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Imbalanced data sets classification: an intro
The data in the form of massive volume, extreme velocity and varied variety has lead 
to today’s catchphrase ‘Big Data’. Challenges set by the Big Data analytics are to be 
addressed capably. Huge digital Big Data including its varied forms evolving per day 
has outdrawn the need of cutting-edge analytics. In addition there is a requirement to 
exploit the streaming data with the capable conduct of analysis.

The superior verdict prediction of the inferred information from the massive diverse 
data is a challenge [1]. The volume of data is estimated to increase by 20 times than the 
current date [2, 3]. To deal with the challenges evolved in Big Data management has set a 
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crucial inclination [3, 4]. Furthermore, the capability of the ecosystem to deal with usage, 
mobility and deployment of data has to be emphasized [5, 6].

Classification of the minority samples appropriately in imbalance scenario has become 
the main focus of study [7]. Generally the classifiers ignore the minority instances while 
forming rule sets. The numerous real-world applications are affected by class imbalance 
problem wherein the number of samples in one class is very marginal compared to other 
classes [8–11]. Issues in fields related to software defect detection [12], threat supervi-
sion, medical judgment, web author identification [13] and similar have drawn attention 
towards concerns of multi-class imbalanced data sets. The representation of boundaries 
in imbalanced data sets is a difficult concern for learning algorithms. Skewed data parti-
tion is an integral issue for learning of classifiers.

UCPMOT is a superior over_sampling technique presented in this paper. It acquaints 
the class imbalance problem. The basic over_sampling process using safe-level based 
displacement factor is carried out with the help of other four over_sampling techniques 
(non-cluster/cluster based). The experiments are conducted on Hadoop framework 
using the distributed mapreduce structure [14, 15]. Diverse classifiers viz. Random For-
est, Naïve Bayes AdaBoostM1 and MultiLayer Perceptron [16, 17] are used to perform 
classification. The preciseness of techniques is assessed by using two measures: F-meas-
ure and AUC values.

Related work
Classification of imbalanced data sets is recognized by numerous available techniques 
working at dissimilar levels. They are broadly considered into three levels viz. data level, 
procedure level and cost-sensitive level [7, 14]. Data level works with updating the size of 
the data sets. The predominant techniques at procedure level work with the processes to 
manage imbalanced Big Data sets. The cost-sensitive technique is a mixer of both tech-
niques viz. data level and procedure level. The techniques discussed in this paper deal 
with the data level technique. The data level technique is categorized into three types: 
Undersampling, Over_sampling and Hybrid technique [7, 14]. Over_sampling may 
incline to reproduce noisy data whereas undersampling might lose the useful data. The 
easiest way to deal with under_over sampling is random approach [18]. Over_sampling 
results show extra advantages than the results of undersampling techniques. The recom-
mended techniques work basically with over_sampling approach.

Synthetic Minority Oversampling Technique (SMOTE) algorithm [19] is one of the 
basic over_sampling techniques. It works on the class imbalance issue by synthesizing 
the minority class examples. ‘KNN’ nearest neighbors (KNN) are selected randomly to 
satisfy the over_sampling rate. SMOTE encounters some drawbacks including over-gen-
eralization and lack of systematizing disjuncts. Enhanced techniques such as Borderline-
SMOTE [20], SafeLevel-SMOTE [21] and adaptive synthetic sampling (ADASYN) [22] 
help to overcome these drawbacks. The proposed technique follows the same baseline 
while leveraging the disjuncts and generalization issue. Evolutionary algorithms resolve 
the imbalanced Big Data sets issue using the technique belonging to nested generalized 
model, considering objects in Euclidean n-space [23]. Boundary based oversampling 
technique used in SMOTE + GLMBoost and NRBoundary-SMOTE [24] are engaged to 
resolve imbalance data set problems. The UCPMOT + NF_N + MOT technique assists 
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to engage farthest borderline neighbors and their mean, involving the nearest samples. 
The ensemble techniques viz. SMOTEBoost [25], AdaBoost [26] and RUSBoost are tan-
gled with SMOTE to work over the problems of the imbalanced data set. In [27], fuzzy 
rule classification is anticipated as a solution for the multi-class dilemma by merging 
the pairwise learning with preprocessing. Ultimately the LVH method clamps merito-
riously the issues of over_sampling in multi-class imbalanced data sets. The ensemble 
based techniques (Random Forest) helps to effectually discourse classification analy-
sis [28, 29]. They are validated as scalable, durable and capable of handling categorical 
data. In [30], an incremental clustering based fault detection approach is studied. This 
includes extreme class distributions of Gaussian/non-Gaussian types and process drifts. 
The ordinal classification of imbalanced Big Data sets in [31], approximates the class 
probability distribution using the weighted KNN technique. Competent string based 
procedure to detect class in data streams is reflected in [32]. It includes attributes of 
infinite-length, concept-evolution and data drift. The procedure to aid the valuation of 
domain samples methodically is proposed as Mega-Trend-Diffusion Technique (MTDF) 
in [33] to address the class imbalance problem. A recent imbalanced data set handling 
technique i.e. Majority Weighted Minority Oversampling Technique (MWMOTE) [34] 
efficiently recognizes those minority instances which are difficult in terms of learning. It 
assigns the weight to each of them based on Euclidean distance from the nearest major-
ity class samples. The artificial samples are created from these samples using a clustering 
approach. The use of the immune network [35] coordinates the immune centroids as 
synthetic instances, based on high data density clusters which help to handle the imbal-
anced data sets. It implicitly encourages the broadening of the minority class decision 
space.

Organization of work
Architecture

The overall architecture in Fig.  1 demonstrates the organization of work structure to 
apprise imbalanced Big Data sets [36]. The work involves the investigational analysis of 
over sampled data set to improve classification. It leads to store and process input data 
in a suitable format for needful interpretation of final results. The data sets are processed 
with over_sampling techniques to generate balanced data set for required analysis.

The study is carried out using mapreduce based distributed framework functioning 
with heterogeneity and runtime scale-up. Inputs such as a number of clusters and clus-
tering type are provided for cluster based techniques. Required imbalance ratio (I.R.) is 
required to attain the given over_sampling rate along with the precondition value of  KNN 
for finding nearest neighbors.

