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Introduction
Workflows are sequences of process components that can be categorized in different 
domains including scientific workflows and business workflows. While scientific work-
flows describe the setup of scientific experiments, by enabling scientists to focus on 
domain-specific aspects of their work (e.g. in astronomy, biology, etc) and not dealing 
with complex data management and software issues (see Fig. 1 for example), business 
process models describe the processes of companies or other organizations focusing 
on the sequences of activities, roles, and events. Business workflows are the automated 
parts of business processes. Most research works prefer to have contributions focusing 
either on scientific workflows or business workflows (for example see [1–3]).

Workflow usage nowadays grows in many parts of computer science world. Work-
flows might be used in software development, coding, web developing, etc. Now large 
amounts of efforts grow to make workflow proper, easy to use and understandable in 
computer science world. Software scientists are interested in forming workflows as 
exchangeable classes of tools or objects to tackle process flows. In line with this effort 
the usage of workflow in public domain also grows; workflow can be executed in differ-
ent implementation styles depended on the process context, e.g. e-commerce, bioinfor-
matics, etc.
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Figure 1 shows a scientific workflow graph. The tool used was Protégé 4.x1. Protégé is 
mainly used for ontology demonstration but it also provides some features to workflow 
demonstration. This workflow describes a simple process for bioinformatics experiment, 
and it demonstrates the interaction between proteins (protein–protein interaction: 
PPI). We designed this workflow based on the protein sequence interaction in a disease 
described in [4]. The granulized components of this workflow are in two major areas: 
Knowledge Area (KA) and Execution Area (ExeA). Each area has various types. In many 
workflow cases things may be grouped in different types to better describe the real 
process. For instance in Fig. 1 KA consists of three major types of components: Solver 
components, Problem component and Data component. In our example in Fig. 1, the 
Problem component is connected to the Solver component via a dashed red line. The 
nature of things used in workflow is limitless. Because describing parts of workflows are 
words and the words has no limitation and so many tags might be used in one simple 
workflow. This makes workflow fresh, full of variety and hence heavy to execute. Such 
burden may not be carried with only hardware. Software solutions might also be han-
dle workflow usage. Some of the proposed software solutions prefer to avoid of useless 
parts before the workflow becomes heavy. Other software solutions may try forecast-
ing what the designer wants and provide some template workflows. These templates are 
pre-executed and are easier to run even when the designer changes them or adds some 
things to them. Prediction of workflows needs enormous data in many fields. Classifica-
tion of this enormous data in proper classes might be the first step to forecast what the 
designer wants. In the case of workflows the data classification might be applied to form 
templates. Workflows may use some Domain-Specific (DS) and Domain-Independ-
ent (DI) templates. In addition, some DS and DI templates may co-occur in workflow 

Fig. 1  Example of a scientific workflow graph

1  https​://prote​ge.stanf​ord.edu/.

https://protege.stanford.edu/
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domains frequently, which mean there may be a correlation between them. This obser-
vation motivates us to propose a Spectral Feature Alignment (SFA) based method to 
align workflow DS templates from different domains in a latent space by modeling the 
correlation between the DI and DS workflow templates in a bipartite graph and using DS 
features as a bridge for cross-domain Big Data classification.

As a new contribution, we address a classification algorithm that has a workflow con-
text alignment from the relatedness aspect of workflows. In our classification, we use 
some part of former workflows and reuse them to make a classifier. Today, scientific 
workflows have become the workhorse of Big Data analytics for scientists [5]. Aggregat-
ing these workflows with other workflows in other domains may cause challenges of Big 
Data [6–8]. The problem of enormous data of workflow is not only arises of the context 
of workflow but also arises of the order of its context. Hence attempt to solve workflow 
enormous data problem is not avoidable.

