
GraphZIP: a clique‑based sparse graph
compression method
Ryan A. Rossi1*  and Rong Zhou2

Introduction
This work proposes a fast parallel framework for graph compression based on the notion
of cliques. There are two fundamentally important challenges in the era of big graph
data [1], namely, developing faster and more efficient graph algorithms and reducing
the amount of space required to store the graph on disk or load it into memory [2, 3].
As such, we propose a clique-based graph compression method called GraphZIP that
improves both the runtime and performance of graph algorithms (and more generally
computations). Moreover, it reduces the space required to store the graph in both mem-
ory and disk and carry out computations. In addition, the techniques are shown to be
effective for compressing both large sparse graphs as well as dense graphs. Both types
of graphs arise frequently in many application domains and thus are of fundamental
importance.

The clique-based methods support both lossless [4] and lossy graph compression [5].
For lossless compression, any heuristic or exact clique finder can be used in the clique
discovery phase [6–9]. Heuristic clique finders are faster but lead to worse compression.

Abstract 

Massive graphs are ubiquitous and at the heart of many real-world problems and
applications ranging from the World Wide Web to social networks. As a result, tech-
niques for compressing graphs have become increasingly important and remains a
challenging and unsolved problem. In this work, we propose a graph compression and
encoding framework called GraphZIP based on the observation that real-world graphs
often form many cliques of a large size. Using this as a foundation, the proposed tech-
nique decomposes a graph into a set of large cliques, which is then used to compress
and represent the graph succinctly. In particular, disk-resident and in-memory graph
encodings are proposed and shown to be effective with three important benefits. First,
it reduces the space needed to store the graph on disk (or other permanent storage
device) and in-memory. Second, GraphZIP reduces IO traffic involved in using the
graph. Third, it reduces the amount of work involved in running an algorithm on the
graph. The experiments demonstrate the scalability, flexibility, and effectiveness of
the clique-based compression techniques using a collection of networks from various
domains.

Keywords:  Graph compression, Large cliques, Graph encoding, Sparse graphs, Graph
algorithms

Open Access

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Rossi and Zhou ﻿J Big Data (2018) 5:10
https://doi.org/10.1186/s40537-018-0121-z

*Correspondence:
rrossi@adobe.com
1 Adobe Research, 345 Park
Ave, San Jose, CA, USA
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0001-9758-0635
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-018-0121-z&domain=pdf

Page 2 of 14Rossi and Zhou ﻿J Big Data (2018) 5:10

Depending on application domain constraints, one may trade off time and accuracy (better
compression). For instance, compressing the graph is a one-time cost and for many appli-
cations it might be warranted to spend extra time computing a better compression (via an
exact clique finder). These techniques are also flexible for lossy graph compression by relax-
ing the notion of clique via any arbitrary clique relaxation [10–12]. For instance, consider
approximate cliques (near-cliques) that are missing a few edges (that would otherwise
form a valid clique). Thus, it is easy to simply encode the missing edges as errors, and use
previous techniques with the exception that the computations would need to incorporate
the errors, which adds a small computational cost, but may reduce the space needed quite
significantly. Clearly, the pseudo cliques must not have too many missing edges (errors),
otherwise the computational costs outweigh the benefits. Most of these algorithms are
easily constrained such that a pseudo clique does not contain more than k missing edges.

The applications and advantages of such graph compression techniques are endless.
For instance, parallel computing architectures such as the GPU [13–15] have limited
memory and thus unable to handle massive graphs [16, 17]. In addition, GPU algorithms
must be designed with this limitation in mind, and in many cases, may be required
to perform significantly more computations, in order to avoid using additional mem-
ory [18, 19]. For instance, checking if a neighbor exists on the CPU takes o(1) using a
perfect hash table whereas on the GPU it takes O(log |N (v)|) using a binary search. This
is because storing a perfect hash table for each worker (core, processing unit) on the
GPU is impractical for most graphs.

Existing graph algorithms may leverage the proposed graph encoding with little effort
(as opposed to the existing specialized techniques). For instance, it can easily replace the
current graph encoding such as CSR/CSC [20] and the ilk by implementing a few graph
primitive functions such as “retrieve neighbors of a node”, “check if a neighbor exists”,
“get degree of a node”, among other primitive graph operations used as building blocks.
Most importantly, the method is efficient for big data and easily parallelized for both
shared and distributed memory architectures. The method also has a variety of applica-
tions beyond the time and space improvements described above. For instance, one may
use this technique to visualize graph data better as the large cliques can be combined to
reveal other important structural properties [21, 22].

