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Introduction
This work proposes a fast parallel framework for graph compression based on the notion 
of cliques. There are two fundamentally important challenges in the era of big graph 
data  [1], namely, developing faster and more efficient graph algorithms and reducing 
the amount of space required to store the graph on disk or load it into memory [2, 3]. 
As such, we propose a clique-based graph compression method called GraphZIP that 
improves both the runtime and performance of graph algorithms (and more generally 
computations). Moreover, it reduces the space required to store the graph in both mem-
ory and disk and carry out computations. In addition, the techniques are shown to be 
effective for compressing both large sparse graphs as well as dense graphs. Both types 
of graphs arise frequently in many application domains and thus are of fundamental 
importance.

The clique-based methods support both lossless  [4] and lossy graph compression  [5]. 
For lossless compression, any heuristic or exact clique finder can be used in the clique 
discovery phase [6–9]. Heuristic clique finders are faster but lead to worse compression. 
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Depending on application domain constraints, one may trade off time and accuracy (better 
compression). For instance, compressing the graph is a one-time cost and for many appli-
cations it might be warranted to spend extra time computing a better compression (via an 
exact clique finder). These techniques are also flexible for lossy graph compression by relax-
ing the notion of clique via any arbitrary clique relaxation [10–12]. For instance, consider 
approximate cliques (near-cliques) that are missing a few edges (that would otherwise 
form a valid clique). Thus, it is easy to simply encode the missing edges as errors, and use 
previous techniques with the exception that the computations would need to incorporate 
the errors, which adds a small computational cost, but may reduce the space needed quite 
significantly. Clearly, the pseudo cliques must not have too many missing edges (errors), 
otherwise the computational costs outweigh the benefits. Most of these algorithms are 
easily constrained such that a pseudo clique does not contain more than k missing edges.

The applications and advantages of such graph compression techniques are endless. 
For instance, parallel computing architectures such as the GPU  [13–15] have limited 
memory and thus unable to handle massive graphs [16, 17]. In addition, GPU algorithms 
must be designed with this limitation in mind, and in many cases, may be required 
to perform significantly more computations, in order to avoid using additional mem-
ory  [18, 19]. For instance, checking if a neighbor exists on the CPU takes o(1) using a 
perfect hash table whereas on the GPU it takes O(log |N (v)|) using a binary search. This 
is because storing a perfect hash table for each worker (core, processing unit) on the 
GPU is impractical for most graphs.

Existing graph algorithms may leverage the proposed graph encoding with little effort 
(as opposed to the existing specialized techniques). For instance, it can easily replace the 
current graph encoding such as CSR/CSC [20] and the ilk by implementing a few graph 
primitive functions such as “retrieve neighbors of a node”, “check if a neighbor exists”, 
“get degree of a node”, among other primitive graph operations used as building blocks. 
Most importantly, the method is efficient for big data and easily parallelized for both 
shared and distributed memory architectures. The method also has a variety of applica-
tions beyond the time and space improvements described above. For instance, one may 
use this technique to visualize graph data better as the large cliques can be combined to 
reveal other important structural properties [21, 22].

The compression is guaranteed to reduce space, IO costs, and improve performance 
of algorithms, as long as there exists cliques in the graph (of size k ≤ 3 ). In large sparse 
graphs, the compression performs best for graphs that contain many reasonably sized 
cliques. Fortunately, many real-world networks are known to have such properties 
including social  [23] and biological networks  [24], web graphs, information networks, 
and many other real-world networks [6]. Notice that this strategy is suitable for directed 
networks as well, since cliques in these networks must be formed by reciprocal edges 
(edges in both directions, (u,  v) and (v,  u), as well as bicliques in bipartite graphs. As 
mentioned previously, the algorithm is effective as long as the size and frequency of the 
cliques are reasonable. The clique-based compression methods described in this work 
may be used as a succinct representation of the graph for both the following:

(1)	 In-memory graph encoding.
(2)	 Disk-resident graph encoding.
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For both in-memory and disk-resident graph encoding, the methods have the following 
benefits:

• • Reduce space/storage requirements.
• • Speedup graph algorithms/computations and primitives.
• • Reduce IO costs (e.g., CPU to GPU).
• • Improve caching (and thus performance).