According to Fig. 2 workflow interest researches have stated at a balanced point. On 
the other hand, Big Data interest has increased over time. The tool used was Google 
Trends.2 We target at finding an effective approach for the cross Big Data domain con-
cept extraction problem. Concept extraction can help us to handle the problem of deal-
ing with enormous workflow data and to predict what the designer wants. The approach 
is based on transfer learning using Latent Semantic Indexing (LSI) [9]. Transfer learning 
[10] is commonly used when we have several domains of source and targets with differ-
ent data to make classifier have better recognition. We have two domains of workflows 
with big volume. Hence, we try to adapt our classifier to use transfer learning settings. 
Some researches [11] mention that transfer learning makes some crashes to recognition 
or to classification when the source and target data of several domains has large differ-
ence. Actually, in workflow domain the main problem is the large difference between 
enormous data. To manage the transfer learning crashes we benefit from LSI when we 
use some unlabeled data from background knowledge.

LSI is a collection of matrix algorithm and some probabilistically analyses on it. The 
weakness of this collection when it is used in workflow concept extraction is that it 

Fig. 2  Interest over time. Workflow vs. Business Process Management (BPM) vs. Big Data

2  https​://trend​s.googl​e.com/.

https://trends.google.com/
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measures similarities between workflows that all of them are in a same domain. In this 
paper, we deal with this issue by addressing our cross-domain feature extraction. The 
basic idea is (a) to extract unique content-bearing workflow motifs from the set of work-
flows treating these motifs as features and (b) to then represent each workflow as a vec-
tor in this feature space. Thus, the entire workflow collection may be represented by a 
motif-by-workflow U matrix in which rows correspond to workflows and columns are 
motifs. By extracting workflow motifs we obtain frequent tags of each domain and the 
vector representation helps to avoid complexity of workflow structures. However, the 
use of feature vectors implicates two limitations. First, as vectors always represent a pre-
defined set of features, all vectors in a given application have to keep the same length 
despite the size or complexity of workflows. Second, there is no direct possibility to 
describe relationships often exist among different parts of a workflow. These two draw-
backs are severe, particularly when patterns under consideration are characterized by 
complex structural relationships and not the statistical distribution of a fixed set of pat-
tern features [12].

An alternative structural approach which we use to represent each workflow is based 
on graphs as basic specifications for workflow structures. With the graph based repre-
sentations of workflows we can benefit from the previous graph based search and ana-
lyze methods. Collective classification model is proposed in this paper to overcome 
the granularity of workflow components and this model is used in different workflow 
domains not only scientific workflow or business workflow. Main contributions of this 
paper are as follows. First, it shows how to adapt knowledge acquired from structured 
and unstructured data of different domains. Finally, it gives an algorithm learning com-
mon features; namely, concepts, as domain independent conceptual abstractions for 
workflow steps. For the purpose of this paper we embed sample workflow graphs in vec-
tor spaces to benefit from both the universality of graphs for workflow representation 
and the convenience of embedded features for pattern recognition to obtain similari-
ties between workflows. We train a model that learns representational embeddings for 
motifs from a large collection of unlabeled data using a generative model. We view the 
training method as a problem of cross-domain concept extraction of different workflows.

In the present paper some recent approaches to workflow similarity are reviewed. 
Particularly, this article describes a novel approach to workflow analysis using similari-
ties. In the experimental evaluation, we involve several data sets with diverse proper-
ties as Big Data as a great source. According to results, one can consider the proposed 
cross domain workflow motif extraction as a potentially useful alternative to traditional 
approaches focusing just on one domain.

