
FML‑kNN: scalable machine learning
on Big Data using k‑nearest neighbor joins
Georgios Chatzigeorgakidis1,2*  , Sophia Karagiorgou3, Spiros Athanasiou2 and Spiros Skiadopoulos1

Introduction
During the past few years, new database management and distributed computing tech-
nologies have emerged to satisfy the need for systems that can efficiently store and oper-
ate on massive volumes of data. MapReduce [1], a distributed programming model which
maps operations on data elements (i.e., mappers) to several machines (i.e., reducers), set
the foundation for this technology trend. This laid the groundwork for the development
of open source distributed processing engines such as the Apache Hadoop, Spark and
Flink [2], that efficiently implement and extend MapReduce. These engines offer a hand-
ful of tools that operate on Big Data stored in distributed storages, supported by dis-
tributed file systems such as the Hadoop Distributed File System (HDFS). Among them,
Flink provides a mechanism for automatic procedure optimization and exhibits better
performance on iterative distributed algorithms [3]. It also exhibits better overall per-
formance, as it processes tasks in a pipelined fashion [4]. This allows the concurrent

Abstract 

Efficient management and analysis of large volumes of data is a demanding task
of increasing scientific and industrial importance, as the ubiquitous generation of
information governs more and more aspects of human life. In this article, we introduce
FML-kNN, a novel distributed processing framework for Big Data that performs proba-
bilistic classification and regression, implemented in Apache Flink. The framework’s
core is consisted of a k-nearest neighbor joins algorithm which, contrary to similar
approaches, is executed in a single distributed session and is able to operate on very
large volumes of data of variable granularity and dimensionality. We assess FML-kNN’s
performance and scalability in a detailed experimental evaluation, in which it is com-
pared to similar methods implemented in Apache Hadoop, Spark, and Flink distributed
processing engines. The results indicate an overall superiority of our framework in all
the performed comparisons. Further, we apply FML-kNN in two motivating uses cases
for water demand management, against real-world domestic water consumption data.
In particular, we focus on forecasting water consumption using 1-h smart meter data,
and extracting consumer characteristics from water use data in the shower. We further
discuss on the obtained results, demonstrating the framework’s potential in useful
knowledge extraction.

Keywords:  Big Data, Distributed processing, MapReduce, Data mining, Machine
learning, Classification, Regression

Open Access

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Chatzigeorgakidis et al. J Big Data (2018) 5:4
https://doi.org/10.1186/s40537-018-0115-x

*Correspondence:
chgeorgakidis@uop.gr
1 Department of Informatics
and Telecommunications,
University of Peloponnese,
Karaiskaki 70, 22100 Tripolis,
Greece
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-5965-7934
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-018-0115-x&domain=pdf

Page 2 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

execution of successive tasks, i.e., a reducer can start executing as soon as it receives it’s
input from a mapper, without requiring all the mappers to finish first.

Data analysis and knowledge extraction from Big Data collections is often performed
by applying specific machine learning techniques. The simplicity along with the effec-
tiveness of the k-nearest neighbors (kNN) algorithm, have motivated many research
communities over the years with numerous applications and scientific approaches which
exploit or improve its potential, especially in spatial databases and data mining. Of par-
ticular interest are the kNN joins methods [5], which retrieve the nearest neighbors of
every element in a testing dataset (R) from a set of elements in a training dataset (S).
Each data element consists of several features, which constitute the preliminary knowl-
edge on which the neighbor retrieval is conducted. However, computing kNN joins on
vast amounts of data can be very time consuming when conducted by a single CPU,
as it requires computing kNN for each element in dataset R. Additionally, a possible
extension of such methods to perform machine learning tasks such as classification or
regression, magnifies the complexity. Various studies have been also carried out towards
approximate solutions of kNN, where there is a trade-off between the algorithm’s preci-
sion and complexity.

In this work we introduce a framework of methods for scalable data analysis and min-
ing on Big Data collections. We present the Flink Machine Learning kNN (FML-kNN for
short) framework which implements a probabilistic classifier and a regressor. It’s core
algorithm is an extension of F-zkNN [6], which is built upon an optimized version of
the H-zkNNJ [7] distributed approximate kNN joins algorithm. In particular, the overall
contributions of our work are as follows:

• • We propose a novel, easily extendible distributed processing framework that per-
forms probabilistic classification and regression using kNN joins.

• • The framework operates in a single distributed session, saving I/O and communica-
tion resources. Similar approaches require three distributed sessions.

• • We optimize the execution of the first processing stage using Flink’s broadcast sets,
contrary to F-zkNN, which performs expensive dataset propagation.

• • We present a detailed experimental and comparative evaluation with similar
approaches and exhibit our framework’s efficiency in terms of scalability and wall-
clock completion time.

• • We conduct experiments on two real-world cases using water consumption related
datasets and extract useful knowledge and insights towards the induction of more
efficient water use.

The remainder of this work is organized as follows. "Related work" section reviews
related work on similar approaches. “Preliminaries” section presents some preliminar-
ies and essential basic concepts. “Methods” section presents FML-kNN. In “Results and
discussion” section, we evaluate the framework’s methods in terms of wall-clock com-
pletion time and scalability. We also present and discuss two case studies on knowledge
extraction tasks over large amounts of water consumption data. Finally, “Conclusions”
section concludes the paper and outlines our future research directions.

Page 3 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

Related work
Various approaches leverage the potential of machine learning methods for knowledge
extraction. Our work resides in the field of distributed computation of the k-nearest
neighbors joins over Big Data and its extension to perform several machine learning
tasks. In the following, we present a review of the relevant literature.

Several works in the literature have reported the superiority of k-nearest neighbors on
machine learning tasks over similar approaches, both in terms of processing time, as well
as in terms of accuracy [8–10]. There are numerous approaches that exploit its potential.
Zhang et al. [11] introduced a multi-label classification method based on kNN which
uses a Maximum a Posteriori (MAP) principle to predict the class of an new element.
Oswald et al. [12] used an approximate kNN-based regression approach in order to fore-
cast traffic flow. Wei and Keogh [13] presented that an 1NN classifier outperforms other
similar methods in terms of error rate, when applied on time-series data. Xu [14] intro-
duced a multi-label weighted kNN classifier, where the weights for each class are com-
puted via mathematical optimization, using least squared errors (LSE). Gou et al. [15]
presented a weighted voting scheme for such classifiers, where the distance between an
element and its nearest neighbors determines the weight of each neighbor’s vote. The
query element is classified to the most weighted class. In our approach, we extend this
functionality by also calculating the probability of each element belonging to each class.
Also, by employing a k-nearest neighbors joins approach, we allow for simultaneous
classification or regression on datasets of really high volume, addressing the challenges
that arise when processing Big Data in a distributed environment.

Similarly to many data analysis and management tasks, kNN joins suffer from the
curse of dimensionality [16]. Liao et al. [17] stated that as the number of dimensions
increases, such techniques need an exponentially larger amount of CPU time. Conse-
quently, executing a kNN joins method on Big Data requires prohibitively long-lasting
operations. To overcome this issue, dimensionality reduction can be applied on the
datasets by indexing their elements via a Space Filling Curve (SFC) [18]. This approach
reduces data dimensionality to one dimension, which allows for a significantly faster
execution of an approximate nearest neighbor search, based on the indexed elements.
The most widely used SFCs are the z-order, Gray-code and Hilbert, among which Mok-
bel et al. [19] concluded that Hilbert is the most “fair”, due to the fact that two consecu-
tive points in the curve are always nearest neighbors. Yao et al. [20] used the z-order
curve to significantly boost the query performance over huge amounts of data. Lawder
et al. [21] efficiently executed range queries in data indexed by the Hilbert curve, while
Faloutsos [22] presented a mathematical model for indexing the multi-attribute records
of a data collection, using Gray-codes instead of binary values. Similarly, Chatzigeorgak-
idis et al. [6] and Zhang et al. [7] exploit the z-order curve in order to perform kNN joins
on a distributed environment. To support selection variety, the proposed framework can
operate by tuning and using the most preferable among these SFC methods, as space
traversal quality and computation performance may differ according to the data context.
Figure 1 shows an example of the recursive way the three SFCs scan the elements in a
two-dimensional space.