Scheduled over_sampling techniques are classified into two types: non-cluster and 
cluster based. They deal with both types of data sets viz. binary and nonbinary-class. 
The nonbinary-class data sets are pre-processed using either traditional method (One 
versus One (OVO) and One versus All (OVA)) or the suggested LVH method. LVH 
[36] overcomes the disadvantages of traditional methods improving classification 
results. This method considers only the highest majority class versus each of the minor-
ity class satisfying I.R. for the over_sampling process. It helps to reduce computation 
including precise over_sampling submissive to avoid duplication. Additionally, it avoids 
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over-expansion of any minority classes fulfilling the need of other majority classes pre-
sent within.

LVH is well illustrated with an example. Consider a data set with seven distinct classes 
‘P’, ‘Q’, ‘R’, ‘p’, ‘q’, ‘r’ and ‘s’ respectively. Three classes namely ‘P’, ‘Q’ and ‘R’ are supposed 
as majority classes. Class ‘s’ is assumed as the lowest minority class and ‘P’ as the high-
est majority class. Initially, LVH points to balance the lowest minority class (s) aligned 
to the highest majority class (P) complying the I.R. The remaining minority classes are 
arranged as per their respective status of lowest minority class having I.R. > 1.5. They are 
individually considered for over_sampling with respect to ‘P’ to finally balance the data 
set.

LVH method cogently processes multi-class datasets with all the over_sampling tech-
niques discussed in this paper.

Experimental workflow

The graph in Fig. 2 states the experimental flow. It postulates the category of over_sam-
pling techniques used for balancing the binary/multi-class data sets. After analyzing the 
results, the flow redirects to update the model supporting certain conditions.

The theoretical flow of investigation is presented in following steps [36]:

1. Acquire streaming input data using Apache Spark for pre-processing and storage 
with retrieval in key/value form on Hadoop based mapreduce framework.

2. Construct clusters (normally/using characteristic similarities) of the data set for 
marking cluster cohesiveness. Simultaneously a Random Forest tree of the imbal-
anced training set is formed.

3. Perform over_sampling using a specific technique.
4. Generate a new Random Forest tree and supplementary analyze it using testing set 

(cross validation) to predict the model and its precision.

Fig. 1 Overall system architecture
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5. Alter the Random Forest by observing conditions of I.R. and error rate. (If error 
rate > threshold then update the instances with preceding acknowledged classes).

• Using step 2 and 3, the newly updated data helps to improve Random Forest and 
can consequently be examined for cluster cohesiveness.

•  Repeat step 4 for real-time streaming input data set.

Over_sampling techniques
UCPMOT: a rationalized technique

The planned technique emphases on the over_sampling process including the under 
sampling phase [37]. It clusters individual classes beforehand to consequently process 
under-over sampling [37, 38]. The clue is to discover and reduce the pure clusters of the 
highest majority and each minority classes. Residual clusters based on class purity are 
next considered for needful over_sampling. The technique addresses the ‘between-class’ 
and ‘with-in class’ imbalances promoting classification results. It categorizes under clus-
ter based techniques.

Technique—Di: data set having ‘N’ instances;  Dmj: majority class samples am  
(m = 1, 2, … , m);  Dmn: minority class samples  bn (n = 1, 2, … , n); i: iteration count (1); 
 Cim: intermediate clusters;  Do: a set of synthetic positive instances.

Compute safe levels of all samples [39]. (Safe level of an instance is the number of 
minority samples present in its KNN).

Fig. 2 Flow of investigational technique
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1. UCPMOT (Di) 

2. repeat

3. if Di = = binary-class data set

4. Mn  = minority mediod instance from Dmn  or respective clusters in-hand

5. Mj  = majority mediod instance from Dmj or respective clusters in-hand

6. else

7. Mn  = minority mediod instance from highest majority class

8. Mj  = majority mediod instance from lowest minority class

9. CA = cluster of remaining instances around Mn

10. CB = cluster of remaining instances around Mj

11. if i == 1

12. if CA | CB = impure clusters 

13. goto step 4 // for each impure clusters

14. else

15. goto step 24 // stop processing

16. else

17. if CA || CB = impure clusters

18. if degree of class purity CA || CB > degree of parent class purity

19. goto step 4 // for each impure clusters

20. else 

21. Cim = CA && CB

22. else 

23. discard CA and CB // from further processing

24. Do = OVER_SAMPLING (Cim) //append Do using MEre Mean Minority Over_Sampling Technique 

(MEMMOT)/ Minority Majority Mix mean Over_Sampling Technique (MMMmOT)/ Nearest Farthest 

Neighbor_Mid Over_Sampling Technique (NF_N+MOT) as non-cluster based techniques or apply Clustering 

Minority Examples Over_Sampling Technique (CMEOT) (by considering collective minority class samples) as 

cluster based techniques

25. until (minority classes having I.R. > 1.5 as per step 6)

The chart in Fig. 3 positions the executional flow of UCPMOT. The chart helps to trace 
the logical flow of over_sampling process over given imbalanced Big Data sets set using 
UCPMOT.

The stated technique (UCPMOT) works with either of the four basic techniques speci-
fied below, for elementary over_sampling process [36]. They are classified into two cat-
egories viz. non-cluster (3 techniques) and cluster based technique (1 technique).
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Other basic techniques

Non‑cluster based over_sampling techniques

Technique‑1 The MEMMOT enhances SMOTE with mere averaging of all the synthetic 
samples formed in alliance to ‘KNN’ Nearest Neigbhours.  Dim: intermediate synthetic 
samples;  KNN: ‘K’ number of nearest neigbhours; n: number of minority instances;  SY: 
new synthetic sample;  Sm: sum of safe level;  Snv: normalized safe level value of sample; 
D.F.: displacement factor; SSS: safe-level based synthetic samples creation.

Fig. 3 Executional flow of UCPMOT
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Compute safe levels of all samples [39].

1. MEMMOT (Di)   // For 100% over_sampling rate

2. for Dmn,  i = 1 to n

3. for j =1 to KNN

4. Dmn[i].KNN[j] = ‘KNN’ Nearest Neigbhour (KNN)

5. for m = 1 to KNN and j =1 to KNN

6. Dim[m] = SSS[Dmn[i].KNN[j] and Dmn[i]] 

7. SY = average (Dim[m])

8. if SY = duplicate

9. goto step 7 //delete the NN having a lowest safe level from the KNN including the 

interpolated instance from that instance

10. Do= SY

For over_sampling rate > 100%:
Repeatedly use the current over sampled set in-hand for over_sampling.

