalous behaviour on the day 
the outlier was recorded. From the box plot, we can find the outliers, such as Taxi 549 
on 02/07/2008. The Morisita value is extremely high on that day. That means Taxi 549 
displayed anomalous behaviour on that day. Taxi 549, Taxi 493, Taxi 1011, and Taxi 430 
have box plots that are different from other taxi drivers.

Table 2  Morista value generated by tracking data per day

Taxi_ID Morisita_Value Date

39 450 02/02/2008

39 13,000 02/03/2008

39 2100 02/04/2008

39 29,000 02/05/2008

39 6800 02/06/2008

39 1100 02/07/2008

39 1100 02/08/2008

Fig. 9  Box plot about metadata of tracking records of 30 taxi drivers
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Statistical analysis for meta‑data of spatio‑temporal data from taxi drivers

As mentioned in "Anomaly behaviour detection" section, anomaly detection for a group 
of drivers was conducted using clustering and time series analysis based on meta-data 
of point patterns, where the output from the meta-data of point patterns is converted to 
a simple time series data using a Morisita value. We used K-means as the unsupervised 
learning method to cluster the group of drivers. Also, we use change point detection to 
detect the change point of the behaviour pattern.

In particular, we used PELT (Pruned Extract Linear Time) [50] as the change point 
detection approach. PELT was used to detect the exact moment of breakout when the 
algorithms report a change in distribution (if at all), along with precision, recall, and the 
F-measure.

Anomaly detection for the behaviour pattern of taxi drivers

In this framework we chose K-means to cluster the group of drivers. Figure 10 shows the 
2D representation of a clustering plot displaying the behaviour patterns of 30 taxi driv-
ers using the K-means algorithm. Figure  11 shows the four-cluster plot displaying the 
behaviour patterns of 30 taxi drivers using K-means algorithms.

As a result of K-means clustering, Taxi 549, Taxi 493, Taxi 1011, Taxi 430 were grouped 
as anomalies. The box plot was used to validate the cluster analysis. The K-means results 
were shown to match the results of the box plot.

Figure 12 shows the spatial distribution of Taxi 549 and Taxi 234 in the city of Beijing 
between 02/02/2008 and 02/08/2008 . The pink lines represent the road network. The 
red dots are the location of taxis. Taxi 549 is marked as anomaly taxi driver as the result 
of K-means analysis. The median values of Morisita index are 8000 and 400 for Taxi 549 
and 243 in Fig. 9. Taxi 549’s tracking record are more clumped than normal taxis in the 
upper east area (airport). When looking at the spatial distribution it is clear that Taxi 549 
behaves differently from normal driver Taxi 234.

Fig. 10  2D representation of clustering about 30 taxi drivers
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Change point detection for groups of taxi drivers

In statistical analysis, change detection or change point detection tries to iden-
tify times when the probability distribution of a stochastic process or time series 
changes. In general the problem concerns both detecting whether or not a change 
has occurred, or whether several changes might have occurred, and identifying the 
times of any such changes. In this framework we choose the PELT (Pruned Exact Lin-
ear Time) [50] method to detect the change point of the behaviour patterns of taxi 
drivers.

Figure 13 shows the change point value of the time series of Morisita values between 
02/02/2008–02/08/2008. The vertical red lines mark the change point.

Fig. 11  4 Cluster k-means clustering about 30 taxi drivers

Fig. 12  Spatial distribution of two taxi drivers in Beijing city between 02/02/2008 and 02/08/2008 display at 
the real map. The pink lines are the read road network. The red dots are the location of taxis
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Figure  14 shows the decomposition of the additive time series between 
02/02/2008–02/08/2008.

As a result of change point detection, Fig.  13 shows that 02/06/2008 is the date 
at which the maximum change point in the behaviour patterns of taxi drivers was 
observed. It turns out that 02/06/2008 was the Eve of the Chinese New Year. This 
may explain the high density value of the point patterns, which may have been caused 
by the high traffic volume during the holiday. Figure 14 also shows that every morn-
ing represents a change point in the behaviour patterns of taxi drivers. These two 
observations validate the usefulness of our approach since they show that the events 
detected by our approach correspond to actual events. In the future, this approach 
could be used to detect spontaneous gatherings resulting from incidents such as acci-
dents, natural disasters or spontaneous demonstrations and could help alert emer-
gency services and security patrols faster, thus providing greater security.