The paper has organized as follows: A review of relevant works is conducted in 
“Related works” section. In the next section we introduce the “Problem setting”. The 
new contributions reported in this paper are an extension of the related works which 
is described in “Similarity measurement” section. The section describes the similarity 
measurement part of the method. Section proposes the “Method overview”. Results and 
experiment settings are mentioned in “Results and discussion” section. Finally, section 
“Conclusions” concludes the paper.
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Related works
PAISs [13] must continually adjust and evolve the performance to ensure the capabil-
ity of modeling, enacting, and supporting real-world processes. Recently, Workflow 
Recommenders (WRs) [14] in PAISs have proposed recommendation services that aim 
at suggesting frequent combinations of workflow tasks for reuse. Some of these recom-
menders apply data mining techniques such as similarity measurement to help users find 
items to improve their workflow designs by prediction [14, 15]. For instance Wang et al. 
[15] has proposed and evaluated a design space of four different WR algorithms based 
on data mining, which can be used to recommend new workflows and their associated 
videos to software users. One of the limitations of the algorithms proposed in [15] is that 
they used heuristics. Besides, the authors in [15] did not evaluate their proposed algo-
rithms with different datasets of different domains. Tosta et al. [14], as another example 
proposed a WR method that works potentially in different domains. However, they just 
focused on scientific workflow domains in practice.

Similarity measurement is a common task in workflow retrieval [16] and the related 
fields in data mining. A vast number of workflow representations have been designed for 
similarity measurement of workflows given about feature vectors [17]. However, work-
flow representation by graphs has several advantages over feature vectors. First, graphs 
are able to represent not only the values of object properties, i.e. features, but can be 
used to explicitly model relations that exist between different parts of an object. The 
graph based representation of workflows is quite general as it allows representing differ-
ent workflow types, including business workflows and scientific workflows. Moreover, 
graphs do not suffer from the constraint of fixed dimensionality [12]. Workflows, how-
ever, require a graph based representation to appropriately cover control- and dataflow 
[18]. For an example of representing workflows by graphs in similarity assessment, the 
work at [18] contributed to the core problems of process oriented case-based reason-
ing, particularly to the representation of semantically annotated workflows. Although 
the authors in [18] presented algorithms that work on the two domains of scientific and 
business, the semantic workflows rely heavily on ontology to provide, and it is one of the 
major limitations of their work.

Some workflow similarity measurements are text based [19], and some others consider 
different aspects of workflows (such as workflow motifs [17], or workflow structures [1, 
20]). For example a workflow similarity measurement method is the work at [19] that 
used feature selection techniques based on text. It treated workflows as group of words 
(BWs). In [19] for each workflow, the pre-processing component counts the number of 
occurrences of each term. The work used Latent Semantic Analysis (LSA) to consider 
the shared occurrence of terms. It then produced similarity values between pairs of 
workflows. The most common feature selection step in text-based similarity measure-
ments is pre-processing (the removal of stop-words and stemming [returning the word 
to its stem or root e.g. flies→ fly)] [21]. Another example is [22] in which the most fre-
quently used modules and frequent tag sets were explored.

Structure based workflow similarity measurements have the advantage of considering 
relatedness of workflow elements, over text based workflow measurements. To intro-
duce the structural aspects of workflows in the similarity assessment, several graph algo-
rithms have been proposed for similarity measurement such as sub-graph isomorphism, 
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maximal common sub-graphs, or edit-distance measures [18–23], which usually cause 
problems because of their high computational complexity. To avoid these problems, the 
present paper relies on motifs as common steps of workflows to be extracted. We sug-
gest to workflows be in their graphical model and so the structure of workflows is con-
sidered in our proposed method. Our method finds common motifs automatically, to 
improve workflow search and retrieval. We use workflow motifs [17], to enable relating 
workflows from one domain to other workflows by different domains. So far techniques 
were focused on discovering workflow motifs in one domain [17, 24–26]. The present 
paper addresses extraction of workflow motifs at intersection of different domains caus-
ing large amount of data. The extraction of useful information out of large amount of 
data is the main challenge of the data mining field. To tackle this challenge, we propose a 
process mining [27] method based on transfer learning [28]. Process mining aims at dis-
covering, analyzing, and extending formal models of process revealing the real process 
in a system, using the event log containing the footprints of real process executions [29]. 
Transfer learning has been proposed to allow domains, tasks, and distributions to be 
different. The advantage of transfer learning is that it can intelligently apply knowledge 
learned earlier to solve new problems faster [28].