Choose (randomly or on safe level basis) an equal sample ratio from each over_sam-
pling instance sets per iteration. Combine it with the base set of instances forming a new 
data set for the next over_sampling process.

Reiteration of step 2 to 4.
For over_sampling rate < 100%:
Remove (randomly or considering highest safe levels) the interpolated samples satisfy-

ing the over_sampling rate.

Safe‑level based synthetic samples creation (SSS)

The idea is to mathematically justify the displacement factor in SMOTE process. It 
enhances the quality of synthetic minority instances, although achieving the balance of 
the data set. The process involved is as follows:

OR

OR
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1. SSS(Di) 

2. for Dmn,  i = 1 to n

3. for j =1 to KNN+1

4. Dmn[i].KNN[j] = ‘KNN’ Nearest Neigbhour (KNN)

5. Dmn[i].KNN[j] = Dmn[i]

6. for m = 1 to KNN+1

7. SafeLevel[Dmn[i].KNN[m] 

8. for n = 1 to KNN+1

9. Sm = sum (SafeLevel[Dmn[i].KNN[n])

10. for o = 1 to KNN+1

11. Snv[o] = SafeLevel[Dmn[i].KNN[o] ] / Sm

12. for p = 1 to KNN+1

13. if Snv[p] < Snv[KNN+1]

14. D.F. = Snv[p]

15. if Snv[p] = Snv[KNN+1]

16. D.F. = 0.5

17. else 

18. if Snv[p] < 0.5

19. D.F. = 1 - Snv[p]

20. else

21. D.F. = Snv[p]

On failure, if any, in above cases regarding over_sampling rate, under-sampling based 
on clustering [40] can be planned to diminish majority classes. The over_sampling pro-
cess is repeated for the remaining lowest minority classes belonging to multi-class data 
set satisfying I.R. > 1.5.

The technique delivers improved classification with comprehensive interpolated 
minority instances.
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Technique‑2 The MMMmOT is an exclusive progression of prevalent technique 
(SMOTE). It considers both types of samples (minority and majority samples) in KNN 
for over_sampling. It releaves from low replicas and evades the problem of overlapping 
samples.

Compute safe levels of all cases [39].

1. MMMmOT (Di)   // For 100% over_sampling rate

2. for Dmn,  i = 1 to n

3. for j =1 to KNN

4. Dmn[i].KNN[j] = ‘KNN’ Nearest Neigbhour (KNN)

5. if KNN set = all minority instances

6. for m = 1 to KNN and j =1 to KNN

7. Dim[m] = SSS[Dmn[i].KNN[j] and Dmn[i]]

8. SY = average (Dim[m])

9. if SY = duplicate

10. goto step 7 //delete the NN having a lowest safe level from the KNN including the 

interpolated instance from that instance

11. Do= SY

12. if KNN set = all majority instances

13. Dim = random (KNN set)

14. Dimk = minority NN (Dim) 

15. SY1 = SSS[Dmn and Dim]
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16. SY2 = SSS[Dmn and Dimk]

17. SY = average (SY1 and SY2) 

18. if SY = duplicate

19. goto step 15   //search for the next NN from the data set

20. Do= SY

21. else

22. Dim = random (KNN set)

23. if Dim = minority instance

24. SY = SSS[Dmn and Dim]

25. if SY = duplicate

26. goto step 23   //search for the next NN from the KNN set or data set

27. Do= SY

28. else

29. Dimk = max. safelevel minority instance (KNN set or data set)

30. SY1 = SSS[Dmn and Dim]

31. SY2 = SSS[Dmn and Dimk]

32. SY = average (SY1 and SY2) 

33. if SY = duplicate

34. goto step 30 //search for the next minority NN from the KKN or data set

35. Do= SY

For required over_sampling rate > or < 100% the same strategy discussed in MEMOT 
based over_sampling is conducted.

Technique‑3 Technique (NF_N + MOT) intends to study the effect of an equal mix-
ture of nearest, farthest and the middle element for forming synthetic instances. It helps 
to provide a wide range of inputs outwitting overlapping and replication, in addition to 
improve classification.

Compute safe levels of all cases [39].

1. NF_N+MOT (Di)   // For 100% over_sampling rate

2. for Dmn,  i = 1 to n

3. search (P instances) such that

4. P/2 nearest, P/2 farthest and midpoint element (except for the even value of ‘P’)

5. where n>1 and P<= n

6. Follow MMMmOT from step 1 to 34 
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For required over_sampling rate  >  or  <  100% the same strategy discussed in MEM-
MOT based over_sampling is conducted.

Clustering based over_sampling techniques

An unsupervised methodology of clustering is considered to over sample the minority 
class. Several clustering algorithms can be used for the basic clustering purpose.

Technique‑4 The technique involves only minority instances and is a wholesome cluster 
based technique. The computed cluster means are considered as new synthetic instances. 
It helps to address the data features of small disjuncts and lack of density. Moreover it 
compiles the objectives [41] of elevating centroids based over_sampling.

Compute safe levels of all cases [39].

1. CMEOT (Di)   // For 100% over_sampling rate

2. for i = 1 to c // For c number of minority classes

3. Cm[c] = clustering of each minority classes       // KNN<c using any clustering algorithm

4. new synthetic instances ‘SYset’ = computed medians of Cm

5. if SYset= duplicate

6. delete the respective instances

For attaining over_sampling rate: 

a. Repeat step 1 to 6 by adding the obtained medoids in-hand to current minority set. 

b. Deletion of lowest safelevel minority instance (maintaining original data sets num-
bers) and reiterate step 1 to 6 (size_of_data set > KNN and change in initial seeds).

The over_sampling process is repeated for the remaining lowest minority classes 
belonging to multi-class data set satisfying I.R. > 1.5.

Experimental context
The objective of the trial work is to validate the efficiency of planned techniques for 
dealing with the class imbalance problem in Big Data sets. The projected techniques are 
investigated and evaluated against benchmarking techniques.

Details of the data set under experimentation

Based on varied characteristics viz. a number of instances, attributes and I.R.; the chosen 
data sets are grouped into three categories (binary-class structured/multi-class struc-
tured/multi-class semi-structured_unstructured data sets). Out of ten data sets, eight 
are from the standard UCI repository [42], one from the causality workbench under 
pharmacology base [43] and remaining one from ProgrammableWeb [44, 45] respec-
tively. The details of data sets are given in Table 1.