Summary of contributions

We propose a class of clique-based graph compression techniques. Our main contribu-
tions are as follows:

Query preserving compression

Given an arbitrary query Q on G, the query Q can be evaluated directly using the significantly 
smaller compressed graph Gc. Thus, any algorithm for answering Q in G can be applied to 
answer Q in the compressed graph Gc , without requiring decompression. This is in contrast 
to many existing techniques designed for social networks [25] and web graphs [26–29].

Support for arbitrary graph queries

The approach naturally generalizes for arbitrary graph queries including (i) graph match-
ing queries that determine if a subgraph pattern exists or not, as well as (ii) reachability 
queries that determine whether a path exists between two vertices in G, among others.

Efficient incremental updates

Most real-world graphs are changing over time with the addition or deletion of nodes 
and edges  [30, 31]. As opposed to existing methods, our approach provides efficient 
incremental maintenance of the compressed graph directly. Thus, the compressed graph 
is computed, and then incrementally maintained using fast parallel localized updates. 
In particular, given a new edge (vi, vj) , our approach requires searching only the local 
neighborhood around that edge (to check if a larger clique of size k + 1 is possible).

Parallel

The graph compression method is also scalable for massive data with billions or more 
edges. A parallel implementation of the algorithms is used and shown to be fast and 
scalable for massive networks.

Flexible

The method is flexible for use with other compression techniques. For instance, after 
using the clique-based compression, we can apply another standard compression tech-
nique to reduce the space requirements further. However, depending on the compression 
technique, it may only be useful for storing the graph, and not performing computations 
directly on the compressed graph data. This approach may benefit a wide range of applica-
tions such as relational learning [32], anomaly detection [33–35], role discovery [36], and 
community detection  [37–39]. Furthermore, graph compression techniques have been 
used for various graph mining tasks including comparison of biological networks  [40], 
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frequent pattern discovery  [41], summarizing graph streams  [37], estimation of graph 
properties  [42], among others  [21, 43]. The methods are also useful for storing graphs 
with multiple edge types, etc. GraphZIP favors cliques of the largest possible size, as well 
as cliques that do not overlap with any cliques already detected by the method.

Methods
Preliminaries

Let G = (V ,E) be a graph. Given a vertex v ∈ V  , let N (v) = {w | (v,w) ∈ E} be the set 
of vertices adjacent to v in G. The degree dv of v ∈ V  is the size of the neighborhood 
|N (v)| of v. Let diam(G) = maxv,uD(v,u) denote the diameter of G defined as the long-
est shortest path between any two vertices (v, u) of G where D(v, u) is the graph distance 
between v and u, i.e., the minimum length of the paths connecting them. A clique is a set 
of vertices any two of which are adjacent. The maximum size of a clique in G is the clique 
number of G and is denoted by ω(G) . We exploit many of the fundamental properties of 
cliques in the design of the parallel framework. Importantly, cliques are nested such that 
a clique C of size k contains a clique of size k − 1 . Cliques are closed under exclusion, 
for instance, consider a clique C and v ∈ C , then C − v is also a clique. Hence, a clique C 
is a heredity graph property, since every induced subgraph of C is also a clique. Finally, 
cliques can also be overlapping and in general may overlap in all but a single vertex. In 
network analysis and network science, cliques can be viewed as the most strict defini-
tion of a community. From that perspective, cliques are perfectly dense (degree of k − 1 , 
larger degree not possible), perfectly compact ( diam(C) = 1 ), and perfectly connected, 
i.e., C is a k − 1 vertex-connected and k − 1 edge-connected graph). Examples of cliques 
of size 5 and 10 are provided in Fig. 1. We also use the notion of k-cores. A k-core in G is 
a vertex induced subgraph where all vertices have degree of at least k. The k-core num-
ber of a vertex v denoted as K(v) is the largest k such that v is in a k-core. Let K(G) be the 
largest core in G, then K (G)+ 1 is an upper bound on the size of the maximum clique. 
Many of these facts are exploited in the design of the parallel framework for graph com-
pression and encoding.