Traditionally, tasks such as classification and clustering of workflow are solved by 
defining an applicable distance measure (such as Cosine, or Euclidean [17]) and then 
using an algorithm that is based on distances exclusively. Recently, a prominent alterna-
tive class of graph embedding methods based on spectral clustering has been used [12]. 
Spectral clustering theory is concerned about understanding how the structural proper-
ties of graphs can be characterized using eigenvectors of the connection or Laplacian 
matrix. Although graph spectral theory has the advantage of removing the matching step 
to bring graph nodes into correspondence, this approach remains somewhat limited. For 
instance, spectral methods are not fully able to cope with larger amounts of noise. This 
stems from the fact that the Eigen decomposition is very sensitive to structural errors, 
such as missing or spurious data known as contradictory data [7]. To address this issue, 
the present paper uses a technique based on Point-wise Mutual Information (PMI) 
extraction like [30] and discovers knowledge from provenance graphs like [31].

Problem setting
Previous section was about related works. In this section, we give a problem setting for 
further analysis. Before giving a formal definition of the problem, the paper first presents 
some definitions.

Definition 1 (Domain)  A domain D denotes a class of entities in a space or a semantic 
concept. For example, different types of workflows, such as e-commerce, hospital, and 
bioinformatics, can be regarded as different domains. As another example, computer 
science, mathematics, and physics can be also regarded as different domains.

Definition 2 (Motif )  Given a sequence of tags t1t2...tn where ti is a conceptual abstrac-
tion of workflow step tag from a Lexicon T, a Motif M in workflows is a small functional 
unit that occurs significantly more frequently than expected. It adds a layer of abstrac-
tion that generalizes the functionality of each step or set of steps, helping understanding 
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main functionality of workflow. Here, Domain Independent (DI) sets are defined as M 
Motifs.

Definition 3 (Type)  Given a specific domain D, type data shows the type of workflows 
correspond with a sequence of tags t1t2...tn where ti is a conceptual abstraction of work-
flow step tag from a Lexicon T. In this work, type data is appended to specify type of tags 
in a workflow for a given domain D.

Problem definition (cross‑domain workflow alignment)

Based on the definitions described above, now the problem is defined. Having a set of 
labeled data (e.g. Tag sets) from a source domain, to train a model for a target domain, 
this work leverages some unlabeled data from the target domain. In detail, first for 
the dataset it creates workflow graph from workflow descriptions, and applies a func-
tion mapping on each trace of the workflow event log. Source and target domains are 
the event logs which represent traces (sequence of events) of workflows. We propose 
Spectral Feature Alignment (SFA) [32] based algorithm to find a new representation for 
cross-domain process data, such that the gap between domains can be reduced. SFA 
uses some DI conceptual abstractions for workflow steps (i.e. Workflow motifs) as a 
bridge to construct a bipartite graph to model the co-occurrence relationship between 
DS tags and DI ones (U matrix). As such it bridges the gap between domains. The idea to 
find the relatedness between workflows is that if two DS tags have connections to more 
common DI ones in the graph, they tend to be aligned with higher probability. Similarly, 
if two DI tags have connections to more common DS tags in the graph, they tend to be 
aligned together with higher probability.

To achieve aims of this alignment the method follows these steps:

1.	 Learn higher-level features from source and target adaptation,
2.	 Use the learned higher-level features to represent workflow motifs,
3.	 Training model from the new representations of workflows with corresponding 

labels based on cross-domain concept extraction,
4.	 Search among learned workflow models.

For modeling, our classifier is based on the following formulation, Given DSrc for source 
domain and DTgt for target domain we learn f as classifier function

where � and � are transfer learning parameters, and fTgt has good generalization on 
unseen tags tTgt . We obtain the U matrix for each domain. Following the method is 
explained in detail.

