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Introduction
With the increasing size of road networks (4.4 billions of vertices and 6 billions of 
uploaded GPS points, according to OpenStreetMap data stats 2018 [1]), there has been 
vast improvement in hardware architecture for intelligent transportation system. The 
traditional GPS systems embedded in vehicles are only designed to find the shortest 
paths in small or medium road networks. With the increase in the size of road-networks, 
implementing efficient GPS programs has become challenging. This is mainly due to 
impractical computational time taken to compute the optimal path.

The basic algorithms used for the Single Source Shortest Path Problem (SSSPP) are 
not suited for intensive computation in large-scale networks because of long latency 
time. This is one of the crucial problem of route-guidance systems for highway vehicles 
including the Vehicle Routing Problem (VPR), Traveling Salesman Problem (TSP) and 
Pickup and Delivery Problem (PDP).

Currently, there are lot of approach of SSSPP such as label setting, dynamic pro-
gramming, heuristic and/or bidirectional heuristic. However, they are inefficient 
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when applied to NP-complete problems due to the large graph size, the hardware 
requirements and the time complexity. One of the problems emanating from the 
SSSPP is path finding in large road networks particularly with A* algorithm [2].

A* is mostly used in computer game and artificial intelligence. It is based on heu-
ristic approach and presents great interest in the area of logistics/transportations, 
bioinformatics and social networks. The main problem is that A* is not adapted for 
intensive computation on large networks that consisting of millions of vertices and 
edges. It needs more resources in term of hardware configuration and the computa-
tional time increases significantly when we encounter larger graph size. For example, 
it will be very difficult for car drivers who travels long distances to get high quality 
solution in order to take a right decisions in some cases where the quick response is 
a necessity.

In this context, several research studies have been carried out in order to improve 
the efficiency of graph traversal algorithms based on Big Data technology. This new 
technology has attracted the attention of business and academic communities (e.g. 
vehicle controls on big traffic events [3]) because of its ability to meet the 5V (Vol-
ume, Velocity, Variety, Veracity and Value) challenges related to shortest path que-
ries in large graphs. Most of the the efficient approaches [4–9] dedicated to these 
routing problems are based on the concept of parallel and distributed computing 
provided by Hadoop MapReduce [10].

We focus on an enhanced version of A* that runs in parallel and distributed envi-
ronment with low cost commodity computers. Our objective is to define a high qual-
ity path in reasonable computational time. This research work is inspired by papers 
[6, 7]. The key contributions of this paper are as follow:

  • Firstly, we propose a MapReduce framework that promotes parallel and distrib-
uted computing of shortest path in large-scale graph with A* algorithm.

  • Secondly, our experimental analysis proves that the MapReduce version of A* 
outperforms the direct resolution approach of A*, and significantly reduce the 
time complexity with high quality results. In addition, our framework is reliable 
on real road network and works well with the scalability of network size.

  • Finally, we show by comparison that the proposed MapReduce framework of A* 
algorithm is more effective than the MapReduce framework of Dijkstra algorithm 
presented in [6, 7].

The remainder of this paper is organized as follows.“Related work”  section reviews 
some works about sequential and distributed path-finding algorithms. “Background” 
section presents the background knowledge required to understand the complexity 
of the problem. An overview of MapReduce framework of A* is detailed in “Proposed 
MapReduce version of A*”. The results of analysis are presented in “Experimental 
results” section followed by discussion and concluding remarks in “Discussion” sec-
tion. Finally, “Conclusion and further works” section concludes this study followed 
by outline of future works.
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Related work
Sequential shortest paths computing

For some time now, the shortest path problem has aroused more interest especially 
when applying it in the fields of transportation engineering and artificial intelligence. So 
several path-finding algorithms have emerged and there is a rich collection of literature 
in the current state of art [11–15]. The problem of concern is that SSSPP consists of find-
ing the best path from an origin to a destination in graph.

Dijkstra [16] presented a Dijkstra’s algorithm for finding the shortest path from an 
origin-to-destination vertex in directed graphs with unbounded non-negative weights. 
Dijkstra’s algorithm works as breadth-first search [17]. It maintains a set of candidate 
vertices in a temporary queue and tends to expand the search space in all directions. 
Dijkstra’s algorithm is much faster than Bellman–Ford’s algorithm [15] and runs in O(n2) 
[18–20] but is limited to smaller-scale graphs.

In another related work, Xu et al. [21] introduced a Fibonacci head [22] to improve 
the Dijkstra’s algorithm, this approach allowed to reduce the computational time to 
O(m+ n log(n)) and is very practical to find the shortest path in graph containing large 
numbers of vertices. Orlin et al. [23] followed this work by integrating binary heaps to 
speed up the process of finding edges which minimizes the path length, their contribu-
tion allowed to improve the time complexity to O(m log(m)).

