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Introduction
Living in the digital age, we have added and accumulated much refined location infor-
mation on human activities. There are examples of road and air traffic analysis for logis-
tics and human transportation, trending keywords by locale via social network services 
(SNS), real-time monitoring of payment services, to name a few. Understanding space–
time structures of a complex system is an important aspect of big data analysis. Also, 
in  understanding geosciences, space–time domain serves as the basis to analyze vari-
ability, and understanding the space–time structure of variability is an important scien-
tific goal. Examples include concentration of PM10 (particulate matter of size less than 
10 μm), precipitation, CO2 concentration, snow coverage, wind speed and direction, and 
solar radiation, which all exhibit strong space–time variability.

Deep learning tools are developed and implemented [1] to identify patterns from a 
massive amount of data, and a space–time process is one example where its nonlinear 
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data generating mechanism can be learned through deep learning or multi-level decom-
position. There are numerous examples in which space–time structure of variability 
provides valuable information in understanding and interpreting data and predicting 
the trend. For example, understanding the space–time patterns of a transit system use is 
crucial for transit operation such as adjusting service intervals to reduce the chance of a 
disruption by a large number of passengers on board and making an improved operation 
plan for comfortable ridership. Smart card data have been used to analyze the diurnal 
patterns of travel time, number of trips, and different means of transportation in Seoul, 
South Korea [2]. The transit ridership in New York City has also been analyzed by using 
cluster analysis [3] where the clusters exhibit distinct diurnal behaviors of transit rider-
ship. Using smart card data of several transits, the daily spatio-temporal density of pas-
sengers, the counts of waiting and onboard passengers, and the trajectory of the trains 
have been analyzed for Singapore [4], Kochi City, Japan [5], and Brisbane, Australia [6] 
by different dimensions. A thorough review on smart card data use in public transit can 
be found in Pelletier et al. [7]. These earlier studies made use of simple summary sta-
tistics or provided a separate analysis of spatial and temporal variability.  In order to 
understand space–time structure of variability, cluster analysis and principal component 
analysis (PCA) have been used in Morency et al. [8, 9] and Tsekeriset al. [10], respec-
tively. Xing et al. [11] used the robust PCA technique to decompose highway traffic data 
into low-rank traffic matrix plus several residual traffic matrices.

While straightforward statistical analysis and conventional spatial analysis serve as 
useful tools, these analysis techniques are certainly limited in explaining the combined 
space and time structure. Often space–time variability has a specific direction of evolu-
tion. For example, traffic flow exhibits a specific direction in space and time. Namely, 
variability of traffic flow varies as a function of space and time. Therefore, it is necessary 
to examine spatial and temporal variability simultaneously in order to understand the 
direction of variability evolving in space and time. Conventional data analysis techniques 
in space or in time are not designed to resolve space–time variability together with its 
directivity, and separate analysis of spatial variability and temporal variability often leads 
to misleading interpretations of the nature of space–time variability. Analysis based on 
the assumption of cyclostationarity [12] is becoming a new research trend in climatol-
ogy, electrical engineering, and signal processing [13].

In this study, the Cyclostationary Empirical Orthogonal Function (CSEOF) technique 
is introduced as an effective space–time analysis tool [14–16]. The CSEOF technique is 
applied to Seoul subway passenger data for Subway Line #2 for the purpose of analyzing 
the space–time variability of the subway passengers. The description of the data and the 
method of analysis are presented in “Data” and “Methods” section. The results of analy-
sis are presented in “Results” section followed by discussion and concluding remarks in 
“Discussion” and “Conclusion”.

Data
The data used represent hourly subway passengers archived by Seoul Metro Company 
(http://seoulmetro.co.kr); they are stored in excel (or CSV) files. The dataset contains the 
number of hourly boarding and alighting passengers for Subway Line #2 (also called the 
Green Line) in Seoul, Korea for the period of January 2010–March 2017. Subway Line 

http://seoulmetro.co.kr
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#2 has 50 stations managed by Seoul Metro Company. Therefore, the total size of the 
data analyzed is 50 stations × 24 h × 2647 days for both boarding and alighting passen-
gers. We analyze the spatio-temporal structure of boarding and alighting passengers in 
order to understand the typical weekly variation of the number of subway passengers as 
a function of time and space (station).