For each individual vertex, edge, and subgraph, we place an upper bound on the size of 
the maximum clique possible. These vertex, edge, and subgraph upper bound(s) enable 
us to potentially remove each individual vertex, edge, and subgraph for which a clique of 
maximum size cannot arise (using the individual upper bound on each graph element).

a b
Fig. 1  A clique is a set of vertices any two of which are adjacent. The above examples shows cliques of size 5 
and 10. a 5-clique. b 10-clique
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In‑memory graph encoding

Now, we describe a generalization of the compressed sparse column/row (CSC/CSR) 
encoding [20] for the clique-based graph compression techniques.1 This is particularly 
useful as an in-memory encoding of the graph. In particular, the generalization makes 
it easy for use them with many existing graph algorithms. To generalize CSC/CSR, a 
new vertex type is introduced called a clique vertex. Intuitively, the vertex represents a 
clique C in G and the size of the clique denoted k = |C| must be of a sufficient size. The 
approach always finds and uses the largest such cliques in G to achieve the best com-
pression. However, cliques of size k > 2 are beneficial as they may reduce space, IO 
costs, algorithm performance, and thus, this work requires cliques to be at least k = 3 
and above. Obviously cliques of size 2 are not useful and would not improve compres-
sion. Clearly, the larger the cliques, the more compact the graph can be encoded, result-
ing in reduced IO costs, and so forth.2

The minimum id of a clique vertex (pseudo vertex) starts from vn + 1 , where vn is the 
maximum id of any real vertex. That is,

This way, as long as the algorithm knows vn , it can quickly determine if a vertex is a 
clique vertex or not. In the latter case, the successor iterator would look up the defini-
tion of the clique and subsequently iterate over all the nodes in that clique for the cor-
rect successor generation.3 If a neighbor of a normal vertex is a clique-vertex, then the 
iterator must retrieve the neighbors of the clique vertex. An example of a clique vertex is 
shown in Fig. 4c. For instance, v10 and v11 are clique vertices.

The above scheme includes the original CSC/CSR representation as a special case, that 
is, if no clique (and thus no pseudo vertex) exists in the graph. However, if one or more 
cliques exist, then the proposed clique compression technique is guaranteed to reduce 
the space needed to store the graph. Notice that thus far, the computational cost of vari-
ous graph primitives (check if an edge exists,...) is essentially equivalent to the original 
CSC/CSR (see Fig. 2). For instance, iterating over the neighbors of a node requires us to 
scan the neighbors of a node just as before, with the addition that if a node with an id 
larger than vn is scanned indicating a clique-vertex,4 then we must also scan the neigh-
bors of the clique-vertex. However, the proposed encoding is guaranteed to improve 
caching, since going to these pseudo-vertices and checking for a neighbor, etc. would 
occur frequently, and thus likely to be in cache, etc. Furthermore, in the most basic vari-
ants of the proposed techniques, cliques are vertex disjoint (since they are removed at 
same time they are discovered), thus, while a vertex may participates in many overlap-
ping cliques, the method only finds a single large clique. After the graph compression/

