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Introduction
With the rapid increase in violent crimes, an effective surveillance system has become a 
necessity. Early detection of crime using video surveillance is important but the control 
center cannot keep track of extended regions owing to the lack of manpower. It is not 
practically possible to manually track all locations and events considering the number 
of CCTV cameras managed by one person. For example, in Korea, one CCTV opera-
tor manages more than 100 cameras on an average at the local government’s control 
center [1]. At the end of 2016, the total number of cameras connected to the national 
CCTV control centers in Korea was about 174,400 while the number of operators was 
only 3600 [2]. Despite this shortage, real-time surveillance significantly helps in arrest-
ing criminals. In Korea, the number of criminals arrested with the usage of the real-time 
monitoring of CCTV cameras has increased by 12 times over the past 3 years [3]. Hence, 
automatic video analytics is essential for reducing the workload of operators. However, 
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existing automatic event detection capabilities have limitations such as a high possibility 
of false positives.

A (semi-)automated surveillance system should have the capability of rapid recogni-
tion of moving objects, even before it can detect the dangerous behaviour of objects. 
The current methods of detecting moving objects are mostly based on the background 
subtraction so far because of their fast processing speed [4, 5]. However, thanks to the 
recent advances in object detection methods such as YOLO [6] and SSD [7], which work 
well in real-time, we may attempt to use these techniques for the the detection of mov-
ing objects.

Typically, real-world videos are difficult to deal with due to external factors such as 
noise, shadows, poor illumination, low resolution, etc. Most object detection tech-
niques do not account for all these problems and the state-of-the-art methods usually 
use deep Convolutional Neural Networks (CNNs), which are computationally expensive 
[8]. While a detailed analysis based on CNNs requires powerful machines, a typical sur-
veillance system has limitations in terms of computational power and memory. On the 
other hand, the number of CCTV cameras around the world is rapidly increasing. The 
top two cities with the largest surveillance camera networks are Beijing and London [9, 
10]. In London, there are more than 500,000 cameras [11]. It means that there are on 
average 15,200 cameras to manage in a district in London. Because a commonly used 
server that offers video analytics covers about 24 channels, we need 630 servers to man-
age the cameras for a district. In these circumstances, it becomes essential to assess the 
trade-off between detection performance and computational cost. A suitable surveil-
lance system should not only detect well suspicious objects properly; it should be able to 
do with limited resources.

Toward this end, we propose a simple framework to recognize moving objects. Our 
proposition aims at reducing both training and inference costs as well as manual anno-
tation cost while retaining an acceptable detection performance, comparable to other 
object detection methods in the recent past. The framework consists of two steps that 
are sequentially applied to each video frame. In the first step, we find regions of interest 
(ROIs) in a video frame using simple background subtraction. In the second step, we use 
a CNN to classify the detected ROIs based on a set of predefined criteria. This simple 
combination operates well in real-time and delivers a detection performance compara-
ble to other modern object detection techniques. Our framework also offers the ben-
efit of reusing background subtraction. In fact, the use of change detection techniques 
such as background subtraction is indispensable in video surveillance applications to 
detect anomalies such as abandoned objects or abnormal movements in video streams 
[12]. This means that the real processing time dedicated only to object detection in our 
framework is the CNN inference time.

The organization of the paper is as follows. The we introduce the motivation of our 
research in the next section. “Related works” section presents the related works in four 
different aspects, video surveillance, background subtraction, object detection, and 
pedestrian detection. “Methods” section presents our framework consisting of two steps 
including a detailed description of the extracted images from first step. We also intro-
duce the surveillance video data we filmed for the experiments. “Results” section reports 
the experimental result and the last section presents the conclusion and discussion.
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Motivation
Current object detection techniques are based on deep learning and the latest algo-
rithms such as have significantly enhanced the detection speed. However the training 
step still requires considerable computational resources and through a computational 
downgrade does reduce expenses; it also hampers the performance as compared to the 
original version. CNN-type models suffer from the over-fitting that becomes more prob-
lematic when the models are applied to CCTV data in which the quality, color, angle, 
noise, etc. much vary as different cameras are used. Therefore, for the video surveillance, 
it might be necessary to train a classifier for each camera type or even for each camera. 
In such a case, reducing cost in training as well as in manual annotation would be an 
important factor when constructing an object detection system.

A weakness of modern object detection methods is that they often miss detecting 
small objects. Figure 1 shows a result of a state-of-the-art object detection technique, 
YOLOv2(YOLO below) with a set of pre-trained weights. An image frame with a size of 
1280× 720 pixels extracted from a real-world CCTV camera is tested. In this example, 
the model can detect well the cars but not the people.

Figure 2 shows the people left undetected, classified into different groups. The indi-
viduals in (a) are relatively small and are hidden by a car. Persons in (b) are also small 
and not well separated. The size of the individuals in (c) is not small but they are not 
distinguishable from the dark background. As seen in this example, there are many such 
cases encountered in real-world CCTV footage. The objects to be identified are often 
very small and partially hidden. Dark objects at night are usually indistinguishable from 
the background.

In a real-world video surveillance application, an appropriate trade-off between the 
processing speed and system cost is required. As surveillance systems only focus on 
suspicious objects, we do not need to detect all the objects in video streams, unlike 
usual object detection. The application would work more efficiently if the focus was just 
trained on moving objects. Traditional moving object detection methods in videosur-
veillance basically use background subtraction. Unlike in case of object detection, rec-
ognizing the object class is not important in this step. With a controllable environment 

Fig. 1  Object detection with a pretrained YOLO model
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such as an indoor scene, classifying objects may not be necessary. But in outdoor envi-
ronments, moving object types vary and false detection increases because of noises. 
Therefore, to identify a meaningful event related to a moving object in noisy environ-
ment, recognizing well the class of the object appropriately is critical.