OR
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The ‘#I.R.’ is the ratio of highest majority class w.r.t. lowest minority class (for multi-
class data sets). The set of useful attributes is only considered for testing. Table 1 sum-
marizes the particulars of chosen data sets including its category, standard name, the 
number of instances (#EX), I.R. (#IR), the number of attributes (#ATTR) and the num-
ber of classes (#CL).

The first group consists of three multi-class and one binary-class data sets of which 
PAMAP2 is of the semi-structured form and the remaining (Landstat, SIDO and 
Mashup) are of the unstructured convention. They enclose an extreme number of 
instances (38,50,505) and attributes (4932) with wide-ranging I.R. (623). The second and 
third category consists of three data sets each. The second group entails the multi-class 
structured data sets covering the sensible values of characteristics related to attributes, 
I.R. and examples. The third group is the structured binary-class data set incorporating 
a varied range of I.R. (577.87) with an extreme number of instances (57,49,132). The data 
sets are incorporated for storage in HBase.

Input pre‑processing

Pre-handling of input streaming data (semi-structured/unstructured) and its parallel 
clustering based on similarity, is carried out by using the following modules [44].

1. Streaming data is captured using Apache Spark and stored in HDFS format.
2. Data is pre-processed to form ‘n’ terms of descriptional/functional aspects (formed 

using Porter Stemmer) involving

• Tokenization,
•  Stop word removal,
•  Stemming.

3. Description similarity (DS) The intersection of description similarities is divided by 
union of description similarities, using any similarity coefficient methods (e.g. Jac-
card similarity coefficients). For ‘n’ description terms of  Di and  Dj (i, j = 0, 1, 2, … , n) 

(1)DS(di, dj) =

∣

∣Di ∩Dj

∣

∣

∣

∣Di ∪Dj

∣

∣

Table 1 Features of data set

Category Data set #EX #IR #ATTR #CL

Multi-class semi-structured/un-structured data sets PAMAP2 3,850,505 14.35 54 19

Landstat 6435 2.44 37 7

Mashup 9135 623 8 67

SIDO 12,678 27.04 4932 2

Multi-class structured data sets Yeast 1484 92.6 9 10

Car 1728 18.61 6 4

KEGG-U 65,554 5959.45 29 43

Binary-class structured data sets MiniBoone 130,065 2.56 51 2

Credit card 284,808 577.87 31 2

RLCP 5,749,132 273.67 12 2
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4. Functional similarity (DF) The intersection of functional similarities is divided by 
union of functional similarities, using any similarity coefficient methods (e.g. Jaccard 
similarity coefficients). For ‘n’ functional terms of  Fi and  Fj (i, j = 0, 1, 2, … , n),

 

For Eqs. 1 and 2, greater the intersection directs towards superior similarity. Denomi-
nator ensures similarity (between 0 and 1) by playing a role of scaling factor.

5. Compute the characteristic similarity (DC) A weighted sum of  DS and  DF provides the 
required characteristic similarity.

 

 where: α ϵ [0,1]: weight of  DS; β ϵ [0,1]: weight of  DF and α + β = 1.
6. Formation of clusters using either partitional/hierarchical algometric clustering tech-

nique
a. Partition clustering (e.g. k-means)

Step 1.  Map phase

• For each map  (k1,v1).
•  Clustering in respect to update  Cc (k-means).
•  Output  (ci,ni).

Step 2.  Reduce phase

• Reduce  (Cc,ci,ni).
•  Merge  (mci,mni).
•  Check for new  Cc,  k1,  v1.
•  Output  (Cc,k1,v1,mci,mni).

where,  Cc: centralized cluster medoids;  k1: cluster seed indexes;  v1: seed values;  ci: 
clusters per map process;  ni: number of instances per cluster;  mci: merged respective 
clusters per mappers;  mni: number of instances per merged clusters.

b. Hierarchical algometric clustering (HAC) Consider data set containing ‘n’ number of 
instances. For each data item assume initial cluster. The two most similar clusters are 
combined as per reduction stage complying the given ‘k’ value for a number of clus-
ters (k < n). Reduction stages are as follows:

1. Merge the pair of clusters, having a maximum characteristic similarity  (DC) by 
reducing the cluster count.

2. Calculate the new averaged similarity score between merged pairs and other 
remaining clusters.

3. Repeat step 1 and 2 satisfying ‘k’.

(2)DF (di, dj) =

∣

∣Fi ∩ Fj
∣

∣

∣

∣Fi ∪ Fj
∣

∣

(3)DC

(

di, dj
)

= α ∗ DS

(

di, dj
)

+ β ∗ DF (di, dj)
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Assumptions and environmental pre‑settings

1. The data sets are contextually converted into numeric/symbolic structured forms for 
analysis.

2. The number of map/reduce tasks is maintained in ratio to some multiple of mapper/
reduce slots.

3. The ‘noatime’ option is enabled for mounting DFS and mapreduce storage.
4. The compression techniques are used for intermediary data (e.g. Lempel–Ziv–Ober-

humer-LZO).
5. The appropriate data types are used for non-textual and textual contents.

Performance evaluation parameters

The evaluation of techniques to handle imbalanced classification is planned using two 
measures viz. F-measure and area under the curve. The brief details are as:

a. F-measure This measure provides to assess the quality of the classifier in the imbal-
anced domain. 

•  Pi: precision of ith class = True Positive/(True Positive + False Positive)
•  Ri: recall of ith class =  Sensitivity(Recall) = True Positive/(True Positive +  False 

Negative)
b. Area under the curve (AUC) It is produced by calculating the true positive rate (TPR, 

sensitivity or recall) versus the false positive rate (FPR, 1-specificity). It helps to illus-
trate the performance of a classifier system and correspondingly assists to choose the 
optimal models.