DSrc = {tSrci , tSrcj }
nSrc
i,j=1,

DTgt = {tTgti , tTgtj }
nTgt
i,j=1,nTgt<<nSrc,

f =
∑

Tgt

nTgt
∑

i=1,j

l(fTgt(tTgti), tTgtj )+ ��(U)
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Similarity measurement
In the present paper features are extracted based on LSA in a transformation step as 
transfer learning [33]. Transfer learning automates learning of features across workflows, 
from different domains and of very different natures. By transfer learning it is possible to 
have a classification task in one domain of interest, but only having sufficient training 
data in another domain of interest, where the latter data may be in a different feature 
space or follow a different data distribution [33]. Same workflows can be grouped into 
one group in a feature database (Fig. 3).

This work concerns with learning motifs even only a few labeled data are given. It sup-
poses that there are some higher-level features that can help training the model of classi-
fier. It aims to align DS (non-pivot) features from different domains by workflow domain 
adaptation. Two solutions of higher-level feature construction are Sparse Coding (SC), 
and Deep learning  [34, 35]. The paper benefits from SC that is an unsupervised fea-
ture construction method. SC learns basis functions that capture higher-level features 
in the data have given only unlabeled input data [36]. Here, the co-occurrence matrix 
construction is based on SC and we assumed each observation is a sparse combination 
of the lexicon elements. Tags assigned to workflow steps in a repository can be used for 
similarity measurement, as done in [19]. The tags assigned to steps in a workflow are 
treated as a bag of tags and the workflow similarity can be calculated in the same way as 
in the Bag of Words approach described in [19]. The presented work is similar the work 
at [19] in the sense that a bag of tags is used. The difference is that we align tags without 
the need of to be specifically pre-selected by the workflow designer, and we select tags 
of workflow steps with the most frequency as workflow motifs among different domains. 
We in this work align tags automatically with spectral clustering and feature generation 
tasks by a special setting of transfer learning [33], which aims at transferring knowledge 
across workflow domain motifs. Another advantage of our proposed method over the 
work at [19] is that no stop-word removal or other pre-processing of the tags is per-
formed in this paper.

We present a cross-domain concept extraction setting for domain adaptation. In the 
proposed setting, to bridge the information gap between domains, SFA algorithm aligns 
DS tags from different domains into unified clusters, with the help of DI tags as a bridge. 
In this way, clusters can be used to cut the gap between DS tags of domains, which 
can be used to train classifiers in the target domain accurately. Compared to previous 
approaches, SFA can discover a robust representation for cross-domain data by fully 
exploiting the relationship between DS and DI tags (workflow motifs) via simultaneously 

Fig. 3  Similarity measurement overview
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co-clustering them in a common latent space [32]. Hence, the paper experiments with a 
clustering method for similarity measurement of workflows called spectral clustering. 
Moreover, it removes the fraction of observations to be discarded as outliers to enhance 
the clustering performance. Outliers are observations that generated by a different 
mechanism [37]. If actual outliers are not discarded from the data set, they corrupt the 
results.

SFA for concept extraction uses Eigen-decomposition of the co-occurrence matrix, 
e.g. Latent Semantic Analysis (or sometimes Indexing) (LSA or LSI) [32]. Construction 
of the concept space (also called embedded or latent space) is done by applying LSA. 
LSA is a straightforward statistical method that projects data onto a lower dimensional 
space, by an Eigen-decomposition of the tag co-occurrence matrix. In this cross-domain 
extraction work, derived co-occurrence patterns called concepts, define the dimensions 
in the new concept space. Estimating correlations to measure dependencies between 
DS data and DI data helps to select good pivot features. The method selects a subset of 
frequent tags that occur in domains called pivots or DI tags. Pivots are DI conceptual 
abstractions for workflow steps.

There are some approaches to estimate correlations between pivot and DS features. 
Examples of such methods are Structural Correspondence Learning (SCL) [38] and SFA 
[32]. SCL is similar to SFA, with this difference that it heuristically selects pivot features 
and this might not guarantee the best performance on target domains.