This study largely leverages two different technologies to devise an efficient object 
detection method: background subtraction and object recognition. The most time-
consuming component of current object detection processes is the repeated testing of 
hundreds of region proposals by scanning the whole image. By using background sub-
traction to find ROIs, we can significantly reduce the number of proposals that are then 
used as the input for a simple CNN classifier for object recognition. In our framework, 
recognition accuracy would depend on subtraction quality to a large extent. However, 
as our primary objective is to verify the effectiveness of combining subtraction and 
CNN classification, we do not consider optimizing a background subtraction algorithm. 
Instead, showing that even a low quality of subtraction result leads to a rough-and-ready 
classifier, we will demonstrate the utility of our framework.

In our approach, a widely-used method, the Gaussian Mixture Model (GMM), is 
selected for the background subtraction. Then, a post-processing such as shadow 
removal and morphological transformation is conducted to extract the object area. In 
fact, the algorithm can be replaced by any other moving object detection algorithm 
because the next classification step is distinct from this first step.

Related works
Video surveillance

With the rapid increase of the installation of advanced cameras and CCTV infrastruc-
tures, intelligent video surveillance systems to automatically monitor specific environ-
ments have emerged. The primary objective of a video surveillance system is to provide 
an automatic interpretation of a scene by analysing motions and interactions of objects 
for preventing future undesirable incidents. Video surveillance systems have been 
adopted mainly for security and safety purposes. Especially, abnormal behavior detec-
tion is receiving attention in research [13]. For example [14], developed a monitoring 
system for the elderly in home environments focusing on fall detection. This system, 

Fig. 2  Persons not detected by YOLO. a The individuals are relatively small and are hidden by a car. b 
The individuals are small and not well separated. c The individuals are not distinguishable from the dark 
background
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shaped like an ellipse, is custom-fitted to the subject’s body and the head position is 
tracked to identify any change in posture. The automated surveillance system proposed 
by [15] detects robbery and burglary through posture and motion analysis using low-
cost hardware, i.e., a consumer camera. The system performs by converting 2-D results 
into the 3-D space [16] introduced abnormal crowd motion detection methods in an 
uncontrolled outdoor environment. The orientation, position, and size of the cluster cre-
ated by the crowd are used to predict the future behavior of the crowd. If the subse-
quent motion of the cluster is not matching the prediction, it indicates the likelihood of 
abnormal events. More recently [17], developed a real-time suspicious behavior detec-
tion system for shopping malls. This system captures suspicious circumstances such as a 
loitering customer or an unattended cash desk. Sidhu and Sharad [18] proposed a smart 
surveillance system for detecting interpersonal crime such as unauthorized access, vio-
lence, and harassment in public places and transport by tracking the speed of positional 
change of the human subject.

In general, a video surveillance system is composed of object detection, object rec-
ognition, object tracking, and behavior analysis [19]. In this respect, object detection is 
the step for identifying the region of interest (ROI), such as moving objects, including 
human and vehicles. After the objects are detected, they are classified into predefined 
categories where they belong in object recognition step. For example, moving objects 
are recognized and classified into ‘human’, ‘car’, or ‘bicycle’ according to their features 
such as shape, pattern, color and so on. Then, the objects are tracked and their behavior 
is analyzed to capture potential suspicious events. Object detection and recognition are 
very critical to the performance of the overall surveillance system because the subse-
quent steps are highly dependent on their results.

Despite the wide attentions it has received, video surveillance is still faced with several 
challenges. Objects in the video are frequently occluded that causes difficulties. Signifi-
cant noise occurs owing to illumination changes. These difficulties significantly increase 
in outdoor environments [19]. The quality of the video recorded in outdoors is usually 
very poor because objects are often detected at a large distance from camera and the 
video are more sensitive to illumination changes. Therefore, various human detection 
algorithms built in controlled conditions exhibit poor performance when applied to real-
world scenarios [20]. For example, most existing methods are designed for daytime sur-
veillance because their performance relies heavily on light condition [21], even though a 
large proportion of abnormal incidents (e.g., crime) occur during the night-time. There-
fore, developing effective methods to cope with these difficulties is essential for develop-
ing advanced video surveillance systems that can be used for outdoor applications.

Background subtraction

Background subtraction is one of the crucial techniques of computer vision systems. 
It was first used to detect moving objects in video streams. The main purpose of the 
various background subtraction algorithms is to distinguish a moving object, which is 
called foreground, from the background of the sequence within the video stream with-
out having any advance information about the object [22]. Background subtraction has 
been widely researched for video analysis, especially for video-surveillance application 
since the 1990s, because it can detect the moving objects such as humans, vehicles, and 
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animals from the background before performing complicated detection processes such 
as invasion, detection, tracing, and people counting [23].

Generally, the background subtraction algorithms comprise the following three stages 
[24]: (1) Background initialization: the goal of this stage is to build a background model 
by using a specific number of frames and it can be designed in various ways (statistical, 
fuzzy, neural network, etc.). (2) Foreground detection: in this stage, the present frame 
and the background model are compared. It is connected to compute the foreground 
(e.g. detected object) of the scene by this subtraction. (3) Background maintenance: dur-
ing the detection process, images for updating the background model, which was trained 
in the initialization step with respect to the learning rate, are additionally analyzed. 
For instance, a moving object that moves for a long time should be absorbed into the 
background.

Background subtraction algorithms can be classified on the basis of the method of 
developing a background model. The algorithms are classified into basic modeling, sta-
tistical modeling, modeling based on clustering, fuzzy modeling, modeling that applies 
neural and neuro-fuzzy methods, etc.

In basic modeling, once the model is once computed, the difference between the back-
ground image and the present frame is adjusted based on a threshold. When the com-
puted value is bigger than the threshold value, pixels of the present frame are segmented 
into the foreground. Basic modeling uses a static image or the previous frame as a back-
ground. Some authors suggested building a background model by using the arithmetic 
mean of the continuous images [25], median [26] or based on the result of the histogram 
analysis over a period [27]. Basic modeling is relatively simple and useful for making 
background models but it suffers from limitations such as failure of foreground separa-
tion with the introduction or removal of objects or when the object suddenly stops.