The increasing scientific interest in the Big Data area has introduced modern distrib-
uted implementations of famous algorithms. More particularly, several approaches of

Page 4 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

MapReduce-based kNN joins algorithms have been proposed. Song et al. [23] present
a review of the most efficient among them, denoting that all share the same three pro-
cessing stages, i.e., (i) data pre-processing, (ii) data partitioning and organization, and
(iii) kNN computation stage. They conclude that the SFC-based H-zkNNJ [7] algorithm,
outperforms in terms of completion time other similar methods like RankReduce [24],
which uses Locality Sensitive Hashing (LSH) [25]. Chatzigeorgakidis et al. [6] extended
the functionality of H-zkNNJ [7], by delivering the F-zkNN probabilistic classifier, which
performs classification on the results of a kNN joins query. The F-zkNN probabilistic
classifier is based on the MapReduce programming model and executed in a single dis-
tributed session. However, the datasets need to be propagated between the first two exe-
cution stages using local caches, which results in increased communication costs. Our
approach optimizes F-zkNN by avoiding this costly propagation using Flink’s broadcast
sets and augments its functionality by incorporating an additional regression analysis
operation. Both the probabilistic classifier and the regressor are included in a wider dis-
tributed processing framework and are experimentally applied on water consumption
related Big Data analysis tasks.

Similar approaches which apply machine learning methods on resource consumption
data (e.g., energy, water) but still not from a Big Data perspective, include the work of
Chen et al. [26] who used a kNN classification method and labeled water data to iden-
tify water usage. Naphade et al. [27] and Silipo and Winters [28] focused on identify-
ing water and energy consumption patterns, providing analytics and predicting future
consumptions but in high granularity levels and in small scale. Schwarz et al. [29] used
kNN for classification and short-term prediction in energy consumption by using smart
meter data, however, they focused on in-memory and non-distributed approaches, thus,
limiting the applicability on larger datasets. Our approach partially relates to the work
of Kermany et al. [30], where the kNN algorithm was applied for classification on water
consumption data, in order to detect irregular consumer behavior. We take a step for-
ward by applying our algorithm on two real-world case studies, delivering predictive
analytics for water consumption in a Big Data scale.

a b c
Fig. 1  The three Space Filling Curves. More particularly, a shows the z-order, b shows the Gray-code and c
shows the Hilbert curve

Page 5 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

Preliminaries
In the following, we present basic concepts regarding classification and regression based
on kNN joins, as well as methods for dimensionality reduction, essential for the imple-
mentation of FML-kNN. We also briefly describe Apache Flink, the distributed process-
ing engine that we used.

Classification

A kNN joins classifier algorithm categorizes new elements in a testing dataset (R). It
detects the nearest neighbors of each elements in a training dataset (S) via a similarity
measure, expressed by a distance function (i.e., Euclidean, Manhattan, Minkowski). In
FML-kNN we used the Euclidean distance, through which, for each query element in
the testing dataset R we obtain the dominant class (i.e., class membership) among its
kNNs’ classes. kNN classification in most cases is performed by a voting scheme, accord-
ing to which, the class that appears more times among the nearest neighbors will be the
resulting class. The voting scheme can be weighted when someone takes into account
the distances between the nearest neighbors. Then each nearest neighbor has a weight
according to its distance to the query element.

Let us consider the set of the k-nearest neighbors as X = {xNN1 , xNN2 , . . . , xNNk } and the
class of each one as a set C = {cNN1 , cNN2 , . . . , cNNk }. The weight of each nearest neighbor,
indicating its impact on the final result, is calculated as follows:

where dNN1 is the closest neighbor and dNNk the furthest one. By this calculation, the
closest neighbors will be assigned a greater weight. We extend the approach to perform
probabilistic classification (more details in “Methods” section).

Regression

Regression is a statistical process, used to estimate the relationship between one
dependent variable and one or more independent variables. In the machine learning
domain, regression is a supervised method, which outputs continuous values (instead
of discrete values such as classes, categories, labels, etc.). These values represent an esti-
mation of the target (dependent) variable for the new observations. A common use of
the regression analysis is the prediction of a variable’s values (e.g., future water/energy
consumption, product prices, web pages visibility/prediction of potential visitors), based
on existing/historical data. There are numerous statistical processes that perform regres-
sion analysis, however, in the case of kNN, regression can be performed by averaging the
numerical target variables of the kNN as follows.

Considering the same set of kNNs
(

X = {xNN1 , xNN2 , . . . , xNNk }
)

 and the target variable
of each one as V = {vNN1 , vNN2 , . . . , vNNk }, the value of the new observation will be calcu-
lated as:

(1)wi =







dNNk −dNNi

dNNk −dNN1

: dNNk �= dNN1

1 : dNNk = dNN1

, i = 1, . . . , k

(2)vr =

∑k
i=1 v

NN
i

k
, i = 1, . . . , k

Page 6 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

FML-kNN regressor implements the above procedure. At this point we should note that
k-nearest neighbors performs non-linear classification and regression, as it does not seek
a decision hyperplane to separate the data or a straight line to fit them. Instead, it seeks
the closest elements in the neighborhood of the query element based on the Euclidean
distance, which results to a non-linear traversal of the space.

Dimensionality reduction

In order to avoid expensive distance computations caused by high dimensional input
data, we reduce their dimensionality to one. This is accomplished by three different
SFC implementations, namely the z-order, the Gray-code and the Hilbert curve, all sup-
ported by FML-kNN in order to provide the flexibility of tuning according to specific
needs, w.r.t. time performance or accuracy. Each curve scans the n-dimensional space in
a dissimilar manner and exhibits different characteristics in terms of scanning “fairness”
and computation complexity [19].

z-order curve The z-order curve (Fig. 1a) is computed by interleaving the binary codes
of an element’s features. This procedure takes place starting from the most significant bit
(MSB) towards the least significant (LSB). For example, the z value of a 3-dimensional
element with feature values 3 (0112), 4 (1002) and 5 (1102), can be formed by first inter-
leaving the MSB of each number (0, 1 and 1) going towards the LSB, thus, forming a final
value of 0111011002. This is a fast procedure, not requiring any costly CPU execution.

Gray-code curve The Gray-code curve (Fig. 1b) mapping computation is very simi-
lar to the z-order curve as it requires only an extra step. After obtaining the z value as
described above, it is transformed to Gray-code by performing exclusive-or operations
to successive bits. For example, the Gray-code value of 01002 would be calculated as fol-
lows. Initially, the MSB is left the same. Then, the second bit would be an exclusive-or
of the first and second (02 ⊕ 12 = 12), the third and exclusive-or of the second and third
(12 ⊕ 02 = 12) and the fourth an exclusive-or of the third and fourth (02 ⊕ 02 = 02).
Thus, the final Grey-code value would be 01102.

Hilbert curve Finally, the Hilbert curve (Fig. 1c) requires more complex computations
in order to be calculated. The intuition behind Hilbert curve is that two consecutive
points in the sequence are nearest neighbors, thus, avoiding “jumping” to farther ele-
ments, as in the z-order and Gray-code curves. The curve is generated recursively by
rotating the two bottom quadrants at each recursive step. There are several algorithms
that map coordinates to Hilbert coding. In this work, we employ the methods described
in [31], offering both forward and inverse Hilbert mapping.

Apache Flink

Our framework was implemented using the Apache Flink distributed processing engine.
Flink offers a variety of transformations on datasets and is more flexible than similar
engines (i.e., Apache Hadoop and Apache Spark), due to the fact that it executes its jobs
in a pipelined manner, thus, gaining in performance. Also, it efficiently supports iterative
algorithms, which are extremely expensive in the standard MapReduce framework. The
parallel tasks are executed by task managers, each one usually denoting a single machine
with a number of further parallel processing slots, usually set to be the same as the num-
ber of available CPUs.

Page 7 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

Flink is more appropriate for demanding computations performance-wise, as it does
not require key-value pairs during the transitions that take place between the transfor-
mations. Instead, Java plain objects or just primitive types are used, optionally grouped
in tuples. The grouping (partitioning) and sorting can be applied directly according to
specific tuple elements or object variables, thus, avoiding the need of generating key-
value pairs, which are required i.e., by Hadoop in order to properly partition and sort the
elements during the shuffle and sort phase. Furthermore, Flink is equipped with built-
in automatic job optimization, which achieves better performance compared to other
engines.