(1)
V = {v1, v2, . . . , vn

︸ ︷︷ ︸

normal vertices

, vn+1, . . .
︸ ︷︷ ︸

clique vertices

}

1  The CSR (CSC) encoding represents a sparse (adjacency) matrix M of a graph G by three arrays that contain 
nonzero values, the extents of rows (columns), and column (row) indices.
2  However, since it requires additional time to find such cliques, then depending on the domain application it might 
be preferred to find cliques of a larger size. Thus, the methods allow for the user to adjust this parameter, which can 
improve runtime at the cost of space.
3  A successor iterator is an enumerator that can be used to obtain a list of the neighbors of a node in some (usually 
deterministic) order.
4  Note that clique vertices are at the end of the list of neighbors for a given vertex.
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encoding is complete, vertex ids are easily exchanged such that all vertices in a clique 
are assigned subsequent ids. Clearly, the benefit of exchanging the vertex ids in such a 
fashion is that many fundamental graph primitives are easily computed in o(1) time. For 
instance, consider the primitive that checks if an edge exists (or checks if a node is a 
neighbor or not), then this takes only o(1) time by simply checking the range (vi, vi+k) to 
determine if the node id is within that range or not. Hence, if we wanted to know if w is 
a neighbor of v, then we just need to go to that clique and check if w falls in that range. 
Clearly, this also improves caching.

Moreover, this also reduces space needed to store the graph (on disk), as we avoid 
writing each clique one by one, and can simply write the first vertex id of that clique. 
For instance, one possibility is to write the first vertex id of each clique (in order) on the 
first line of each file. See Fig. 3 for an example illustrating the space savings using such an 
approach to encode the graph in Fig. 4. To read this type of compressed graph from disk 
(assuming the graph reader simply reads the graph and encodes it using any arbitrary 
encoding), we would read the first actual line, and immediately know the cliques by sim-
ply examining the start id and the vertex start id of the next clique. Notice that this also 
reduces costly IO associated with reading the graph from disk, and/or the IO involved 
in sending the data from the CPU to GPU, or across the network in a distributed archi-
tecture, etc. Afterwards, the graph reader would proceed as usual reading the edges, etc.

The difference in cost between storing the cliques directly and the format that relabels 
vertices (that is, exchanges vertex ids) based on the cliques is O(

∑

C∈C |C|) compared 
to O(|C| + 1) . As shown in "Results and discussion" section, this difference is significant 
for many real-world graphs since |C| is often thousands (and in many cases much larger), 
and the cliques in C can often be quite large as well. Cost of encoding all remaining edges 
is identical and thus not shown above. Note that the cost above is for disk-resident graph 
encodings. Though, the difference is similar for in-memory encodings.

Example

Given the simple graph in Fig. 4a, the method identifies the cliques of largest size shown 
in Fig.  4b. Figure  4c shows an intuitive example of a possible graph encoding scheme 
using the proposed framework. To store the graph compactly (e.g., to disk), notice 
that one can simply write the cliques to a file such that each line contains the vertices 

Fig. 2  Generalized CSR/CSC Data Structures (In-memory graph encoding). Cost of this particular in-memory 
graph encoding is 11 (or O(|V | + |C|) ) for the ptr array (top) whereas the other is only 14, for a total of 27. 
This is compared to the popular CSC/CSR that requires arrays of size 9 and 34 for a total of 43. Thus, the 
simple encoding reduces the storage costs quite significantly (as well as IO costs, while improving algorithm 
performance as the computational costs of many graph primitives are also reduced using this encoding. 
Moreover, it is guaranteed to improve caching. Note that storing the graph to disk in a lossless fashion is even 
more efficient, since one can simply write “ v1 v6 v10 ” as the first line, followed by the edge v5 v6
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1 6 10
5 6

1 2
1 3
1 4
1 5
2 3
2 4
2 5
3 4
3 5
4 5
5 6
6 7
6 8
6 9
7 8
7 9
8 9

Fig. 3  GraphZIP compressed format (left) vs. edge list without clique compression (right)

a b

c
Fig. 4  Overview and intuition for the proposed graph compression techniques. a Simple graph. b Cliques 
identified. c Encoding Intuition
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of a clique C ∈ C , followed by the remaining edges (between nodes that do not share a 
clique). This can be reduced further by first recoding the vertex ids such that the ver-
tex ids in the cliques are C1 = {v1, . . . , vk} , C2 = {vk+1, . . . , } , and so on. Now, it is pos-
sible to encode the vertices in each clique by simply storing the first (min) vertex id. For 
instance, in-memory or on disk, the first vertex id of each clique is stored one after the 
other, for instance, storing v1, v6, v10 (in memory as an array, or to disk/a single line of 
a file) is enough since the clique Ci is retrieved by examining the ith position. That is, 
to retrieve the first clique in Fig. 4b, we retrieve the first vertex v1 and can compute the 
last vertex id by the i + 1 position, which corresponds to the first vertex id of the clique 
i + 1 . Thus, using this, we immediately get the last vertex id v5 . Furthermore, fundamen-
tal graph primitives (such as “checking if a node is a neighbor”) may benefit from this 
encoding as many graph operations can be answered in ≀(1) with a simple range check.