The compression is guaranteed to reduce space, IO costs, and improve performance
of algorithms, as long as there exists cliques in the graph (of size k ≤ 3 ). In large sparse
graphs, the compression performs best for graphs that contain many reasonably sized
cliques. Fortunately, many real-world networks are known to have such properties
including social [23] and biological networks [24], web graphs, information networks,
and many other real-world networks [6]. Notice that this strategy is suitable for directed
networks as well, since cliques in these networks must be formed by reciprocal edges
(edges in both directions, (u, v) and (v, u), as well as bicliques in bipartite graphs. As
mentioned previously, the algorithm is effective as long as the size and frequency of the
cliques are reasonable. The clique-based compression methods described in this work
may be used as a succinct representation of the graph for both the following:

(1)	 In-memory graph encoding.
(2)	 Disk-resident graph encoding.

Page 3 of 14Rossi and Zhou ﻿J Big Data (2018) 5:10

For both in-memory and disk-resident graph encoding, the methods have the following
benefits:

• • Reduce space/storage requirements.
• • Speedup graph algorithms/computations and primitives.
• • Reduce IO costs (e.g., CPU to GPU).
• • Improve caching (and thus performance).

Summary of contributions

We propose a class of clique-based graph compression techniques. Our main contribu-
tions are as follows:

Query preserving compression

Given an arbitrary query Q on G, the query Q can be evaluated directly using the significantly
smaller compressed graph Gc. Thus, any algorithm for answering Q in G can be applied to
answer Q in the compressed graph Gc , without requiring decompression. This is in contrast
to many existing techniques designed for social networks [25] and web graphs [26–29].

Support for arbitrary graph queries

The approach naturally generalizes for arbitrary graph queries including (i) graph match-
ing queries that determine if a subgraph pattern exists or not, as well as (ii) reachability
queries that determine whether a path exists between two vertices in G, among others.

Efficient incremental updates

Most real-world graphs are changing over time with the addition or deletion of nodes
and edges [30, 31]. As opposed to existing methods, our approach provides efficient
incremental maintenance of the compressed graph directly. Thus, the compressed graph
is computed, and then incrementally maintained using fast parallel localized updates.
In particular, given a new edge (vi, vj) , our approach requires searching only the local
neighborhood around that edge (to check if a larger clique of size k + 1 is possible).

Parallel

The graph compression method is also scalable for massive data with billions or more
edges. A parallel implementation of the algorithms is used and shown to be fast and
scalable for massive networks.

Flexible

The method is flexible for use with other compression techniques. For instance, after
using the clique-based compression, we can apply another standard compression tech-
nique to reduce the space requirements further. However, depending on the compression
technique, it may only be useful for storing the graph, and not performing computations
directly on the compressed graph data. This approach may benefit a wide range of applica-
tions such as relational learning [32], anomaly detection [33–35], role discovery [36], and
community detection [37–39]. Furthermore, graph compression techniques have been
used for various graph mining tasks including comparison of biological networks [40],

Page 4 of 14Rossi and Zhou ﻿J Big Data (2018) 5:10

frequent pattern discovery [41], summarizing graph streams [37], estimation of graph
properties [42], among others [21, 43]. The methods are also useful for storing graphs
with multiple edge types, etc. GraphZIP favors cliques of the largest possible size, as well
as cliques that do not overlap with any cliques already detected by the method.

Methods
Preliminaries

Let G = (V ,E) be a graph. Given a vertex v ∈ V  , let N (v) = {w | (v,w) ∈ E} be the set
of vertices adjacent to v in G. The degree dv of v ∈ V is the size of the neighborhood
|N (v)| of v. Let diam(G) = maxv,uD(v,u) denote the diameter of G defined as the long-
est shortest path between any two vertices (v, u) of G where D(v, u) is the graph distance
between v and u, i.e., the minimum length of the paths connecting them. A clique is a set
of vertices any two of which are adjacent. The maximum size of a clique in G is the clique
number of G and is denoted by ω(G) . We exploit many of the fundamental properties of
cliques in the design of the parallel framework. Importantly, cliques are nested such that
a clique C of size k contains a clique of size k − 1 . Cliques are closed under exclusion,
for instance, consider a clique C and v ∈ C , then C − v is also a clique. Hence, a clique C
is a heredity graph property, since every induced subgraph of C is also a clique. Finally,
cliques can also be overlapping and in general may overlap in all but a single vertex. In
network analysis and network science, cliques can be viewed as the most strict defini-
tion of a community. From that perspective, cliques are perfectly dense (degree of k − 1 ,
larger degree not possible), perfectly compact ( diam(C) = 1 ), and perfectly connected,
i.e., C is a k − 1 vertex-connected and k − 1 edge-connected graph). Examples of cliques
of size 5 and 10 are provided in Fig. 1. We also use the notion of k-cores. A k-core in G is
a vertex induced subgraph where all vertices have degree of at least k. The k-core num-
ber of a vertex v denoted as K(v) is the largest k such that v is in a k-core. Let K(G) be the
largest core in G, then K (G)+ 1 is an upper bound on the size of the maximum clique.
Many of these facts are exploited in the design of the parallel framework for graph com-
pression and encoding.