In the statistical modeling, the distribution of each pixel color appears as the sum of a 
Gaussian distribution that is defined in the given color spaces. The most common back-
ground subtraction algorithm is based on the parametric stochastic background model 
suggested by [28], which was later improved by [29]. In some studies, a single Gaussian, 
a mixture of Gaussians, or a Kernel Density Estimation [30] during background mod-
eling were also used for pixel color distribution.

Gaussian Mixture Models (GMMs) demonstrated a good performance in outdoor 
scene analysis, and it became the most widely used technique when dealing with mov-
ing backgrounds. As one of the most popular background subtraction algorithms, the 
model shows displays ability to process changes even in low lighting. However, the algo-
rithm does not provide appropriate results in case of radical changes due to camera jit-
tering, lighting changes, and appearance of shadows or movements in the background. 
Also, when the background model is established by a video frame that is characterized 
by a lot of noise in the learning step, this method can be inefficient. To solve these prob-
lems, many authors researched various methods to improve background subtraction 
method based on GMMs. To improve the adaptability of the system to illumination 
changes [31], modified the update equation [32], explored 3D multi-variable Gaussian 
distribution, and [33] suggested a method that can automatically calculate the number 
of proper Gaussian distributions of each pixel instead of setting a constant. A recent 
method [34] proposed a new framework integrating hysteresis thresholding and motion 
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compensation. They used two background modeling, GMM and a texture modeling to 
reduce false positive cases.

In the cluster-based background modeling, each pixel of the frame can be expressed 
according to the time by clustering. The entered pixels are classified by whether the con-
gruous cluster is considered as part of the background when it is compared to the rel-
evant cluster group. As a clustering approach, a method of using K-mean algorithm or 
Codebook was suggested. A background modeling technique based on the fuzzy con-
cept that the application’s boundaries can vary considerably depending on the contexts 
or conditions has also been suggested. Zhang and Xu [35] performed background sub-
traction by using a similarity criterion, which has the characteristics of color and texture 
of the input image. El Baf et al. [36] obtained satisfactory results by using the Choquet 
Integral, which has the characteristics of color, edge and texture.

In neural network background modeling, the background is represented by the aver-
age of the weights of properly trained neural networks for N numbers of clean frames. 
The networks are trained how to classify each pixel into background or foreground 
[37]. The neural network decides if the pixel belongs to the foreground or background 
[38]. Culibrk et al. [37] suggested a segmentation approach by using an adaptive form of 
PNNs (Probabilistic Neural Networks). Maddalena and Petrosino [39] used a SOM (Self-
Organizing Map) network to perform background subtraction. They improved upon 
their previous research by adding a fuzzy function at background learning stage [40].

Object detection

Object detection is one of the fields that has shown significant progress among the appli-
cations that actively use deep learning. The difference from object recognition is that 
while object recognition aims to classify each image into one of the pre-defined classes, 
object detection aims to detect objects in each image by localizing them.

Most of the recent object detection methods are based on deep learning adopting 
CNNs [41–43]. Since the advent of the R-CNN [44], combining region proposal and 
CNN classification became a the preferred framework for object detection. Instead of 
using handcrafted features such as HoG [45], R-CNN uses CNN features for a more 
effective representation. In R-CNN, thousands of bounding boxes called region propos-
als are created through selective search, and the proposals become the inputs for CNN 
classification. Fast R-CNN [46] complements R-CNN in terms of both efficiency and 
accuracy. First, the proposals share the weights of the forward pass in CNN via region of 
interest (ROI) pooling technique to reduce computation. In addition, convolutional fea-
tures, classifier, and bounding box regressor are connected in a single network to speed 
up the system. However, there is still an inefficient part, which is the selective search for 
region proposals. Faster R-CNN [47] improved the formers by integrating region pro-
posal process with detection networks. Instead of selective search, convolutional layers 
and region proposal network are used to create the proposals. As a result, the detection 
process became faster than Fast R-CNN. However, the detection speed is still far from 
real-time, about 5 fps on a GPU.

YOLO [6, 48], a state-of-the-art detection method, surpassed the aforementioned 
methods. It is also based on CNN but uses a totally different framework. It works by 
dividing an image into grid cells and predicting the coordinates of bounding boxes and 
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the probabilities of each cell. The individual box confidence is calculated by aggregat-
ing the probabilities. This framework significantly speeds up the processing time so that 
it can process images at 40–90 fps on a GPU and a tiny version can do it at more than 
200 fps.