Methods
In the present study, we are specifically interested in identifying space–time eigenfunc-
tions of the subway passenger data, i.e., distinct modes of variability of subway pas-
sengers as a function of subway stations and times of the week. Since the statistical 
properties (mean and covariance) of the subway passenger data are nearly periodic with 
a distinct weekly cycle, we assume that the data fall under the category of cyclostation-
ary random variables [12]. Thus, a space–time analysis technique called Cyclostation-
ary Empirical Orthogonal Function (CSEOF) Analysis [14–16] is employed to identify 
eigenfunctions of subway passenger data.

Subway passenger data T(r, t) is decomposed in terms of eigenfunctions as

where the eigenfunctions, Bn(r, t), are called cyclostationary loading vectors (CSLV) and 
the corresponding amplitude, Tn(t), are called principal component (PC) time series. 
Because of the periodic nature of the statistics, CSLVs are also periodic, i.e.,

where d is a phenomenological parameter called the “nested period”, which represents 
the periodicity of the underlying covariance statistics. That is,

where E(·) stands for expectation. Equation (3) measures common variability shared by 
two points separated in space and time. We specifically assume that covariance function 
is periodic in time with the periodicity d: in the present study, d = 168 h (24 h × 7 days). 
This periodicity implies that behavioral patterns of subway passengers are strongly 
linked to the weekly cycle.

A specific requirement for Bn(r, t) is that they are mutually orthogonal, i.e.,

where (A · B) denotes dot (inner) product between A and B, N is the number of spatial 
points, λn represents the variance explained by mode n, and δnm is the Kronecker delta. 
A requirement for Tn(t) is that they are mutually uncorrelated, that is,
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where M is the number of temporal points. Thus, CSLVs are interpreted as mutually 
orthogonal space–time evolutions in data, of which the amplitude time series are mutu-
ally uncorrelated.

Equation (1) is our analytical model. A crucial motivation behind (1) is that we want to 
decompose variability of the subway passengers at 50 stations into weekly patterns that 
are mutually orthogonal and uncorrelated. Thus, each Bn(r, t) describes a distinct weekly 
variation of subway passengers at 50 stations, and corresponding Tn(t) describes its long-
term amplitude change. In this way, different causes of passenger variability throughout 
the week can be investigated and understood. Therefore, a specific goal of the present 
study is to identify CSLVs and PC time series in (1) with the requirements of orthogonal-
ity of CSLVs and uncorrelatedness of PC time series as stipulated in (4) and (5).

Note that our analytical model (1) differs from its predecessor based on EOF analysis 
[17, 18]. In EOF analysis, subway passenger data is decomposed in the form

where φn(r) are EOF loading vectors and Pn(t) are corresponding PC time series. Unlike 
CSLVs, EOF loading vectors are functions only of space. In fact, EOF analysis is a spe-
cial case of CSEOF analysis with the nested period of 1 (d = 1). Limitation, therefore, 
is inherent in delineating temporally evolving structures of variability in terms of EOF 
loading vector. Specifically, a temporally varying structure of subway passenger varia-
bility cannot be captured by a single EOF loading vector; several EOF loading vectors 
are required to describe it. Thus, the EOF analysis technique, based on the stationarity 
assumption [12], is not suited for describing subway passenger variability, which exhibits 
both strong diurnal and weekly cycles.

