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Introduction
Pairs trading is an investment strategy used to exploit financial markets that are out of 
equilibrium. It consists of a long position in one security and a short position in another 
security at a predetermined ratio; see Elliott et  al. [1]. Traders bet on the direction of 
the stocks relative to each other. Such a trading strategy is typically employed by hedge 
fund companies. Deviations in prices are monitored closely and used as basis for chang-
ing positions, taking advantage of market inefficiencies to obtain some profits. Hence, 
financial computing technologies with algorithmic trading capability, such as the one 
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put forward in this paper, are necessary for the efficient and successful implementation 
of a pairs trade.

When the relative performance of the short position is better than that of the long 
position, this strategy is going to be profitable regardless of stock market regimes. So, a 
speculator who pairs a long position in a retail stock with a short position in a rival stock 
or an index ETF could end up with a profit. Pairs trading could be viewed alternatively as 
a mechanism to hedge both sector and market risks. When there is a financial crisis, two 
stocks both decline in value; but then the pair trade would result to a gain on the short 
position and an offsetting loss on the long position. This will yield a profit close to zero 
in spite of the large market movement. It is clear that this is a self-funding strategy as 
short sale proceeds may be utilised in creating the long position.

It is also worth mentioning that a pairs trade is essentially a mean-reverting strategy. 
That is traders bet that prices will revert to a long-run mean. Undoubtedly, the success 
of a pairs trading is mainly dependent on the modelling and forecasting of the returns 
spread between a pair of stock price processes. For this reason, this work promotes the 
use of a mean-reverting model hugely enhanced by the power of two filtering approaches 
combined together. Pairs trading is inherently built around models that support data 
mining and dynamic parameter estimation scheme. In this paper, a method featuring 
online algorithms is advanced, permitting quick buying and selling decisions that also 
give traders the capacity to take advantage of tighter spreads.

Elliott et al. [1] described two automated algorithms for setting a pairs-trading strategy. 
The strategy requires the support of a parameter estimation method. The first algorithm 
is based on the smoother approach (Shumway and Stoffer [2]), and the second algorithm 
is based on dynamic filtering in conjunction with the expectation–maximisation (EM) 
algorithm (Elliott and Krishnamurthy [3]). It was illustrated that both algorithms work 
rather well on simulated data with the latter showing a computational advantage. Unfor-
tunately, due to the inherent formulation of Kalman filtering equations, the performance 
of the dynamic filtering algorithm is limited to models of white-noise type. Moreover, as 
Steele [4] pointed out, the model in Elliott et al. [1] has theoretical emphasis and does 
not delve into the important verification of the market’s stylised facts. For example, the 
normality of spread on equity returns (say, returns on a portfolio that is long on Dell 
stock and short on HP stock in equal dollar amounts) can be rejected, yet such a normal-
ity assumption is implicit in the posited model.

This paper contributes to the furtherance of techniques in stochastic modelling, infor-
mation theory and soft computing technologies in the analysis of the financial system 
and transactions. It is aligned to the endeavours of creating tools for forecasting and 
investment strategies using hybrid techniques, and highlighting the potency of ensemble 
methods in the financial sector. For example, in stock-market prediction, Hassan et al. 
[5] combined HMM [6, 7] and fuzzy models.

In contrast, this research work integrates the HMM and Kalman algorithms primar-
ily tailored to providing a support system for market-neutral trading. Consequently, the 
synthesis of these algorithms enables the processing of the spread data generated by two 
correlated stocks, and ultimately producing estimated optimal signals as critical inputs 
for executing trading rules or strategies. Filtering is promoted in conjunction with online 
data processing and intelligent data analysis supporting fact-based decision.
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The remaining parts of this paper are structured as follows. "Background and related 
work" presents a brief literature review that features several algorithms currently 
employed in stock-market pairs trading. The contributions of this paper, and how it wid-
ens the set of available techniques are indicated in this section. "Modelling setup" details 
the modelling framework for the evolution of the underlying pairs or spread portfolio. 
In "HMM-extended Kalman filters", the construction of the filtering algorithms for the 
parameter estimation as well as the trading strategy is outlined. The effectiveness of the 
proposed approach is investigated in "Numerical demonstration" by setting trades based 
on simulated and historical data, where the spread process exhibits a strong non-normal 
behaviour. Some pertinent insights are given in “Concluding remarks”.