Methods
This section outlines the design and implementation of FML-kNN. One of the main con-
tributions of FML-kNN is the unification of the three different processing stages into a
single Flink session. Multi-session implementations, regardless of the distributed plat-
form on which they are developed and operated, are significantly inefficient due to the
following reasons:

• • Multiple initializations of the distributed environment: They increase the total wall-
clock time needed by an application in order to produce the final results.

• • Extra I/O operations during each stage: They introduce latency due to I/O operations
and occupy extra HDFS space.

We avoid the above issues by unifying the distributed sessions into a single one. Figure 2
illustrates the unified session. The stages are executed sequentially and I/O operations
on HDFS take place only during the start and end of the execution.

Dimensionality reduction and shifting

The input dataset is consisted of points in a d-dimensional space. To perform dimen-
sionality reduction, we transform each point into SFC values via either z-order, Gray-
code, or Hilbert curve. By taking a closer look on the way the SFCs fill a two-dimensional
space from the smallest value to the largest, one could easily notice that some elements
are falsely calculated being closer than others, as the curve scans them first. This can
have a negative impact on the result’s accuracy.

Fig. 2  Single Flink session. I/O operations only take place during the start and end of the execution

Page 8 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

To diminish the negative effect of such false approximations, we generate a pre-deter-
mined number of alternate versions of the dataset, where each element is randomly
shifted by a pre-calculated random vector. As an example, let us suppose that we have
a dataset whose elements consists of three features and a random vector v = {3, 5, 2} .
Then, all the elements of the dataset are shifted using this vector, e.g., an element
el = {2, 6, 9} will be altered to el′ = {2+ 3, 5+ 6, 2+ 9} = {5, 11, 11}. This is demon-
strated for z-order curve in Fig. 3, where the four bottom-left elements are shifted twice
in the x-axis and once in the y-axis, altering the sequence in which they are scanned by
the curve. This way, neighboring points that are distant on the curve will possibly be
closer in the shifted dataset. This procedure compensates the lost accuracy, as it ena-
bles scanning the space in an altered sequence. During execution, the shifted dataset
is concatenated with the original one and the algorithm is executed, producing multi-
ple groups of kNNs, from which the final kNNs are determined. The limitation of this
approach is the fact that the size of the input dataset is increased according to the num-
ber of shifts i ∈ [1, α], where α is the total number of shifts. Finally, we should mention
that the above process is similar for all SFCs.

Partitioning

A crucial part of developing a MapReduce application is the way input data are parti-
tioned in order to be delivered to the required reducers. Similar baseline distributed
approaches of kNN joins problem perform partitioning on both R and S datasets in n
blocks each and cross-check for nearest neighbors among all possible pairs, thus requir-
ing n2 reducers. We avoid this issue by computing n overlapping partitioning ranges for
both R and S, using each element’s SFC values. This way, we make sure that the nearest
neighbors of each R partition’s elements will be detected in the corresponding S parti-
tion. We calculate these ranges after properly sampling both R and S, due to the fact that
this process requires costly sorting of the datasets.

Fig. 3  Data shifting. The gray dots represent the shifted values

Page 9 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

The FML‑kNN distributed processing framework

FML‑kNN workflow

FML-kNN has the same workflow as other similar approaches [23], and consists of three
processing stages. The workflow of the algorithm is depicted in Fig. 4. The operations
that each stage of FML-kNN performs are enumerated below (the Flink operation/trans-
formation is in parentheses):

• • Data pre-processing (stage 1)

– – Performs dimensionality reduction via SFCs on both R and S datasets (Flat Map
R/S).

–– Shifts the datasets (Flat Map R/S).
–– Unifies the datasets and forwards to the next stage (Union).
–– Samples the unified dataset (Flat Map Sampling).
–– Calculates the partitioning ranges and broadcasts them to the next stage (Group

Reduce).

• • Data partitioning and organization (stage 2)

– – Partitions the unified dataset into n partitions, using the received partitioning
ranges (Flat Map).

–– For each partition and each shifted dataset, the kNNs of each element in dataset R
are calculated (Group Reduce).

• • k NN computation (stage 3)
–– The final kNNs for each element in dataset R are calculated and classification or

regression is performed (Group Reduce).

During data pre-processing, the sampling process is performed by a separate flatMap
operation, which in return feeds the reducers with a smaller, sampled dataset used to
calculate the partitioning ranges. The unified transformed datasets are directly passed
to the mappers of stage 2, which also receive the partitioning ranges as a broadcast data-
set via the withBroadCastSet operation. The data partitioning and organization

Fig. 4  Single-session FML-kNN. This image represents the unified process. The partitioning ranges are passed
to the stage 2 as broadcast variables

Page 10 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

stage directly feeds the input of the kNN computation. Flink’s agility allows for the entire
removal of the mapping procedure of stage 3, as it only propagates the results from the
stage 2 to the reducers of stage 3. This increases the efficiency as it reduces the algo-
rithm’s resource requirements. In the following, we present each stage in more details.

Data pre‑processing (stage 1)

The R and S datasets are read as plain text from HDFS and delivered to two separate
concurrent flatMap transformations, identifiable by the input source file. During this
stage, the SFC values (z values for z-order, g values for Grey-code curve and h values
for Hilbert) and possible shifts, are calculated and passed to a union transformation,
which creates a union of the two datasets. The unified and transformed datasets are then
forwarded to the next stage (stage 2) and to a sampling process, which is performed by a
separate flatMap transformation. The sampled dataset is then passed on a groupRe-
duce transformation, grouped by a shift number. This way, α (number of shifts) reducers
will be assigned with the task of calculating the partitioning ranges for R and S datasets,
which are then broadcast to the next stage (data partitioning and organization).

Broadcasting the partitioning ranges significantly reduces the computational resources
required by the reducers compared to F-zkNN, as it avoids the race condition between
stages 1 and 2 (Fig. 5a). During the race condition, the transformed dataset is forwarded
to the second stage before the partitioning ranges are calculated by the reducers, causing
its mapping operation to be initiated, which would result in an error, as the partition-
ing ranges are required. To avoid this race condition, F-zkNN’s reducers have to locally
cache the transformed dataset while it is being sampled for the calculation of ranges,
as depicted in Fig. 5b. FML-kNN overcomes this issue, by broadcasting the partitioning
ranges, as this procedure blocks the execution of the second stage until the transformed
dataset is ready. The left part of Fig. 4 depicts the whole process.

Algorithm 1 presents the pseudocode of stage 1. The random vectors are initially gen-
erated and cached on HDFS in order to be accessible by all the nodes which take part in
the execution. They are then given as input to the algorithm, along with datasets R and S.
Notice that v1 = �0 indicating that the datasets are not shifted during this iteration. This
process takes place α times, where α is the number of shifts (Line 5). After shifting the
datasets, during the first mapping phase (Lines 5–9), the elements’ SFC values are cal-
culated and collected to R̂T

i and ŜTi , where i = 1, . . . ,α. Then, the sampling is performed

a b

Fig. 5  F-zkNN race condition and solution. The reducers of the first stage have to locally cache the trans-
formed dataset (b) to avoid the race condition (a)

Page 11 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

by the second mapping phase (Lines 10–17). During the reduce phase (Lines 18–22),
the partition ranges (Rrangei and Srangei) for each shift are calculated using the sampled
datasets and broadcast to stage 2 (Lines 18–20). The output consists of the unified trans-
formed datasets, which finally feed the data partitioning and organization stage (Line
22).

Data partitioning and organization (stage 2)

The transformed datasets of stage 1 are partitioned to n× α blocks via a custom par-
titioner, after fetching the previously broadcast partitioning ranges. Each block is
then delivered to a different reducer through a groupBy operation. Finally, the near-
est neighbors for each query element are calculated via proper range search operations
and passed on the next stage (kNN computation). The middle part of Fig. 4 depicts this
process.

