
HCudaBLAST: an implementation
of BLAST on Hadoop and Cuda
Nilay Khare1, Alind Khare2 and Farhan Khan1* 

Introduction
The DNA or protein sequence searching is the most obvious operation in the analysis of
any new sequence and the reason for the same is pretty simple—finding similar regions
of nucleotides or proteins between two or more nucleotide or protein sequences. The
similarity can be used to determine many things including similarity of two or more
species, identifying a completely new species, locating domains within the sequence of
interest, etc. However, the difficulty in finding the similar regions between two or more
sequences is very hard due to the size of the existing sequence involved. To overcome
this difficulty, various tools or algorithms have been proposed. Let us look at some of
these in the following paragraphs.

In computational biology and bioinformatics, aligning sequences to determine similar-
ity between them is an essential and widely used computational procedure for biologi-
cal sequences. There have been wide range of computational algorithms applied to the
sequence alignment challenge. Methods like Smith–Waterman algorithm [1], which is
quite slow but accurate and is based on dynamic programming, and, basic local align-
ment search tool (BLAST) [2] or FASTA [3] algorithm which is faster but less accurate
and is based on heuristic or probabilistic programming. The very first algorithm was

Abstract 

The world of DNA sequencing has not only been a difficult field since it was first
worked upon, but it is also growing at an exponential rate. The amount of data
involved in DNA searching is huge, thereby normal tools or algorithms are not suit-
able to handle this degree of data processing. BLAST is a tool given by National Center
for Biotechnology Information (NCBI) to compare nucleotide or protein sequences to
sequence databases and calculate the statistical significance of matches. Many variants
of BLAST such as blastn, blastp, blastx, etc. are used to search for nucleotides, proteins,
nucleotides-to-proteins sequences respectively. GPU-BLAST and HBLAST have already
been proposed to handle the vast amount of data involved in searching DNA sequenc-
ing and they also speedup the searching process. In this article, we propose a new
model for searching DNA sequences—HCudaBLAST. It involves CUDA processing and
Hadoop combined for efficient searching. The results recorded after implementing
HCudaBLAST are shown. This solution combines the multi-core parallelism of GPGPUs
and the scalability feature provided by the Hadoop framework.

Keywords:  DNA Searching, BLAST, CUDA, Hadoop

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Khare et al. J Big Data (2017) 4:41
DOI 10.1186/s40537-017-0102-7

*Correspondence:
farhan5900@gmail.com
1 Maulana Azad National
Institute of Technology,
Bhopal, Madhya Pradesh
462003, India
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-2290-1067
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-017-0102-7&domain=pdf

Page 2 of 8Khare et al. J Big Data (2017) 4:41

given by Smith and Waterman in the form of Smith–Waterman algorithm in 1981. This
is a global sequential alignment algorithm which involves high time complexity but at
the same time, it gives optimal results. To overcome the time consumption of Smith–
Waterman algorithm, Lipman and Pearson proposed FASTA tool in 1985, which takes a
given nucleotide or amino acid sequence and searches a corresponding sequence data-
base by using local sequence alignment. It is based on heuristic method which contrib-
utes to the high speed of its execution. It is also a heuristic algorithm like FASTA but it is
more time-efficient as it searches only for the significant patterns in the sequences with
comparative sensitivity.

Due to the heuristic approach, the execution speed of BLAST is significantly increased
but the amount of data being processed is very large and is increasing at an exponential
rate; such as UniMES for metagenomic data sets [4], which continues to expand expo-
nentially as next generation sequencing (NGS). However, the solution for the scalabil-
ity problem of the BLAST has been solved by combining Hadoop and BLAST together,
which is called HBLAST [5]. It is a hybrid “virtual partitioning” approach that automati-
cally adjusts the database partition size depending on the Hadoop cluster size as well as
the number of input query sequences. Yet another improvement in the speed of BLAST
algorithm has been proposed in the form of GPU-BLAST [6] or other CUDA based
implementations [7]. GPU-BLAST can perform protein alignments up to four times
faster than the single-threaded NCBI-BLAST. When GPU-BLAST is compared with six-
threaded NCBI-BLAST then it performs nearly two times faster.