Fig. 13  Change point detection between 02/02/2008–02/08/2008

Fig. 14  Decomposition of additive time series between 02/02/2008–02/08/2008
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Analysis for twitter data

We now turn to the analysis of the second data set, the twitter data set. Figure 15 shows 
the spatial distribution of tweets in Milan, Italy at 9 a.m. and 8 p.m. on 1 December 2013 
[53]. The pink lines represent the road network. The red dots are the location of twitter 
users.

Figure 16 shows the line chart of changes in Morisita values over time for this twitter 
data on 12/01/2013. The line chart in Fig. 16 shows that the Morisita values is higher 
at night than during the day time. This may be explained by the fact that at night (see 
Fig. 15, right plot), twitter users do not move around as much, but instead stay put in a 
concentrated area of the city whereas during the day (see Fig. 15, left plot), they are more 
dispersed and, therefore, tweet from various parts of the city. This, once again, is not 

Fig. 15  Location of every tweets in Milan city at 9 a.m. and 8 p.m. at 12/01/2013 display at the real map. The 
pink lines are the read road network. The red dots are the location of twitter users

Fig. 16  Line chart of Morisita value of twitter data in Milan, Italy in 12/01/2013
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particularly novel and useful information here, but it illustrates how gatherings of Twit-
ter users in a single location can be detected, which could be useful for security reasons.

Figure 17 shows the spatial distribution of tweets in Milan, Italy at 12/02/2013 (Mon-
day) and 12/07/2013 (Saturday) [53]. The pink lines represent the road network. The red 
dots are the location of twitter users.

Figure  18 shows the line chart of changes in Morisita value over time for this twit-
ter data between 12/01/2013 and 12/12/2013. The line chart in Fig. 18 shows that the 
Morisita value is higher during the weekend than during the working day. The Morisita 
value on the Monday (12/02/2013 and 12/09/2013) were local minima. This may be 
explained by the fact that on weekends (see Fig.  17, right plot), twitter users do not 
move around as much, but instead stay put in a concentrated area of the city whereas 
during the working day (see Fig. 17, left plot), they are more dispersed and, therefore, 
tweet from various parts of the city. This, once again, is not particularly novel and useful 

Fig. 17  Location of every tweets in Milan city at 12/02/2013 and 12/07/2013 display at the real map. The 
pink lines are the read road network. The red dots are the location of twitter users
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information here, but it illustrates how gatherings of Twitter users in a single location 
can be detected, which could be useful for security reasons.

The user information has been masked in the raw data by the original distributor due 
to privacy reason. We can, therefore, not analyse individual twitter user based on the 
meta-Morisita index method. So we use Taxi data as substitute. The report based on a 
single Taxi user can be found in "Statistical analysis for meta-data of spatio-temporal 
data from taxi drivers" section. Using the same learning method as the one used on Taxi 
data, the anomaly in twitter users could be detected efficiently provided that data on 
individual users is made available.

Results and discussion
Once again, given the lack of individual twitter data, we could not perform a full quan-
titative analysis on that data set. Instead, we performed a full quantitative analysis of the 
Taxi data set. Our experimental environment is based on an eight-core server equipped 
with Intel(R) Xeon(R) CPU E5-1630 v4 @ 3.70 GHz and 16 GB memory. The version of 
operating system is Ubuntu 16.04.1.

Time analysis

In this section we recorded the time analysis result of the performance evaluation of dif-
ferent algorithms on our Taxi database.

Figure  19 shows the elapsed time of different analysis methods. The four different 
methods in the comparison are K-means, density-based spatial clustering of applications 
with noise (DBSCAN), the expectation maximization (EM) Clustering algorithm and 
the meta-Morisita index algorithm.

There is no significant difference when processing small scale data such as the data 
containing less than 106 points. The meta-Morisita index , however, obtains better per-
formance when dealing with large scale data such as when the data contains 108 points. 
Thus, the experiment shows that the meta-Morisita index obtains better performance 
than traditional clustering methods for large scale spatio-temporal data. This is because 

Fig. 18  Line chart of Morisita value of twitter data in Milan, Italy between 12/01/2013 and 12/12/2013
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the meta-Morisita index retrieves the characteristic value of different time windows for 
the whole spatio-temporal data set. Then the machine learning algorithm runs on the 
meta-data only, which significantly reduces the computational complexity. On the other 
hand, the other clustering algorithms like K-means compute their results directly based 
on the entire large scale data set. The remaining question concerns the quality of the 
results obtained by the Meta-Morisita index. We now explore this question by compar-
ing the results obtained by each of the methods just considered to a reference method.