In another early contribution, Ira and Poh [24] proposed a bidirectional search method 
consisting of partitioning the global search domain under two and compute simultane-
ously the path on the two sub-domains. This approach is inspiring but presents some 
limitations due to hardware requirements when the search domain became very large. 
Other classes of path-finding algorithms that use heuristic approaches aim to reduce the 
space domain and avoid unpromising vertices. Currently the best known shortest path 
approach that uses heuristic approach is A* algorithm [2].

Distributed shortest paths computing

When the data is too large, sequential algorithms became traditional and inefficient. In 
this sense, many related works have been performed to improve the velocity of exist-
ing path-finding algorithms [4–9]. Presently, the most promising strategy for intensive 
path computation in large-scale graph is the parallel and distributed model. The use of 
this approach comes from the failure to handle big graph with traditional technique [25]. 
There have been a lot of studies on parallelizing the shortest path algorithms. Work con-
ducted by Djidjev et al. [4] aims to improve by twofold the path computation in large 
graph with Floyd–Warshall algorithm. The authors proposed a parallel model of Floyd–
Warshall based on Graphics Processing Unit (GPU).

Cohen and Jonathan [26] proved that the concept of distributed computing with 
MapReduce-based approach could be applied successfully in large-scale graph problems 
such as graph mining [5] and shortest path problem [6, 7].

MapReduce paradigm attracts more interest in the era of parallel processing and 
provides an innovative approach for intensive computation on scale-free network [5]. 
In this scope, Aridhi et al. [5] proposed a parallel and distributed solution for large-
scale graph mining via the technique of graph partitioning under subgraphs. The 
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experiments revealed that their approach reduces significantly the execution time and 
works well with the increasing number of cluster nodes (computers).

In recent papers [6, 7], the authors presented the MapReduce-based approach for 
shortest path problem in large-scale network. The proposed approach works in four 
stages including the map and reduce stages. Before the map stage, they had parti-
tioned the graph into subgraphs and mapped them to each node. Next, Dijkstra’s pro-
gram [16] is running on each machine to generate a set of intermediate paths. Finally 
in the reduce stage, all intermediate paths are aggregated to obtain the final shortest 
path. The authors contributions enabled a significant gain in terms of time complex-
ity. In another work, Zhang and Xiong [8] followed the same approach for the search 
of dynamic path in large road network based on cloud computing. In addition, Seun-
ghyeon et al. [27] proposed a parallel version of Girvan–Newman algorithm based on 
the concept of Hadoop MapReduce to improve the computational time in large-scale 
network.

Background
Hadoop and MapReduce

According to Hadoop documentation [10], Hadoop is an Apache open source frame-
work inspired by Google File System [28]. It allows parallel processing on distributed 
data sets across a cluster of multiple nodes connected under a master-slaves architec-
ture. Hadoop consists of two main components: HDFS [28] and MapReduce [29, 30].

The first component is the Hadoop Distributed File System (HDFS). HDFS is designed 
to support very large file of data sets. It is also distributed, scalable and fault-tolerant. 
The Big Data file uploaded into the HDFS is split into block file with specific size defined 
by the client and replicated across the cluster nodes. The master node (NameNode) man-
ages the distributed file system, namespace and metadata. While the slave nodes (Data-
Node) manage the storage of block files and periodically report the status to NameNode.

The second one is the MapReduce programming model for intensive computation on 
large data sets in parallel way. To ensure good parallelism, the data input/output needs 
to be uploaded into the HDFS. In MapReduce framework, the master node works as 
JobTracker and the slave nodes as TaskTracker. The JobTracker assumes the responsibil-
ity and coordinates the job execution. The TaskTracker runs all tasks submitted by the 
JobTracker. As shown in Fig. 1, the MapReduce job runs in two main stages:

1 In the Map stage, the mappers (map tasks) are assigned to slave nodes that host the 
blocks data. Each mapper takes line-by-line the records of its input and transforms 
them into <key, value> pairs. Next, the map function defined by the user is called 
to produces another intermediate <key, value> pairs. The intermediate results are 
sorted locally by keys and sent to the reduce stage when all map tasks are completed.

2 In the Reduce stage, the reducers (reduce tasks) read the map stage outputs and 
group all values which share the same key to produce for each key an iterate values 
<key, iterable[value]>. Next the reduce function defined by the user is applied over 
the sorted intermediate data sets to produce a set of smaller <key, value> pairs and 
write finally its result into the HDFS.
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A* algorithm

A* or some extended version (HPA*, SMA*, MA* and IDA*) [14, 31, 32] of it, is one of 
the most used algorithm for SSSPP and was originally presented by Hart et al. [2] in 
1986. It can be viewed as an extension of Dijkstra algorithm [16] by adding a heuristic 
function h that guides the search [11].