For each individual vertex, edge, and subgraph, we place an upper bound on the size of
the maximum clique possible. These vertex, edge, and subgraph upper bound(s) enable
us to potentially remove each individual vertex, edge, and subgraph for which a clique of
maximum size cannot arise (using the individual upper bound on each graph element).

a b
Fig. 1  A clique is a set of vertices any two of which are adjacent. The above examples shows cliques of size 5
and 10. a 5-clique. b 10-clique

Page 5 of 14Rossi and Zhou ﻿J Big Data (2018) 5:10

In‑memory graph encoding

Now, we describe a generalization of the compressed sparse column/row (CSC/CSR)
encoding [20] for the clique-based graph compression techniques.1 This is particularly
useful as an in-memory encoding of the graph. In particular, the generalization makes
it easy for use them with many existing graph algorithms. To generalize CSC/CSR, a
new vertex type is introduced called a clique vertex. Intuitively, the vertex represents a
clique C in G and the size of the clique denoted k = |C| must be of a sufficient size. The
approach always finds and uses the largest such cliques in G to achieve the best com-
pression. However, cliques of size k > 2 are beneficial as they may reduce space, IO
costs, algorithm performance, and thus, this work requires cliques to be at least k = 3
and above. Obviously cliques of size 2 are not useful and would not improve compres-
sion. Clearly, the larger the cliques, the more compact the graph can be encoded, result-
ing in reduced IO costs, and so forth.2

The minimum id of a clique vertex (pseudo vertex) starts from vn + 1 , where vn is the
maximum id of any real vertex. That is,

This way, as long as the algorithm knows vn , it can quickly determine if a vertex is a
clique vertex or not. In the latter case, the successor iterator would look up the defini-
tion of the clique and subsequently iterate over all the nodes in that clique for the cor-
rect successor generation.3 If a neighbor of a normal vertex is a clique-vertex, then the
iterator must retrieve the neighbors of the clique vertex. An example of a clique vertex is
shown in Fig. 4c. For instance, v10 and v11 are clique vertices.

The above scheme includes the original CSC/CSR representation as a special case, that
is, if no clique (and thus no pseudo vertex) exists in the graph. However, if one or more
cliques exist, then the proposed clique compression technique is guaranteed to reduce
the space needed to store the graph. Notice that thus far, the computational cost of vari-
ous graph primitives (check if an edge exists,...) is essentially equivalent to the original
CSC/CSR (see Fig. 2). For instance, iterating over the neighbors of a node requires us to
scan the neighbors of a node just as before, with the addition that if a node with an id
larger than vn is scanned indicating a clique-vertex,4 then we must also scan the neigh-
bors of the clique-vertex. However, the proposed encoding is guaranteed to improve
caching, since going to these pseudo-vertices and checking for a neighbor, etc. would
occur frequently, and thus likely to be in cache, etc. Furthermore, in the most basic vari-
ants of the proposed techniques, cliques are vertex disjoint (since they are removed at
same time they are discovered), thus, while a vertex may participates in many overlap-
ping cliques, the method only finds a single large clique. After the graph compression/

(1)
V = {v1, v2, . . . , vn

︸ ︷︷ ︸

normal vertices

, vn+1, . . .
︸ ︷︷ ︸

clique vertices

}

1  The CSR (CSC) encoding represents a sparse (adjacency) matrix M of a graph G by three arrays that contain
nonzero values, the extents of rows (columns), and column (row) indices.
2  However, since it requires additional time to find such cliques, then depending on the domain application it might
be preferred to find cliques of a larger size. Thus, the methods allow for the user to adjust this parameter, which can
improve runtime at the cost of space.
3  A successor iterator is an enumerator that can be used to obtain a list of the neighbors of a node in some (usually
deterministic) order.
4  Note that clique vertices are at the end of the list of neighbors for a given vertex.

Page 6 of 14Rossi and Zhou ﻿J Big Data (2018) 5:10

encoding is complete, vertex ids are easily exchanged such that all vertices in a clique
are assigned subsequent ids. Clearly, the benefit of exchanging the vertex ids in such a
fashion is that many fundamental graph primitives are easily computed in o(1) time. For
instance, consider the primitive that checks if an edge exists (or checks if a node is a
neighbor or not), then this takes only o(1) time by simply checking the range (vi, vi+k) to
determine if the node id is within that range or not. Hence, if we wanted to know if w is
a neighbor of v, then we just need to go to that clique and check if w falls in that range.
Clearly, this also improves caching.

Moreover, this also reduces space needed to store the graph (on disk), as we avoid
writing each clique one by one, and can simply write the first vertex id of that clique.
For instance, one possibility is to write the first vertex id of each clique (in order) on the
first line of each file. See Fig. 3 for an example illustrating the space savings using such an
approach to encode the graph in Fig. 4. To read this type of compressed graph from disk
(assuming the graph reader simply reads the graph and encodes it using any arbitrary
encoding), we would read the first actual line, and immediately know the cliques by sim-
ply examining the start id and the vertex start id of the next clique. Notice that this also
reduces costly IO associated with reading the graph from disk, and/or the IO involved
in sending the data from the CPU to GPU, or across the network in a distributed archi-
tecture, etc. Afterwards, the graph reader would proceed as usual reading the edges, etc.