Pedestrian detection

Pedestrian (human) detection is one of the main tasks of video surveillance. Pedestrian 
detection methods can generally be grouped into two categories: hand-crafted feature-
based methods and learning-based methods. Histograms of oriented gradients (HoG) is 
a method representative of the former category, in which uses local object appearance 
and shapes for detection [49]. Currently, HoG is mainly used as a baseline for develop-
ing many extended algorithms. For example, [50] used a combination of LBP and HoG 
features to cope with the occlusion problem in pedestrian detection and achieved a 91.3 
% detection rate with the INRIA dataset [49]. Felzenszwalb et al. [45] proposed a part-
based model to improve both detection efficiency and accuracy of algorithms. HoG with 
additional LUV color channels (HoG + LUV) is also widely used [51, 52]. Haar-like fea-
tures are also used for pedestrian detection. For example, [53] introduced a simple and 
efficient informed-Haar detector designed exclusively for humans standing upright. The 
test results obtained from the INRIA and Caltech dataset [54] showed a 14.43 and 34.6% 
of miss rate, respectively. Note that the subjects in INRIA are always standing upright 
and annotated in high-quality. On the other hand, the Caltech dataset is usually consid-
ered as predominant benchmark including various and challenging images [55]. These 
methods are followed by a classifier such as SVM [56] or a boosted classifiers [57]. There 
are also other frameworks using the other hand-crafted features such as HSG-HIK [58]. 
In the recent past, the learning-based methods have received great attention. These 
methods learn features from the pixels in an image and the state-of-the-art detection 
methods are based on deep CNNs [59]. Sermanet et al. [60] applied unsupervised convo-
lutional sparse auto-encoders for pre-training features and used end-to-end supervised 
training for classification. They used the INRIA dataset and ConvNet with multi-stage 
features to obtain an average error rate of 10.55%. Ouyang and Wang [61] designed a 
unified CNN-based deep model, which uses a learning process to enable interactions 
between feature extraction, part deformation, occlusion, and classification components. 
To cope with the complex variations in pedestrian appearances, TA-CNN, introduced 
by [62], optimizes pedestrian classification with auxiliary semantic tasks, including 
pedestrian and scene attributes, and reduces miss rates in the Caltech dataset and ETH 
datasets [63]. The DeepParts [64] method employs part detectors for solving the occlu-
sion problem, thereby reducing the miss rate by 11.89% in the Caltech dataset. R-CNN 
(Regions with CNN features) has been also used for person detection. It reaches 53.9% 
accuracy of human classification accuracy in the VOC2011 dataset [65], while other 
region-based methods such as ‘Regions and Parts’ [66] deliver a slightly lower accuracy. 
MixedPeds algorithm [67] is a quite original approach. The algorithm produces a mixed 
reality dataset combining real background and synthetically generated human-agents. 
Using Faster R-CNN, their approach improved the detection precision over previous 
detectors. Though R-CNN improves accuracy, it requires significant memory and time, 
thus reducing detection speed.
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Methods
Our object detection framework benefits from the background subtraction procedure. 
For each video frame, a GMM is first applied to extract moving object areas and then 
a CNN is used to classify these ROIs. Figure  3 summarizes the entire architecture of 
our approach. This section describes our approach in detail including the characteristics 
of the extracted ROIs. We also introduce the video surveillance data we filmed for the 
experiments.

Video surveillance data

To verify the effectiveness of our framework, a dataset that reflects well the real surveil-
lance environment is required. We constructed new data to assess how our object detec-
tion framework is appropriate for outdoor surveillance scenarios. The data is introduced 
briefly in this subsection.

We filmed some scenarios using the existing CCTV cameras with permission and 
cooperation from authorities in city A in Korea to obtain data similar to real-life sur-
veillance data. We acquired the data from CCTV cameras in places characterized by 
frequent incidents of crime. The dataset was acquired from three places: a playground, 
an alley, and a lonely walkway/road. The existing CCTV cameras with resolution 
1280× 720 pixels were placed at a height significantly above the average human height.

The scenarios typically involved loitering, which usually precedes a crime. The record-
ing was conducted in early spring 2017 and it was a fine day, though a bit chilly. Seven 
men and three women participated in the shooting of the scenario, dressed according to 
the parts they were playing. They were then asked to loiter around the three identified 
places: a playground, an alley, and a lonely walkway/road changing their clothes accord-
ing to the location. The number of actual objects was observed to be much more than 
10 because arbitrary pedestrians passing through the area during the shooting were also 
pulled into the experiments. Note that most arbitrary pedestrians were unidentifiable 
due to the resolution.

Figure 4 shows raw video frame examples obtained from eight different CCTV cam-
eras. Figure  4a–e show the images obtained from five cameras used for both training 
and test. The frames correspond to a place for outdoor fitness, a playground, and the 

Fig. 3  Entire architecture of our approach
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same playground with different view, a residential alley and another alley, respectively. 
Figure  4f–h show images obtained from three cameras used only for test. The frames 
correspond to an intersection near the residential area, a main street intersection, and a 
residential alley intersection captured at night, respectively. To test the generalizability 
of the trained model, the different places (f, g, h) selected were completely different from 
the places selected for the training data.

Step 1: Extraction of moving objects with background subtraction

In Step 1 of our framework, we extract the moving objects from each video frame with 
background subtraction. Despite several drawbacks of GMM, such as noises from cam-
era jitter, shadows, lightning etc., the algorithm is one of the most widely used methods 
because of its easy accessibility and fast processing time. We choose GMM as a primary 

Fig. 4  Video frames from CCTV cameras in playground and alley. a Place for outdoor fitness. b Playground. 
c Playground. d Residential alley. e Residential alley. f Intersection near the residential area. g Main street 
intersection. h Residential alley intersection captured at night
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algorithm to show that our approach works well even with a simple background subtrac-
tion method. It can be replaced by any another algorithm.

After we apply the GMM algorithm to each video frame, several post-processing pro-
cedures are conducted to extract objects. Because the algorithm cannot handle shad-
ows, we first try to eliminate shadows based on their positional and color characteristics. 
Then we perform morphological filtering such as closing and opening to eliminate 
noises. Finally, we obtain the desired object areas that are represented by rectangles. Too 
small objects that are less than 5× 5 pixels are eliminated because it is highly probable 
that could just be noise. We also use object tracking to take the objects which exists for 
a period.

With all the operations, step 1 processes the images of 1280× 720 pixels at a rate 
higher than 30 fps on a CPU. Thus, we can regard this step as a real-time procedure. The 
extracted objects become ROIs that are used as input images for step 2, CNN classifica-
tion. To this end, we need to annotate a set of images to make a training set. An ROI 
example is given in Fig. 3.

Annotation of ROIs extracted in Step 1

Because we use the result of background subtraction as input images for classification, 
we need to carry out step 1 before manually annotating images. The object areas identi-
fied in step 1 are edited as square images to obtain a regular input form for a standard 
CNN classifier. As described in “Video surveillance data” section, the image sources are 
eight CCTV cameras installed in a playground or an alley.

Figure 5 shows some examples of the extracted ROIs. Figure 5a, b correspond to an 
individual but not the whole body. In many cases, even when the whole body can be seen 
in the image, only a part of the body can be detected because of a similar background 
color or stationary body part. When the target person is partially covered by other 
objects or moves in the blind spots of the camera, only certain parts of the body are 
likely to be detected. Figure 5c, d show moving objects, which are not people but a roof 
cover flapping in the wind and moving sports equipment. In addition, glittering surfaces 
or objects in the light are often captured, especially when artificial lighting exists. They 
are not the objects of interest, so we want to eliminate them using CNN classification.