Reference method

Map algebra [54] is a basic set-based algorithm that manipulates the geospatial data. 
Several algebraic operations like addition, subtraction, etc. can be performed on two 
or more raster layers of similar dimensions. The output of the map algebra primitive 
operations is a new raster layer (map). Map algebra operations work on four different 
classes: local, focal, global and zonal. The operations on raster cells and pixels are local 
operations. The operations on the entire layer are focal operations. The operations on 
the cells which have the same value are zonal operations. In Geographic Information 
Systems (GIS), map algebra is implemented by script or procedure. All the operations 
are displayed on the map. Map algebra calculates the exact number of incidents (here, 
Taxi occurrences, but could also be, number of tweets, etc.) that occur in a particular 
location. While map algebra can give us exact results, it is not practical to use in large 
scale analyses, which is why alternative methods, such as clustering methods and meta-
Morisita analysis, were sought and map algebra only used as a reference for a small sam-
ple of data as a sanity check. In this section we use map algebra as the referential method 

Fig. 19  Performance Comparison among meta-Morisita index, K-means clustering, density-based spatial 
clustering of applications with noise (DBSCAN) and expectation maximization (EM) Clustering algorithm
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to detect clusters in the Taxi data. The number of the clusters will be recorded as the 
reference value.

Figure 20 shows the point pattern of Taxi 39 on 02/07/2008. This figure is generated by 
map algebra operations. The behaviour of the taxi driver can be visualized by the den-
sity value of the spatio-temporal tracking record. In this map the density value has been 
displayed with color. Red corresponds to a high density value, and blue corresponds to a 
low density value. In this case we manually count the number of clusters of size greater 
than or equal to 3. This count is recorded in Table 3 as the reference value.

Accuracy, precision, recall evaluation

In this section we recorded the accuracy, precision and recall rate of the four algorithms 
previously considered.

Fig. 20  Taxi 39 tracking record. The number represents the count of the points which generated by map 
algebra
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The first column in Table 3 is the ID of the Taxi. The other entries represent the num-
ber of clusters which have been detected by different algorithms. The result are also vis-
ualized in Fig.  21. The assumption is that the closer the match in number of clusters 
detected, the closer the actual match is between detected and reference clusters.

The first column in Table  4 is the evaluation metric under consideration. The other 
entries in the table are the results obtained for these metrics by the four methods under 
consideration. The result was also visualized in Figure 22.

Figure  21 shows the number of clusters (size ≥  3) obtained by different analysis 
methods. The four different methods in the comparison are K-means, DBSCAN, EM 

Table 3  Number of cluster identified in the sample, cluster size ≥ 3

Taxi_ID Map algebra K-means DBSCAN Expectation 
maximization(EM)

Meta-Morisita

39 40 52 133 22 41

220 34 60 103 13 35

234 34 19 88 55 37

260 23 16 77 35 24

271 23 83 174 27 24

278 16 14 61 48 22

426 27 24 92 44 29

430 21 23 69 25 25

493 32 39 74 42 33

549 33 46 109 21 34

Fig. 21  The number of the clusters being detected by meta-Morisita index, K-means clustering, DBSCAN and 
EM Clustering algorithm. The size of the cluster is great or equal to 3
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Clustering and meta-Morisita index. The reference value for the number of clusters for 
each taxi is shown by the purple curve. The meta-Morisita value is shown in red. The 
figure clearly shows that the red curve is the closest match to the purple curve in Fig. 21.

Figure 22 shows the evaluation of different analysis methods. Once again, the four dif-
ferent methods in the comparison are K-Means, DBSCAN, EM Clustering and meta-
Morisita Index. The K-means and EM obtain similar results. They both yield a high 
number of false negatives (FN). DBSCAN is a little different. It detects all the clusters 
but obtains too many False Positives (FP).

Map-Algebra algorithms [54] have been used as the reference value since they 
manually compute occurrences in the same location. The clusters in meta-Morisita 
index are detected by the number of points falling into the same quadrat. As a result 
we can see that the meta-Morisita index significantly improves the accuracy, pre-
cision and recall rate compared with other learning algorithms. The reason is that 
the meta-Morisita index algorithm comes from spatial statistics which is similar to 
map algebra. Furthermore, the Euclidean distance used in the machine learning algo-
rithms caused instability in the clustering result for different data samples. The cor-
responding concept in Morisita index is the smallest diameter of the quadrat, which is 
a constant value for geospatial data with the same significant numbers. For example, 

Table 4  Evaluation result of different clustering algorithms

Evaluation method K-means DBSCAN Expectation 
maximization (EM)

Meta-Morisita

Accuracy rate 68.09 23.56 70.18 83.23

Precision rate 75.27 28.88 85.24 93.09

Recall rate 90.46 100.00 89.40 100.00

Fig. 22  Evaluation comparison among K-means clustering, DBSCAN and EM Clustering algorithm
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coordinates (in WGS84 geodetic datum) with four significant values like (Longitude: 
116.2936, Latitude 39.9227) , the scale of the data is about 10 m. That constant meas-
ure ensures that the meta-Morisita value is stable for different data samples.