Suppose that a road network is denoted by a graph G = (V, E) where:

  • V is the finite set of vertices of the graph G.
  • E is the set of edges, such as: if (v,u) ∈ E , then there is an edge between the verti-

ces v and u.
  • We define the length function l: V × V �→ R+ , which for each edge (v,  u), we 

associate a length l(v, u) if there is an edge between v and u, else ∞ if there is no 
edge.

  • For each vertex v ∈ V  , we define a distance d: V �→ R+ such as d(v) = ∞ if we can-
not reach the goal vertex from v.

As shown in Fig. 2, A* takes advantage of heuristic function to avoid the exploration of 
unnecessary vertices that do not seem to be promising. A* incorporates an estimate of 
the path cost d(v) in which we can determine: (1) the costg(v) from the starting vertex s 
to any vertex v ∈ V  and (2) the rest of the ’path-completion’ h(v) from v to goal vertex e 
[33].

The principle of path-finding with A* can be described as follows:

Step 1 initialization
 set O = ∅ and S = ∅;
 begin by setting g(v) = ∞ for each vertex v ∈ V ;
 next set current vertex c = s , g(s) = 0 and d(s) = h(s);
 finally set c = s and let S = {s};

Fig. 1 The job execution workflow of MapReduce framework
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Step 2 vertex expanding
 for each vertex v ∈ V  where edge (c, v) ∈ E ; if g(v) > g(c)+ l(c, v) then update 
g(v) = g(c)+ l(c, v) ; set d(v) = g(v)+ h(v) , set d(v) = g(v)+ h(v) and when v /∈ O 
let O = O + {v};
Step 3 selection of promising vertex v∗

 identify vertex v∗ ∈ O where d(v∗) ≤ d(v) for all v ∈ O ; set O = O − {v∗} and 
S = S + {v∗};
 set c = v∗;
Step 4 stopping criteria
 if c = e then the path has been found;
 elseif O = ∅ then failure;
 otherwise go to step 2.

Like Dijkstra [16], A* works with two main queues: the ‘open-list’ O containing all 
candidate vertices and the ’close-list’ S that contains promising vertices. It applies a 
Depth-First-Search algorithm [34] to expand deeper-and-deeper all candidate verti-
ces until the ’open-list’ is empty or until the goal vertex e is found. Then the search 
backtracks to explore in the most recent vertex v ∈ V − O that is not visited. To find 
the most promising vertex v∗ , A* evaluates for each candidate vertex v ∈ O a tempo-
rary distance d(v) such as d(v) = g(v)+ h(v) . A* guarantees to find the optimal path if 
for every edge (v,u) ∈ E , h(v) verifies the triangle inequality: h(v) ≤ l(v,u)+ h(v) and 
h(e) = 0 . Then for every vertex v ∈ V  , the heuristic h(v) is said to be admissible.

Each time a new vertex is added in the priority queue, the ‘open-list’ needs to be 
sorted again and takes O(log(n)) time to complete all operations of enqueue and 
dequeue. For this reason, all vertices v ∈ O persist temporarily in memory. Hence, it 
can result in serious performance bottlenecks and runs very slowly because of expo-
nential space memory consumption for infinity large number of vertices. In terms of 
the depth of the solution, A* runs in O(lb) time where l is the length of the shortest 

Fig. 2 Vertex evaluation with A* heuristic
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path and b is the average number of successors per state. It is more logic to describe 
the time complexity taking account of vertices and edges of the graph, therefore it 
should be O((n+m)log(n)) . To improve the computation time in large graph, we 
assume that it’s necessary to:

1. Reduce the graph size by deleting some unnecessary vertices and edges of the graph;
2. Use sophisticated computers equipped with lot of ram memory for data persistence 

or run A* with multitasks approach such as HPA* [32];
3. Use MapReduce approach to run the A* program under a distributed environment.

Reducing the graph size before applying A* search can take quite some time ( O(log(nb)) ) 
to perform the graph reconstruction after removing some unnecessary vertices. In some 
cases, there is a risk of removing some promising vertices that can affect the path opti-
mality. Using powerful computers equipped with a lot of RAM memory and CPU power 
is another technique. However, difficulties arise when reaching hardware memory limits 
at a few million vertices. In this sense, the basic idea is to propose a parallel and distrib-
uted version of A* based on MapReduce. Let’s see if the proposed approach is well suited 
to face the graph’s scalability in term of volume, the velocity in terms of time complexity 
and result quality in terms of veracity.