The difference in cost between storing the cliques directly and the format that relabels
vertices (that is, exchanges vertex ids) based on the cliques is O(

∑

C∈C |C|) compared
to O(|C| + 1) . As shown in "Results and discussion" section, this difference is significant
for many real-world graphs since |C| is often thousands (and in many cases much larger),
and the cliques in C can often be quite large as well. Cost of encoding all remaining edges
is identical and thus not shown above. Note that the cost above is for disk-resident graph
encodings. Though, the difference is similar for in-memory encodings.

Example

Given the simple graph in Fig. 4a, the method identifies the cliques of largest size shown
in Fig. 4b. Figure 4c shows an intuitive example of a possible graph encoding scheme
using the proposed framework. To store the graph compactly (e.g., to disk), notice
that one can simply write the cliques to a file such that each line contains the vertices

Fig. 2  Generalized CSR/CSC Data Structures (In-memory graph encoding). Cost of this particular in-memory
graph encoding is 11 (or O(|V | + |C|) ) for the ptr array (top) whereas the other is only 14, for a total of 27.
This is compared to the popular CSC/CSR that requires arrays of size 9 and 34 for a total of 43. Thus, the
simple encoding reduces the storage costs quite significantly (as well as IO costs, while improving algorithm
performance as the computational costs of many graph primitives are also reduced using this encoding.
Moreover, it is guaranteed to improve caching. Note that storing the graph to disk in a lossless fashion is even
more efficient, since one can simply write “ v1 v6 v10 ” as the first line, followed by the edge v5 v6

Page 7 of 14Rossi and Zhou ﻿J Big Data (2018) 5:10

1 6 10
5 6

1 2
1 3
1 4
1 5
2 3
2 4
2 5
3 4
3 5
4 5
5 6
6 7
6 8
6 9
7 8
7 9
8 9

Fig. 3  GraphZIP compressed format (left) vs. edge list without clique compression (right)

a b

c
Fig. 4  Overview and intuition for the proposed graph compression techniques. a Simple graph. b Cliques
identified. c Encoding Intuition

Page 8 of 14Rossi and Zhou ﻿J Big Data (2018) 5:10

of a clique C ∈ C , followed by the remaining edges (between nodes that do not share a
clique). This can be reduced further by first recoding the vertex ids such that the ver-
tex ids in the cliques are C1 = {v1, . . . , vk} , C2 = {vk+1, . . . , } , and so on. Now, it is pos-
sible to encode the vertices in each clique by simply storing the first (min) vertex id. For
instance, in-memory or on disk, the first vertex id of each clique is stored one after the
other, for instance, storing v1, v6, v10 (in memory as an array, or to disk/a single line of
a file) is enough since the clique Ci is retrieved by examining the ith position. That is,
to retrieve the first clique in Fig. 4b, we retrieve the first vertex v1 and can compute the
last vertex id by the i + 1 position, which corresponds to the first vertex id of the clique
i + 1 . Thus, using this, we immediately get the last vertex id v5 . Furthermore, fundamen-
tal graph primitives (such as “checking if a node is a neighbor”) may benefit from this
encoding as many graph operations can be answered in ≀(1) with a simple range check.

Algorithm

The set of cliques C (used in the compression schemes) is computed via the iterative
algorithm in Algorithm 1. Once the set of cliques C are found (see Algorithm 1), any of
the graph encoding methods may be used (e.g., see Fig. 4).

Heuristic and exact clique methods are used for finding the largest possible clique at
each iteration (Algorithm 1 Line 4). The heuristic method is faster but results in slightly
less compression, whereas the exact clique ordering takes longer, but results in a better
compression. Many other variants also exist. For instance, one approach that performed
well was to search only the top-k vertices (using either a heuristic or exact clique finder,
that is, a method that for each vertex neighborhood subgraph N (v) returns either a large
clique or the maximum clique existing at that vertex neighborhood). The top-k verti-
ces to search were chosen based on the maximum k-core number of each vertex.5 This
ordering can then be recomputed after each iteration as it is fast taking O(|E|) where |E|
is the number of edges remaining in G.

Algorithm 1 GraphZIP
1 input: G = (V,E) – a graph
2 δ – stopping criterion for smallest clique
3 repeat
4 Find a maximum clique C in parallel
5 Add C to the set of cliques C, that is, C ← C ∪ {C}
6 Remove C from the graph G

7 until all vertices are removed or |C| < δ

8 return the set of cliques C (for use with encoding schemes)

Many other variations of Algorithm 1 also exist. For instance, instead of removing C
entirely (Line 6), one may allow some amount of overlap between the cliques in C . Obvi-
ously, if there exists two cliques Ci,Cj ∈ C and both overlap significantly, then there is
little benefit of using both in the encoding/compression.6 However, allowing cliques that

5  In general, any vertex ordering may be used.
6  Significant overlap between cliques occurs frequently due to properties discussed in "Preliminaries" section.