In order to obtain CSLVs and PC time series in (1), we used the algorithm called the 
CSEOF analysis technique [14–16]. In essence, CSLVs are obtained by solving

which is called the Karhunen–Loève equation [19]. A detailed solution procedure and 
more in-depth discussion on the CSEOF analysis technique can be found in Kim et al. 
[14, 16] and Kim and North [15] and will not be addressed in the present study. We have 
implemented the method in three different languages: FORTRAN, IDL (Interactive Data 
Language) and MATLAB (Matrix Laboratory).1 The procedure for analysis is schemati-
cally depicted in Fig. 1.

Results
Seoul is a metropolis with a population of 10 million people and a density of 17,000 
people km−2 according to the Seoul Metropolitan Government (http://stat.seoul.go.kr). 
Also, a large number of people commute to Seoul from the suburbs of Seoul. Subway 
Line #2, also called the Green Line, is one of the busiest lines among the 9 metropolitan 
subway lines and 4 special subway lines in Seoul (see Fig. 2). The total number of daily 
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1  The memory required for running the algorithm is approximately 10 times the size of the covariance matrix. In the 
present study, the covariance matrix of size (50 × 24 × 7) × (50 × 24 × 7) required 2.8 GB memory.

http://stat.seoul.go.kr
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passengers for Line #2 is over 2 million, which represents 31% of all subway passengers 
in Seoul. Figure 2 shows subway Line #2 with its 50 stations and all the connecting sub-
ways. There is a significant weekly cycle in the passenger data. During weekdays, a large 
number of people in Seoul use the subway to commute. During weekends, the number 
of passengers decreases significantly. Based on the common pattern, we set the nested 
period to be 1 week (168 h) in the present study.

Figure  3 shows the first CSEOF mode of hourly passengers for the 50 stations of 
Subway Line #2 in a week. Figure 3 from top to bottom shows the CSLVs of boarding 

Fig. 1  A schematic diagram showing the analysis procedure for the Subway Line #2 passenger data
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passengers (Fig. 3a), alighting passengers (Fig. 3b), passengers added for all the stations 
(Fig. 3c), and the corresponding PC time series (Fig. 3d). This mode explains ~ 97% of 
the total variability.

The total boarding and alighting passengers respectively show two distinctive peaks 
that correspond to commuting times during weekdays (Fig. 3c); the morning peak is at 
around 7–8 a.m., and the evening peak is at around 6–7 p.m. The morning peak is larger 
for alighting passengers, whereas the evening peak is larger for boarding passengers. 
During 7–8 a.m., there are a large number of passengers boarding subways near Station 
230 (Shilim). Around 6 p.m., there are also a large number of boarding passengers near 
Station 222 (Kangnam). In the morning (7–8 a.m.), a large number of alighting passen-
gers are seen near Station 222. In the evening, however, the alighting pattern does not 
show any significantly crowded stations. It is not surprising that there is a large volume 
of passengers boarding near Station 230 in the morning because other subway lines, 
except for #2, are inconvenient to access and because there is a large community with 
a high density of population in this area. Stations 219–222 are located in the business 
center of the city with many companies. Note that Bundang Line (denoted as B in Fig. 2) 
and New Bundang Line (NB in Fig. 2) are connected with Subway Line #2 at Station 220 
and Station 222, respectively. Alighting passengers from the Bundang Lines often use 
Stations 220 and 222 for exiting. Thus, there are large numbers of alighting passengers at 
these stations in the morning.

During weekends, the number of passengers is reduced and the morning and even-
ing peaks are not seen. The total number of daily passengers is 3.0–3.2 million during 
weekdays and is reduced to ~ 2.4 million (78%) and ~ 1.7 million (54%) on Saturday and 
Sunday, respectively (Table 1).

Figure 4 shows the difference in the number between the alighting and boarding pas-
sengers. It is clear that the difference is more noticeable in the morning hours than in the 
evening. When averaged over 24 h, this imbalance in the number of boarding and alight-
ing passengers is most pronounced at Stations 221–223; number of alighting passengers 
exceeds that of boarding passengers during weekdays (see also Table 1). The reason for 
this imbalance is not clear. One plausible explanation is that different modes of transpor-
tation are readily available in the evening, when commuting hours are more wide spread 
than in the morning. In the rest of the stations there is a tighter match in the number of 
boarding and alighting passengers.