Figure 23 shows the relationship between the point pattern and the Morisita index. 
The outlier is the cluster which contains 146 points and is displayed in red on the 
picture. This cluster has been detected by the Morisita index. However the Morisita 
index is based on random sampling. As a result, duplicate clusters have also been 
erroneously detected by the Morisita index which suggests that more than one cluster 
of this type is present. Please note that the errors made by the meta-Morisita index 
occurred only in the in the vicinity of the outlier area where the density of the cluster 
is too high for several clusters to form.

Fig. 23  The relationship between the point density and the Morisita index in large area. The point has 
highest Morisita value in the Morisita plot corresponds to the location which have highest density in the map
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Conclusions and future work
The availability of large-scale spatio-temporal data sets (e.g., social media, vehicle or 
cellphone tracking data, financial network log) provides the opportunity and challenge 
to study behaviour patterns to better understand the interactions between cyber and 
physical events. In this paper, we explore tracking data by investigating the spatio-tem-
poral patterns of taxi drivers and twitter users. A brief work flow is proposed to identify 
and extract spatio-temporal patterns of outliers based on meta-data of the tracking data. 
Two case studies of Beijing, China and Milan, Italy are employed to test the proposed 
method; multiple typical spatio-temporal convergent and dispersive patterns are identi-
fied in the large area. We discuss the spatio-temporal distribution of these patterns in 
different functional areas to obtain better knowledge of the behaviour pattern.

In the paper “Statistical Modeling: The Two Cultures” [55], Breiman compared the 
data and algorithm modeling cultures. The framework we presented is the combina-
tion of spatial statistics and machine learning. The Morisita index is a data modeling 
approach for spatial data in statistics. However the original Morisita index does not pro-
vide the ability to learn. In our work, the Morisita index (data model) has been used 
to generate the characteristic value of raw data, then learning approaches (algorithm 
model) were applied to meta data generated by the Morisita index. Our framework thus 
combines both the advantage of machine learning and spatial statistics. At the same time 
meta-Morisita index prevents the high computational complexity of current clustering 
algorithms applied to spatial data.

The findings derived from this study provide insights about the location, time, inten-
sity of the taxi drivers in Beijing and twitter users in Milan, which is helpful for mining 
behaviour pattern and surveillance for cyber-physical subjects. The identified patterns 
can help government agencies and urban administrations make targeted adjustments to 
monitoring cyber-physical events with high anomaly activity as a way to improve the 
efficiency of the methods used to maintain security in society. In addition, the findings 
can be used as a reference for understanding subject behaviour. For example, if we only 
know the spatio-temporal distribution of the active areas of a city, it is possible to have a 
general understanding of daily subject behaviour and dispersion in other cities according 
to the discussion in "Statistical analysis for meta-data of spatio-temporal data from taxi 
drivers" section.

In the future, we will use spatio-temporal statistical models to analyse intelligence 
information about the behaviour of each subject, to determine the spatio-temporal 
interactions among different areas of the city, and to explore the behaviour patterns 
among different social roles, which can provide in-depth knowledge regarding the inter-
actions between subjects and their social roles.

Our plan is to collect tracking data with different social roles, such as Teacher, Police 
Officer, UPS drivers, etc. We will train the system on each social role separately in order 
to learn behavior patterns from each category and help us detect behaviors that do not 
fall into expected categories and may be considered suspicious.

In general, the framework provides a universal solution for spatio-temporal analytic 
tasks beyond the meta-data of spatial point pattern, which is needed for statisticians and 
researchers. The Morisita index was selected as the indicator of daily behaviour from 
spatial point pattern. Multiple analytic methods have been used as efficient statistical 
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computing approaches to accommodate multiple spatial-temporal data sources and data 
schemas. The statistical analyses beyond the meta-data of spatial point pattern, which 
work to reduce the computational complexity for large scale spatio-temporal data, are 
flexible enough to be added to existing spatio-temporal data warehouse systems. Using 
this framework is a more convenient, flexible, and scalable way for data analysts and 
statisticians to process and analyse large-scale cyber security data with spatio-temporal 
marks.
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