Notations

Table 2 denote the symbolizations used henceforth in the experimental analysis of algo-
rithms. The notations used in Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13 and Figs. 4, 5, 6, 7, 
8, 9, 10, 11 and 12 are given as:

Experimental evaluation
The projected technique works on binary-class/multi-class imbalanced Big Data sets in 
the organization to recommended LVH. Four basic classifiers viz. Random Forest (-P 
100-I 100-num-slots 1-K 0-M 1.0-V 0.001-S 1), Naïve Bayes, AdaBoostM1 (-P 100-S 1-I 
10-W weka.classifiers.trees.DecisionStump) and MultiLayer Perceptron (-L 0.3-M 0.2-N 
500-V 0-S 0-E 20-H a) are applied to over_sampled data sets using dissimilar values of 
cross-validation and  KNN. Lastly the results, based on the F-measure and AUC values are 
used to compare between benchmarking (SMOTE/Borderline-SMOTE/ADASYN/SPI-
DER2/SMOTEBoost/MWMOTE) and planned technique (UCPMOT). Tables 3, 4, 5, 6, 
7, 8, 9, 10, 11, 12 and 13 describe the results in detail. The analysis of results validates the 
superiority of UCPMOT for enhancing the classification.

F-measure =
2RiPi

Ri + Pi
for all i = 1, 2, . . . k
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The examination is conducted on 12 node Hadoop clusters with two master nodes 
(Namenode and Job tracker) and 10 slave nodes. Each node has an Intel Core (TM) 
i7-4770 CPU@3.4  GHz having 8  GB RAM. The cluster works on Ubuntu 14.04, Java 
1.8.0 and Hadoop 2.7.4.

Multi‑class semi‑structured and unstructured data sets

In this category, the large data sets denoting extreme variations for a number of attrib-
utes, I.R. and sample size helps to uncover several dimensions of analysis. As per the 
requirement, the data sets of the semi-structured/unstructured category are preproc-
essed in a structured form (numerical/categorical values).

Table 2 Notations

Notation Algorithms

A Original data set result

B SMOTE

C Borderline-SMOTE

D ADASYN

E SPIDER2

F SMOTEBoost

G MWMOTE

H UCPMOT_MEMMOT

I UCPMOT_MMMmOT

J UCPMOT_CMEOT

K UCPMOT_NF_N + MOT

Table 3 F-measure values for multi-class data set (LVH), cross-validation = 5 and  KNN = 3

Italic values indicate highest result

Classifier Data set Over_sampling techniques

A B C D E F G H I J K

Random Forest PAMAP2 0.43 0.63 0.67 0.65 0.7 0.64 0.74 0.76 0.77 0.75 0.67

Landstat 0.84 0.87 0.87 0.86 0.9 0.85 0.91 0.95 0.96 0.93 0.9

Mashup 0.26 0.33 0.36 0.35 0.5 0.34 0.53 0.54 0.58 0.55 0.4

SIDO 0.86 0.89 0.9 0.89 0.92 0.89 0.93 0.94 0.95 0.93 0.91

Naïve Bayes PAMAP2 0.39 0.58 0.61 0.59 0.64 0.59 0.7 0.71 0.74 0.74 0.62

Landstat 0.81 0.84 0.85 0.85 0.88 0.84 0.91 0.91 0.92 0.91 0.86

Mashup 0.24 0.3 0.33 0.32 0.46 0.31 0.5 0.51 0.54 0.53 0.36

SIDO 0.83 0.86 0.87 0.85 0.89 0.85 0.91 0.91 0.92 0.92 0.89

AdaBoostM1 PAMAP2 0.4 0.6 0.64 0.63 0.69 0.62 0.73 0.73 0.75 0.74 0.65

Landstat 0.82 0.86 0.86 0.86 0.91 0.86 0.92 0.93 0.93 0.92 0.89

Mashup 0.25 0.32 0.35 0.34 0.47 0.33 0.51 0.52 0.56 0.54 0.38

SIDO 0.85 0.88 0.89 0.88 0.9 0.93 0.92 0.93 0.94 0.93 0.9

MultiLayer Perceptron PAMAP2 0.4 0.59 0.63 0.63 0.68 0.62 0.73 0.73 0.74 0.74 0.64

Landstat 0.81 0.85 0.86 0.85 0.9 0.85 0.91 0.92 0.92 0.92 0.88

Mashup 0.25 0.31 0.34 0.33 0.49 0.32 0.52 0.53 0.55 0.53 0.37

SIDO 0.84 0.87 0.88 0.87 0.9 0.87 0.9 0.92 0.93 0.92 0.9

Overall average 0.58 0.66 0.68 0.67 0.74 0.67 0.77 0.77 0.79 0.78 0.70



Page 17 of 32Patil and Sonavane  J Big Data  (2017) 4:49 

Table 4 F-measure values for multi-class data set (LVH), cross-validation = 10 and  KNN = 5

Classifier Data set Over_sampling techniques

A B C D E F G H I J K

Random Forest PAMAP2 0.44 0.62 0.67 0.65 0.72 0.64 0.73 0.74 0.77 0.75 0.68

Landstat 0.84 0.88 0.91 0.9 0.92 0.89 0.93 0.94 0.96 0.94 0.91

Mashup 0.28 0.34 0.38 0.36 0.51 0.35 0.54 0.54 0.58 0.56 0.41

SIDO 0.87 0.91 0.92 0.92 0.93 0.91 0.94 0.95 0.97 0.95 0.92

Naïve Bayes PAMAP2 0.4 0.6 0.63 0.62 0.68 0.61 0.71 0.72 0.75 0.73 0.64

Landstat 0.82 0.85 0.87 0.86 0.91 0.85 0.92 0.92 0.93 0.92 0.89

Mashup 0.25 0.31 0.34 0.33 0.48 0.32 0.52 0.52 0.55 0.53 0.37

SIDO 0.84 0.87 0.88 0.88 0.91 0.87 0.92 0.92 0.93 0.93 0.9

AdaBoostM1 PAMAP2 0.42 0.61 0.65 0.64 0.71 0.63 0.74 0.75 0.76 0.75 0.66

Landstat 0.83 0.87 0.89 0.88 0.92 0.87 0.93 0.93 0.94 0.93 0.9

Mashup 0.26 0.32 0.36 0.35 0.5 0.34 0.52 0.53 0.57 0.55 0.39

SIDO 0.86 0.9 0.9 0.89 0.92 0.89 0.94 0.94 0.95 0.94 0.91

MultiLayer Perceptron PAMAP2 0.41 0.6 0.64 0.63 0.7 0.62 0.73 0.74 0.75 0.74 0.65