This work adapts a spectral clustering algorithm, similar the work of [30], on the bipar-
tite graph to co-align DS and DI features. We obtain the co-occurrence matrix based on 
bipartite graph. If DS features co-occur with DI features in some feature vector, then an 
edge is formed between the two features in the bipartite graph. Finally, a spectral clus-
tering is performed on the bipartite graph and a value is assigned to each of the features 
in DS and DI to show how much they are similar. that represents the two sets of features. 
k principal components extracted by LSA can automatically apply the clustering in the 
subspace spanned. This implies that a mapping function constructed from k principal 
components can cluster original data and map them to a new space spanned by the clus-
ters simultaneously. To measure how much more often tags occur together than expec-
tation, if they were independent, Eq. (1) is used [30].

where f (s, t) is PMI between two tags s and t, and c (s, t) denotes the number of motifs 
in which two tags s and t co-occur, n and m respectively denote the total number of s 
tags and t tags, and N =

∑n
i=1

∑m
j=1 c(i, j).

Next, for two tags s and v (represented by feature vectors s and v, respectively), the 
relatedness τ (v, s) of the tag v to the tag s is computed as follows [30]:

(1)f (s, t) = log





c(s,t)
N

�n
i=1 c(i,t)
N ×

�m
j=1 c(s,j)

N





(2)τ (v, s) =

∑

t∈{x|f (v,x)>0} f (s, t)
∑

t∈{x|f (s,x)>0} f (s, t)
.
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The relatedness score τ (v, s) can be interpreted as the proportion PMI weighted features 
of the tag s that are shared with tag v. Note that PMI values can become negative in 
practice even after discounting for rare occurrences. To avoid considering negative PMI 
values, only positive weights in Eq. (2) is considered [30]. Using Eq. (2) is for overcom-
ing the bias towards infrequent elements and features [30]. To compute the PMI val-
ues in feature vectors, the co-occurrence information between numerous tags should be 
stored. For this, a lexicon matrix from a large set of DS tags and DI tags can be used. 
Particularly, workflow motifs can be avoided that are likely to have very small related-
ness scores thus are unlikely to become neighbors of a given s tag by using approximate 
vector similarity computation techniques.

The proposed method to deal with contradictory data trivially chooses the best θ to 
optimize performance. It tries to discard the (1-θ ) features that have little connectivity 
in the co-occurrence matrix, thus outliers are eliminated. For this purpose, it has two 
level outlier removals. First, it removes outliers by applying a threshold on the source 
data domains. Second, it applies a threshold based on PMI weights obtained by Eq. (2). 
It removes the data that is below the PMI values. For this a threshold limits the connec-
tions. After applying the threshold, transformation of the tag-workflow co-occurrence 
matrix indicates the relation between various tags in the data. U matrix of workflow tag 
relations from source domains and target domains is constructed based on co-occur-
rence matrix by finding k largest Eigen Values introduced in [32]. The relatedness meas-
ure defined in Eq. (2) is used to construct a motif sensitive lexicon in which, for each 
tag element s lexical elements t is listed up that co-occur with t (i.e. f (s, t) > 0) in the 
descending order of the relatedness values τ (v, s). Next section is about the method 
overview.

Method overview
As a summarization, steps of the multi-domain workflow alignment are described in 
Algorithm 1.

The method has to be able capture descriptions of complex workflow models. So, it 
uses ISA-Tab handler for scientific workflows that allows the linkage of a single sam-
ple to multiple analyses employing various assays [14]. For other workflows in other 
domains a XML-Based workflow Event Logging Mechanism has been used in XES for-
mat [39]. Algorithm 1 uses the proposed SFA based method. SFA can fully exploit the 
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relationship between DI and DS tags via co-aligning them on the bipartite graph to learn 
a more compact and meaningful representation of space. It uses the automatically cre-
ated lexicons to expand feature sets in a model learned (U matrices) at train time by 
introducing related workflow motifs. For this purpose, different domains of workflows 
are co-aligned. The most similar U matrix is detected using lexicon. Lines 4–10 of the 
algorithm describe the discovery step of workflow motifs.