Page 9 of 14Rossi and Zhou ﻿J Big Data (2018) 5:10

overlap with only a few vertices may allow further reductions in space, at the expense of
additional computational costs to find these cliques and ensure that there is not signifi-
cant overlap. This can be formalized as,

where θ is the fraction of vertices allowed to overlap. Clearly, other types of “score func-
tions” may also be useful and used interchangeably. As an aside, GraphZIP is also robust
to missing data due to a property of cliques. For instance, if a node is missing at random,
then the size of the clique for which this node would participate is at most decreased by
one due to the hereditary property of cliques.

Parallel algorithm variant

Parallel variations of the proposed class of methods are discussed below. Let
S = {S1, . . . , Sk} be the set of independent sets. We obtain S using a greedy coloring
method that attempts to find a minimum k and a mapping s : V → {1, . . . , k} such that
s(v) = s(u) for each edge (v,u) ∈ E , see [44] for a large-scale study of greedy coloring of
large complex networks. Select the independent set Si from S with the largest set of ver-
tices contained in the maximum k-core subgraph. Then find the largest clique for each
vertex in Si , and add them to the set of cliques C . Since, we find cliques centered at the
vertices in the independent set Si , the cliques are guaranteed to be non-overlapping. This
allows for the cliques to be found in parallel, without much effort. We choose the inde-
pendent set containing the maximum number of vertices in the largest k-core since the
maximum clique typically arises from these vertices. Order the vertices in the independ-
ent sets from the greedy coloring as follows:

where the independent sets are ordered by binning the vertices in each Si by k-core
numbers, and selecting the set Si with the maximum number of vertices in the largest
possible k-core subgraph.

This is computed in parallel by assigning each worker (i.e., processing unit) the next
available vertex in the current independent set. Suppose there are p1, . . . , pt workers
(i.e., processing units, cores) and the block size β = 1 , then the first t vertices in S1 in
order are assigned to each of the t workers. The intuition behind the ordering is that we
want to find the largest cliques first, and these are most likely in the largest k-cores.

Results and discussion
To evaluate the effectiveness of the proposed techniques, we use a wide variety of real-
world graphs7 from different application domains.

(2)
|Ci ∩ Cj|

|Ci ∪ Cj|
≥ θ

(3)
S1, S2, S3, . . . , Si, . . . , Sk
︸ ︷︷ ︸

independent sets from greedy coloring

(4)
v1, v2, v3, v4, . . . , vi
︸ ︷︷ ︸

S1

, vi+1, . . . , vj
︸ ︷︷ ︸

S2

, · · · , vh, vh+1, . . . , vn
︸ ︷︷ ︸

Sk

7  Data accessible at http://www.netwo​rkrep​osito​ry.com.

http://www.networkrepository.com

Page 10 of 14Rossi and Zhou ﻿J Big Data (2018) 5:10

Table 1 shows the effectiveness of GraphZIP for compressing a variety of real-world
graphs. Note space savings is defined as the reduction in size relative to the uncom-
pressed size: Sc = 1− G

Gc
 . GraphZIP reduces the memory requirements by at least 20%

across all graphs as shown in Table 1. Strikingly, we observe a 64% reduction in space
when GraphZIP is used with web-indochina. Overall, GraphZIP appears to work best
on web graphs followed by collaboration networks. Further analysis revealed that these
graphs all have large cliques that are often much larger than cliques that arise in the
other network types such as biological or interaction networks. We also report runtime
performance in seconds. In most cases, GraphZIP takes only a few seconds as shown
in the last column of Table 1. As an aside, the compression results in Table 1 are for the
basic GraphZIP format where each clique C ∈ C is written on each line, followed by the
remaining edges not in those cliques. Space can be further reduced using the GraphZIP
format that relabels the vertex ids based on the cliques.

Results for compressing the encoded graph is shown in Table 2. These results use the
same basic GraphZIP format used in Table 1 but reduce the space further by applying
an additional compression technique to further compress the graph. This is most useful
for storing large graphs on disk. Table 3 compares GraphZIP to the bvgraph compres-
sion method using Layered Label Propagation (LLP) order [45]. In both cases, GraphZIP
compares favorably to this approach.