Proposed MapReduce version of A*
As shown in Fig. 3, the proposed MapReduce framework of A* (MRA*) is composed of 
four main stages:

1. Input stage: partition of the initial graph
2. Map stage: computation of intermediate paths
3. Reduce stage: concatenation of intermediate paths
4. Output stage: storage of full path

The MRA* job submitted from the master node is split into mappers and reducers 
that run respectively in the map and reduce stages. The set of stages are synchronized 
so that the output of the previous stage is chained to the input of the next stage. The 

Fig. 3 Overview execution of MapReduce-A* framework
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intermediate paths computing take place in the Map and Reduce stages. Consider that 
tmap and tred are respectively the time passed in the map and reduce stages, thus the total 
computation time TMRA∗ required by the MapReduce-A* framework to satisfy the full 
path computation is calculated as follows:

Input stage: partition of the initial graph

The input stage (pre-processing stage) consists of uploading the initial graph data with 
specific size Gsize into the HDFS and partitioning it into set of subgraphs. By default, 
Hadoop splits physically the graph data into little files based on the defined block size 
Bsize and replicates them across the cluster nodes. Then the total number of block Nblock 
occupied by the graph can be obtained using the following formula:

The graph partitioning is done by the Graph_Partition procedure (see Algorithm 1), it 
takes 3 parameters:

  • l: subgraph length in km;
  • A: source vertex;
  • E: target vertex.

This procedure starts by computing the straight line distance L between the source 
vertex A and the target vertex E by using the Euclidean_Distance function (see Algo-
rithm 2). Next, the obtained distance is divided by the diagonal length d in km to deter-
mine the total number of subgraphs Ngraph using the following formula:

Each subgraph is delimited by its starting (C.lon, C.lat) and ending (D.lon, D.lat) posi-
tions. The Subgraph_Position function (see Algorithm  3) is called to determine the 
GPS position of each subgraph. Next, we proceed to the creation of the subgraphs by 
invoking the Create_Subgraph function (see Algorithm  4). Finally, the set of vertices 
and edges of each generated subgraph is stored into the HDFS in form of key-value pairs 
as the Fig. 4 shows. It’s important to note that, the variation of the number of subgraphs 
Ngraph relative to the number of block Nblock has an impact on the result quality, espe-
cially the path cost CMRA∗ . The optimality error ǫ between A* and MRA* is calculated as 
follows:

(1)TMRA∗ =tmap + tred

(2)

Nblock = E

[
Gsize

Bsize

]
+ θ

where θ =
{
0, if Gsize ≡ Bsize

1, else

(3)
Ngraph =

L

d

=
L

l ×
√
2

(4)ǫ =
CMRA∗ − CA∗

CA∗
× 100%
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Algorithm 2 describes the Euclidean_Distance function for computing the distance 
between two points of the graph. It takes as input the starting and ending vertices (points 
A and E) and applies the Euclidean formula [2] to determine the distance L.

Figure  5 illustrates a travel from Kingsport to Santa Rosa. The estimated travel dis-
tance is given by the straight line (vector −→AE ) based on the Euclidean_Distance 

Fig. 4 Overview of vertex structure. Each vertex is identified by a unique key and all connected edges are 
enclosed in the adjList array
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function. While, the projected line (arc ÂE ) passes through approximately Kingsport in 
north Carolina (point A), northeast of Missouri (point B), midwest of Nebraska (point 
C), northwest of Utah (point D) and Santa Rosa in California (point E). The application 
of Subgraph_Position function described in Algorithm 3 allows to split the projected 
line and calculates the ending position of each subgraph. It consists of four steps and 
takes four parameters:

  • d: diagonal length in km;
  • i: ith subgraph;
  • (A.lon, A.lat): GPS coordinates of the source vertex (point A);
  • (E.lon, E.lat): GPS coordinates of the target vertex (point E).

Fig. 5 Overall view of the path from A to E. a 3D view of the plan OAE on the the earth’s surface. b Travel 
from Kingsport (point A) to Santa Rosa (point E) with 2D view of OpenStreetMap. The graph is partitioned 
into 4 subgraphs following the projected arc 

⌢

AE
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The first step (lines 11–12) consists of converting the GPS coordinates of the input 
points into cartesian coordinates. This step is necessary because it ensures high 
accuracy on large road network. In the second step (lines 14–16), we use the con-
verted coordinates to calculate the normal vector (a, b, c) of the plane OAB (see 
Fig. 5a) assuming that O is the center of the earth with its cartesian coordinates (0, 0, 
0). In the third step (lines 18–21), the obtained vector is used to determine the end-
ing position of the ith subgraph. As shown in Fig. 5b, the point B is the ending point 
of the 1st subgraph, it partitions the projected arc ⌢

AE into vectors −→AB and −→BE . The 
length of vector −→AB is equal to d × i . Moreover, the length of vector −→AE is equal to 

r × α where r is the earth radius and α = ̂
(
−→
AO,

−→
OE) is the angle between 

−→
AO and 

−→
OE 

(see Fig. 5a). Then we can deduce that the angle β = ̂
(
−→
AO,

−→
OB) between 

−→
AO and 

−→
OB 

is equal to d × r × i [6]. The obtained angle β value is used to compute the cartesian 
coordinates (B.x, B.y, B.z) of the point B by assuming that the unit of the normal 
vector (a, b, c) represents the rotation axis. The last step (line 23) is to convert back 
the cartesian coordinates of the point B into GPS coordinates (B.lon, B.lat) for carto-
graphic projection.