Algorithm 2 presents the pseudocode of stage 2. During the map phase (Lines
7–18), after having read each shift’s broadcast partition ranges (Line 6), the received
transformed datasets are partitioned into n× α buckets (Rg×i and Sg×i, i = 1, . . . ,α ,
g = 1, . . . , n, Lines 13 & 18), α being the number of shifts and n the number of parti-
tions. The partitions Sg×i are then sorted and emitted to the reducers (Lines 23–30)
along with the corresponding partitions Rg×i. There, for each x ∈ R element, a range
search is performed on the proper sorted partition in order for its kNN to be determined
(Line 23) and its initial coordinates are calculated (Line 24). The initial coordinates of all
neighboring elements’ coordinates are then calculated (Line 26) and their distance to the
x ∈ R element is computed (Line 27). Finally, all nearest neighbors are integrated into
the proper dataset (Rk×α, Line 28) along with the calculated distance and feed the stage
3, grouped by x ∈ R elements.

Page 12 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

kNN computation (stage 3)

The calculated α × k-nearest neighbors of each R element, are fetched from HDFS and
mapped to |R| reduce tasks. The final k-nearest neighbors are determined and passed to
the classifier or regressor, depending on user preference. The latter calculate either the
probability for each class (classifier) or the final value (regressor) for each element in R.

Classification In the case of classification, we extend the voting scheme, to perform
probabilistic classification. We consider the set P = {pj}

l
j=1, containing the probability

that the query element will belong to each class, where l is the number of classes. The
final probability for each class will be derived as follows:

where I(cj = cNNi) is a function which takes the value 1 if the class of the neighbor xNNi
is equal to cj.

Finally, the element will be classified as:

(3)pj =

∑k
i=1 wi · I(cj = cNNi)

∑k
i=1 wi

, j = 1, . . . , l

Page 13 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

which is the class with the highest probability. The final result for each element is
appended along with the calculated probabilities for each class in a result entry. Listing 1
showcases a four class classification where the element XYZ has been assigned to class
C.

Listing 1 The element XYZ is classified to class C, which has the highestprobabil-
ity.  XYZ|Result : C|A : 0.06|B : 0.03|C : 0.71|D : 0.2

Regression For the case of regression, the final result for each element is calculated as
described in “Regression” section and contains its predicted value and has the following
format (Listing 2):

Listing 2 The value estimation of element XYZ.  XYZ|Result : 19.244469

In both cases, the results for each query element are stored on HDFS in plain text.
Algorithm 3 presents the pseudocode of stage 3. During this stage, which consists of

only a reduce operation, kNNs of each R element are fetched from the grouped set of
Rk×α. Finally, for each query element either classification (Line 9) or regression (Line 11)
is performed, after determining its final nearest neighbors (Line 7). The results are added
to the resulting dataset (Line 9), which is then stored on HDFS (Line 12) in the proper
format.

Spark implementation

We implemented a three-sessions and a single-session Spark version of the probabilistic
classifier, named S-kNN, in order to conduct a comparative evaluation among the differ-
ent distributed processing engines. The architecture of the implementation is the same
as described above. The main difference lies to the transformations and actions that were
used in order to achieve similar functionality to the Flink implementations. The code for
both implementations is open source and it can be found online [32].

(4)
cr = arg max

cj
P, j = 1, . . . , l

Page 14 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

Cost analysis

Zhang et al. [7] showed that the overall communication cost of H-zkNN is
O
(

α
(

1/ǫ2 + |S| + |R| + k|R| + nk
))

, where α is the number of shifts, ǫ the sampling rate,
n the number of partitions and k is the number of required nearest neighbors.

FML-kNN introduces some further communication within the stage 1 and between
the stages 1 and 2. More specifically, |R| and |S| elements have to be communicated
from the initial flatMap of stage 1 to the sampling flatMap. Similarly, the same number
of elements have to be sent to the mappers of the stage 2. There is no extra communica-
tion from the unification of stage 3, due to the removal of its mappers. Thus, the rest of
the communication cost remains unchangeable. Consequently, the overall communica-
tion cost of our method is O

(

α
(

1
/

ε2 + 3|S| + 3|R| + k|R| + nk
))

.

As far as the CPU cost is concerned, Zhang et al. [7] estimate it to be
O
(

1/ǫ2log
(

1/ǫ2
)

+ nlog
(

1/ǫ2
)

+ (|R| + |S|)log |S|
)

 for H-zkNN. The FML-kNN intro-
duces extra calculations in the stage 3, for classification and regression, which are
O(3k|R| + 2c|R|) and O(2k|R|) respectively, where c is the number of classes for clas-
sification. However, since both are significantly less than (|R| + |S|)log |S|, the total CPU
cost is finally equal to O

(

1/ǫ2log
(

1/ǫ2
)

+ nlog
(

1/ǫ2
)

+ (|R| + |S|)log |S|
)

.

Results and discussion
FML-kNN was assessed in terms of wall-clock completion time and scalability, by con-
ducting a comparative benchmarking among similar implementations, executed over
different distributed processing engines. The latter are either executed in one (where
possible), or three Spark or Hadoop (i.e., an extension of the original H-zkNNJ algo-
rithm) sessions and are compared with the corresponding versions of the probabilistic
classifier. Similar results are expected for the regressor which we have omitted to avoid
repetition.

We also present two case studies which exhibit the framework’s efficiency over useful
insights extraction from water consumption events on a city scale level. Throughout our
experiments, we used one synthetic and two real-world water consumption time-series
datasets.

Experimental setup

In the following, we present the environmental setting of the experiments and the quali-
tative and quantitative metrics that we used to assess the performance of the classifica-
tion and regression processes. We also present the parameters that were used and how
they were determined in the context of the experimentation process.

System The algorithms were assessed on a pseudo-distributed environment. The setup
includes a system with 4 CPUs, each containing 8 cores clocked at 2.13 GHz, 256 GB
RAM and a total storage space of 900 GB. The CPUs support hyper-threading tech-
nology, running 2 separate threads per core. The total parallel capability of the system
reaches the 64 threads (4 · 8 · 2). All (i.e., Flink-, Spark- and Hadoop-based) implementa-
tions were evaluated on the same HDFS, over a local Yet Another Resource Negotiator
(YARN) resource manager. This way, each Flink task manager, Spark executor or Hadoop
daemon runs on a different YARN container, represented by a separate Java process able
to run one or more threads, simulating the distributed cluster.

Page 15 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

Despite the significant differences in the distributed processing engines’ configuration
settings, they were all configured in order to use the same amount of system resources.
The level of parallelism of all tasks for each engine was set to 16, in order to exploit the
fact that, in an optimally determined setting and during the experiments, the stage 2
partitions the dataset into 8 subsets and the total number of shifts is 2. Thus, a maxi-
mum of 16 simultaneous tasks are executed in all cases. For Flink and Spark, a total of
4 task managers (one per CPU) and executors respectively were assigned 32768 MB of
Java Virtual Machine (JVM) heap memory. Each task manager and executor was given
a total of 4 processing slots (Flink) or executor cores (Spark). For Hadoop, the parallel-
ism ability was set to 16 by assigning the mappers and the reducers to the same number
of YARN containers, with 8192 MB of JVM each. Thus, the total amount of JVM heap
memory assigned to each session is always 131072 MB (either 4 · 32768 MB, or 16 · 8192
MB).

Despite our attempt to assign similar amount of system resources to each distributed
processing engine and due to the fact that each one offers a handful of configuration set-
tings regarding execution, memory allocation, and job scheduling behavior, the perfor-
mance of the different implementations may differ from the optimal one. However, after
performing numerous benchmarking sessions, we believe that for the current system
setting, the presented configuration is fair, achieving the highest possible performance
for all three engines, while maintaining the level of parallelism at 16. The configuration
was performed by taking into consideration the corresponding guide of each engine.

Parameters FML-kNN uses a variety of input parameters required by the underlying
distributed kNN algorithm, in order to support the classification and regression pro-
cesses. Regarding the value of the k parameter that was used throughout the experi-
ments and due to the fact that the optimal value is problem specific, we performed a
separate cross-validation-based evaluation for each of the case studies (see “Case stud-
ies” section). The best k parameter choice was performed in a way that maintains the
best balance between completion time and accuracy. Most parameters were similarly
chosen after performing appropriate cross-validation-based benchmarking.