Figure 5 analyzes and compares the performance of four variants of GraphZIP. In par-
ticular, we compare a clique variant that uses an exact clique finder with degree order-
ing (exact-deg), exact clique finder with k-core ordering (exact-kcore), a heuristic clique
finder with degree ordering (heu-deg), and a heuristic clique finder with k-core order-
ing (heu-kcore). The results indicate that performance is highly dependent on whether a
heuristic or exact clique finder is used and the initial ordering (degree, k-core numbers),

Table 1  GraphZIP compression results for a variety of real-world graphs. Note Sc denotes
the space saved by GraphZIP defined as Sc = 1−

Gc

G

Graph ρ G (bytes) Gc (bytes) Space
savings ( Sc)

2χ comp. ratio Time (s)

ia-enron-only 0.0614 4119 3004 27.07 69.94 0.006

ia-infect-dub. 0.0330 20,662 13,287 35.69 79.90 0.007

ia-email-univ 0.0085 41,868 32,405 22.60 79.34 0.017

bio-DD21 0.0009 136,847 85,510 37.51 80.72 0.139

ca-HepPh 0.0019 1,178,671 498,661 57.69 89.49 5.637

ca-AstroPh 0.0012 2,121,214 1,423,607 32.89 65.89 1.294

ca-CondMat 0.0004 1,001,147 695,000 30.58 80.46 0.892

ca-MathSciNet 0.0000 10,482,388 8,370,757 20.14 76.53 24.909

web-google 0.0033 23,043 12,216 46.99 81.42 0.004

web-BerkStan 0.0003 199,330 135,813 31.87 86.55 0.170

web-sk-2005 0.0000 4,083,783 2,040,783 50.03 92.60 9.030

web-indochina 0.0007 473,984 167,729 64.61 94.23 0.141

soc-gplus 0.0001 453,060 328,927 27.40 92.36 0.046

hamming6-2 0.9048 10,493 4916 53.15 90.59 0.004

hamming8-2 0.9686 226,317 110,838 51.03 96.32 0.745

c-fat200-1 0.0771 10,664 4674 56.17 84.57 0.003

chesapeake 0.2294 1035 749 27.63 58.94 0.001

Page 11 of 14Rossi and Zhou ﻿J Big Data (2018) 5:10

Table 2  Results comparing the encoded graph Gc to the compressed f (Gc)

Graph Space savings, Sc = 1−
Gc

G

Encoded graph, Gc Compressed,
f (Gc)

ia-enron-only 27.07 69.94

ia-infect-dub. 35.69 79.90

ia-email-univ 22.60 79.34

bio-DD21 37.51 80.72

ca-HepPh 57.69 89.49

ca-AstroPh 32.89 65.89

ca-CondMat 30.58 80.46

web-google 46.99 81.42

web-BerkStan 31.87 86.55

web-sk-2005 50.03 92.60

web-indochina 64.61 94.23

soc-gplus 27.40 92.36

hamming6-2 53.15 90.59

hamming8-2 51.03 96.32

c-fat200-1 56.17 84.57

chesapeake 27.63 58.94

exact−deg
exact−kcore
heu−deg
heu−kcore

0 100 200 300 400 500 600
0

0.02

0.04

0.06

0.08

0.1

0.12

Iterations

T
im

e
pe

r
ite

ra
tio

n

a

exact−deg
exact−kcore
heu−deg
heu−kcore

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

40

45

Iterations

C
liq

ue
 s

iz
e

b
Fig. 5  Four variants of GraphZIP are compared. Runtime decreases with clique size as a result of the search
space shrinking after each clique is found and removed from the graph. Further, the heuristic is 2-3 times
faster than the exact clique finder. a Time. b Clique size

Table 3  GraphzIP Compared to bvgraph compression with layered label propagation (Llp)
order

Graph |V| (bytes) |E| (bytes) G (bytes) SLLC (bytes) SC (bytes) SF(GC)
(bytes)

Socfb-Penn 42K 1.4M 4237,507 40.49 46.56 78.16

Socfb-Texas 36K 1.6M 4,605,427 29.80 34.13 79.53

Page 12 of 14Rossi and Zhou ﻿J Big Data (2018) 5:10

especially for the two exact variants (exact-deg, exact-kcore). Variants are straightfor-
ward to adapt to lower computational costs. Figure 6 shows the nonzero structure of
the adjacency matrices using the initial vertex ordering compared to the clique ordering
approach that orders vertices by the largest clique in which they appear. On the right,
cliques are organized along the diagonal in descending order of size. The dense off diago-
nal blocks indicate other cliques that are tightly connected giving rise to a much larger
near-clique

Conclusion
In this work, we described a class of of clique-based graph compression methods that
leverage large cliques in real-world networks. Using this as a foundation, the proposed
technique decomposes a graph into a set of large cliques, which is then used to compress
and encode the graph succinctly. Disk-resident and in-memory graph encodings were
proposed and shown to be effective with the following important benefits: (1) It reduces
the space needed to store the graph on disk (or other permanent storage device) and

Fig. 6  Clique ordering is shown on the right compared to the initial ordering on the left. The dense off
diagonal blocks reveal large cliques along the diagonal that are tightly connected and form much larger
near-cliques. a Initial ordering. b Clique ordering

Page 13 of 14Rossi and Zhou ﻿J Big Data (2018) 5:10

in-memory, (2) GraphZIP reduces IO traffic involved in using the graph, (3) it reduces
the amount of work involved in running an algorithm on the graph, and (4) improves
caching and performance. The graph compression techniques were shown to reduce
memory (both on disk and in-memory) and speedup graph computations considerably.
The methods also have a variety of applications beyond the time and space improve-
ments described above. For instance, one may use this technique to visualize graph data
better as the large cliques can be combined to reveal other important structural proper-
ties. Future work will explore using GraphZIP and its in-memory encoding to speedup
common graph algorithms. This requires implementation of graph primitives that lever-
age the encoding. In addition, we will also investigate GraphZIP for compressing graphs
from a variety of other domains.
Authors’ contributions
All authors contributed equally in the conceptualization of GraphZIP and its design and development. Both authors read
and approved the final manuscript.