The Create_Subgraph function described in Algorithm  4, is called after finding 
the position of the subgraph. It takes as input the GPS coordinates of the position 
and length in km of the subgraph. Next, it builds from the original graph G(E, V) a 
new subgraph G′(E′,V ′) where the positions of the vertices are into the boundary M 
delimited by the starting (point C) and ending position (point D) of the subgraph.

Map stage: computation of intermediate paths

The map stage consists of computing the intermediate paths on each subgraph in paral-
lel way by using the A*_Mapper procedure (mapper). This is made possible by taking 
the subgraphs from the input stage and assigning each mapper to one of them. However, 
if the average size G′

size in byte of the generated subgraphs is greater than or equal to 



Page 12 of 24Adoni et al. J Big Data  (2018) 5:16 

the used block size, then the total number of mapper Nmap is equal to the number of 
block Nblock occupied by the initial graph, else the number of mapper used is equal to the 
number of subgraph Ngraph.

It is important to note that the velocity of all path computations depends on the number 
of cluster nodes Nnode and the number of core processors Nmap

core  allocated per node. In 
addition, the time complexity mi,j,k of the ith mapper assigned to the kth core of the jth 
node is about O((n′ +m′)log(n′)) where n′ is the number of vertices and m′ the num-
ber of edges of the ith subgraph. When one node finishes running its mappers, it waits 
until all other nodes complete their tasks before sending the results to the reduce stage. 
Therefore the total time tmap passed in the map stage is calculated as follows:

The A*_Mapper procedure described in Algorithm  5 takes the subgraph data as key-
value pairs according to the structure of the vertices (see Fig. 4). The proposed algorithm 
is based on the classical version of A*. It consists of 3 steps. The first step (lines 9–15) is 
the initialization phase. The second step (lines 16–20) consists of exploring and selecting 
the most promising vertices until the target vertex found. This is achieved through the 
Expand_Vertex and Select_Vertex functions. In the final step (lines 21–24), the Gen-
erate_Path function is called for the extraction of the path from the selected vertices. 
Afterward, the result is stored locally until the other map tasks are completed before 
sending it to the reduce stage.

(5)Nmap =
{
Nblock , if Bsize ≤ G′

size
Ngraph, if Bsize > G′

size

(6)tmap = max






Nnode�

i=1

Nmap�

j=1

N
map
core�

k=1

mi,j,k








Page 13 of 24Adoni et al. J Big Data  (2018) 5:16 

Algorithm  6 describes the Expand_Vertex function, it takes as input parameters 
the openlist O, the subgraph G′ and the current vertex c to expand. Next, it explores 
in depth the neighborhood of the current vertex. For each expanded vertex, it evalu-
ates the cost and verifies the triangle equality before adding it to the openlist.

Algorithm  7 describes the Select_Vertex function, it takes as input parameters 
the openlist O and the closelist S. It returns the most promising vertex v∗ where 
d(v∗) ≤ d(v) for each vertex v in the openlist O.

Algorithm 8 describes the Generate_Path function, it takes as input the closelist S 
and concatenates the edges between the vertices contained in S in order to build an 
intermediate path.
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Reduce stage: concatenation of intermediate paths

In the reduce stage, the set of intermediate paths from the map stage are concate-
nated based on the path key. This is achieved by running the A*_Reducer (reducer) 
in parallel way. The total number of reducer Nred used to complete the reduce stage 
depends on the number of nodes Nnode and the number of core processors Nred

core allo-
cated per node. The right number of reducers used to ensure good parallelism is cal-
culated as follows [10]:

With 0.95, we assume that all nodes have the same hardware configurations (ram and cpu 
speed) and run averagely the same number of reduce tasks in the same gap of time. While 
with 1.75, the hardware configurations of the cluster nodes are different. The faster nodes 
will run more reduce tasks and lunch immediately another wave of reducers when they 
finish. So the total time tred passed in the reduce stage depends on the time ri,j,k of the ith 
reducer assigned to the kth core processor of the jth node. It’s calculated as follows:

The A*_Reducer procedure described in Algorithm 9 takes as input the array of inter-
mediate paths which share the same path key and concatenates them. The ending 
extremity of the (i − 1)th path becomes the starting extremity of the ith path so on until 
concatenation of the last path. Then the reducer waits until the other reducers complete 
its tasks before emitting the result to the master node.