Among the rest of the parameters, FML-kNN utilizes a vector of size equal to the
input dataset’s dimensions, indicating the weight of each feature according to its signifi-
cance to the problem. Each feature is multiplied with its corresponding weight before
the execution of the algorithm in order to perform the required scaling, according to
the feature’s importance. To automatically determine an optimal feature weighting vec-
tor, we provide the option of executing a genetic algorithm, which uses a specific met-
ric, described in the next paragraph, as cost function. The parameters of the genetic
algorithm, such as the size of the population, the probability to perform mutation or
crossover, the elite percentage of the population and the number of the iterations can be
directly determined by the user. This approach was applied to produce the optimal fea-
ture weighting vector for each of the cases that we studied.

Metrics Four different well known performance measures were used to evaluate the
quality of the results obtained by the classifier and the regressor. These performance
measures are included in the framework in order to offer the ability to assess the various
data analysis tasks. Accuracy and F-Measure are implemented for classification, while
root mean square error (RMSE) and Coefficient of determination (R2) are used to evaluate

Page 16 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

the quality of regression. A short description of what each of these metrics represents in
our experimentation is listed below:

• • Accuracy: The percentage of correct classifications (values from 0 to 100). It indi-
cates the classifier’s ability to correctly guess the proper class for each element.

• • F-Measure: The weighted average of precision and recall of classifications (values
from 0 to 1). Using this metric, we ensure good balance between precision and recall,
thus, avoiding misinterpretation of the accuracy.

• • Root mean square error (RMSE): Standard deviation between the real and predicted
values via regression. This metric has the same unit as the target variable. It provides
us with the insight of how close the guessed values are to the real ones.

• • Coefficient of determination (R2): Indicates the quality of the way the model fits the
input data. It takes values from 0 to 1, with 1 being the perfect fit. A good fit means
that the regressor is able to properly identify the variations of the training data.

The completion time comparison of the distributed processing engines is performed
after simply obtaining the system time elapsed before and after each execution.

Datasets

For the experimental evaluation of FML-kNN we used two real-world water consump-
tion related datasets coming from Switzerland and Spain. We also generated a synthetic
dataset, based on an extended version of the Spain dataset, with a much larger amount
of entries. Since the framework’s algorithm is kNN-based, we normalized all the data-
sets’ features from values ranging from 0 to 1, in order to avoid broader ranged features
heavily affecting the result.

SWM dataset The first dataset contains hourly time-series of 1000 Spanish households’
water consumption, measured with smart water meters. It covers a time interval of a
whole year, i.e., from the 1st of July 2013 to the 30th of June 2014. The records include a
household identifier, a timestamp and a meter measurement in liters. This dataset has a
total number of 8.7 M records.

Shower dataset The second dataset includes shower events from 77 Swiss households
collected with shower water meters. Each record contains a household and shower iden-
tifier, a meter measurement in liters, the number of times that the faucet was turned off
during the shower and the corresponding duration, the total duration of each shower as
a whole, as well as the average water temperature and flow rate. It also contains demo-
graphic information related to the age, income, number of males or females and total
number of household members. This dataset counts 5795 records. While this dataset
is not on a Big Data scale, we perform a case study based on it, in order to assess the
framework’s data analysis capability on water consumption data regarding a single water
fixture and consumer activity.

Synthetic dataset In order to evaluate completion time performance on Big Data, we
created a synthetic dataset via a Big Data generator. The latter is a part of the BigDa-
taBench benchmark suite [33] and operates via .xml files, in which the user can deter-
mine the number of records and their features. Based on an extended version of the
SWM dataset produced after proper feature extraction (see “SWM dataset” section), the

Page 17 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

synthetic dataset’s entries consist of an id, 10 features and two target variables of con-
tinuous (floating point with 10 decimals) and binary data representation, respectively.
Each feature is ranged from 1 to 99 and the id is alphanumeric. The data representation,
number and range of features was selected in order to maintain a relatively high num-
ber of dimensions, while being able to create a large number of records and at the same
time avoiding exceeding the memory limits of the setup (approx. 8192 MB per mapper
or reducer for the Hadoop case). Thus, the total size of the synthetic dataset has 100 M
records (approx. 4.1 GB).

Benchmarking

In the following, we perform a comparative benchmarking of FML-kNN, in terms of
scalability and wall-clock completion time, using the synthetic dataset and the probabil-
istic classifier. Similar results are expected for the regressor. The comparison involved:

• • FML-k NN (single session): The proposed implementation, presented in the previous
section.

• • FML-k NN (three sessions): A three-sessions version of FML-kNN, where each stage
is executed by a different Flink process.

• • S-k NN (single session): An Apache Spark version with the same architecture as
FML-kNN.

• • S-k NN (three sessions): A three-sessions version of S-kNN, where each stage is exe-
cuted by a different Spark process.

• • F-z k NN: The single-session algorithm on which the core algorithm of FML-kNN
was based.

• • H-z k NNJ: An extended version of the algorithm to perform probabilistic classifica-
tion executed in three separate sessions. This is the baseline method.

It is important to note that a single-session version of the H-zkNNJ algorithm is not pos-
sible, as a Hadoop session can only execute one map, followed by one reduce procedure.
A single session requires the three stages to be executed in a sequential manner, which
is not possible in Hadoop, as it would require mapping to be performed after reducing
procedures several times.

Wall‑clock completion time

Table 1 shows the probabilistic classifier’s wall-clock completion time of all Flink, Spark
and Hadoop versions, run in either three, or one sessions (possible only for FML-kNN,
S-kNN and F-zkNN). The three-session F-zkNN is identical to the three-session FML-
kNN implementation and its measurements are omitted. We used the synthetic dataset
and we followed a 10–90% testing–training split scheme, resulting in 10 M records being
used as the testing set (R) and 90 M as the training set (S). It is apparent that the Flink-
based implementations perform significantly better than all implementations, in both
three and single-session versions. This improved performance is due to Flink’s ability to
process tasks in a pipelined manner, which allows the concurrent execution of successive
tasks, thus, gaining in performance by compensating time spent in other operations (i.e.,
communication between the cluster’s nodes).

Page 18 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

The unified version implemented with Spark is significantly faster than the total wall-
clock time of the corresponding three-sessions setting. This is due to the reduction of
the I/O operations on HDFS during the beginning and end of each session. A critical
role is also played by the omission of the mappers of stage 3, which introduced the addi-
tional overhead of forwarding the results of the second session to the proper reducers.
For FML-kNN, the total time of the three-sessions version is similar to the unified one,
again due to the pipelined way of execution, which compensates the time lost during
HDFS I/O operations. The wall-clock completion time of S-kNN is only slightly lower
for each stage than the baseline H-zkNNJ implementation, except during the third ses-
sion, where it executes almost twice as fast. This is caused by the fact that the stage 3
does not include costly operations such as sorting and transforming the dataset coming
from stage 2. The latter is partitioned according to the id of each query element (i.e., ele-
ments in R dataset), thus, taking advantage of all system resources and possibly Spark’s
documented better performance over Hadoop. F-zkNN performs worse than the rest of
the implementations due to its resource-hungry propagation of the transformed dataset
during the first stage.

It should be noted that the results do not suggest that Flink is superior to the other
distributed processing engines. The comparison is limited to the current FML-kNN’s
core algorithm and the implementation and experimental setting are as fair as possible,
considering the engines’ different operational support. It proves, however, that our algo-
rithm performs significantly better with Flink and supports our choice to use it as an
underlying execution environment.

Scalability

The various implementations were also evaluated in terms of scalability. Figure 6 shows
the way each version scales in terms of completion time for subsets of the synthetic data-
set of different size, using the same 10–90% testing–training split scheme. The subset
sizes varied from 10 M (1 M testing–9 M training), to 100 M (10 M testing–90 M train-
ing). As illustrated in the figure, the FML-kNN implementations exhibit similar perfor-
mance and scale better as the dataset’s size increases. However, the unified version, i.e.,
the one used at FML-kNN framework, has the advantage of not requiring user input
and session initialization between the algorithm’s stages. Flink’s pipelined execution
advantages are once again apparent if we compare the scalability performance of all the
three-sessions implementations: The I/O HDFS operations cause the Spark and Hadoop
versions to scale significantly worse than Flink, which performs similarly to the unified

Table 1  Wall-clock completion time

The unified Flink version outperforms the rest of the implementations

Version 3 sessions 1 session

1st 2nd 3rd Total Total

FML-kNN 03 m 45 s 24 m 59 s 01 m 48 s 30 m 32 s 30 m 25 s

S-kNN 07 m 12 s 29 m 15 s 03 m 01 s 39 m 28 s 33 m 03 s

F-zkNN N/A N/A N/A N/A 46 m 09 s

H-zkNNJ 06 m 00 s 31 m 19 s 0 5 m 54 s 43 m 13 s N/A

Page 19 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

version. Finally, due to the aforementioned dataset propagation, F-zkNN scales worse
than all the implementations.