Landstat 0.83 0.86 0.88 0.87 0.92 0.86 0.92 0.92 0.94 0.92 0.9

Mashup 0.26 0.31 0.35 0.34 0.49 0.33 0.53 0.53 0.56 0.54 0.38

SIDO 0.85 0.89 0.89 0.88 0.91 0.88 0.92 0.93 0.94 0.94 0.9

Overall average 0.59 0.67 0.70 0.69 0.76 0.68 0.78 0.78 0.80 0.79 0.71

Table 5 AUC values for multi-class data set (LVH)

Italic values indicate highest result

Classifier Data set Over_sampling techniques

A B C D E F G H I J K

Random Forest Yeast 0.67 0.74 0.76 0.75 0.82 0.74 0.83 0.84 0.85 0.85 0.77

Car 0.90 0.93 0.94 0.94 0.94 0.93 0.95 0.96 0.96 0.96 0.93

KEGG-U 0.87 0.90 0.91 0.90 0.92 0.89 0.93 0.93 0.95 0.94 0.92

Naïve Bayes Yeast 0.62 0.68 0.71 0.70 0.79 0.69 0.80 0.79 0.81 0.80 0.76

Car 0.86 0.89 0.90 0.90 0.91 0.89 0.92 0.92 0.94 0.93 0.90

KEGG-U 0.82 0.85 0.86 0.86 0.88 0.85 0.89 0.89 0.90 0.88 0.87

AdaBoostM1 Yeast 0.65 0.72 0.75 0.74 0.81 0.73 0.82 0.82 0.83 0.82 0.76

Car 0.89 0.92 0.93 0.93 0.93 0.92 0.94 0.95 0.95 0.94 0.93

KEGG-U 0.85 0.88 0.89 0.89 0.91 0.88 0.91 0.91 0.92 0.90 0.90

MultiLayer Perceptron Yeast 0.64 0.70 0.73 0.72 0.80 0.71 0.81 0.81 0.82 0.81 0.78

Car 0.88 0.90 0.92 0.91 0.92 0.90 0.94 0.94 0.96 0.94 0.92

KEGG-U 0.84 0.87 0.88 0.88 0.90 0.87 0.91 0.90 0.91 0.89 0.88

Overall average 0.79 0.83 0.84 0.84 0.87 0.83 0.88 0.88 0.9 0.88 0.86

The Mashup data set consists of the characteristic collection of Mashup services con-
taining the Mashup service name, tags, APIs, the technology used and its category. 
They are subsequently preprocessed for stemming of tags/APIs representing distinctive 
entries for analysis. The required weighted characteristic similarities are computed using 
description and functional similarities in hand. Later the data set is forwarded for clus-
tering and usage. Tables 3 and 4 show the values of F-measure over LVH for dissimilar 
cross-validation and  KNN.
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Table 6 AUC values for multi-class data set (OVA)

Italic values indicate highest result

Classifier Data set Over_sampling techniques

A B C D E F G H I J K

Random Forest Yeast 0.67 0.75 0.77 0.76 0.84 0.75 0.85 0.86 0.87 0.86 0.79

Car 0.90 0.93 0.95 0.94 0.96 0.93 0.96 0.97 0.97 0.96 0.95

KEGG-U 0.87 0.92 0.93 0.93 0.94 0.92 0.94 0.94 0.96 0.94 0.93

Naïve Bayes Yeast 0.63 0.71 0.73 0.72 0.80 0.71 0.81 0.82 0.83 0.81 0.75

Car 0.87 0.90 0.91 0.90 0.93 0.90 0.93 0.93 0.94 0.93 0.92

KEGG-U 0.83 0.87 0.89 0.89 0.89 0.88 0.90 0.90 0.91 0.89 0.88

AdaBoostM1 Yeast 0.65 0.73 0.75 0.74 0.82 0.74 0.83 0.84 0.85 0.83 0.77

Car 0.89 0.92 0.93 0.93 0.95 0.92 0.95 0.96 0.96 0.95 0.94

KEGG-U 0.85 0.90 0.91 0.91 0.92 0.90 0.92 0.92 0.94 0.92 0.91

MultiLayer Perceptron Yeast 0.64 0.72 0.74 0.73 0.81 0.72 0.82 0.83 0.84 0.82 0.76

Car 0.88 0.91 0.92 0.91 0.94 0.91 0.94 0.94 0.95 0.94 0.93

KEGG-U 0.84 0.88 0.90 0.90 0.90 0.89 0.91 0.91 0.92 0.90 0.89

Overall average 0.79 0.84 0.86 0.85 0.89 0.84 0.89 0.9 0.91 0.89 0.86

The results obtained over four classifiers (Random Forest, Naïve Bayes, AdaBoostM1 
and MultiLayer Perceptron) clearly reveal the significance of cross validation over  KNN 
for improvement of results. The increase in cross-validation value aids to improve clas-
sification performance of imbalanced data sets by decreasing bias. At the same time, it 
leads to growth in variance along with the computation time. Changes in values of  KNN 
does not affect the classification results as they are related to over_sampling rate and safe 
level attention of instances.

Compared to all other techniques, UCPMOT + MMMmOT achieves higher results 
of F-measure in both the context of cross-validation and  KNN values. Thereafter, the pre-
sented technique namely UCPMOT + CMEOT proves its superiority over earlier tech-
niques. The benchmarking technique viz. MWMOTE and SIPER2 show a comparable 
performance to the proposed technique MCBUOST + MEMMOT.

The overall average results of F-measure encompassing LVH method for distinct 
cross-validation and  KNN is described in Figs. 4, 5. X-axis represents the over_sampling 
techniques and Y-axis represents the average F-measure values using four classifiers. 
UCPMOT +  NF_N +  MOT in contradiction to other new techniques underperform 
against some traditional techniques (MWMOTE and SIPDER2).

Multi‑class structured data sets

The effect of LVH versus OVA for handling the three multi-class structured data sets 
over AUC values is stated in Tables 5, 6, 7, 8 and 9. The results are illustrated complying 
four classifiers (Random Forest, Naïve Bayes, AdaBoostM1 and MultiLayer Perceptron) 
for each of the techniques under consideration. Random Forest helps to serve the over-
fitting problem, similarly AdaBoostM1 tries to avoid noisy data (cross-validation = 10 
and  KNN = 5).