Algorithm 9: Paths aggregating
1 procedure A* Reducer
2 input
3 [SP ]: array of intermediate paths
4 output
5 FSP : the final shortest path
6 begin
7 FSP := null;
8 for each path p ∈ SP.value do
9 FSP := concat(FSP , p);

10 end
11 wait until all reduce tasks have been completed;
12 emit(key: pathId , val: FSP );

(7)Nred =
{
0.95× Nnode × Nred

core

1.75× Nnode × Nred
core

(8)tred = max






Nnode�

i=1

Nred�

j=1

Nred
core�

k=1

ri,j,k
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Output Stage: Storage of full path

In the last stage, the master node uploads the full path into the HDFS. Each path is writ-
ten into a separate file. The full path is obtained by merging the content of the reduce 
files. To ensure fault tolerance, the cluster copies each file onto a separate peer node 
according to the replication factor.

Experimental results
The performance tests were conducted on a 6-nodes Hadoop cluster. The configuration 
of the cluster is composed of 1 master node and 5 slave nodes as shown in Fig. 6. The 
nodes are connected through a local area network composed of a set of Ethernet cables 
Cat-5 100  Mbps that are directly plugged into a switch DES-1016D 100  Mbps. Each 
node within the cluster is equipped with a 4-core 2.3 GHz Intel i5 processor based on 
Linux SUSE-3.0.101 32 bit. The tests have been achieved on Hadoop 2.2.0. All computa-
tions have been executed ten times and the presented values are the average values of 
the executions. Table 1 presents all set of parameters of our experiment.

Fig. 6 Test environment

Table 1 Experimental parameter set

Parameter type Parameter designation Parameter value

Nnode No. of cluster nodes 6

n No. of graph vertices [8000, 100,000]

Gsize Graph size in Gbit [0.2, 16.6]

Bsize Block size in Mbit {64, 128, 256}

G′
size Subgraph size in Gbit [0.3, 2]

l Subgraph length in km [20, 400]

N
map
core No. of map cores {1, 2, 3, 4}

Nred
core

No. of reduce cores {1, 2, 3, 4}
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Data set
The real-world road data used are benchmark data gathered from OpenStreetMap 
(OSM) spatial database [35]. The data are stored in the .osm.pbf data format, an alterna-
tive to XML based formats (KML and GML). The XML file contains points, ways, rela-
tions and nested tags in each of these objects. The graph data covers all types of road 
networks, including local roads, and contains weighted edges to estimate the travel dis-
tances/times. We used QGIS Desktop 2.18.3 and JOSM’s (Java OpenStreetMap Editor) 
tool to extract information. The criteria of filtering is based on ’osm_tab’, we extracted all 
objects whose tag keys corresponds to ’highway’.

Application: road trip from northern to southern Morocco

This section presents a case of application of the proposed framework on Moroccan 
road network in order to find the shortest path from Tangier (northern Morocco) to 
Dahkla (southern Morocco). It is the equivalent of nearly 1800 km of road trip. The 
extracted graph consists of 726,467 vertices. Firstly, the road network is split into five 
subgraphs as shown in Fig. 7. Each partition is assigned to one node of the cluster and 
is delimited by its starting point and ending point (see Table 2). Secondly, the compu-
tation of the intermediate paths is carried out in parallel way across the cluster node, 
as shown in Fig. 8. We get 5 paths, each path represents a partial solution. Next, the 
full path is obtained by merging several times all partial solutions (see Fig. 9). Finally, 
the full solution is written into the HDFS and each part of the solution is written in 
separated files as shown in Fig. 10.

Fig. 7 Input stage: road network partitioning. The road network is split into five subgraphs. Each subgraph 
size is equal to 350 km
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Ratio of MapReduce‑A* efficiency versus direct resolution

To prove the efficiency of the proposed framework, we performed tests with different 
road graphs on a single-node cluster. This means that only one node plays both the 
master and slave roles. Table 3 reports the computational times between A* and our 
MRA*. Columns TA∗ and TMRA∗ contain respectively the computation times in sec-
onds of A* and MRA∗ . We remarked that the proposed version of A* outperformed 
the sequential A* and it reduces considerably the time complexity. For example with 
a graph size of 7 Gbit composed of 70,000 vertices and 3.6 billion of data recording 
in its adjacent matrix, we computed the shortest path in 2939 s (00:26:40) with our 
MRA∗ approach versus 177,948 s (49:25:48 ≈ 2 days 27 min) with A∗ . In many worst 
cases, we had to kill and rerun the execution of the sequential A* program when we 
faced problem with Java heap memory. The improvement ratio shows that the pro-
posed approach is on average 150 times faster than sequential A*. By deduction we 
noted that MRA∗ is also 15 times faster than HPA* (another extension of A*), given 
that it has been shown in [31] that HPA* is on average ten times faster than A*.