Background and related work
A motivation of this work, within the context of big data (i.e., large financial data sets in 
real time), resembles to that of Cerchiello et al. [8] and Ouahilal et al. [9], which is the 
development and evaluation of trading models and systems to support investors. In this 
paper, the idea of an automated algorithm proposed by Elliott and Krishnamurthy [3] is 
extended under a model with non-normal noise. An HMM is used to drive the dynamics 
of model parameters; although the HMM in this discussion evolves in discrete time, it is 
also possible to modulate model parameters with an HMM in continuous time [10] with 
time-varying jump intensities. The HMM embedding in turn will enable the capturing of 
non-normality of returns [11], which is common in the spread portfolio. Lévy-type pro-
cesses are noted to yield excellent statistical fit to the non-normal asset-returns process 
but they are difficult to interpret from a financial perspective. The novelty of the pro-
posed approach lies on the modification and dynamic interplay of filtering algorithms 
due to Elliott and Krishnamurthy [3] and Erlwein and Mamon [12], and customised to 
support the implementation of trading strategies.

There are many examples demonstrating a markedly better fit to financial data when 
using an HMM compared to a simple autoregressive model. The method being put for-
ward is more flexible than the Gaussian mean-reverting model, even for the general-
ised mean-reverting framework considered in Chen et al. [13, 14]. A mixture of normal 
models is employed and this features a couple of apparent advantages: (a) the modelling 
framework and methodology for the non-normal noise case depends only on a combina-
tion of already known and simple techniques for the normal case and (b) an easy eco-
nomic interpretation could be put forward for the sudden changes in the behaviour of 
the process. From the practitioners’ point of view, the most desirable characteristic of 
the HMM-modulated model is its tractability for applications in the financial industry.

Although pairs trading is deemed relatively safe for market or sector arbitrageurs, 
nothing is really safe from the price swings within a sector. Such price swings could oblit-
erate a short-term profit, and in some cases, bankrupt a financially stable hedger; see for 
example, Goldstein [15]. Typically, this risk is dealt with by unwinding a short position 
and attempting to absorb minimal losses. Such a strategy is taken by aggressive high-fre-
quency algorithmic traders as their positions are usually neutral at the end of each trad-
ing day. Alternatively, as described in Khandani and Lo [16], a trader needs to monitor 
closely a constantly changing reverting level of the portfolio. This is because exit from 
an unprofitable trade is necessary when reversion to the mean does not materialise. This 
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clearly implies that spread modelling and generating of forecast error bounds are critical 
as they provide the foundation of decision-making on when trade exits must occur.

The aim of this work complements that of [17], which uses a stochastic-control 
approach to pairs trading but with a numerical validation that relied on simulated data. 
In the case of this work, a method is developed that optimally and dynamically processes 
financial market signals thereby training model parameters so that they adapt well to 
market changes. This will precipitate a decrease in the size of the traders’ positions and 
consequently, will decrease potential risks as well. Akin to such an effect is the drawback 
that the hedger’s position, comprising of a short and a long leg within the spread, will 
also decrease the potential profit. This paper includes results from a numerical imple-
mentation that offer insights for a better understanding of how pairs trading works along 
with its financial implications. The integrated Kalman-HMM filtering algorithms could 
be interfaced with today’s computing technologies to support the successful pairs-trad-
ing implementation in the industry, which undoubtedly relies on the accurate modelling 
of the spread series.

Modelling setup
In this section, the modelling framework is introduced by first defining the observation, 
state, and hidden-state processes. The trading process is then motivated and explained.

Observed and hidden state processes

An Ornstein–Uhlenbeck (OU) process rt is a stochastic process that satisfies the Sto-
chastic Differential Equation (SDE)

where Wt is a standard Brownian motion defined on a probability space (�, C,P); b, µ 
and σ are positive constants independent of Wt. The parameter µ is the mean level to 
which the process tends to hover over time, b is the speed of mean reversion, and σ is the 
volatility.

Of course, in reality, it is very rare that the OU parameters are constants as time t 
progresses. Thus, b, µ and σ will be made stochastic but their simplicity will be retained 
by letting them switch, at random time, between a finite number of values only. To 
attain this and enable the implementation of the discretised OU process, the parame-
ters are assumed to depend on some underlying discrete-time Markov process {xk}. So, 
b = b(xk),µ = µ(xk) and σ = σ(xk) with

where � and vk+1 are the respective transition probability matrix and martingale incre-
ment. That is, E[vk+1|Fk ] = 0 ∈ R

N and Fk = σ {x0, x1, ..., xk} is the filtration gen-
erated by {xk}. Let Ck be the filtration generated by {rk}. The states of xk are mapped 
into the canonical basis of RN , which is the set of unit vectors eh, h = 1, 2, . . . ,N  with 
eh = (0, . . . , 1, . . . , 0)⊤ and ⊤ is the transpose of a matrix. That is, the hth component 
of eh is 1 and 0 elsewhere.