Results and discussion
This section performs experiments on some workflow datasets from different domains, 
and shows that a universal function to model workflow classification can be applied 
based on SFA and distributional semantics. It gives an approach to cross-domain con-
cept extraction (CDCE) and so it can work on every workflow domain, e.g. scientific and 
business workflows. In reminder of this section we first present the “Experiment setup”, 
and then we analyze the results. We describe our experiments on four real world data-
sets and show the effectiveness of our SFA based method for cross-domain alignment 
in terms of handling Big Data when the number of workflow Tags increases. Finally we 
discuss about the results.

Experiment setup

To analyze the proposed method four datasets are considered from different domains 
of hospital, financial and scientific workflows. The used datasets to train model are as 
follows:

1.	 A real-life event log of an academic hospital originally intended for use in the first 
Business Process Intelligence (BPI) Challenge [40] is used. It contains 1143 workflow 
traces.

2.	 Other dataset is the financial dataset that contains of 4366 traces used for BPI Chal-
lenge 2012 [41].

3.	 For scientific workflows the work extracted information from a resource holding 
over 70,665 experimental design workflows (ArrayExpress) [42]. It used a subset of 
this collection, including 29 scientific workflows.

4.	 Another financial dataset used in this paper contains of an event log containing of 
31,509 traces pertains to a loan application process of a Dutch financial institute used 
for BPI Challenge 2017 [43]. The data and the process under consideration is the 
same as [41].

We construct the bag of tags by given sources and targets. With these datasets from dif-
ferent domains, a huge amount of Big Data can be integrated into the decision making 
process. Such a Big Data can be considered as a great source and target.

Discussion

The frequency by which the motifs appear depends on the differences among the work-
flow environments and differences in domains. In this paper different types of domains 
are used (e.g. Bioinformatics, Financial, and Hospital). To construct the U matrix with 
four domains, we obtained 16 bags of tags. Any bag of tags has a correspondence U 
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matrix that obtained by computing the K largest Eigen Values of the bipartite matrix. 
The parameter of K is important to achieve more accurate distinctions between related 
workflows. We illustrated the U matrix of the six bags of tags in Fig.   4. For example 
Fig.  4a is a U matrix based on hospital and BPI-2012 datasets. Figure  4 shows the values 
of U matrix when the method has K = 2 largest Eigen Values in 2D representation of the 
matrix.

In Fig.  4, the colored values in the U matrix represent workflows relatedness between 
various data of different domains. The greater length of the U matrix in Fig.  4 represents 
the more varied data being examined. Non-zero values are shown with warmer color 
points. The zero values represent the hidden data that are dropped by threshold because 
of their different mechanism. These values indicate that there is a relationship between 
the data obtained from the source and target domains. Therefore, as the number of color 
points and colors are more varied, more data can be distinguished. As can be seen in 
Fig.  4, in the U matrices (a) (b), and (d), the matrix length is shorter than other matrices. 
This shows that the matrix can scan a small range of data. Also, the non-zero values of 
the matrices (a) (b), and (d), are centered around and nearby one segment. Although in 
Fig.  4c has studied more data, but still non-zero values are concentrated around one seg-
ment. So, based on that, we will have almost the same behavior. The best output about 
the data distinction is related to (e) and (f ) matrices. Both matrices of (e) and (f ) cover a 
larger field of values. This is caused by the color points that are scattered uniformly.

As can be seen in figures, when the domain has various values or enormous data the 
U matrix has varied values and becomes more complex and extended. Because the exe-
cution time of the mentioned method is constrained only once when the classifier is 
trained, this complexity causes increasing in run time, and might not be crucial. Because 
the execution time of the method is constrained only once in the system when the classi-
fier is trained. Here the U matrices (e) and (f ) have more data distinction capability.