Algorithm

The set of cliques C (used in the compression schemes) is computed via the iterative 
algorithm in Algorithm 1. Once the set of cliques C are found (see Algorithm 1), any of 
the graph encoding methods may be used (e.g., see Fig. 4).

Heuristic and exact clique methods are used for finding the largest possible clique at 
each iteration (Algorithm 1 Line  4). The heuristic method is faster but results in slightly 
less compression, whereas the exact clique ordering takes longer, but results in a better 
compression. Many other variants also exist. For instance, one approach that performed 
well was to search only the top-k vertices (using either a heuristic or exact clique finder, 
that is, a method that for each vertex neighborhood subgraph N (v) returns either a large 
clique or the maximum clique existing at that vertex neighborhood). The top-k verti-
ces to search were chosen based on the maximum k-core number of each vertex.5 This 
ordering can then be recomputed after each iteration as it is fast taking O(|E|) where |E| 
is the number of edges remaining in G.

Algorithm 1 GraphZIP
1 input: G = (V,E) – a graph
2 δ – stopping criterion for smallest clique
3 repeat
4 Find a maximum clique C in parallel
5 Add C to the set of cliques C, that is, C ← C ∪ {C}
6 Remove C from the graph G

7 until all vertices are removed or |C| < δ

8 return the set of cliques C (for use with encoding schemes)

Many other variations of Algorithm 1 also exist. For instance, instead of removing C 
entirely (Line 6), one may allow some amount of overlap between the cliques in C . Obvi-
ously, if there exists two cliques Ci,Cj ∈ C and both overlap significantly, then there is 
little benefit of using both in the encoding/compression.6 However, allowing cliques that 

5  In general, any vertex ordering may be used.
6  Significant overlap between cliques occurs frequently due to properties discussed in "Preliminaries" section.
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overlap with only a few vertices may allow further reductions in space, at the expense of 
additional computational costs to find these cliques and ensure that there is not signifi-
cant overlap. This can be formalized as,

where θ is the fraction of vertices allowed to overlap. Clearly, other types of “score func-
tions” may also be useful and used interchangeably. As an aside, GraphZIP is also robust 
to missing data due to a property of cliques. For instance, if a node is missing at random, 
then the size of the clique for which this node would participate is at most decreased by 
one due to the hereditary property of cliques.

Parallel algorithm variant

Parallel variations of the proposed class of methods are discussed below. Let 
S = {S1, . . . , Sk} be the set of independent sets. We obtain S using a greedy coloring 
method that attempts to find a minimum k and a mapping s : V → {1, . . . , k} such that 
s(v) = s(u) for each edge (v,u) ∈ E , see [44] for a large-scale study of greedy coloring of 
large complex networks. Select the independent set Si from S with the largest set of ver-
tices contained in the maximum k-core subgraph. Then find the largest clique for each 
vertex in Si , and add them to the set of cliques C . Since, we find cliques centered at the 
vertices in the independent set Si , the cliques are guaranteed to be non-overlapping. This 
allows for the cliques to be found in parallel, without much effort. We choose the inde-
pendent set containing the maximum number of vertices in the largest k-core since the 
maximum clique typically arises from these vertices. Order the vertices in the independ-
ent sets from the greedy coloring as follows:

where the independent sets are ordered by binning the vertices in each Si by k-core 
numbers, and selecting the set Si with the maximum number of vertices in the largest 
possible k-core subgraph.