Following Erlwein and Mamon [12] or Tenyakov et al. [18], if the parameters in the 
solution of the OU process in Eq. (1) are HMM-driven then

(1)drt = b(µ− rt)dt + σdWt ,

(2)xk+1 = �xk + vk+1,
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where

and ωk+1 is a standard normal random variable. In Eqs. (4), (5), µ(xk) = �µk , xk�, 
b(xk) = �bk , xk� and σ(xk) = �σ k , xk�, where �·, ·� is the usual scalar product. Such rep-
resentation of the model parameters is the offshoot of having RN ’s canonical basis as the 
Markov chain’s state space.

Adopting Elliott et  al. [1], the observation process yk follows the state process rk 
observed in some Gaussian noise with a scaling coefficient α. Thus,

where Zk is a standard Gaussian random variable independent of Ck.
To summarise, the equations, in discretised form, describing the dynamic behaviour of 

the data are

The trading strategy

Define Yk = σ {y0, y1, ..., yk} as the filtration encapsulating the whole market information 
available up to time k. The ultimate goal is to compute the quantity r̂k|k−1 = E[rk |Yk−1]. 
Write r̂k|k−1(i) := E[rk |Yk−1,Rk = i], where Rk = i represents the hidden ith state at 
time k of the Markov chain. The quantity r̂k(i) is interpreted as the most likely value of rk 
given the observed information up to time k.

Let θi be the unconditional probability of being in state i. The trading process is exe-
cuted as follows: (a) find the values i and i + 1 such that r̂k|k−1(i) < yk < r̂k|k−1(i + 1) ; 
(b) aggregate the probabilities subject to �1 =

∑i
j=1 θj and �2 =

∑N
j=i+1 θj; and (c) 

change the positions in a manner similar to that in Elliott et al. [1] with the key differ-
ence that the portfolio consists of two parts proportional to �1 and �2. The pairs-trading 
strategy is formed using two stocks with the predetermined ratio 1:1 as the stocks are 
taken from the same sector with a long position on one asset and a short in the other. 
The positions are set in the same way that the spread portfolio is either short or long 
depending on the expected level of the difference in the stock prices. If the level is lower 
than the spread then it is expected that the correction will occur so that the trader takes 
a long position on the spread portfolio, and vice versa.

The graphical description of the trading process is displayed in Fig. 1. If Ntnl repre-
sents the total notional amount for the investment in the strategy, Ntnll = Ntnl�l for 
l = 1, 2. The two trades are carried out simultaneously, i.e., yk < r̂k|k−1(i + 1) for Ntnl 2 
and r̂k|k−1(i) < yk for Ntnl 1. When r̂k|k−1(i) < yk, the spread is assumed to be too large 

(3)rk+1 = ν(xk)rk + ζ(xk)+ ξ(xk)ωk+1,

(4)ν(xk) = e−b(xk )�t , ζ(xk) = (1− e−b(xk )�t)µ(xk),

(5)ξ(xk) = σ(xk)

√
1− e−2b(xk )�t

2b(xk)

(6)yk = rk + αZk ,

xk+1 = �xk + vk+1 (hidden-state process);

rk+1 = ν(xk)rk + ζ(xk)+ ξ(xk)ωk+1 (state process);

and yk = rk + αZk (observation process).
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so that a long position in the spread portfolio is taken. Similarly, when yk < r̂k|k−1(i + 1) , 
a short trade is entered. This trading strategy leads to a substantial decrease in the over-
all risk exposure.

HMM‑extended Kalman filters
In this section, the Kalman filtering results, within the multi-regime set up, are provided. 
The dynamic filtering results for the OU process are briefly recalled as well.

HMM‑extended Kalman filter

The conditional mean and variance of the state process rk are derived below. The results 
are expressed in recursive relations. In particular,

Also,

(7)

r̂k|k−1 =
N∑

i=1

r̂k|k−1(i)θi =
N∑

i=1

E[rk |Yk−1,Rk = i]θi

=
N∑

i=1

E[ν(ei)rk−1 + ζ(ei)+ ξ(ei)ωk+1|Yk−1,Rk = i]θi

=
N∑

i=1

E[ν(ei)rk−1 + ζ(ei)|Yk−1,Rk = i]θi

=
N∑

i=1

(
ν(ei)E[rk−1|Yk−1,Rk = i] + ζ(ei)

)
θi

=
N∑

i=1

θiν(ei)E[rk−1|Yk−1,Rk = i] +
N∑

i=1

ζ(ei)θi

= E[rk−1|Yk−1]
N∑

i=1

θiν(ei)+
N∑

i=1

ζ(ei)θi

= r̂k−1ν̂ + ζ̂ .

Fig. 1  Schematic diagram in the implementation of the pairs-trading strategy
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The Kalman-updating formula is given by

where Mk+1 is called the Kalman gain and determined in the state covariance estimation 
below. The conditional variance is calculated as

Minimising (10), the optimal value for Mk+1 is

Consequently, having obtained Mk+1 in (11), the updated state covariance is

which reconciles with the result on p. 174 of Aggoun and Elliott [19] for Kalman filters 
with no regime switching.