We have executed the algorithm using the 100M synthetic dataset for different split
schemes, more specifically for 10–90, 30–70, 50–50, 70–30 and 90–10% testing–train-
ing. The results are depicted in Fig. 7. FML-kNN performs better in all cases. Due to
the fact that the CPU cost of all methods similarly depends on the size of R and S data-
sets (please refer to “Cost analysis” section), there are no large variations between the
differences in the performance among all the implementations, and for all split cases.

Fig. 6  Scalability comparison. Flink exhibits better scalability, especially after 90 M records of input dataset
size

Fig. 7  Wall-clock completion time for different split sizes. FML-kNN performs better in all cases. Completion
time is increased in a similar to logarithmic manner

Page 20 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

More time is required to finish execution as the size of the R dataset is increased, due to
the fact that the communication cost more heavily depends on the size of the R dataset.
However, this is compensated in each split case by the reduced size of dataset S, causing
the execution time to be increased in a similar to logarithmic manner.

Case studies

The framework’s data analysis potential was evaluated using two real-world water
related datasets in two independent case studies presented below. We focus on knowl-
edge extraction from large volumes of historical water consumption data, towards the
facilitation of useful insights acquisition for consumers and resource utilities in the
water domain, which could induce lifestyle changes by promoting sustainability.

SWM dataset

The first case study showcases the potential of the framework’s machine learning algo-
rithms on a water consumption time-series forecasting task. Time-series data on water
consumption pose several challenges on applying machine learning algorithms for
forecasting purposes. Apart from the actual measurement values, one must take into
account their correlation with previous values, their seasonality, the effect of contextual
factors, etc. [34]. Thus, proper features that represent and correlate different aspects of
the data need to be defined in order to take advantage of the time-series nature of such
data.

Feature extraction The dataset consists of 8.7 M smart water meter hourly readings for
1000 households during a year, with each reading representing a record. The id of each
element was set to be the smart meter id, together with the date and hour during which
the consumption occurred. Initially, we removed any outlier records that could affect
the final result. Such records belong to customers who do not exhibit normal water con-
sumption behavior, i.e., they are frequently absent during the year or they continuously
consume water (i.e. indication of possible leakage). We considered as frequently absent
the users who did not consume any water for more than 40 days during a year, which
indicates that they were away from their households. As a next step, we generated a total
of nine different features for each data element.

Due to the qualitative nature of the extracted features, the Euclidean distance of FML-
kNN cannot be applied directly on them. To overcome this, we assign each feature with a
new value, which is derived during a pre-processing step, after we sort according to aver-
age water consumption. For example, for the feature indicating the season of the year, we
obtain the average per season water consumption and we sort the seasons according to
this value. Then, each season is assigned with a numerical value corresponding to its
position in this sequence. This way, if supposedly winter was assigned with 1, summer
with 2, autumn with 3 and spring with 4, we know that winter is closer to summer both
in terms of consumption and Euclidean distance. The extracted features are presented in
more details in the following.

Page 21 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

• • Hour: The hour during which the consumption occurred.
• • Time Zone: We grouped the hours into four time zones of consumption: 1am–4am

(sleeping), 5am–10am (morning activity), 11am–7pm (working hours) and 8pm–
12am (evening activity).

• • Day of week: The day of the week from Monday to Sunday.
• • Month: The month of the year, from January to December.
• • Season: The season of the year, from winter to autumn.
• • Weekend: A binary feature indicating whether or not the consumption occurred dur-

ing a weekend. We decided to include this feature after noticing differences between
average hourly consumption during weekdays and weekends.

• • Customer group: We run a k-means clustering algorithm, configured to run for time-
series data, on the weekly average per-hour consumption time-series for each cus-
tomer (for details, see below).

• • Customer ranking: For each hour, we calculated the average hourly consumption of
each customer and sorted according to it.

• • Customer class: This feature represents a grouping of the customers to one of four
classes according to their monthly average consumption, i.e. “environmentally
friendly”, “normal”, “spendthrift”, “significantly spendthrift”.

Each record also contained two target variables, being the exact meter reading at each
timestamp and a binary flag, indicating whether consumption occurred during that hour
or not (i.e., if the meter reading was positive or zero).

The reason for choosing k-means for extracting the customer group feature was its sig-
nificantly lower complexity compared to other clustering methods. As several evaluating
works in the literature suggest [35–37], k-means achieves the best performance in terms
of execution time and scalability. This is crucial in our case, as in a real world scenario
the feature extraction procedure, as a pre-processing step is usually required to be as
time efficient as possible. Additionally, k-means can produce accurate and tight clusters
compared to similar methods [38], which renders it the best choice for this case study.

Since the input data to be clustered are time-series, we used Dynamic Time Warping
(DTW) as a distance metric. DTW is a very commonly used metric for comparing time
series. As opposed to other distance metrics (e.g., Euclidean distance), it can handle the
case where two time series have similar form but are slightly shifted in the time axis.
For more details and a formal definition of DTW, the reader can refer to [39]. Finally,
we applied k-means on the average consumption time-series, with 10 as the number of
clusters, which was determined as follows. Initially, we used a rule of thumb which pro-
vides a very fast estimation of the optimal number of clusters, described by Kodinariya
et al. [40], which calculates k as follows:

where n is the number of elements to be clustered. Considering the number of the cus-
tomers (1,000), the above equation yielded k = 22. Starting from this value, we run
the k-means algorithm several times, using lower (higher) number of clusters than 22.
We decreased (increased) the number of clusters by 1 and repeated the clustering and

(5)k =

√

n

2

Page 22 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

measured the Davies-Bouldin index [41] score of each execution. Finally, we chose the
local best score, which in this case study was 10 clusters.

Procedure We first execute the probabilistic classifier, with the testing set (R) com-
prising of the last 2 weeks of water consumption for every user (approximately 336,000
records), in order to obtain the possibility of whether consumption will occur or not,
during each hour. The rest of the dataset (approximately 8.36 M records) is used as the
training set (S). We perform binary classification, obtaining an intermediate dataset indi-
cating whether or not consumption will occur for each training record. Using the hours
during which we predicted that water will be consumed, we ran the regressor, obtaining
a full predicted time-series result of water consumption for each user. Before each algo-
rithm’s execution, we determined the optimal scale vector using the genetic approach.

In order to choose the optimal k parameter for both algorithms, we employed a tenfold
cross-validation approach. We iteratively split the entire dataset into ten equal parts and
executed each algorithm the same number of times, using a different subset as training
set (S) while the rest of the sets, unified, comprised the testing set (R). As a metric, we
used accuracy for classification and RMSE for regression. The k value that achieved the
best balance between completion time and result quality was 15, for both the classifier
and regressor.

Space Filling Curves accuracy evaluation FML-kNN supports three SFC-based solu-
tions for reducing the dimensionality of the input data to just one dimension, namely the
z-order, Grey code and Hilbert curves. We evaluated the completion time and approxi-
mation quality of each SFC, in order to choose the one that achieves the best balance
between timing performance and approximation accuracy, regarding the water con-
sumption dataset. Table 2 presents the metric and time performance related results of
the probabilistic classifier and regressor for each SFC, which we obtained from running
the algorithms using the tenfold cross-validation.

All three SFCs demonstrate similar performance in all aspects. Hilbert curve scores
higher in all metrics as expected, however only slightly. Consequently, we chose the
z-order curve for this case study, as it exhibits better time performance due to its
decreased calculation complexity.

Results The classifier correctly predicted the 74.54% (F-Measure: 0.81) of the testing
set’s target variables, i.e., the hours during which some consumption occurred for the
2-week period. For these specific hours the regressor achieved a RMSE score of 19.5 and
a coefficient of determination score of 0.69. The results were combined into a single file,
forming the complete time-series of the dataset’s last 2 weeks’ (June 16–30 2014) water
consumption prediction for all the users.