This is computed in parallel by assigning each worker (i.e., processing unit) the next 
available vertex in the current independent set. Suppose there are p1, . . . , pt workers 
(i.e., processing units, cores) and the block size β = 1 , then the first t vertices in S1 in 
order are assigned to each of the t workers. The intuition behind the ordering is that we 
want to find the largest cliques first, and these are most likely in the largest k-cores.

Results and discussion
To evaluate the effectiveness of the proposed techniques, we use a wide variety of real-
world graphs7 from different application domains.

(2)
|Ci ∩ Cj|

|Ci ∪ Cj|
≥ θ

(3)
S1, S2, S3, . . . , Si, . . . , Sk
︸ ︷︷ ︸

independent sets from greedy coloring

(4)
v1, v2, v3, v4, . . . , vi
︸ ︷︷ ︸

S1

, vi+1, . . . , vj
︸ ︷︷ ︸

S2

, · · · , vh, vh+1, . . . , vn
︸ ︷︷ ︸

Sk

7  Data accessible at http://www.netwo​rkrep​osito​ry.com.

http://www.networkrepository.com
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Table 1 shows the effectiveness of GraphZIP for compressing a variety of real-world 
graphs. Note space savings is defined as the reduction in size relative to the uncom-
pressed size: Sc = 1− G

Gc
 . GraphZIP reduces the memory requirements by at least 20% 

across all graphs as shown in Table 1. Strikingly, we observe a 64% reduction in space 
when GraphZIP is used with web-indochina. Overall, GraphZIP appears to work best 
on web graphs followed by collaboration networks. Further analysis revealed that these 
graphs all have large cliques that are often much larger than cliques that arise in the 
other network types such as biological or interaction networks. We also report runtime 
performance in seconds. In most cases, GraphZIP takes only a few seconds as shown 
in the last column of Table 1. As an aside, the compression results in Table 1 are for the 
basic GraphZIP format where each clique C ∈ C is written on each line, followed by the 
remaining edges not in those cliques. Space can be further reduced using the GraphZIP 
format that relabels the vertex ids based on the cliques.

Results for compressing the encoded graph is shown in Table 2. These results use the 
same basic GraphZIP format used in Table 1 but reduce the space further by applying 
an additional compression technique to further compress the graph. This is most useful 
for storing large graphs on disk. Table 3 compares GraphZIP to the bvgraph compres-
sion method using Layered Label Propagation (LLP) order [45]. In both cases, GraphZIP 
compares favorably to this approach.

Figure 5 analyzes and compares the performance of four variants of GraphZIP. In par-
ticular, we compare a clique variant that uses an exact clique finder with degree order-
ing (exact-deg), exact clique finder with k-core ordering (exact-kcore), a heuristic clique 
finder with degree ordering (heu-deg), and a heuristic clique finder with k-core order-
ing (heu-kcore). The results indicate that performance is highly dependent on whether a 
heuristic or exact clique finder is used and the initial ordering (degree, k-core numbers), 

Table 1  GraphZIP compression results for a variety of real-world graphs. Note Sc denotes 
the space saved by GraphZIP defined as Sc = 1−

Gc

G

Graph ρ G (bytes) Gc (bytes) Space 
savings ( Sc)

2χ comp. ratio Time (s)