Table 1  Daily total number of passengers (in units of million people) for Subway Line #2 
in Seoul

Boarding Alighting Total

Monday 1.498 1.514 3.012

Tuesday 1.534 1.550 3.084

Wednesday 1.537 1.555 3.092

Thursday 1.550 1.568 3.118

Friday 1.601 1.629 3.231

Saturday 1.210 1.232 2.442

Sunday 0.849 0.842 1.682

Total 9.771 9.890 19.661
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The corresponding PC time series shows that there is no noticeable trend in the num-
ber of passengers for Subway Line #2 (Fig. 3d). The amplitude of this weekly cycle fluctu-
ates around the mean value of ~ 1.0 with a standard deviation of 0.094. The histogram 
is highly skewed with a long tail toward the low end (Fig. 5). There are a few occasions 
of significant reduction in the number of passengers in each year. The dates of reduction 
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are shown in Table 2. Lunar New Year, in the early part of the calendar, and Chuseok or 
Mid-Autumn Festival, in September or October, are two major holidays in Korea. They 
each last for 3–4  days, and people in metropolitan areas, especially those working in 
Seoul visit their family living in the countryside. There is a general decline in the number 
of passengers around the New Year’s Day.

Figure 6 shows the monthly averaged amplitudes of the PC time series of the weekly 
cycle over the record period. The monthly averaged amplitude, in general, varies by less 
than 10% except in September 2010. On average, the number of monthly passengers 
peaks in March and to a lesser extent in November. On average, the number of passen-
gers decreases most significantly in September and to a less extent in August and Febru-
ary. The reduction of passengers in September is evidently associated with Chuseok, one 

Table 2  Day (of the week) of the major peaks in the PC time series of the first CSEOF mode 
and the linked holidays

These dates are also marked in Fig. 2d

Negative peaks Remarks

Peak day Holidays

1 10/09/23 (Thu) 09/21–23 (Tue–Thu) Chuseok

2 11/02/04 (Fri) 02/02–04 (Wed–Fri) Lunar New Year

3 13/09/21 (Sat) 09/18–20 (Wed–Fri) Chuseok

4 16/09/18 (Sun) 09/14–18 (Wed–Sun) Chuseok

5 16/02/11 (Thu) 02/06–10 (Sat–Wed) Lunar New Year

6 15/02/21 (Sat) 02/18–20 (Wed–Fri) Lunar New Year

7 14/09/10 (Wed) 09/07–10 (Sun–Wed) Chuseok

8 14/02/03 (Mon) 01/30–02/01 (Thu–Sat) Lunar New Year

9 12/10/03 (Wed) 09/29–10/01 (Sat–Mon) Chuseok

10 17/02/01 (Tue) 01/27–01/30 (Fri–Mon) Lunar New Year

11 12/01/23 (Mon) 01/22–24 (Sun–Tue) Lunar New Year

12 11/09/13 (Tue) 09/11–13 (Sun–Tue) Chuseok

13 15/09/29 (Tue) 09/26–29 (Sat–Tue) Chuseok

14 10/02/15 (Mon) 02/13–15 (Sat–Mon) Lunar New Year
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of the two main holidays for family gathering. The reduction of passengers in February is 
not so dramatic as in September, since the lunar New Year was in January in 2012, 2014 
and 2017, and the other years in February. This is reflected in the above normal or nearly 
normal amplitude of the weekly cycles in these 3  years, whereas the other years gen-
erally show a conspicuous reduction in the number of passengers in February. August 
is a typical vacation period in Seoul. There is an obvious reduction in the amplitude of 
the weekly cycle in August except in 2014. While variability of each monthly averaged 
amplitude of the weekly cycle is fairly sizable, there is a noticeable monthly trend in 
the number of subway passengers at heightened levels in March, April, November and 
December and at damped levels in February, August and September.