Hadoop is an open source framework developed by Apache and it is a platform that
can store and manage large volumes of data and it also provides a relatively easy way to
write and run applications for massive data processing. Hadoop basically works in two
folds, the first fold is Hadoop distributed file system (HDFS) [8], which is a good fault-
tolerant system for storing data using low-cost hardwares. The second fold is MapRe-
duce [9], which is a programming model to process the stored data by running tasks
with efficient scheduling. Hadoop works in the fashion of Master–Slave architecture
and it comprises many daemon processes like NameNode, DataNode, NodeManager,
ResourceManager, etcetera. HDFS comprises of a NameNode and numerous DataN-
odes, wherein the NameNode is in charge of administration of metadata, file blocks and
namespace of HDFS-stored files and the DataNodes are in charge of physically storing
and managing the data on the block level.

Hadoop provides scalability and gives efficient handling of existing database of
sequences and GPU provides time efficiency for the whole process. It is intuitive to
merge these two prominent technologies to gain the full strength of existing technol-
ogies and provide better results in terms of time and storage. So this article presents
HCudaBLAST, which is a combination of Hadoop and CUDA processing that runs the
existing NCBI BLAST algorithm.

The rest of the article is organized as follows. In "Background and related work" sec-
tion, we introduce related work available in this topic. In "Proposed work" section, we
give the points of interest of our proposed work and algorithm of HCudaBLAST, and
in "Experimental setup" section, we give description of our experimental setup, followed
by conclusion in "Conclusion" section.

Page 3 of 8Khare et al. J Big Data (2017) 4:41

Background and related work
BLAST with GPU computing

The graphics processing unit (GPU) is a multi-core processor that concurrently executes
hundreds of threads. Originally, it was used for only graphics processing acceleration but
recently, the GPUs are organized in a streaming, data parallel model in which it executes
the same instructions on multiple data streams simultaneously. The basic architecture of
GPU usually contains N GPU multiprocessors, each containing M processors. There are
various frameworks accessible for GPU processing, yet the two most mainstream frame-
works are compute unified device architecture (CUDA) and open computing language
(OpenCL).

Multiple researches have been done to improve the time consumption of the BLAST
algorithm by using GPU computing. Some of the most notable researches of the BLAST
algorithm with GPUs are described below.

Panagiotis D. Vouzis et al

The above mentioned authors wrote an article “GPU-BLAST: using graphics processors
to accelerate protein sequence alignment”. They proposed an enhanced version of the
popular NCBI-BLAST by using CUDA computing model. The GPU working involves
the subject sequences to be stored in Global Memory whereas the queries are stored in
Constant Memory. A GPU has multiple multiprocessors and each multiprocessor is rep-
resented by a block. These multiprocessors have multiple processors within them, which
are represented by threads. Every multiprocessor has a shared memory. The working is
such that the instruction that is to be performed is stored in the INSTRUCTION UNIT.
The sequences are accessed from the global memory by processors and the score is cal-
culated with the help of BLOSUM62 matrix, which is stored in the shared memory. The
GPU-BLAST achieves speedup that is mostly between 3 and 4 in comparison to the
sequential NCBI-BLAST, but it exhibits some drawbacks such as high power consump-
tion with large amount of data.

BLAST with distributed computing

The size of the existing DNA or protein sequence database is so large that we cannot pro-
cess it by a single computer system efficiently, no matter how much storage capacity and
computing power the system has. Only distributed computing can provide a relatively
better solution to deal with such kind of problems. There have been many researches
in this area to explore the distributed computing for the BLAST algorithm. Most popu-
lar frameworks used in distributed computing are cloud computing and Hadoop frame-
work. These frameworks have not only computing capability but also storage solutions
for the large amount of data, so it can easily solve the scalability problem in the storage
of existing database.