Influence of number of core processors on the computational time

The first topic of interest consists of analyzing the impact of increasing number of core 
processors per node on the computational time. Figure  11 shows that the increasing 
number of cores reduces the total computational time. Whenever a new core processor 

Table 2 Subgraph boundaries

Subgraph Starting point Ending point

Name Lat lon Name Lat lon

1 Tangier 35.759 − 5.818 El Gara 33.24 − 7.15

2 El Gara 33.24 − 7.15 Ait M’Hamed 31.857 − 6.498

3 Ait M’Hamed 31.857 − 6.498 Ikiafene 29.663 − 9.638

4 Ikiafene 29.663 − 9.638 Boukraa 26.341 − 12.841

5 Boukraa 26.341 − 12.841 Dahkla 23.03 − 15.02

Fig. 8 Map stage: computation of partial solutions. The intermediate paths are computed across the five 
slave nodes
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Fig. 9 Reduce stage: concatenation of partial paths. The set of intermediate paths are merged to build the 
full path

Fig. 10 Output stage: writing of the full paths. The full path solution is uploaded to the distributed file 
system, the user can visualize the solution via the HDFS browser
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is used, the computational time is improved considerably, in particular the time of the 
map stage. We also remarked that the map time occupies on average 90% of total time. 
This is explained by the fact that the tasks in the map stage run on all the vertices of the 
graph, unlike the reduce stage where the tasks run on the selected vertices (vertices in 
closelist).

Influence of number of Hadoop nodes on the computational time

The second topic of interest is the impact of the increasing cluster nodes on the com-
putational time. We performed a tests with a graphs size ranging from 103 Mbit to 
16.6 Gbit. Figure 12 shows the influence of the number of slave nodes on the com-
putational time. We remarked that the computational time varies strongly and is 
significantly improved when extending the cluster from 1 to 6 nodes. The addition 
of new nodes promote the decreasing of the exponential time complexity until the 

Table 3 Comparison of computational time in seconds time between A∗ and MRA∗ 
into a 1-node cluster

n No. data Gsize Time with A* Time with MRA* Ratio

TA∗ tmap tred TMRA∗ TA∗
TMRA∗

8000 64 × 106 0.25 1,5752 157 11 168 94

15,000 22.5 × 107 0.5 35,331 183 18 201 159

20,000 40 × 107 0.8 51,469 233 36 269 191

25,000 62.5 × 107 1.2 77,378 330 53 366 211

30,000 90 × 107 2 101,909 405 76 481 212

40,000 16 × 108 3 129,343 698 91 789 164

50,000 25 × 108 5 152,863 1035 103 1137 134

60,000 36 × 108 7 177,948 1397 203 1600 111

80,000 64 × 108 11.5 269,102 1790 408 2198 122

90,000 81 × 108 14 31,4425 2100 568 2668 118

100,000 10 × 109 16.6 359,747 2257 682 2939 122

Average ratio of time improvement 149

Fig. 11 Impact of number of core processors on the computational time (with graph of 60,000 vertices)
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linearity time is reached. For example, with the same graph of 60,000 vertices, the 
time decreases from 1600 to 764 s with 2 nodes and from 764  to 322 s with 3 nodes. 
Beyond 3 nodes, the addition of new nodes does not improve the computational time. 
This means that the nodes 4, 5 and 6 are not used by the framework for the path com-
putation. This leads us to consider that there exists an optimal number of nodes for a 
given graph that satisfies the full path computation.

Influence of number of subgraphs on the computational time and the result quality

The third topic of interest concerns the impact of number of subgraphs size on the com-
putational time and the result quality. We performed the tests on a graph size of 1.6 Gbit 
containing 25,000 vertices. We physically split the graph under 9 blocks ( Nblock = 9 ) 
while varying the total number of subgraphs from 1 to 16 ( Ngraph ∈ [1, 16] ). The results 
in Fig. 13 show that when the number of subgraphs is lower than the number of blocks 
( Ngraph < Nblock ), then the obtained result is optimal ( ǫ = 0 ). On the other hand, when 
the number of subgraphs is greater than the number of blocks ( Ngraph > Nblock ), then 
the time is improved but to the detriment of the result quality (e.g. ǫ ∈]0, 0.5%[ ). The 
best time that guarantees optimal results is obtained when the number of subgraphs is 
equal to the number of blocks ( Ngraph = Nblock = 9).