The second CSEOF mode, explaining 0.67% of the total variability, describes a reduc-
tion of passengers on Mondays and Tuesdays and an increase on Thursdays and Fridays 
when the amplitude is positive (Fig. 7). The PC time series exhibits several prominent 
positive and negative peaks (Table 3). The positive peaks are, in general, associated with 
a reduction of passengers due to holidays and an increase of passengers after holidays 
(Table 3). The negative peaks, in general, represent an increase of passengers before and 
a decrease after holidays (Table 3). This mode reflects a characteristic behavior of taking 
extra days off before or after holidays.

The third CSEOF mode explains 0.40% of the total variability and describes a reduc-
tion of passengers on Wednesday and an increase on Friday when its phase is positive 
(Fig. 8). The positive peaks are generally associated with an increase of passengers after 
holidays and a reduction of passengers prior to holidays (Table 4). The negative peaks 
are associated with a reduction of passengers after holidays and an increase of passen-
gers before holidays (Table 4). This mode also reflects the behavior of taking extra days 
off before or after holidays. It should be noted that positive peaks are more prominent 
and frequent. 

The fourth CSEOF mode, explaining 0.28% of the total variability, exhibits an inter-
esting trend. As seen in Fig. 9, the number of passengers keeps decreasing during the 
morning commuting hours on weekdays except for Wednesday. On the other hand, the 
number of passengers has increased after the morning commuting hours until the even-
ing commuting hours (Fig. 9c). This seems to indicate that the number of people using 
the subway for commuting is decreasing and more people use it outside the rush hours. 
Note that the stations with heavy traffic in the weekly cycle (Fig. 3) are most significantly 
affected by this trend as should be expected. On Wednesdays, the number of boarding 
and alighting passengers has increased during evening hours (Fig. 9c). During weekends, 
the number of passengers has increased slightly except in the morning. It is of interest 
to note that there is a notably elevated number of boarding passengers during evening 
hours at Station 239 throughout the week. This station, called Hongik University Station, 
is a popular tourist attraction for young people with many street venders, shops, restau-
rants, bars and music cafés.

While the trend in the corresponding amplitude time series is independent of the 
weekly cycle, the detrended PC time series is rather highly correlated (corr = − 0.57) 
with the PC time series of the weekly cycle (Fig. 10). This negative correlation implies 
that the decrease in ridership becomes more apparent when the pattern of weekly cycle 
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is subdued during holiday periods. In other words, there is a larger reduction in com-
muting during holidays.

These four CSEOF modes together explain 98.6% of the total variability of the Subway 
Line #2 passengers during the period of January 2010–March 2017. These four modes 
represent independent modes and allow reasonable explanation for the variability of 
boarding and alighting passengers for Subway Line #2.

Discussion
As demonstrated in this study, the CSEOF technique facilitates the analysis of complex 
data in terms of identifying main patterns and exploring the causes of space–time vari-
ability. There are some studies that analyze public transit data in Seoul [20, 21], but no 
study, as far as we know, has yet investigated spatial and temporal variability simultane-
ously. CSEOF analysis clearly reveals subway passenger variability as a function of loca-
tion and time of the week. Not only so, the seasonal and long-term trends and erratic 
behaviors associated with national holidays are faithfully captured in the variation of the 
amplitude (PC) time series. Such information should be useful in predicting subway pas-
sengers and planning efficient train allocation schedules.