ia-enron-only 0.0614 4119 3004 27.07 69.94 0.006

ia-infect-dub. 0.0330 20,662 13,287 35.69 79.90 0.007

ia-email-univ 0.0085 41,868 32,405 22.60 79.34 0.017

bio-DD21 0.0009 136,847 85,510 37.51 80.72 0.139

ca-HepPh 0.0019 1,178,671 498,661 57.69 89.49 5.637

ca-AstroPh 0.0012 2,121,214 1,423,607 32.89 65.89 1.294

ca-CondMat 0.0004 1,001,147 695,000 30.58 80.46 0.892

ca-MathSciNet 0.0000 10,482,388 8,370,757 20.14 76.53 24.909

web-google 0.0033 23,043 12,216 46.99 81.42 0.004

web-BerkStan 0.0003 199,330 135,813 31.87 86.55 0.170

web-sk-2005 0.0000 4,083,783 2,040,783 50.03 92.60 9.030

web-indochina 0.0007 473,984 167,729 64.61 94.23 0.141

soc-gplus 0.0001 453,060 328,927 27.40 92.36 0.046

hamming6-2 0.9048 10,493 4916 53.15 90.59 0.004

hamming8-2 0.9686 226,317 110,838 51.03 96.32 0.745

c-fat200-1 0.0771 10,664 4674 56.17 84.57 0.003

chesapeake 0.2294 1035 749 27.63 58.94 0.001
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Table 2  Results comparing the encoded graph Gc to the compressed f (Gc)

Graph Space savings, Sc = 1−
Gc

G

Encoded graph, Gc Compressed, 
f (Gc)

ia-enron-only 27.07 69.94

ia-infect-dub. 35.69 79.90

ia-email-univ 22.60 79.34

bio-DD21 37.51 80.72

ca-HepPh 57.69 89.49

ca-AstroPh 32.89 65.89

ca-CondMat 30.58 80.46

web-google 46.99 81.42

web-BerkStan 31.87 86.55

web-sk-2005 50.03 92.60

web-indochina 64.61 94.23

soc-gplus 27.40 92.36

hamming6-2 53.15 90.59

hamming8-2 51.03 96.32

c-fat200-1 56.17 84.57

chesapeake 27.63 58.94
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Fig. 5  Four variants of GraphZIP are compared. Runtime decreases with clique size as a result of the search 
space shrinking after each clique is found and removed from the graph. Further, the heuristic is 2-3 times 
faster than the exact clique finder. a Time. b Clique size

Table 3  GraphzIP Compared to bvgraph compression with layered label propagation (Llp) 
order

Graph |V| (bytes) |E| (bytes) G (bytes) SLLC (bytes) SC (bytes) SF(GC ) 
(bytes)

Socfb-Penn 42K 1.4M 4237,507 40.49 46.56 78.16

Socfb-Texas 36K 1.6M 4,605,427 29.80 34.13 79.53
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especially for the two exact variants (exact-deg, exact-kcore). Variants are straightfor-
ward to adapt to lower computational costs. Figure  6 shows the nonzero structure of 
the adjacency matrices using the initial vertex ordering compared to the clique ordering 
approach that orders vertices by the largest clique in which they appear. On the right, 
cliques are organized along the diagonal in descending order of size. The dense off diago-
nal blocks indicate other cliques that are tightly connected giving rise to a much larger 
near-clique

Conclusion
In this work, we described a class of of clique-based graph compression methods that 
leverage large cliques in real-world networks. Using this as a foundation, the proposed 
technique decomposes a graph into a set of large cliques, which is then used to compress 
and encode the graph succinctly. Disk-resident and in-memory graph encodings were 
proposed and shown to be effective with the following important benefits: (1) It reduces 
the space needed to store the graph on disk (or other permanent storage device) and 

Fig. 6  Clique ordering is shown on the right compared to the initial ordering on the left. The dense off 
diagonal blocks reveal large cliques along the diagonal that are tightly connected and form much larger 
near-cliques. a Initial ordering. b Clique ordering
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in-memory, (2) GraphZIP reduces IO traffic involved in using the graph, (3) it reduces 
the amount of work involved in running an algorithm on the graph, and (4) improves 
caching and performance. The graph compression techniques were shown to reduce 
memory (both on disk and in-memory) and speedup graph computations considerably. 
The methods also have a variety of applications beyond the time and space improve-
ments described above. For instance, one may use this technique to visualize graph data 
better as the large cliques can be combined to reveal other important structural proper-
ties. Future work will explore using GraphZIP and its in-memory encoding to speedup 
common graph algorithms. This requires implementation of graph primitives that lever-
age the encoding. In addition, we will also investigate GraphZIP for compressing graphs 
from a variety of other domains.
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