Table 2  Space Filling Curves’ performance.

The Hilbert-order curve performs slightly better in all metrics, but is slower

Curve Classification Regression

Accuracy (%) F-Measure Wall-clock time RMSE R⌃2 Wall-clock time

z-order curve 70.24 0.775 1 m 20 s 18.86 0.64 0 m 59 s

Hilbert curve 70.54 0.78 1 m 32 s 18.69 0.66 1 m 15 s

Gray-code curve 70.4 0.777 1 m 25 s 18.81 0.64 1 m 5 s

Page 23 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

Figure 8 shows four users’ consumption prediction versus the actual one, during four
different days. The prediction for user #4 was close to reality. The results seem to follow
the real values, but are not able to properly follow the observed ones. This indicates that
it is rather difficult to accurately predict a single user’s future water consumption, due to
possible unforeseen or random events during a day, a fact which justifies the rather large
RMSE score. For example, consumptions higher than 20 liters during an hour (e.g., user
#3 around 6:00) could indicate a shower event, while larger consumptions (>50 l) over
more than 1 h could suggest usage of the washing machine or dish washer (e.g., user #3
from 16:00 to 20:00), along with other activities. In order to assess the generalization of
the results, we calculated the average RMSE of the hour and volume of the peak con-
sumption during each day, as well as the average RMSE of the total water use per day,
for all the predictions. The rather high errors, (8.89 h, 28.9 and 132.23 l respectively),
confirm the previous observations regarding the difficulty in predicting random daily
events. However, despite all the above, our algorithms’ predictions are able to mostly fol-
low the overall behavior during most days (e.g., users #3 and #1).

The results are particularly interesting if we aggregate the total predicted consumption
of all users during each hour. The two upper diagrams in Fig. 9 illustrate this case for two
different days. It is apparent that our algorithms’ predictions are able to properly follow
the real aggregated consumption during each hour. This indicates that the negative effect
of the sudden/unusual/unforeseen events is lost when we attempt to predict the total
hourly water consumption of a larger number of users. The two lower diagrams present
the same prediction performed by feeding our algorithms with already aggregated hourly

Fig. 8  Personalised hourly water consumption prediction. The predicted values follow the trend of the real
ones, but miss sudden events. This is apparent during 16 and 20 h for #user1 and during 10 and 15 h for
#user3. #user2 had very little consumption during that day and our framework predicted that no consump-
tion will occur

Page 24 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

consumption data. While the pre-aggregated dataset’s predictions appear to less diverge
from the actual values in certain points, the non-aggregated results are smoother and
better assemble the actual overall behavior. This is due to the fact that the non-aggre-
gated dataset also contains user-specific features and is thus able to perform predictions
based on user similarity, thus, yielding more accurate predictions.

Shower dataset

This case study exhibits the framework’s potential in extracting useful knowledge from
shower water consumption data, using the shower dataset. More specifically, the prob-
abilistic classifier is used (the z-order curve is selected, similarly to the previous case
study) in order to predict specific characteristics of a user, from shower water consump-
tion events.

Feature extraction As mentioned, the dataset, apart from shower water consumption
related data, also included demographic information. In this case study we focused on
predicting the sex, age and income of the person that generates a shower event, using
classification. For the case of sex, we used the shower events for which we knew whether
the person was male or female (binary classification), i.e., households with only one, or
only same sex inhabitants. Consequently, each record consisted of all the smart meter
measurements (shower stops, break time, shower time, average temperature, average
flow rate) as features and the sex as the target variable. Due to the dataset’s rather small
size, the age and income prediction was also performed by binary classification, i.e.,
determine whether the person that generates a shower event is of age less than 35 years

Fig. 9  Aggregated hourly water consumption prediction. The predicted values seem to correctly follow the
general trend of consumption.

Page 25 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

or not, or has income less than 3000 CHF or not. The features of each record were the
same in all three cases.

Procedure We ran the probabilistic classifier in order to perform binary classification
of the shower events for each of the target variables. Tenfold cross-validation was also
used in this case. The latter, similarly to the previous case, helped us determine the opti-
mal value of k parameter, which was set to 10.

Results The results obtained by the classification are illustrated in Fig. 10. The classifier
achieved cross-validation accuracy of 78.6, 64.7 and 61.5% for sex, age and income pre-
diction respectively. Despite the fact that a larger dataset would generate more confident
results, it is safe to conclude to that predicting the age and income of a shower-taker
based solely on her showers is a non-trivial task. On the other hand, sex is easier to pre-
dict as it directly affects the actions of a person during a shower.

Conclusions
In this article, we have presented a novel distributed processing framework, which sup-
ports a probabilistic classification and a regression approach. Its core algorithm is an
extension of a distributed approximate kNN implementation, optimized to operate effi-
ciently in a single distributed session. It was implemented with the Apache Flink scalable
data processing engine.

We have conducted a detailed experimental evaluation in order to assess the frame-
work in terms of wall-clock completion time and scalability, comparing it with similar
approaches based on Apache Spark and Apache Hadoop. Our framework outperformed
all competing implementations, managing to execute significantly faster on the same
workloads and scale better for larger datasets, as a result of our optimizations and its
ability to execute in a single distributed session. Furthermore, we performed two water

Fig. 10  Cross-validation accuracy for sex, age and income prediction. Sex of the shower user is easier to
predict than the rest of the demographics

Page 26 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

consumption related real-world case studies, demonstrating our framework’s potential
in knowledge extraction tasks on data of very high volume.

With real-world data collection continuously evolving in all fields, knowledge extrac-
tion from daily activities becomes very challenging. The directions for future work are as
follows. We will perform extended case studies on more datasets from various sources,
in order to establish our framework’s ability in performing ad-hoc data mining tasks.
Furthermore, we will explore its applicability on data stream mining applications, where
the input is a continuous flow of data records. Finally, we will enhance our framework’s
knowledge discovery capacity, by extending it with more distributed machine learning
approaches, in an attempt to raise its potential on the continuously growing field of Big
Data analytics.

Abbreviations
FML: Flink Machine Learning; kNN: k-nearest neighbors; SFC: Space Filling Curves; LSE: least square error; RMSE: root
mean squared error; SWM: smart water meter; YARN: Yet Another Resource Negotiator; HDFS: Hadoop Distributed File
System.

Authors’ contributions
GC’s contribution was researching and developing the presented algorithms, performing the experiments and writing
the manuscript. SK provided scientific guidance and support for all of the work presented in this paper and contributed
in writing the manuscript. SA and SS contributed in supervising this work, as well as in evaluating the manuscript. All
authors read and approved the final manuscript.

Author details
1 Department of Informatics and Telecommunications, University of Peloponnese, Karaiskaki 70, 22100 Tripolis, Greece.
2 Institute for the Management of Information Systems, ATHENA R.C., Artemidos 6 & Epidavrou, 15125 Maroussi, Athens,
Greece. 3 Harokopio University, Eleftheriou Venizelou 70, 17676 Kallithea, Athens, Greece.

Acknowledgements
The infrastructure for experimentation was provided by the University of Peloponnese (https://www.uop.gr).

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
Not applicable.

Availability of data and materials
The code of single and three session versions of FML-kNN and S-kNN is available at https://github.com/DAIAD/FML-
kNN_2017_paper. The smart water meter and shower datasets are available at https://github.com/DAIAD/data.

Funding
This work was partially funded by the General Secretariat for Research and Technology (GSRT), the Hellenic Foundation
for Research and Innovation (HFRI) and the EU project “DAIAD - Open Water Management—from droplets of participa-
tion to streams of knowledge” under Grant agreement No. 619186.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 19 November 2017 Accepted: 22 January 2018

References
	1.	 Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. Commun ACM. 2008;51(1):107–13.
	2.	 Alexandrov A, Bergmann R, Ewen S, Freytag JC, Hueske F, Heise Arvid, Kao O, Leich M, Leser U, Markl V, et al. The

stratosphere platform for big data analytics. VLDB J. 2014;23(6):939–64.
	3.	 Galilee J, Zhou Y. A study on implementing iterative algorithms using big data frameworks. In: School of IT Research

Conversazione Posters; 2014.
	4.	 Flink jobs and scheduling. https://ci.apache.org/projects/flink/flink-docs-master/internals/job_scheduling.html.