Equations (7)–(12) exhibit semblance to those Kalman filter equations for the static 
case, i.e., when the parameters of the OU process are constants. If the set of parameters 
S = {νi, ζi, θi for i = 1, . . . ,N } is provided, r̂k+1|k or r̂k|k can be found by applying Eqs. 
(7)–(12) recursively.

The sample standard deviation estimate is used to calculate α̂ given by

Parameter estimation

To improve modelling performance by enhancing model flexibility along with the pro-
vision of an accurate and efficient parameter estimation, the OU-HMM-based filtering 
method is applied to the Kalman-filtered data time series r̂k := r̂k|k. All HMM filtering 
equations are established under the reference probability measure P̄ and the results are 
reverted back to the real-world measure P. This is justified by the Bayes’ theorem and the 
associated Radon–Nikodym derivative involved in this measure change is given by

(8)

�k+1|k = E

[(
rk+1 − r̂k+1

)2|Yk

]
= E

[(
ν(xk)rk + ζ(xk)+ ξ(xk)ωk+1 − r̂k+1

)2|Yk

]

= E

[(
ν(xk)rk + ζ(xk)+ ξ(xk)ωk+1 − r̂k ν̂ − ζ̂

)2

|Yk

]

= E

[
E
[(
ν(xk)rk + ξ(xk)ωk+1 − r̂k ν̂

)2|Yk ,Rk+1

]]

= E

[
E

[(
ν(xk)rk − r̂k ν̂

)2|Yk ,Rk+1

]]
+ E[ξ2]

= E[ν2]�k|k + E[ξ2] = ν̂2�k|k + ξ̂2.

(9)r̂k+1 = r̂k+1|k +Mk+1

(
yk+1 − r̂k+1|k

)
,

(10)

E
[(
rk+1 − r̂k+1

)2|Yk

]
= E

[(
rk+1 − r̂k+1|k −Mk+1[yk+1 − r̂k+1|k ]

)2|Yk

]

= E
[(
rk+1 − r̂k+1|k −Mk+1[rk+1 + αZk+1 − r̂k+1|k ]

)2|Yk

]

=
(
1−Mk+1

)2
�k+1|k +M2

k+1
α2

.

(11)Mk+1 =
�k+1|k

�k+1|k + α2
.

(12)�k+1|k+1 = �k+1|k −Mk+1�k+1|k ,

(13)α̂ =

√∑n
j=1

(
yj − r̂j

)2

n− 1
.
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 where

and Ĉk stands for the filtration of the process r̂k up to time k.
Write the conditional probability of xk given Ĉk under P as

and β̂k =
(
β̂1
k , β̂

2
k , . . . , β̂

N
k

)⊤
∈ R

N . Now,

by the Bayes’ theorem for conditional expectation.
Set ck = Ē[�kxk |Ĉk ] and notice that 

∑N

i=1
�xk , ei� = 1. So,

Therefore, Eq. (14) implies that

Following Erlwein et al. [20] and Erlwein and Mamon [12], write

Equations (15) and (16) represent the number of jumps from ej to es, and the amount of 
time that x occupies the state ej up to k + 1, respectively. The quantity T j

k+1(f ) in (17) is 
an auxiliary process dependent on the function f with f (r) = r or r2 or rk+1rk . To find 

�k =
dP

dP̄

∣∣∣∣
Ĉk

=
k∏

j=1

�j , k ≥ 1, �0 ≡ 1,

2 ln �k = −
r̂k
(
r̂k−1ν(xk−1)+ ζ(xk−1)

)
−

(
r̂k−1ν(xk−1)+ ζ(xk−1)

)2

ξ(xk−1)
2

,

β i
k := P

(
xk = eh|Ĉk

)
= E

[
�xk , eh�|Ĉk

]
.

β̂k = E[xk |Ĉk ] =
Ē[�kxk |Ĉk ]
Ē[�k |Ĉk ]

(14)
N∑

i=1

�ck , ei� =
N∑

i=1

�Ē
[
�kxk |Ĉk

]
, ei� = Ē

[
�k

N∑

i=1

�xk , ei�

∣∣∣∣∣Ĉk

]
= Ē

[
�k |Ĉk

]
.

β̂k =
ck∑N

i=1�ck , ei�
.