It should be pointed out that the regular PCA analysis extracts the time-averaged pat-
terns of subway passengers on the right-hand side of Fig.  3a, b as the first mode (see 
Fig.  11). In order to explain temporal variability throughout the day, which differs 

Table 3  Day (of the week) of  the major peaks in  the PC time series of  the second CSEOF 
mode and the linked holidays

These dates are marked in Fig. 7d

Positive peaks
Reduction (Monday and Tuesday)
Increase (Thursday and Friday)

Remarks

Peak day Holidays

1 12/01/25 (Wed) 01/22–24 (Sun–Tue) Lunar New Year

2 11/09/15 (Thu) 09/11–13 (Sun–Tue) Chuseok

3 15/10/02 (Fri) 09/27–29 (Sun–Tue) Chuseok

4 14/09/12 (Fri) 09/07–10 (Sun–Wed) Chuseok

5 16/02/08 (Mon) 02/06–10 (Sat–Wed) Lunar New Year

5 14/05/09 (Fri) 05/05–06 (Mon–Tue) Children’s Day/Budah Birthday

6 13/02/15 (Fri) 02/09–11 (Sun–Mon) Lunar New Year

7 12/12/31 (Mon) 13/01/01 (Tue) New Year Day

Negative peaks
Increase (Monday and Tuesday)
Reduction (Thursday and Friday)

Remarks

Peak day Holidays

1 13/09/19 (Thu) 09/18–20 (Wed–Fri) Chuseok

2 15/02/20 (Fri) 02/18–20 (Wed–Fri) Lunar New Year

3 14/01/28 (Tue) 01/30–02/01 (Thu–Sat) Lunar New Year

4 11/02/07 (Mon) 02/02–04 (Wed–Fri) Lunar New Year

5 16/09/16 (Fri) 09/14–18 (Wed–Sun) Chuseok

6 14/12/30 (Tue) 15/01/01 (Thu) New Year Day

7 15/12/30 (Mon) 16/01/01 (Fri) New Year Day
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from one station to another, several EOF modes are needed. For instance, the differ-
ence between the weekdays and weekends is partially resolved in the PC time series of 
the first EOF mode. Then, diurnal contrasts, distinct patterns at different stations, and 
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Fig. 8  The third mode of CSEOF representing the weekly patterns of passengers for Subway Line #2: a hourly 
and total number of boarding passengers at each of the 50 subway stations numbered from 201 to 250; b 
hourly and total number of alighting passengers; c number of boarding (red) and alighting passengers in 
all stations; and d corresponding amplitude time series. Heightened activities are noted on Wednesdays 
complementing the second CSEOF mode
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detailed behavioral contrasts between weekend and weekdays are reflected in higher 
EOF modes (Fig. 11). As detailed, a PCA analysis requires several EOF modes to resolve 
the weekly cycle of subway passengers. Furthermore, the entire PC time series is fairly 
complicated with many peaks so that it is difficult to understand any peculiar features 
in the amplitude of the weekly cycle such as ridership reductions during major holidays.

We also used the Extended EOF and Periodically Extended EOF techniques [22] to 
analyze the same dataset (results not shown). A comparison between different Eigen 
techniques is beyond the scope of the present study. These techniques are developed 
for the purpose of examining spatio-temporal structures of variability as well. Unlike 
CSEOF analysis, these algorithms are not based on the cyclostationarity assumption, 
and the rendition of space–time covariance function is suboptimal in these techniques 
[22]. As a result, loading vectors and PC time series, particularly for higher modes, are 
often difficult to interpret or misleading.

It is clear that the weekly pattern of subway passengers differs from one station to 
another (Fig. 3). Thus, it is difficult to capture the complicated weekly pattern of sub-
way passengers in terms of a few clusters. Undoubtedly, a large number of clusters are 
needed to capture the entire space–time variability as reflected in Fig. 3. Further, cluster 
analysis does not provide any information on the amplitude variation of clusters in time.