There are some notable characteristics of the extracted ROIs. First, the image size 
varies significantly because all moving objects are the target of extraction. In crime 
detection, the movement of a suspicious person is often observed from a distance. 
Considering that modern object detection using deep learning usually fails to detect 

Fig. 5  Extracted images from background subtraction. a Individual but not the whole body. b Individual but 
not the whole body. c Roof cover flapping in the wind. d Moving sports equipment
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small objects, this characteristic would be an important merit. Second, some parts of 
the body are often extracted, as shown in Fig. 5a, b. Especially when a person stops 
walking, only the moving portion of the body is detected. Sometimes, it is difficult to 
accurately classify these images even using manual annotation. When the images rep-
resenting a tiny part of the body are extracted and used as training samples, they can 
downgrade the classification performance. Third, many representations of the same 
object with different or similar poses and backgrounds are captured, especially when 
the target moves around in front of the camera. These duplicate images should be 
reduced when making a training set.

Accounting for these characteristics, we set up the strategies for the training set of 
CNN classification. The default input image size is set to 64 × 64 pixels because more 
than 40% of the extracted images are smaller. Table 1 shows the cumulative propor-
tion of the images for each size. Meanwhile, different types of body parts are anno-
tated separately. Images corresponding to persons are sub-tagged as one of the ‘full’, 
‘bend’, ‘upper’, ‘head’, ‘cluster’, and ‘etc’. classes. In the last class, tiny parts of the human 
body that cannot be immediately identified as persons are included. To handle the 
problem of duplication, the subtraction results are saved once every 2 s. Because the 
duplications usually occur in case of persons, the person to non-person ratio within 
the collected images is about 8 to 1. To solve this categorical imbalance and also to 
reduce duplication, we take only 25% of person images.

In manual annotation, each person image is annotated as one of the above classes. 
Some duplicate images as well as images that are difficult to identify are are again 
removed. For example, human heads that show only hair are all removed. Non-per-
son objects are annotated as ‘car’, ‘part of car’, ‘animal’, or ’etc.’ classes. In the last ‘etc.’ 
class, all the non-person images except the ones included in the previous three cat-
egories are classified. For example, an object waving in the wind, glittering surface in 
the light, shadows that are not eliminated, glistening surface of objects, etc. We use 
five out of the eight cameras to make a pair of training and test sets. The remaining 
cameras are used to make the other test sets.

Table  2 presents the annotated data statistics. The sub-table (a) represents the 
extracted and selected images obtained from five different cameras that are used for 
both training and test. The sub-classes within the person class indicate full body, bent 
body, upper body, head, person group, etc. in order. ‘Full’, ‘cluster’ and ‘upper’ classes 
are the majority ones, whereas the remaining three classes occupy only 16%. As we 
mentioned above, ‘etc’ class includes images that are difficult to classify and the other 
class images are also not easy to be automatically identified. Among the classes in 
non-person, ‘etc.’ class is remarkably large, followed by the class ‘Car-part’. The other 
two classes include only 6% of the total images. It means that most moving objects are 
either persons or cars and the remaining images caught by background subtraction 

Table 1  Cumulative proportion of the extracted images of different sizes

Image size (smaller than) 32 64 96 128 160 192 224 256 320 800

Proportion (%) 2 41 65 77 86 92 96 98 99 100
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are mostly wrongly detected objects. Considering the difficulty of image collection, 
our goal in this study is to classify images into two classes, person and non-person.

Table 2b presents three test sets extracted from the other cameras. These are used only 
for testing. As the training and test sets extracted from same data pool are likely to have 
similar objects and backgrounds, we also test the trained models with images obtained 
from completely different cameras. Two cameras for two different intersections and one 
camera for an alley at night are used as data sources. In this case, we only annotate them 
as one of the two classes: person and non-person. Sample images for each class are given 
in the Additional file  1. Because we crop images into a rectangle, unnecessary back-
grounds or objects are often included in the images.

Step2: CNN object classification

The resolution of the images extracted from background subtraction varies consider-
ably, as shown in Table  1. Therefore, we need to choose the appropriate size of input 
images for training an accurate CNN model. The default size is first set to 64 × 64 pixels, 
based on the median image size. However, this does not guarantee the best performance. 
Therefore, an optimum size is chosen by experiments.

Our purpose is to construct a light model to classify the extracted ROIs. As we already 
filtered out many uninteresting parts of the images in Step 1, we expect that a simple 
CNN architecture can easily handle the object classification. Inspired by the other pio-
neer networks such as AlexNet and LeNet, we use a basic architecture described in the 
right side of Fig. 3. The input images are 64 × 64 pixels of RGB color images of two cat-
egories: person and non-person. The network has two convolutional layers, two pooling 
layers, two fully connected layers, and an output layer at the end. At the end of a convo-
lutional layer, an ReLU activation function is applied and it is followed by a pooling layer. 
Each convolutional layer has 64 feature maps, both with a 5 patch and the stride is set to 

Table 2  Extracted and selected data after background subtraction

(a) Extracted and selected data from 5 cameras—dataset A

Person class # of images Non-person class # of images

Person-full 484 Car-part 333

Person-bend 60 Car 41

Person-upper 211 Animals 29

Person-head 60 etc. 772

Person-cluster 356

Person-etc. 84

Total 1255 Total 1125

(b) Extracted and selected data from different camera

Roadset1 Roadset2 Nightset

Class # of images Class # of images Class # of images

 Person 100  Person 103  Person 153

 Non-person 141  Non-person 107  Non-person 305

 Total 241  Total 210  Total 458
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1. In the pooling layer, a max pool with 2× 2 filters with stride 2 is used and the image 
size is then reduced to half. Thus, the final image size obtained after the second pooling 
layer is 16× 16 pixels. At each fully connected layer, the ReLU function and dropout 
are applied. The first fully connected layer has 384 nodes and the second one has 192. 
These numbers are chosen by experiments. To find an appropriate image size, images 
with three different resolutions, 32× 32 , 64 × 64 and 128× 128 pixels are tested. In the 
network, the number of feature maps and the number of nodes in fully connected layers 
change in proportion to the input size as depicted in Table 3.