It can be observed from Table  1 that the execution time increases when the datasets 
become big and have more tag of tasks. On the other hand as can be seen from Fig.  5 it 
is not essential to have Big Data to increase the processing time of CDCE method, and in 
most of times the method deals with Big Data. Figure  5 datum shows that in each imple-
mentation of the source domains, the proposed method can decrease the runtime even if 
the target domain includes enormous data. In the more detailed explanation, the volume 

Fig. 4  U matrix values, k = 2 (a) hospital and BPI-2012 dataset, (b) scientific and hospital dataset, (c) BPI-2017 
and scientific dataset, (d) scientific and BPI-2012 dataset, (e) hospital and BPI-2017 dataset, (f ) BPI 2012 and 
BPI 2017 dataset. The X axis shows feature vectors and the Y axis represents workflow motifs



Page 13 of 16Koohi‑Var and Zahedi ﻿J Big Data  (2018) 5:18 

of the BPI-2017 data is the most, and the other domains have less data volume than this 
domain. Clearly when the BPI-2017 data is added to each of the source domains, the Big 
Data problem finds a heavier form.

Most real workflows are complex in the sense that they present many non-trivial fea-
tures. With ever increasing number of workflow repositories organizing and catego-
rizing them to diverse need of user by manual means is a complicated job. For better 
organizing real workflows, we proposed a classification algorithm for aligning workflow 
context from the relatedness aspect of workflows. In our classification, we used some 
sub-workflows of former workflows as motifs. Constructing co-occurrence matrix of 
workflow motifs in different domains allows us to retrieve a similar flow from domain 
data when we reach an unseen workflow. Retrieving similar flows from previous work-
flows provides better organization for search results. We applied our method on real-life 
datasets, obtaining good results about handling Big Data when the number of workflow 
tags increases. The advantage of our algorithm on other methods present in literature, 
like LSA, or graph spectral theory, is that it removes outliers and considers data relat-
edness between domains, and can thus be effectively applied to a wide range of PAISs 
working on different domains like scientific or business. For more detail on comparative 
study of the methods see Table  2.

By the way, different proposals and implementations of techniques are proposed to 
improve the performance of systems that deal with Big Data challenge [8, 28, 44]. For 
example, except transfer learning used in the present paper some promising learning 

Table 1  CDCE on Big Data

Source Target Number of tags Time (ns)

BPI-2012 BPI-2017 1,542,600 161942430734

BPI-2012 Scientific 2,950,89 47502683874

BPI-2012 Hospital 454,923 51955451599

BPI-2017 Scientific 1,247,887 64293109780

BPI-2017 Hospital 1,407,721 57628940065

Scientific Hospital 160,210 44093711337

Fig. 5  Processing time of CDCE for different dataset sizes.Vertical axes shows time (ns)
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methods in recent studies, such as representation learning, deep learning, distributed 
and parallel learning, active learning, and kernel-based learning are proposed to deal 
with Big Data [28]. An example of dealing with big data in workflow management sys-
tems is [44] which scales workflows to High Performance Computing (HPC) supercom-
puting systems. Another solution remains in workflow representations; one can encode 
workflows for workflow indexing to further reduce processing time and scale similarity 
search to sizes of current repositories [17].

Conclusions
This paper proposed an algorithm for aggregating large volume of data, and discovered 
common workflow motifs. The proposed method based on the relatedness of workflows 
can measure the similarity of unseen workflows. It can be easily adapted to any work-
flow domains. Cross domain alignment can give us a multi side view to domains, but it 
costs on time and when the datasets are as big as real-life workflows data it exhibits its 
expensiveness so we utilize Transfer learning to reduce the middle process sequences 
time of the cross domain workflow alignment. Transfer learning as our results show 
can give a solution to time consummation of checking data. The proposed technique to 
deal with Big Data was based on transfer learning. It can limit time consummation of 
multiple domains that caused Big Data, by constructing a co-occurrence matrix. The co-
occurrence matrix constructed based on two domains per each run. Hence one of future 
works is to form the co-occurrence matrix based on more than two domains per each 
run, to reach a multi-cross domain extraction.
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