(15)J
js
k+1x :=

k+1∑

n=1

�xn−1, ej��xn, es�

(16)O
j
k+1x :=

k+1∑

n=1

�xn, ej�

(17)T
j
k+1(f )x :=

k+1∑

n=1

�xn−1, ej�f (̂rn, ) 1 ≤ j ≤ N .
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more compact and efficient representations of the filtering equations, define the matrix 
D(rk) with elements dij by

For any process Gk, denote the conditional expectation, under P̄, of �kGk by 
γ (G)k := Ē

[
�kGk |Ĉk

]
. The recursive filters for ck, γ (J j,i

x)k, γ (Oi
x)k and γ (T i(f )x)k 

are provided in Theorem 1.

Theorem 1  Let D be the matrix defined in (18). Then

Proof  The proofs follow similar idea to the derivations of the filtering equations in Erl-
wein and Mamon [12] or Date et al. [21]. �

Theorem  2  If the data set with components r1, r2, . . . , rk is drawn from the model 
described in Eq. (3) then the EM parameter estimates are

Proof  The derivations of (23)–(26) are immediate from Erlwein and Mamon [12].  �

(18)
�
dij(rk)

�
=





exp

�
−�rk(�rk−1νi+ζi)−(�rk−1νi+ζi)

2

2ξi

�
for i = j

0 otherwise.

(19)ck = �Dck−1

(20)γ (J j,ix)k = �D(rk)γ (J
j,i
x)k−1 + �ck−1, ei��D(rk)ei, ei�πjiej

(21)γ (Oi
x)k = �D(rk)γ (O

i
x)k−1 + �ck−1, ei��D(rk)ei, ei��ei

(22)γ (Ti(f )x)k = �D(rk)γ (T
i(f )x)k−1 + �ck−1, ei��D(rk)ei, ei�f (rk)�ei.

(23)π̂ji =
γ
(
J j,i

)
k

γ
(
Oi

)
k

(24)ν̂i =
γ
(
Ti

(
rk+1, rk

))
k
− ζiγ

(
Ti(r)

)
k

γ
(
Ti

(
(r)2

))
k

(25)ζ̂i =
γ
(
Ti(r)

)
k+1

− ν̂iγ
(
Ti(r)

)
k

γ
(
Oi

)
k

(26)

ξ̂i =
γ
(
Ti

(
r2
))

k+1
+ ν̂2i γ

(
Ti

(
r2
))

k
+ ζ̂ 2i γ

(
Oi

)
k

γ
(
Ti

(
r2
))

k

− 2
ν̂iγ

(
Ti

(
rk+1, rk

))
k
+ ζ̂iγ

(
T i(r)

)
k+1

γ
(
Oi

)
k

+
ν̂iζ̂iγ

(
Ti(r)

)
k

γ
(
Oi

)
k

.
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The EM algorithm in Dempster et  al. [22] is used to get the model parameter esti-
mates. The estimates of ν, ζ and ξ can be obtained from Theorem 2, and their updates 
can be obtained by applying Theorem 1.

Numerical demonstration
Preliminary results

The integrated filters are applied first to simulated data. It will be shown that the new 
methodology adapts well not only during turbulent periods when the data display dis-
tinct multi-regime spikes in log-returns, but also during relatively calm times.

The OU process has a normal distribution and the increments 
rk+1 − rk

rk
, conditional 

on rk, are also normally distributed. From (3) and (6), the observation process yk can be 
expressed as yk = νrk−1 + ζ + ξωk + αZk , which is equivalent to

Clearly, Eq. (27) has an OU functional form too, where ω̂k is distributed as N(0,  1). 
Unfortunately, real data in practice often do not satisfy the normality hypothesis. A 
Markov-driven model is robust in capturing various types of data distributions observed 
financial data. Such a model also has the potential to be employed extensively for long 
periods characterised by a mixture of calm and turbulent financial times.

For simulation and benchmarking intents, a simplified version of (3) is considered, 
without regime-switching, according to the equations

From Fig. 2, it could be concluded that the filters of Elliott and Krishnamurthy [3] pro-
duce quite noisy but precise parameter values. The estimates are fairly stable and will not 
cause a significant portfolio loss if one decides to use them for financial market trading.

The proposed method and algorithm are assessed with respect to speed and relative 
error in the estimated EM estimates and other features of the algorithm. The dynamics 
of the parameters are estimated using the combined filters under the two-state model; 
the dynamic movement of ξ’s estimates are displayed in Fig.  3. Notwithstanding the 

(27)yk
dist= νrk−1 + ζ +

√
ξ2 + α2ω̂k .

rk+1 = 0.6rk + 0.15+ 0.05ωk+1 and yk = rk + 0.4Zk .

Fig. 2  Single-regime dynamic filtered parameter estimates using simulated data based on ("Preliminary 
results")



Page 11 of 20Tenyakov and Mamon ﻿J Big Data  (2017) 4:46 

algorithm’s main purpose, which is to replicate the dynamics of the coefficients modu-
lated by the HMM, it does also estimate the one-regime (stationary) parameters very 
accurately. In particular, it only takes about half the time in obtaining the parameter esti-
mates when the computation is compared to that under the Kalman-EM algorithm of 
Elliott and Krisnamurthy [3].