Results
In this section, we describe the experimental results of CNN classification. The experi-
ments are conducted using two types of datasets as described in Table 2. The first type 
corresponds to dataset A, which is constructed from a group of five cameras, and is pre-
pared to train and test a base model. The second type including three datasets from the 
other cameras is used to retest the trained base model. In the latter case, we check the 
availability of the trained model for any change int the data source. Through the experi-
ments, we are trying to show the effectiveness of our approach even with the limited 
data we constructed. We expect that our simple and fast framework would offer some 
ideas for handling practical issues related to computing power and resources in video 
surveillance processing. Considering the diversity and difficulty of the extracted ROI 
images, we identify objects simply into two classes: ‘person’ and ‘non-person’.

Empirical setting

After the background subtraction, we obtain 2380 images for dataset A (Table 2a). For 
the training, we use two different data compositions. First, we split data into training and 
test sets using all the images. Second, we compose training and test sets by excluding 
two sub-class images of persons that are difficult to identify automatically: ‘person-bend’ 
and ‘person-etc.’ The former is denominated as ‘full-set’, and the latter as ‘part-set’. We 
train a model for each of the two sets separately. As a result, we get two models with the 
dataset A for a given image size. In the case of different camera test sets, there are 241, 
210 and 458 images for roadset 1, roadset 2 and nightset respectively. These sets are used 
only for the evaluation.

The CNN code is written in python with TensorFlow. The experiments are carried 
out on a NVIDIA Tesla M40 24GB GPU. For an experiment, 80% of data are randomly 
selected as training set and the remainder is used as test set. In the case of different cam-
era sets, all the images in a set are used for a validation. The detailed setting for the net-
work is as follows: The mini-batch size is set to 50, with 30,000 iterations. The dropout 

Table 3  Number of feature maps and fully connected layers

Image size 32 × 32 64 × 64 128 × 128

# of first feature maps 32 64 128

# of second feature maps 32 64 128

# of first fully connected layers 192 384 768

# of second fully connected layers 96 192 384
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rate of the fully connected layer is 10%. For the convolution layers, 5× 5 sliding windows 
are used. Experiments are repeated by changing the input image size and repeated ran-
dom subsampling is used for each input size.

Evaluation with images obtained from the same group of cameras

Table  4 presents the experimental results with dataset A. The experiments are con-
ducted separately on the full-set and part-set. For each input image size, we repeat the 
experiments 10 times using random subsampling. Each value is the average of the 10 
experiments and accuracy, precision, and recall are used as measures. On both sets, the 
accuracy as well as other measures increase with increasing image size. The experiments 
performed on the part-set show better results than those on the full-set. The value in 
italic in each column indicates the best result obtained from among the experiments of 
three input sizes.

For a full-set with an image size 32× 32 pixels, the precision for person class is 0.80 
and that of a non-person is 0.83. We obtain 0.82 and 0.81 for person and non-person 
recalls and 0.81 for accuracy. When the image size increases to 64 × 64 pixels, the values 
of each measure value increase by 2–3% points except non-person precision and per-
son recall. In these exceptional cases, the difference is statistically insignificant. With 
an image size 128× 128 pixels, the accuracy increases to 0.84, which is 1% point higher 
than that obtained for an image size of 64 × 64 pixels. However, the person precision 
and non-person recall values do not change. The recall gap for a person class is com-
paratively high (4 points) but that of a non-person does not change. In summary, the 
performance improves with image size but there is comparatively little enhancement 
between 64 × 64 pixels and 128× 128 pixels. Person precision and non-person recall 
mainly improve when the size becomes 64 × 64 pixels.

On the part-set, we get an improved result with a similar pattern. Because we elimi-
nated difficult images from the full-set, the improvement was predictable. The results 
with an image size 64 × 64 pixels are clearly better than that of the image size 32× 32 
pixels. The improvement in person precision and non-person recall values is particularly 
high (5% points increase). When the image size becomes 128 ×  128, we get the best 
accuracy, 0.85. However, there is little or no improvement for person precision and non-
person recall values that had already attained highly improved values when the size was 
64 × 64 pixels. The best precision of 0.87 is found with size 64 × 64 pixels. From these 

Table 4  Evaluation with dataset A

Input size Precision Recall Accuracy

Person Non-person Person Non-person

(a) Full-set

 32 × 32 0.80 0.83 0.82 0.81 0.81

 64 × 64 0.83 0.83 0.81 0.84 0.83

 128 × 128 0.83 0.85 0.85 0.84 0.84

(b) Part-set

 32 × 32 0.82 0.82 0.82 0.81 0.82

 64 × 64 0.87 0.82 0.83 0.86 0.84

 128 × 128 0.86 0.84 0.84 0.86 0.85
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results, we can conclude that a complicated network with too high a resolution does not 
significantly affect the classification performance.

When we verified the classification results in detail, we could find a pattern. Most of 
the full-body images were well detected, unlike head or upper body images. Some exam-
ples of misclassification are shown in Fig. 6. Figure 6b shows the upper body image with 
low resolution and (c) shows a person’s head with a hat. An image of a person against a 
complex background (d) was also not well detected. Sometimes, certain objects or back-
grounds, which had often co-occurred with the person in the training set (e, f ), have 
been misclassified as persons. Simple background images had been well classified as 
non-persons but sometimes misclassified (h) because of the unusual images of the per-
son in training set. For example, an extreme close-up of the person’s head or upper body 
can be confused with a simple background.

Figure 7 shows the curves representing averaged accuracy versus the number of itera-
tions for the full-set and part-set. We repeated 30,000 iterations with a mini-batch size 
50 for input sizes of 32× 32 and 64 × 64 pixels, and the same iterations with a mini-
batch size 30 for 128× 128 pixels because of memory constraints. The performance 

Fig. 6  Misclassified images for person class (a–d) and non-person class (e–h)

Fig. 7  Accuracy curves. a Averaged accuracy versus the number of iterations for the full-set. b Averaged 
accuracy versus the number of iterations for the part-set
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rapidly improves when the image size is bigger, but converges to similar values for the 
size 64 × 64 and 128× 128 pixels.