LVH commandingly assists to resolve the issues related to multi-class structured data 
sets overcoming the drawbacks of the traditional OVA method. It promotes to reduce 
duplication encompassing accurate synthetic instances. Furthermore it rationalizes the 
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overshooting issue of the minority classes after the over_sampling process. The OVA 
method exhibit the overshooting issue in addition to amplified computation. It fails to 
fulfill the real need of over_sampling.

Table 10 F-measure values for binary-class data set

Italic values indicate highest result

Classifier Data set Over_sampling techniques

A B C D E F G H I J K

Random Forest MiniBoone 0.82 0.84 0.84 0.84 0.87 0.84 0.90 0.89 0.91 0.90 0.85

Credit card 0.72 0.75 0.78 0.77 0.85 0.76 0.87 0.87 0.89 0.88 0.79

RLCP 0.24 0.27 0.28 0.28 0.69 0.27 0.73 0.73 0.74 0.72 0.42

Naïve Bayes MiniBoone 0.79 0.83 0.83 0.83 0.85 0.83 0.86 0.86 0.89 0.87 0.83

Credit card 0.69 0.74 0.75 0.75 0.82 0.74 0.84 0.84 0.85 0.84 0.76

RLCP 0.23 0.25 0.26 0.26 0.66 0.25 0.68 0.70 0.70 0.70 0.40

AdaBoostM1 MiniBoone 0.80 0.83 0.84 0.84 0.86 0.83 0.88 0.87 0.90 0.88 0.84

Credit card 0.70 0.74 0.76 0.75 0.82 0.75 0.85 0.86 0.86 0.86 0.78

RLCP 0.23 0.26 0.27 0.27 0.68 0.26 0.71 0.71 0.72 0.70 0.41

MultiLayer Perceptron MiniBoone 0.79 0.83 0.83 0.83 0.85 0.83 0.87 0.87 0.89 0.87 0.83

Credit card 0.69 0.74 0.76 0.75 0.82 0.75 0.85 0.85 0.86 0.85 0.77

RLCP 0.23 0.25 0.26 0.26 0.67 0.25 0.70 0.71 0.71 0.70 0.40

Overall average 0.58 0.61 0.62 0.62 0.79 0.61 0.81 0.81 0.83 0.81 0.67

Table 11 AUC values for binary-class data set

Italic values indicate highest result

Classifier Data set Over_sampling techniques

A B C D E F G H I J K

Random Forest MiniBoone 0.86 0.90 0.92 0.92 0.93 0.91 0.94 0.94 0.96 0.95 0.92

Credit card 0.78 0.83 0.86 0.85 0.88 0.84 0.91 0.89 0.92 0.91 0.85

RLCP 0.40 0.48 0.50 0.49 0.77 0.48 0.79 0.79 0.81 0.80 0.51

Naïve Bayes MiniBoone 0.85 0.87 0.90 0.91 0.91 0.90 0.92 0.92 0.93 0.92 0.90

credit card 0.76 0.80 0.82 0.82 0.87 0.81 0.89 0.87 0.90 0.90 0.83

RLCP 0.37 0.46 0.47 0.47 0.71 0.46 0.76 0.76 0.78 0.77 0.48

AdaBoostM1 MiniBoone 0.85 0.89 0.91 0.90 0.92 0.89 0.93 0.93 0.94 0.94 0.91

Credit card 0.77 0.81 0.84 0.83 0.89 0.82 0.90 0.88 0.91 0.90 0.85

RLCP 0.39 0.47 0.48 0.48 0.73 0.47 0.77 0.78 0.80 0.80 0.50

MultiLayer Perceptron MiniBoone 0.85 0.88 0.91 0.90 0.91 0.89 0.92 0.92 0.93 0.93 0.91

Credit card 0.76 0.81 0.83 0.83 0.86 0.82 0.88 0.88 0.90 0.90 0.84

RLCP 0.38 0.47 0.47 0.47 0.73 0.47 0.77 0.77 0.79 0.79 0.49

Overall average 0.66 0.72 0.74 0.73 0.84 0.73 0.86 0.86 0.88 0.87 0.74

Table 12 F-measure value for UCPMOT_MEMMOT

Classifier—AdaBooost, Cross-validation—tenfold,  KNN = 5

Data set Number of mappers

8 16 32 64

KEGG-U 0.85 0.84 0.82 0.81

PAMAP2 0.76 0.74 0.73 0.72

Mashup 0.54 0.53 0.52 0.50
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The results in Table 6 demonstrate very marginal progress in AUC values over all the 
results in Table 5. In addition, the Tables 7 and 8 provide the instance count of data set 
after over_sampling for all techniques using LVH and OVA respectively.

The results in Table 9 illustrate the analysis of LVH over OVA for handling multi-class 
structured data sets. It validates the significance of LVH method to deal with multi-class 
structured data sets by analyzing the rise in % relative difference of over_sampling ratio 
over gain in performance.

Fig. 4 Average F-measure values for multi-class semi-structured/un-structured data sets (LVH) with cross-
validation = 5 and  KNN = 3

Fig. 5 Average F-measure values for multi-class semi-structured/un-structured data sets (LVH) with cross-
validation = 10 and  KNN = 5
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The relative regressional improvement measured in AUC values using OVA is less 
(average 2%) in association to the proportional growth of minority samples (20–30% 
compared to LVH). It implies the usage of LVH over other traditional methods to treat 
multi-class data sets refining classification. Additionally, the proposed techniques 
exhibit better results of average % relative difference of AUC values in comparison to the 
increased number of the data sets instances in benchmarking techniques.

In Fig. 6 X-axis represents the % relative difference (between data set instances and 
achieved AUC performance) and Y-axis represents the over_sampling techniques. The 
graph states the average values of % relative difference from Table 9.

Fig. 6 Comparison of % relative difference in data set instances over AUC values

Fig. 7 Average AUC values for multi-class structured data set (LVH)
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The overall average values of AUC parameter detailed in Tables  5 and 6 state the 
dominance of estimated technique (except UCPMOT  +  NF_N  +  MOT). UCP-
MOT + MMMmOT outperform all other techniques followed by UCPMOT + MEM-
MOT and UCPMOT + CMEOT.

Figures  7 and 8 depict the overall average values of AUC for multi-class structured 
data sets covering LVH and OVA respectively. X-axis represents the over_sampling tech-
niques and Y-axis represents average AUC values.