In contrast to the results depicted in Fig. 2, the filtered parameters from the proposed 
approach have better precision and flexibility than those given by the Kalman-EM filters. 
The increase in the computational time can be explained by the numerical implementa-
tion of the new method’s structure. Comprehensive details regarding the implementa-
tion of the multi-regime filter procedure can be found further in Tenyakov et al. [18, 23], 
and Erlwein et al. [20].

Although the filters in [18] and [23] are HMM-based, they do not fuse Kalman filters 
as in the case of this paper and their applications are also different. In particular, a one-
step delay set up is considered in [18] with application to liquidity risk modelling and 
forecasting whilst a zero-delay framework is examined in [23] with application to high-
frequency foreign exchange rates data.

Data analysis

By construction, the Kalman-EM filter (cf. Elliott et al. [1]) is not able to capture all styl-
ised characteristics of the data governed by a non-normal distribution. Thus, this pre-
sents difficulty when implementing trading strategies based on Gaussian models. The 
KO–PEP (Coca-Cola Co–PepsiCo Inc) pair of stocks was chosen to test the integrated 
filtering approach put forward in this paper. The data on daily NYSE closing prices were 
downloaded from Bloomberg covering the period 24 October 2012–07 January 2014. 
Daily closing price data were used in this study as intra-day prices have additional liquid-
ity and high-frequency-type noise is embedded in them. It is also known that intra-day 
data are observed in uneven intervals making them not straightforward for immediate 
analysis. The data set has 300 data points, and contains subsets with price spreads exhib-
iting distinct non-Gaussian spikes and possessing multi-regime behaviour; see Fig. 4.

Fig. 3  Evolution of the estimated ξ1 and ξ2 under a two-regime HMM
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The choice of KO and PEP in the implementation part of this paper stems from the fact 
that the two are premier global brands in the beverage sector. They have been around for 
more than a century, and marketing products worth billions of dollars yearly. KO and 
PEP have robust balance sheets but a lack of growth for both companies is somewhat 
concerning. The decrease in soda sales due to vigorous health consciousness campaigns 
in recent decades also affect the KO and PEP’s main lines of business. However, both 
companies are in competition as well in developing and growing a whole variety of new 
product innovations in aggressive efforts to replace unrealised and lost revenue. All of 
these homologous attributes make KO-PEP ideal as a pairs-trading pick.

Of course, the beverage stock pair (KO-PEP) chosen in this study is just a representa-
tive for the purpose of numerical illustration. As the proposed method is data-independ-
ent, it can be applied in general by a trader who would select other pairs of stock-market 
data with similar volatility and that are typically highly correlated. The modified spread 
(SPR) between KO and PEP, set as SPR = KO − PEP − 30, is used in the filtering pro-
cedure. The adjustment coefficient of 30 was chosen solely for convenience of represen-
tation. For the real trading procedure, the spread KO − PEP is used. Note, that even 
with 30 as an adjustment, this does not result to negative values in the differences and 
the main characteristic of the data set is preserved. An attempt was made to find the 
rationale for the major spikes in SPR. No explanation, however, from data sources such 
as Bloomberg and the Internet can be found. The occurrence of spikes appear data-spe-
cific, and looking at the same time series of spread from 2002, the spikes happened again 
quite frequently.

Initialisation of the algorithm

To implement the filtering algorithms, suitable parameters for initialisation are needed. 
An advantage of the proposed approach is the complete automation of the initialisation 

Fig. 4  Spikes in the log of price spreads
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stage. The financial modeller may choose from various algorithms to determine the ini-
tial parameters, some of which are described in Erlwein et al. [24], Date and Ponomareva 
[25], and Date and Bustreo [26], amongst others. For the purpose of this study, a simple 
log-likelihood maximisation would suffice and the procedure in Date and Ponomareva 
[25] is adopted; this is also described in Hardy [27]. The data set is divided into two 
parts: one part as a training subset, and the remaining part is employed for the trading 
procedure and validation.

To carry out the initialisation step, data set is assumed to follow the simple OU model, 
and so α = 0 in (6), and the other parameters are not modulated by a Markov chain. The 
likelihood function is then given by

or

where

and φ is the probability density function of a standard normal random variable.
The MLEs resulting from Eq. (28) are chosen as starting values for the estimation 

and trading procedure detailed in the later sections. To choose the optimal number of 
regimes, several model selection criteria could be employed such as the Akaike infor-
mation criterion [28], C-hull criterion [29], and the Bayes information criterion [30]. 
Typically, the optimal number of regimes based on these criteria is two. The “curse of 
dimensionality” is still bearable at this level. In the new approach, the number of param-
eters will more than double if the number of regimes is increased to three. When the 
data set does not show extreme spikes (i.e., about 3 standard deviations or more from 
the mean), any increase in the number of regimes will expectedly result to accurate pre-
diction of spread levels (this is called overfitting), however such setting is also penalised 
for its complexity.