As we measure training speeds, we observe that it takes about 4 min for the size 
32× 32 pixels. When the input size increases, the training time rapidly increases, to 
22 min for 64 × 64 and 110 min for 128× 128 pixels. The inference time also increases 
proportionally to the training time. Therefore, although the larger input size signifi-
cantly enhances the classification performance, we choose the size 64 × 64 as opti-
mum, considering the processing speed. With a size of 64 × 64 pixels, our entire 
framework processes images at 15fps on a NVIDIA Tesla M40. With the same setting, 
the processing speed of Faster R-CNN is 2.7 fps and that of YOLO is the same as that 
obtained by our method.

Table 5 compares the efficiency of our CNN model and that of YOLO in terms of 
computational complexity and total memory usage per image during training. We 
counted the number of parameters to be updated for the complexity. At each convo-
lutional layer, the number of parameters is calculated as follows:

where F is filter size, C is the number of input channels, and K is the number of fil-
ters. Our approach significantly reduced the complexity compared to the state-of-the-
art object detection method. The number of parameters is 209  K that is only 0.3% of 
YOLO parameters. The memory usage per image was greatly reduced as well from 53.6 
to 1.7 MB. Actually, the training time of YOLO is tens of hours on a GPU. The low com-
plexity of our approach is a great advantage when dealing with huge video data.

Despite the superiority of our approach over the benchmark in terms of computa-
tional complexity, the inference time in the experiments was not different. We sup-
pose that there was a time delay when transferring the background subtraction result 
to the CNN in the code. In the current version, the subtraction algorithm is written 
in C whereas the main CNN classifier is written in Python. We can further reduce the 
processing time by optimizing the code.

Evaluation with images from different cameras

In this subsection, we evaluate the previously trained models using three datasets con-
structed from different cameras. For each input size, two models trained with the full-set 
and part-set are tested. We call them the full-set model and part-set model, respectively.

(1)F
2
· C · K ,

Table 5  Complexity and  memory usage of  our approach and  a  state-of-the-art object 
detection method (YOLO)

Our CNN model YOLO

Input size 64× 64 224× 224

# of conv. layers 2 24

# of parameters 209 K 66,000 K

Memory usage per image 1690 KB 53,606 KB
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Roadsets 1 and 2 are constructed from CCTV images images obtained from two 
street roads, a residential area road (Fig. 4f ) and a main street intersection (Fig. 4g). 
Roadset 1 includes many hard cases such as parts of the human body, which were 
eliminated while constructing the part-set. Roadset 2 includes images of a small size 
because the camera covers a wide area. The nightset is constructed from an alley cam-
era filmed at night (Fig. 4h). It includes many low-resolution images.

Table 6 presents the test results with these three datasets. The measured values for all 
datasets are found to be lower than the results of dataset A. Let us consider the results 
with a full-set model (Table 6a) first. The best accuracies highlighted in italic for the full-
set model are 0.72, 0.82, and 0.66 for roadset 1, roadset 2, and nightset, respectively. The 
performance with roadset 2 is comparable to that of data A, for which the best accuracy 
was 0.84.

In roadset 1, some difficult images such as body parts and dark images due to shadows 
might have a negative influence on performance. Moreover, new types of backgrounds 
could disturb the classification. However, an accuracy of 0.72 for the full-set is not bad 
considering that the test images are from a different camera with the training set. Person 
precision (0.79) is higher than the other measures whereas non-person precision (0.65) 
is lower. It means that the pre-trained model can predict a person appropriately but is 
not suitable for accurately classifying unusual person images. An interesting aspect is 
that high resolution does not guarantee better performance. On the contrary, the best 
accuracy is obtained with size 32× 32 pixels.

Table 6  Evaluation with different test datasets

Test set Input Precision Recall Accuracy

Person Non-pers. Person Non-pers.

(a) Full-set model

 Roadset1 32 × 32 0.78 0.65 0.73 0.71 0.72

64 × 64 0.79 0.64 0.70 0.73 0.71

128 × 128 0.79 0.63 0.69 0.75 0.71

 Roadset2 32 × 32 0.84 0.80 0.80 0.84 0.82

64 × 64 0.82 0.81 0.81 0.81 0.81

128 × 128 0.83 0.79 0.78 0.84 0.80

 Nightset 32 × 32 0.76 0.50 0.72 0.55 0.66

64 × 64 0.77 0.50 0.72 0.56 0.66

128 × 128 0.76 0.48 0.68 0.58 0.65

(b) Part-set model

 Roadset1 32 × 32 0.79 0.65 0.73 0.72 0.72

64 × 64 0.81 0.66 0.73 0.75 0.74

128 × 128 0.80 0.64 0.71 0.73 0.72

 Roadset2 32 × 32 0.82 0.81 0.81 0.82 0.81

64 × 64 0.83 0.81 0.82 0.82 0.82

128 × 128 0.82 0.80 0.80 0.82 0.81

 Nightset 32 × 32 0.76 0.51 0.74 0.54 0.67

64 × 64 0.78 0.52 0.73 0.58 0.68

128 × 128 0.76 0.49 0.71 0.55 0.65
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In the case of roadset 2, the reason for the good performance might be the character-
istics of the extracted ROIs from the video frames. As the video was taken from a larger 
distance compared to the others, fewer small movements, which are usually noises, were 
captured when processing background subtraction. Therefore, the extracted ROIs are 
mostly persons, cars, traffic signals, or reflected roads. There are not many complicated 
backgrounds, but there are many low-resolution objects. With the full-set model, the 
best accuracy (0.82) is observed with 32× 32 pixels, as in roadset 1. However, the differ-
ence among the measured values is not much, unlike roadset 2. The main reason is prob-
ably that there are not many noisy backgrounds in the test images. From these results, 
we can infer that high-resolution models may degrade classification performance when 
the test images are significantly different from the training data.