Accessed 21 Dec 2017.
	5.	 Böhm C, Krebs F. The k-nearest neighbour join: turbo charging the KDD process. Knowl Inf Syst. 2004;6(6):728–49.

https://www.uop.gr
https://github.com/DAIAD/FML-kNN_2017_paper
https://github.com/DAIAD/FML-kNN_2017_paper
https://github.com/DAIAD/data
https://ci.apache.org/projects/flink/flink-docs-master/internals/job_scheduling.html

Page 27 of 27Chatzigeorgakidis et al. J Big Data (2018) 5:4

	6.	 Chatzigeorgakidis G, Karagiorgou S, Athanasiou S, Skiadopoulos S. A MapReduce based k-NN joins probabilistic clas-
sifier. In: Proceedings of IEEE BigData; 2015. P. 952–7.

	7.	 Zhang , Li F, Jestes J. Efficient parallel KNN joins for large data in MapReduce. In: Proceedings of EDBT; 2012. P. 38–49.
	8.	 Amancio DR, Comin CH, Casanova D, Travieso G, Bruno OM, Rodrigues FA, da Fontoura Costa L. A systematic com-

parison of supervised classifiers. PloS ONE. 2014;9(4):e94137.
	9.	 Yang Y. An evaluation of statistical approaches to text categorization. Inf Retr. 1999;1(1):69–90.
	10.	 Colas FPR, et al. Data mining scenarios for the discovery of subtypes and the comparison of algorithms. Leiden:

Leiden Institute of Advanced Computer Science (LIACS), Faculty of Science, Leiden University; 2009.
	11.	 Zhang ML, Zhou ZH. A k-nearest neighbor based algorithm for multi-label classification. In: 2005 IEEE International

Conference on Granular Computing, Vol. 2; 2005. P. 718–21.
	12.	 Oswald RK, Scherer WT, Smith BL. Traffic flow forecasting using approximate nearest neighbor nonparametric

regression. Center for Transportation Studies, University of Virginia; 2001.
	13.	 Wei L, Keogh E. Semi-supervised time series classification. In: Proceedings of ACM SIGKDD; 2006. P. 748–53.
	14.	 Xu J. Multi-label weighted k-nearest neighbor classifier with adaptive weight estimation. In: International confer-

ence on Neural Information Processing; 2011. P. 79–88.
	15.	 Gou J, Xiong T, Kuang Y. A novel weighted voting for k-nearest neighbor rule. JCP. 2011;6(5):833–40.
	16.	 Berchtold S, Keim DA. Indexing high-dimensional space: database support for next decades’s applications. In:

Proceedings of ACM SIGMOD; 1998.
	17.	 Liao S, Lopez MA, Leutenegger ST. High dimensional similarity search with space filling curves. In: Proceedings of

IEEE ICDE; 2001. P. 615–22.
	18.	 Sagan H. Space-filling curves. New York: Springer; 2012.
	19.	 Mokbel MF, Aref WG, Kamel I. Performance of multi-dimensional space-filling curves. In: Proceedings of ACM SIGS-

PATIAL; 2002. P. 149–54.
	20.	 Yao B, Li F, Kumar P. K nearest neighbor queries and knn-joins in large relational databases (almost) for free. In:

Proceedings of IEEE ICDE; 2010. P. 4–15.
	21.	 Lawder JK, King PJH. Querying multi-dimensional data indexed using the hilbert space-filling curve. ACM SIGMOD

Rec. 2001;30(1):19–24.
	22.	 Faloutsos C. Multiattribute hashing using gray codes. ACM SIGMOD Rec. 1986;15:227–38.
	23.	 Song G, Rochas J, Huet F, Magoulès F. Solutions for processing k nearest neighbor joins for massive data on MapRe-

duce. In: Proceedings of PDP; 2015. P. 279–87.
	24.	 Stupar A, Michel S, Schenkel R. Rankreduce: processing k-nearest neighbor queries on top of mapreduce. In: Pro-

ceedings of LSDS-IR; 2010. P. 13–8.
	25.	 Indyk P, Motwani R. Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings

of ACM STOC; 1998. P. 604–13.
	26.	 Chen F, Dai J, Wang B, Sahu S, Naphade M, Lu C. Activity analysis based on low sample rate smart meters. In: Pro-

ceedings of ACM SIGKDD. 2011. P. 240–8.
	27.	 Naphade M, Lyons D, Kohlmann CA, Steinhauser C. Smart water pilot study report. https://www.cityofdubuque.

org/1348/Smarter-Water. Accessed 31 Jan 2018.
	28.	 Silipo R, Winters P. Big data, smart energy, and predictive analytics. Time Ser Predict Smart Energy Data. 2013;1:37.
	29.	 Schwarz C, Leupold F, Schubotz T, Januschowski T, Plattner H. SAP Innovation Center. Rapid energy consumption

pattern detection with in-memory technology. Int J Adv Intell Syst. 2012;5(3&4):415–26.
	30.	 Kermany E, Mazzawi H, Baras D, Naveh Y, Michaelis H. Analysis of advanced meter infrastructure data of water con-

sumption in apartment buildings. In: Proceedings of ACM SIGKDD; 2013. P. 1159–67.
	31.	 Lawder JK. Calculation of mappings between one and n-dimensional values using the hilbert space-filling curve.

Technical report, Birkbeck College, University of London; 2000.
	32.	 Daiad repository. https://github.com/daiad/utility-flink-fml-knn. Accessed 15 Nov 2017.
	33.	 Big data benchmark. http://prof.ict.ac.cn/bigdatabench/. Accessed 15 Nov 2017.
	34.	 House-Peters LA, Chang H. Urban water demand modeling: review of concepts, methods, and organizing princi-

ples. Water Resour Res. 2011. https://doi.org/10.1029/2010WR009624.
	35.	 Singh N, Singh D. Performance evaluation of k-means and heirarichal clustering in terms of accuracy and running

time. Int J Comput Sci Inf Technol. 2012;3(3):4119–21.
	36.	 Panda S, Sahu S, Jena P, Chattopadhyay S. Comparing fuzzy-C means and k-means clustering techniques: a compre-

hensive study. In: Advances in Computer Science, Engineering & Applications; 2012. P. 451–60.
	37.	 Sehga G, Sehga DK. Comparison of various clustering algorithms. Int J Comput Sci Inf Technol. 2014;5(3):3074–6.
	38.	 JUng YG, Kang MS, Heo J. Clustering performance comparison using k-means and expectation maximization algo-

rithms. Biotechnol Biotechnol Equip. 2014;28(sup1):S44–8.
	39.	 Yi BK, Jagadish HV, Faloutsos C. Efficient retrieval of similar time sequences under time warping. In: Data Engineer-

ing, 1998. Proceedings., 14th International Conference on, IEEE; 1998. P. 201–8.
	40.	 Kodinariya T, Makwana PR. Review on determining of cluster in k-means clustering. Int J. 2013;1:90–5.
	41.	 Davies DL, Bouldin DW. A cluster separation measure. IEEE Trans Pattern Anal Mach Intell. 1979;1(2):224–7.

https://www.cityofdubuque.org/1348/Smarter-Water
https://www.cityofdubuque.org/1348/Smarter-Water
https://github.com/daiad/utility-flink-fml-knn
http://prof.ict.ac.cn/bigdatabench/
https://doi.org/10.1029/2010WR009624

	FML-kNN: scalable machine learning on Big Data using k-nearest neighbor joins
	Abstract
	Introduction
	Related work
	Preliminaries
	Classification
	Regression
	Dimensionality reduction
	Apache Flink

	Methods
	Dimensionality reduction and shifting
	Partitioning
	The FML-kNN distributed processing framework
	FML-kNN workflow
	Data pre-processing (stage 1)
	Data partitioning and organization (stage 2)
	kNN computation (stage 3)
	Spark implementation
	Cost analysis

	Results and discussion
	Experimental setup
	Datasets
	Benchmarking
	Wall-clock completion time
	Scalability

	Case studies
	SWM dataset
	Shower dataset

	Conclusions
	Authors’ contributions
	References