The development of a filtering algorithm under a one-regime model is not considered 
here as this was already pursued in Elliott et al. [1]. Notwithstanding, this one-regime 
model is still used to benchmark the results of the suggested method. The initial esti-
mates for the parameters of the filters are shown in Table 1.

L =
Ntrn∏

i=1

1
√
2πξ

exp

(
−
(ri+1 − νri − ζ )2

2ξ2

)

(28)L =
Ntrn∏

i=1

φi,

φi = φ

(
ri+1 − νri − ζ

ξ

)

Table 1  Initial parameter estimates for the multi-regime filtering algorithm

The same values are used for all regimes (e.g., ν = ν1 = ν2, etc.)

ν ζ ξ π1

0.9682 0.1225 0.2596 0.5
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Following Elliott et  al. [1] on the appropriate bounds of the parameter values (i.e., 
0 < ν < 1, ζ > 0 as well as ξ > 0), it could be concluded that the data set is suitably 
modelled by the OU process. The same values were used to initialise the benchmark 
algorithm. Nonetheless, in Elliott et  al. [1] or Elliott and Krishnamurthy [3], there is 
no apparent indication on how to select the starting values. The convergence of esti-
mates is expected as long as the starting values in the initialisation stage are reasonably 
close to the actual model parameters. In this study, it turns out that Elliott–Krisnamur-
thy dynamic filters do not produce any convergence and hence, parameters are adjusted 
to produce stable convergence on the training data set. The “stabilised” parameters are 
shown in Table 2.

Testing on real data

In this section, the trading method is outlined in conjunction with the filtering algo-
rithms. This procedure is performed in several steps. The optimal parameters are found 
using the EM algorithm. Then, r̂t is estimated and compared to the observed yt. The 
comparison results are then used as inputs to establish the trading position.

Before applying the filters to the data, the user may decide if smoothing the data 
without introducing noise to the underlying process, is needed taking into considera-
tion additional work and time for “cleaning” and smoothing. This is relevant to high-
frequency data but not necessary for the purpose of this numerical experiment. Another 
important question is the length of data series to be included in one pass of the algo-
rithm. Some insights on this issue are given in Erlwein et al. [20].

The new algorithm (combining the Kalman and multi-regime filters) is implemented 
with starting parameters given in Table 1, which were estimated using the data subset 
from 16 January 2013 to 07 January 2014 with a moving filtering window of three points. 
By taking a “practical” look at the data plotted on Fig. 5, it seems that the process pro-
duces 2–3 major and approximately 10–15 minor jumps every 50 points. The time series 
data do not appear to have a constant mean-reverting level. But, some stabilisation in 
the mean seems possible in the horizon. If the processing window of 50/15 ≈ 3.33 or 
bigger, the minor changes in the data set’s behaviour may be missed by the filter. This 
selection judgement on the window processing size is supported by the numerical work 
in Erlwein et al. [20]. The first 50 points of the data were “cleaned up” (i.e., processed 
using the Kalman estimation algorithm) and then the dynamic multi-regime filters are 
applied to the Kalman-filtered estimates to produce the parameters of the proposed 
hybrid algorithm.

The next step in the new algorithm is different from that in the pairs-trading paper of 
Elliott et al. [1]. For emphasis, the following shift happens not by one point, but by the 
size of the moving window which was established to be three. The long shift might affect 

Table 2  Initial parameter estimates used in  applying the dynamic filtering algorithm 
of Elliott and Krishnamurthy [3]

ν ζ ξ

0.8731 1.5527 0.1364
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two possible position changes between the first and third value. The step is repeated 
until all the data points are completely processed.

The plot of the estimated values of the spread in each state under the two-regime 
model is depicted in Fig. 6. The positions are also plotted, where the estimates from both 
regimes, r̂t(1) and r̂t(2), are either greater or smaller than the corresponding value for rt. 
Points marked with ∗ indicate r̂t(i) > rt for all i, and with + indicate the reverse inequal-
ity relation.

Fig. 5  Dynamics of the spread SPR in the data subset used for parameter estimation

Fig. 6  Data processed via the dynamic filtering algorithm
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Ostensibly, the predicted values of r̂t follow the dynamics of the process very well. 
Since a one-regime model is chosen to begin with, it takes some some time for the 
algorithm to show relative stability in the spread process signifying further support for 
the two-regime behaviour of the data. Questions about fitness and model error must 
be settled using some statistical methods and criteria. Since various model settings are 
developed for financial trading purpose in this paper, profit will be the main criterion for 
choosing the best model.