It should be pointed out that the CSEOF PC time series serves as instrumental infor-
mation for predicting subway passengers. While loading vectors primarily represent 
independent patterns of variability repeating with the nested period, PC time series 
describe the amplitudes of corresponding loading vectors over the record period. Thus, 

Table 4  Day (of the week) of  the major peaks in  the PC time series of  the third CSEOF 
mode and the linked holidays

These dates are marked in Fig. 8d

Positive peaks
Reduction (Wednesday)
Increase (Friday)

Remarks

Peak day Holidays

1 14/01/01 (Wed) 01/01 (Wed) New Year Day

2 10/09/22 (Wed) 09/21–23 (Tue–Thu) Chuseok

3 12/12/21 (Fri) 12/25 (Tue) Christmas

4 16/02/12 (Fri) 02/06–10 (Sat–Wed) Lunar New Year

5 17/03/03 (Fri) 17/03/01 (Wed) March 1 Day

6 14/09/12 (Fri) 09/07–10 (Sun–Wed) Chuseok

Negative peaks
Increase (Wednesday)
Reduction (Friday)

Remarks

Peak day Holidays

1 10/01/01 (Fri) 01/01 (Fri) New Year Day

2 17/01/27 (Fri) 01/27–30 (Fri–Mon) Lunar New Year

3 13/02/08 (Fri) 02/09–11 (Sat–Mon) Lunar New Year

4 16/01/01 (Fri) 01/01 (Fri) New Year Day

5 10/02/12 (Fri) 02/13–15 (Sat–Mon) Lunar New Year
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Fig. 9  The fourth mode of CSEOF representing the weekly patterns of passengers for Subway Line #2: a 
hourly and total number of boarding passengers at each of the 50 subway stations numbered from 201 to 
250; b hourly and total number of alighting passengers; c number of boarding (red) and alighting passengers 
in all stations; and d corresponding amplitude time series. There are two major clusters and several distinct 
locations such as Station 239 and stations nearby Station 220 are surfaced in this mode throughout the week
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a forecast of the number of boarding and alighting subway passengers is possible by esti-
mating the future amplitudes of each CSEOF mode.

While CSEOF analysis is capable of identifying flow patterns in space and time, the 
flow pattern analysis was not carried out because of the absence of the origin-and-
destination information per passenger. The data used in the present study are not at a 
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Fig. 10  Correlation between the PC time series of CSEOF mode 1 and the detrended time series of CSEOF 
mode 4. The two PC time series exhibits a significant negative correlation (− 0.57)
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Fig. 11  The loading vector (upper panel) and PC time series (lower panel) of the first four (a–d) EOF modes
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passenger level but rather at a station level, which would not distinguish the in-bound 
(clockwise) and out-bound (counterclockwise) flows.

Given the number of in-bound and out-bound passengers as a function of time, a flow 
map can easily be produced via a CSEOF analysis. This may allow us to provide a more 
interesting analysis of subway ridership at the passenger level rather than the station 
level.

Finally, one issue in dealing with big data is a reduction of dimensions [23, 24]. The 
CSEOF analysis has reduced the facets of spatio-temporal variability; majority (~ 99%) 
of subway passenger variability is nicely summarized in terms of the first four CSEOF 
modes. While the CSEOF loading vectors depict space–time patterns of variability, PC 
time series show how the amplitudes of corresponding loading vectors vary on a long-
term basis. Therefore, it is much more advantageous and efficient to use CSEOF PC time 
series for developing any classification or prediction algorithms instead of using raw 
data.

Conclusion
Extracting useful information from complex or unstructured data is a key issue in big 
data analysis and an important goal of deep learning. The CSEOF technique is an excel-
lent tool for analyzing variability in space–time or multi-dimensional data. Although its 
main applications are in climatological and geophysical sciences, it can be applied to a 
wide spectrum of data including trading, traffic, and communication to name a few. As 
long as the process exhibits periodic nature in the data generating mechanism, distinct 
modes of space–time variability can be extracted easily. The code runs on a Unix-based 
(personal) computer.

As an example, we extracted space–time structures (modes) of variability from a sub-
way passenger dataset by applying CSEOF analysis and interpreted each mode of varia-
bility based on the structure of the loading vector and the corresponding amplitude time 
series. We demonstrated that CSEOF analysis is useful in understanding the variabil-
ity in space–time process data with periodicity in time, which is an important technical 
contribution of the present study.
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