Influence of blocks size and subgraphs length on the computational time

This topic of interest concerns the impact of blocks size variation on the computational 
time. We performed different tests by physically splitting the graph under blocks size 
Bblock ∈ {64, 128, 256}Mbit while varying the subgraphs length l from 40 to 400 km 
(this corresponds respectively to a subgraphs size ranging from 0.34 to 2 Gbit). Table 4 
reports the obtained results. We remarked that the computation time is faster with 
small blocks size (e.g. Bblock = 64 Mbit). Also, this time increases with the increasing 
subgraphs length. Thirdly, when the subgraphs size is equal to or larger than the blocks 
size ( G′

size ≥ Bsize ), the time does not improve and remains constant. For example with 

Fig. 12 Influence of number of nodes on the the computation time
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the blocks size fixed to 64 Mbit, the time remains equal to 460 s for all subgraphs size 
G′
size ≥ 64.

MapReduce‑A* versus MapReduce‑Dijkstra

In this section, we compare our framework with the MapReduce framework of Dijk-
stra proposed by Aridhi et  al. in [6]. We performed tests with the data sets of the 
french road network graph used in [6]. Figure  14 compares the computation time 
of our MapReduce-A* approach with the computation time of MapReduce-Dijkstra 
approach while ranging the subgraphs length l from 15 to 200 km. The test was also 
performed by varying the cluster size from 1 to 6 nodes. As shown in Fig.  14, we 
remarked that the two frameworks run more quickly in large cluster nodes and in all 
cases, they only use 4 nodes of the cluster to satisfy the shortest path computation. 
However the computation times differ according to the variation of the subgraphs 
length l in km. In the first two cases, when the subgraphs length are small (l = 15 km 

Fig. 13 Impact of number of subgraphs on the computational time and the result quality

Table 4 Impact of blocks size and subgraphs length on the computational time in seconds

l G′
size Total time TMRA∗

Bsize = 64 Bsize = 128 Bsize = 256

60 0.3 371 376 368

78 0.4 412 409 409

100 0.5 463 464 464

109 0.6 460 517 532

125 0.7 458 596 605

156 0.8 459 753 754

200 1 461 1003 1065

265 1.3 460 1008 1149

400 2 461 1004 1164

Average time 445 681 726
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and l = 50 km), we remarked that the proposed framework is faster than MapReduce-
Dijkstra framework. On the other hand, in the last two cases with large subgraphs (l 
= 100 km and l = 200 km), the MapReduce-Dijkstra framework presents better time 
performance. Like the MapReduce-Dijkstra, the proposed MapReduce-A* frame-
work consumes low number of machines in the cluster and is on average 1.15 time 
faster than MapReduce-Dijkstra. Moreover, our framework computes the full path in 
only one iteration instead of MapReduce framework of Dijkstra that requires many 
iterations.

Discussion
In this section, we are discussing about two topics related to the experiment results. The 
first topic concerns the optimal usage of the cluster. A cluster is defined as optimal if 
all nodes within the cluster participate in the full path computation. The answer to this 
question depends on the cluster configuration and the number of generated subgraphs. 
For the moment there is no formula for determining the optimal number of nodes for 
a given graph. However, a solution emanating from our experimental study consists of 
firstly splitting the graph under Nnode × Nmap

core  subgraphs in the input stage. Secondly, 
in the map stage we set the number of mappers to be equal to the number of subgraphs 
( Nmap = Ngraph ). Third, in the reduce stage, we fix the number of reducers to Nnode × 
Nred
core . This solution allows an optimal usage of the cluster but does not guarantee the 

optimal solution.
The second topic treats the optimality of the obtained solution. As shown in the exper-

imental analysis, the quality of results depends on two parameters: the subgraphs length 
in km and the blocks size. We have remarked that when we set the subgraphs length l so 
that the subgraphs size G′

size are on average equal to the blocks size Bsize , then we get a 
result without optimality error ( ǫ = 0). So to conclude, the optimal solution is obtained 
when G′

size ≈ Bsize.

Fig. 14 Comparison of the computational time of MapReduce-Dijkstra [6] and MapReduce-A*
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Conclusion and further works
To sum up, in this paper, we proposed a novel parallel and distributed version of A* for 
computing the shortest path in large-scale road networks. The proposed approach is 
based on MapReduce framework. The experiments demonstrated that our framework 
presents better performance and reduces significantly the computation time, it is scal-
able and works well in large cluster. In addition to that, it is reliable and can be used in 
GPS systems for navigating on very large road networks. In the light of all these, our 
work represents a contribution and may attract more interest for other graph traversal 
algorithms. It can be adapted and extended to social network analysis (e.g Facebook or 
Twitter) or DNA sequencing problem related to bioinformatic in order to accelerate the 
process of determining the order of nucleotides within DNA graph. For future work, we 
are interested in :

  • Adapting the traveling salesman problem to such framework.
  • Proposing a novel framework based on Big Data graph analysis tools such as Neo4j 

or Apache Shindig to better explore the road network graph.
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