Author details
1 Adobe Research, 345 Park Ave, San Jose, CA, USA. 2 Google, 1600 Amphitheatre Pkwy, Mountain View, CA, USA.

Acknowledgements
We thank Dan Davies for discussions.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Data is available online at NetworkRepository [46]: http://netwo​rkrep​osito​ry.com.

Ethics approval and consent to participate
Not applicable.

Funding
No funding to declare.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 29 December 2017 Accepted: 24 February 2018

References
	1.	 Fisher D, DeLine R, Czerwinski M, Drucker S. Interactions with big data analytics. Interactions. 2012;19(3):50–9.
	2.	 Kambatla K, Kollias G, Kumar V, Grama A. Trends in big data analytics. J Parallel Distrib Comput. 2014;74(7):2561–73.
	3.	 Herodotou H, Lim H, Luo G, Borisov N, Dong L, Cetin FB, Babu S. Starfish: A self-tuning system for big data analytics.

CIDR. 2011;11:261–72.
	4.	 Peshkin L. Structure induction by lossless graph compression. arXiv preprint arXiv​:cs/07031​32. 2007.
	5.	 Gupta A, Verdú S. Nonlinear sparse-graph codes for lossy compression. IEEE Trans Inf Theory. 2009;55(5):1961–75.
	6.	 Rossi RA, Gleich DF, Gebremedhin AH, Patwary M, Ali M. Parallel maximum clique algorithms with applications to

network analysis and storage, vol 10. arXiv preprint arXiv​:1302.6256. 2013.
	7.	 Tomita E, Sutani Y, Higashi T, Takahashi S, Wakatsuki M. A simple and faster branch-and-bound algorithm for finding

a maximum clique. In: WALCOM: Algorithms and computation. 2010. p. 191–203.
	8.	 San Segundo P, Rodríguez-Losada D, Jiménez A. An exact bit-parallel algorithm for the maximum clique problem.

Comput Oper Res. 2011;38:571–81.
	9.	 Pullan WJ, Hoos HH. Dynamic local search for the maximum clique problem. JAIR. 2006;25:159–85.
	10.	 Pattillo J, Youssef N, Butenko S. Clique relaxation models in social network analysis. Handbook of optimization in

complex networks. Springer; 2012. p. 143–62.
	11.	 Balasundaram B, Butenko S, Hicks I, Sachdeva S. Clique relaxations in social network analysis: the maximum k-plex

problem. Oper Res. 2011;59(1):133–142.
	12.	 Alba RD. A graph-theoretic definition of asociometric clique. J Math Soc. 1973;3(1):113–26.
	13.	 Harish P, Narayanan P. Accelerating large graph algorithms on the GPU using cuda. In: HiPC. 2007. p. 197–208.
	14.	 Vineet V, Narayanan P. Cuda cuts: fast graph cuts on the gpu. In: Computer vision and pattern recognition work-

shops (CVPRW). 2008. p. 1–8.
	15.	 Zhou R. System and method for selecting useful smart kernels for general-purpose GPU computing. US Patent

20,150,324,707. 2015.

http://networkrepository.com
http://arxiv.org/abs/cs/0703132
http://arxiv.org/abs/1302.6256

Page 14 of 14Rossi and Zhou ﻿J Big Data (2018) 5:10

	16.	 Liu X, Li M, Li S, Peng S, Liao X, Lu X. Imgpu: Gpu-accelerated influence maximization in large-scale social networks.
IEEE Trans Parallel Distrib Syst. 2014;25(1):136–45.

	17.	 Pan Y, Wang Y, Wu Y, Yang C, Owens JD. Multi-gpu graph analytics. arXiv preprint arXiv​:1504.04804​. 2015.
	18.	 Ryoo S, Rodrigues CI, Baghsorkhi SS, Stone SS, Kirk DB, Hwu WW. Optimization principles and application perfor-

mance evaluation of a multithreaded gpu using cuda. In: SIGPLAN. New York: ACM; 2008, p. 73–82.
	19.	 Zhou R. Systems and methods for efficient sparse matrix representations with applications to sparse matrix-vector

multiplication and PageRank on the GPU. 2015.
	20.	 Kepner J, Gilbert J. Graph algorithms in the language of linear algebra. In: SIAM. 2011.
	21.	 Von Landesberger T, Kuijper A, Schreck T, Kohlhammer J, van Wijk JJ, Fekete JD, Fellner DW. Visual analysis of large

graphs: state-of-the-art and future research challenges. Computer Graphics ForumNew York: Wiley Online Library;
2011. p. 1719–49.