Fig. 8 Average AUC values for multi-class structured data set (OVA)

Fig. 9 Average F-measure values for binary class structured data set
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Binary‑class structured data sets

Tables 10 and 11 state the results of experiments over the three binary-class data sets. 
Observations of F-measure and AUC values encompassing benchmarking and expected 
techniques are recorded for the over_sampled data set including original set. It is appar-
ent from the results that the projected technique UCPMOT (combining with MEM-
MOT/MMMmOT/CMEOT) represents improved classification results compared to 
marginal growth of benchmarking techniques (except UCPMOT_NF_N + MOT). The 
benchmarking techniques viz. MWMOTE and SPIDER2 cabinet a corresponding per-
formance near to UCPMOT_MEMMOT.

Fig. 10 Average AUC values for binary class Structured data set

Fig. 11 F-measure values of KEGG-U, PAMAP2 and Mashup for a distinct number of mappers using UCP-
MOT_MEMMOT
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The graphs in Figs. 9 and 10 demonstrate the average values of F-measure and AUC 
values respectively, over four classifiers for the binary-class data sets under considera-
tion (cross-validation = 10 and  KNN = 5).

In Figs. 9 and 10, the over_sampling techniques (B to K) including initial results (A) 
are represented as X-axis and the values for F-measure and AUC values as Y-axis respec-
tively. The graphs entail the superiority of UCPMOT + MMMmOT over all other tech-
niques for almost all classifiers. UCPMOT +  NF_N +  MOT show specific bordering 
enhancement compared to the benchmarking techniques (SMOTE, Borderline-SMOTE, 
ADASYN and SMOTEBoost). Random Forest indicates promising results over other 
classifiers for almost all techniques.

The effect of choosing the number of mappers

Table  12 deliver the classification performance by using diverse numbers of mappers. 
It states at a glance, the rise in a number of mappers from 8 to 64 leads to a very mar-
ginal decline in classification accuracy. The results are summarized over three data sets 
namely KEGG-U, PAMAP2 and Mashup using the UCPMOT_MEMMOT technique 
(LVH based). The results are detailed on F-measure values with AdaBoost classifier 
(cross-validation = 10 and  KNN = 5).

The less availability of over_sampled minority instances per mapper decreases the 
F-measure value. The analysis shown in Fig. 11 states the dependency of final classifica-
tion model w.r.t. the number of instances that exist in the mapper.

Runtime analysis

The analysis of runtime of all the techniques (LVH method) for KEGG_U data set 
is stated in Table 13. The numbers of mappers viz. 8, 16, 32 and 64 are considered for 
F-measure values with AdaBoost classifier (cross-validation = 10,  KNN = 5).

Fig. 12 Runtime (DD:HH:MM) for F-measure values of KEGG-U (LVH)
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The runtime analysis presents the reduction in computation time with respect to the 
increase in the number of mappers of almost all techniques. Table 13 informally asserts 
the comparative runtimes for proposed techniques. The data distribution/collection in 
Hadoop environment induces a processing time overhead which nullifies its effect on 
treating small data sets. Sometimes it leads to unused slots and implicitly infers that the 
speed is irrational to the number of mappers.

Figure  12 represents the analysis of runtimes over KEGG_U data set, aimed at all 
the techniques for a varied number of mappers. In proposed techniques, the UCP-
MOT + MEMMOT comparatively consumes a less amount of time for non-trivial oper-
ations in the over_sampling process.

Discussions
The training sets affected with class imbalance, high overlapping and low disjuncts 
lead to decrease in classification performance. As shown in the graphs of Figs. 4, 5, 6, 
7, 8, 9, 10, 11 and 12, the planned technique helps to effectively cope with the imbal-
ance problem in large data sets. They overcome the drawbacks related to several data 
characteristics. Ensemble based learning techniques help to discourse vigorous learn-
ing. Table  9 emphasizes the distress of classification performance contrasted with the 
obtained over_sampling rate of the imbalanced data set using OVA method. It clarifies 
the supremacy of LVH method over OVA for handling multi-class data sets. The exami-
nation of the performance as stated in Fig. 11 with respect to the distinct numbers of 
mappers over varied data size is carried out. Table 13 has conferred the runtime require-
ments of all techniques in association to the different numbers of mappers. The reduc-
tion in the number of tasks to slots is basically dependent on the planned block size of 
data sets. The enabling of JVM-reuse can help to reuse the unused slots. The effect of 
absolute imbalance in a data set over more precise over_sampling has to be emphasized 
in detail. Moreover the significance of noise needs a directed supervision in the mapre-
duce framework.

Conclusion
An advanced cluster based technique (UCPMOT) dealing with binary-class/multi-
class imbalanced Big Data sets is presented in this paper. The UCPMOT works with 
MEMMOT/MMMmOT/NF_N +  MOT/CMEOT using SSS to achieve the improved 
F-measure and AUC values. The learning from imbalanced Big Data sets demonstrates 
an average 6–8% rise in the results of the proposed technique over benchmarking tech-
niques. The issues raised due to overlapping and borderline instances, lack of density, 
increased bias and small disjuncts are articulated effectively by SSS. Experiments are 
carried out on standard data sets exhibiting distinctive degrees of I.R., data size and a 
number of attributes. They are selected mostly from UCI repository and one each from 
causality workbench and ProgrammableWeb respectively. The LVH method attempts 
to assist better for over_sampling of multi-class data sets in alignment to improve clas-
sification performance. The renowned classifiers namely Random Forest, Naïve Bayes, 
AdaBoostM1 and Multilayer Perceptron are used for model building and analysis. 
The Random Forest classification (Tables 3, 4, 5, 6, 9, 10, 11) signifies an encouraging 
growth by 2–4% in the result compared to other classifiers including all techniques. The 
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mapreduce based framework is used as an experimental test-bed. The increase in the 
number of mappers from 8, 16, 32 to 64 (Table  12) shows an almost stationary value 
for F-measure. The gradual decrease of runtime (Table 13) is cabinet for the increased 
number of mappers over techniques, stating the prudent runtimes for proposed tech-
niques. The performance of efficiency is recorded reasonably uneven for the increase in 
the number of mappers. The results in-hand, determine to further investigate some of 
the overturned trials, related to the dataset shift problem in a distributed environment 
maintaining the number of map/reduce slots.
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