Four trading strategies are considered: (a) aggressive trade in which all earned extra 
capital is being reinvested in the stock; (b) normal trade in which only one unit of the 
stock is kept and all earned capital is invested in the money market; (c) safe trade is a 
variation of the normal trade and employed when there is uncertainty in the positions, 
i.e., r̂t(1) < rt < r̂t(2), in which case all the capital is invested in the money market; and 
finally, (d) imaginary trade in which the normal trade is performed on every data point 
of the “processed” data subset as described above; of course, this type of data set is not 
available in real time, and therefore, the result of this trade is used only for comparison.

The results in Table 3 show that the aggressive strategy does not necessarily produce 
a significant increase in profits. In investing all earned capital in the spread portfolio, 
the main part of the profit is collected whilst the investor takes a long position on the 
portfolio. Considering the quite long investment horizon, the increase in the value of 
the spread portfolio may be deemed not that significant. Still, it has to be noted that the 
overall profit is substantially greater than zero, and will be magnified depending on the 
beginning amount of the investment.

A decrease in the portfolio value is apparently due to losses incurred during the 
“incorrect” trades. A decline in the profit is minimised by keeping a double position 
as explained in "The trading strategy". The minimal difference in the trading results 
between the safe and normal positions can be explained by the behaviour of θt. If θt is 
always close to 0.5, this strategy corresponds to taking long and short positions with 
almost equal proportions of the portfolio. This means that the best strategy is doing 
nothing whilst investing all previous profits in the money market account.

As expected, the imaginary strategy outperforms all other trading strategies although 
the earned margin profit is not as high as one would predict. This arises from the size of 
the moving window, which sets the maximum profit strategy. If the frequency of chang-
ing positions increases, it is hard to say anything about the amount that will be earned or 
lost as a consequence of the frequent trade. Any extra profit or loss is treated as a result 
of pure noise and it cannot be controlled within the set up of the proposed approach.

Using the initial values in Table 2, the parameters are estimated in the proposed mod-
elling framework. The dynamics of the implied parameters ν, ζ, α and ξ were calculated 
using the single-regime dynamic approach; the evolution for the estimated ζ is shown 

Table 3  Pairs-trading profits using the dynamic approach with interest rate of 0.01%/per 
day and initial capital of zero

(a) Aggressive (b) Normal (c) Safe (d) Imaginary

Profit ($) 16.6361 16.0067 15.8564 18.4892
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in Fig. 7. Figure 8 presents the graph of the “best” estimates of the process defined as 
E[rk+1] = ν̂E[rk |Yk ] + ζ̂ .

Different sets of parameters were tried as starting values, but some divergence in the 
parameters’ behaviour does not disappear. This is to be expected anyhow because the 
data set dictates the dynamics of the parameters. If convergence has to occur, almost any 
set of values can be assumed as starting values for the algorithms.

Concluding remarks
This work improved the performance of the pairs-trading strategy proposed by Elliott 
et al. [1]. The adaptive power of two popular filtering approaches, namely, the Kalman 
and HMM filters were blended together. Based on empirical evidence, the new hybrid 
algorithm outperforms each individual filtering technique. The proposed algorithm is 
more robust and well-suited to the pairs-trading strategy, and requires the same com-
putational resources as those for the conventional Kalman filters on Gaussian-type data 
sets.

The extent of the gain’s significance in having multi-dimensional filters is explored 
with respect to accuracy without diminishing execution time and increasing complex-
ity of the optimisation methods. Applications demonstrated in this paper proved suc-
cessful in trading simulation. On the assumption of no transaction costs and data on 
bid-ask spreads, the back-testing trade performance showed that a hypothetical trader 
could manage to earn a non-zero profit with positive probability. The trading technique 

Fig. 7  Evolution of the implied ζ
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has the potential to yield positive gain under reasonable transaction fees. Although the 
approach based on the combination of two filtering methods were tested on historical 
prices of Coca-Cola Co and PepsiCo Inc, practitioners could adopt this to other pairs of 
data sets and exploit arbitrage opportunities due to temporary market inefficiencies or 
other factors.

The inclusion of transaction costs (e.g., [31]) for pairs trading under the multi-regime 
framework, and for instance when rk is not necessarily OU (e.g., [32, 33]) or OU but 
with additional statistical properties (e.g., [34]) is open for further investigation. The cost 
structure needs to be defined and embedded into the procedure. Also, the use of high-
frequency data (e.g., [35]) may be considered, given the current practice of hedge funds 
companies and other institutional investors. Further examination is required on how to 
produce filtered parameter estimates within their specified constraints without, or at 
least with minimal, additional numerical optimisation procedures.
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