	22.	 Ahmed NK, Rossi RA. Interactive visual graph analytics on the web. In: ICWSM. 2015, p. 566–9.
	23.	 Traud AL, Mucha PJ, Porter MA. Social structure of facebook networks. Phys A Stat Mech Appl. 2011;391:4165–80.
	24.	 Girvan M, Newman MEJ. Community structure in social and biological networks. In: PNAS. 2002;99(12):7821–6.
	25.	 Chierichetti F, Kumar R, Lattanzi S, Mitzenmacher M, Panconesi A, Raghavan P. On compressing social networks.

SIGKDD, 2009. p. 219–28.
	26.	 Grabowski S, Bieniecki W. Tight and simple web graph compression. arXiv preprint arXiv​:1006.0809. 2010.
	27.	 Buehrer G, Chellapilla K. A scalable pattern mining approach to web graph compression with communities. In:

WSDM. New York: ACM; 2008. p. 95–106.
	28.	 Boldi P, Vigna S. The webgraph framework i: compression techniques. In: WWW. 2004. p. 595–602.
	29.	 Suel T, Yuan J. Compressing the graph structure of the web. In: IEEE data compression conference. 2001. p. 213–22.
	30.	 Kempe D, Kleinberg J, Kumar A. Connectivity and inference problems for temporal networks. STOC, 2000. p. 504–13.
	31.	 Ahmed NK, Berchmans F, Neville J, Kompella R. Time-based sampling of social network activity graphs. In: SIGKDD

MLG. 2010. p. 1–9.
	32.	 Friedman N, Getoor L, Koller D, Pfeffer A. Learning probabilistic relational models. In: IJCAI. 1999. p. 1300–09.
	33.	 Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey. ACM Comput Surv. 2009;41(3):15.
	34.	 Akoglu L, McGlohon M, Faloutsos C. Oddball: spotting anomalies in weighted graphs. In: Advances in knowledge

discovery and data mining. 2010. p. 410–21.
	35.	 Eberle W, Holder L. Anomaly detection in data represented as graphs. Intell Data Anal. 2007;11(6):663–89.
	36.	 Rossi RA, Ahmed NK. Role discovery in networks. TKDE. 2015;27(4):1112–31.
	37.	 Sun J, Faloutsos C, Papadimitriou S, Yu PS. Graphscope: parameter-free mining of large time-evolving graphs. In:

Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining. New
York: ACM; 2007. p. 687–96.

	38.	 Prakash BA, Sridharan A, Seshadri M, Machiraju S, Faloutsos C. Eigenspokes: surprising patterns and scalable com-
munity chipping in large graphs. In: Advances in knowledge discovery and data mining. 2010. p. 435–48.

	39.	 Leskovec J, Lang KJ, Dasgupta A, Mahoney MW. Community structure in large networks: natural cluster sizes and
the absence of large well-defined clusters. Internet Math. 2009;6(1):29–123.

	40.	 Hayashida M, Akutsu T. Comparing biological networks via graph compression. BMC Syst Biol. 2010;4(Suppl 2):13.
	41.	 Ketkar NS, Holder LB, Cook DJ. Subdue: compression-based frequent pattern discovery in graph data. In: Proceed-

ings of the 1st international workshop on open source data mining: frequent pattern mining implementations. New
York: ACM; 2005. p. 71–6.

	42.	 Ahmed NK, Duffield N, Neville J, Kompella R. Graph sample and hold: a framework for big-graph analytics. In: SIG-
KDD. New York: ACM; 2014. p. 1446–55.

	43.	 Margaritis D, Faloutsos C, Thrun S. Netcube: a scalable tool for fast data mining and compression. VLDB, 2001.
	44.	 Rossi RA, Ahmed NK. Coloring large complex networks. Soc Net Anal Mining. 2014;4(1):37.
	45.	 Boldi P, Rosa M, Santini M, Vigna S. Layered label propagation: a multiresolution coordinate-free ordering for com-

pressing social networks. WWW. New York: ACM; 2011. p. 587–96.
	46.	 Rossi RA, Ahmed NK. The network data repository with interactive graph analytics and visualization. In: Proceedings

of the 29th AAAI conference on artificial intelligence. 2015. p. 4292–93. http://netwo​rkrep​osito​ry.com

http://arxiv.org/abs/1504.04804
http://arxiv.org/abs/1006.0809
http://networkrepository.com

	GraphZIP: a clique-based sparse graph compression method
	Abstract
	Introduction
	Summary of contributions
	Query preserving compression
	Support for arbitrary graph queries
	Efficient incremental updates
	Parallel
	Flexible

	Methods
	Preliminaries
	In-memory graph encoding
	Example

	Algorithm
	Parallel algorithm variant

	Results and discussion
	Conclusion
	Authors’ contributions
	References