With nightset, the performance is clearly poorer than the other sets. The best accu-
racy, person precision, and non-person precision are 0.66, 0.77, and 0.50 respectively. 
However, we observe similar patterns as the other sets. First, person precision is com-
paratively higher while non-person precision is comparatively lower as in roadset 1. The 
classifier could appropriately detect clear person images, but dark and unclear person 
images have been ignored. Second, the models trained with low-resolution images work 
better. However, there is not much difference between the results with different sizes.

Now, let us briefly introduce the results with a part-set model. Interestingly, they show 
quite a different pattern from the full-set model. On all three test sets, the model trained 
with the 64 × 64 pixels size images outperforms the others. The performance gaps are 
significant, but are higher than those observed in full-set models. Moreover, the part-set 
model’s overall performance is better than the full-set model. We suppose the reason is 
the simplicity of the training data of the part-set. Because the part-set did not include 
difficult images such as bent body or a small part of the body, the classifier was able to 
focus on the general pattern of a person. Therefore, when test images are obtained from 
a different data pool, a simple part-set model can better classify them than a full-set 
model, even when the test set includes difficult images like roadset 1. From this observa-
tion, we can get some guidelines for constructing a training set. Instead of including all 
cases of images, filtering out too difficult cases could rather enhance the classification 
performance. Another conclusion is that the proper size of input images for classifica-
tion in our framework is 64 × 64 pixels. The size has been chosen by considering the 
trade-off between computational time and classification performance. Although the size 
was determined from the datasets we used, it could be generalized because typical real-
world cameras compositions are similar to the cameras we used for our experiments.

Conclusions and discussion
We proposed a simple framework to detect objects using outdoor CCTV video footage 
by combining background subtraction and CNN classification method. This study was 
initiated as the first phase of a roadmap for constructing an effective video surveillance 
system to battle crime. Therefore, it was necessary to devise a system that was fast as 
well as one that optimizes resource utilization. Because background subtraction is usu-
ally included as an essential feature in video surveillance applications, we can reuse the 
results for object detection in our framework. And for the practical experiments, we 
constructed datasets from various real-world CCTV cameras.
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We found that the test accuracy was 0.85 when we used images from the same data 
pool with training data. This was comparable to the recent pedestrian detection algo-
rithms’ performance. Considering that our dataset contains much more difficult cases 
than usual pedestrian detection datasets, the result demonstrates a major success. 
For the other test sets constructed from three different cameras, the accuracies were 
found to be 0.74, 0.82, and 0.68 respectively. These results are encouraging because 
the detection accuracy usually decreases significantly when the target camera changes 
in real-world applications. A relatively high recall value of a person class when testing 
nightset data is also a positive sign because person detection is most important for video 
surveillance.

Our approach offers significant advantages in terms of processing, training, and man-
ual annotation speed. The computational complexity of our CNN classifier was much 
lower than a state-of-the-art object detection method. Our model has 209 K parameters 
to be updated that are only 0.3% of the YOLO parameters. The processing speed of our 
entire framework on a GPU was 15 fps, which was equivalent to YOLO and 5.6 times 
faster than Faster R-CNN when testing the same image frames. Although the latter two 
models tested here can detect multiple classes, our primary objective is to identify mov-
ing objects only, especially people. Meanwhile, training speed is also important in prac-
tice because we often need to train a model fit for new environments instead of using 
a pre-trained one. Thanks to the simple CNN structure of our approach, the training 
speed is much faster than the others. In general, it takes anywhere from several hours to 
tens of hours to train a model on a GPU for both YOLO and Faster R-CNN. The manual 
annotation speed of our system is incomparable because we do not need to specify the 
location of objects for training. We only need to label the extracted regions from back-
ground subtraction as one of the predefined classes. The low complexity is an impor-
tant merit when introducing an automatic detection system into a surveillance control 
center. We expect that our light detection system would work well on the existing serv-
ers. And with the system, an operator would more efficiently monitor the cameras by 
verifying only the person movement detected by a machine.

Another merit is the ability to detect small objects. It is useful in crime detection 
because suspicious objects are often seen from a distance. With outdoor surveillance 
cameras, the recorded objects of interest can be very small or blurred as criminals natu-
rally prefer a CCTV blind spot. Our method first detects moving objects from a video 
frame and then classifies them. Therefore, any moving small objects can be caught in 
the first step. Considering that the limitation of other modern algorithms such as YOLO 
is in dealing with small objects, this characteristic would be a major advantage in video 
surveillance.

There are some data issues that can reduce detection performance. First, lack of 
training data might disturb the training procedure. A training set of 1900 examples is 
not small for binary classification but not enough considering that the images include 
various patterns. Second, same object images can cause over-fitting. After background 
subtraction, the case of capturing the same person multiple times occurred frequently, 
especially in the case of the playground video. Although we reduced these instances 
by taking only 25% of person images, there was still a risk of performance degradation. 
Third, background images are much included in training data. Because we mainly took 
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the videos of people walking in the target areas, other moving objects were not much 
detected by background subtraction. On the other hand, in non-person class, back-
ground images such as glittering ground or reflecting objects have been captured very 
often. This made training difficult because these images usually did not have particular 
patterns.

Despite these limitations, we have the potential for enhancing performance. Cur-
rently, we use object tracking only to take the objects, which are continuously caught 
during background subtraction. If we efficiently use the tracking result for classifica-
tion, the accuracy would increase. For example, instead of labeling each of the input 
images, we can label each tracked object by aggregating the classification result of the 
images corresponding to the object. Replacement of the background subtraction algo-
rithm is also possible. GMM is a widely used method, but recently proposed advanced 
algorithms are expected to decrease noise detection. Finally, by optimizing the data-
set, we can further enhance the performance. As mentioned above, there are some 
drawbacks related to training data. In future studies, we will re-construct the training 
dataset by adding video frames recorded from other cameras from various locations. 
Moreover, other open datasets can be used to expand the training data range.
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