Andréa Matsunaga et al

The above mentioned authors wrote an article “CloudBLAST: combining MapRe-
duce and virtualization on distributed resources for bioinformatics applications; [10].
They have implemented an integration of Hadoop, virtual workspaces, and virtual
network (ViNe) as the MapReduce, virtual machine and virtual network technologies,

Page 4 of 8Khare et al. J Big Data (2017) 4:41

respectively, to deploy the commonly used bioinformatics tool NCBI BLAST. They have
distributed query sequences in the cluster and processed them in a parallel fashion. First
it creates a virtual machine (VM) and stores it in a virtual workspace factory server.
When a biologist wants to process some query, he/she will have to request for the rep-
lica of the VM. The VM would be cloned and configured with the appropriate network
addresses in each site. Now, the biologist can log into one the VMs, upload the input
sequence and start executing BLAST job. The CloudBLAST does not work well with
large clusters, we often need to do load balancing to gain the maximum performance.

Aisling O’Driscoll et al

The above mentioned authors wrote an article “HBLAST: parallelised sequence similar-
ity—a Hadoop MapReducable basic local alignment search tool”. They have used virtual
partitioning to parallelize BLAST algorithm by partitioning both databases and input
query sequences. It changes the database partition size depending on the cluster size
of Hadoop and the number of input query sequences. The size of the virtual partition
is decided by the size of the available random access memory (RAM), to overcome the
slow I/O transfers. It uses makeblastdb tool to create physical partitions of the existing
database files and each file is considered as a stand-alone database. By combining these
files, we can create virtual partitions and store them in Hadoop data node. The HBLAST
MapReduce algorithm takes a mapping file as an input, which consists of the name of
the query file and all the files which belong to the single virtual partition in every line.
After taking this file as an input, it will create the map task and compute the result for
each query in single virtual partition and pass this result to the reduce task with subject
sequence id, query sequence id and calculated score. The reduce task will aggregate the
score on the basis of query sequence id and subject sequence id, and write them in a final
file. HBLAST provides 2.5 times faster execution as opposed to CloudBLAST in case of
large number of sequences.

Proposed work
As discussed, there are many variants of BLAST algorithm such as blastn, blastp, blastx,
tblastx, etcetera. Here, the focus is only on implementation of blastp, which is used for
searching protein sequences in an existing protein database. The blastp is already imple-
mented with GPU in the aforementioned article and it reduces the searching time com-
plexity. It is also already implemented with MapReduce in HBLAST and it also reduces
the time consumption as well as it gives scalability to the storage of database. Here, pre-
sented an integration of these two solutions into one—an implementation of blastp algo-
rithm with Hadoop and CUDA to take advantage of both the solutions.

The algorithm for HCudaBLAST is designed in such a way that it can efficiently merge
these two parallel computing techniques. There are many libraries and tools available
which provide the way to merge Hadoop with GPU. Each tool works in a different way
and they have their own pros and cons. Following are the existing ways:

– – JCUDA [11]: it provides Java bindings for Nvidia and related libraries, this will only
work for GPUs by Nvidia.

Page 5 of 8Khare et al. J Big Data (2017) 4:41

–– Java Aparapi [12]: it converts Java byte code to OpenCL at runtime. It also works with
Hadoop and it supports different kind of GPUs.

–– Native Code: it uses Java Native Interface (JNI) to call GPU code within Java code.

In these three methods mentioned above, Java Aparapi seems very prominent to use for
Hadoop integration with GPUs, but it has many limitations and it also has to convert
code from Java to OpenCL, so it will take more time. The Native Code which uses JNI, is
relatively faster and has no limitations in the form of programming. It can be developed
for both CUDA and OpenCL, that is why in this article Native Code method is used to
implement HCudaBLAST algorithm for CUDA computing.

The working of HCudaBLAST is exceptionally straightforward. There is a mapping file
as an input which consists of name of the query file and the name of the partition files of
the database in each line with comma separation. This mapping file will be given to run-
ning job and it will be divided according to the number of mappers available. Each such
mapper takes the part of the file as an input and processes each line at a time. In each
iteration of the mapper, it will process the query file with given database partition files
and generate all the seeds for the query with the word length of 3. Then the mapper will
pass it to the process running on the GPU to calculate final alignments and collect the
result generated by GPU process and then pass the query Id as a key & score with sub-
ject Id as a value to the reducer process.

The GPU process will basically take all the subject sequences, the query sequence, the
generated seeds and the score matching matrix Blosum62 as inputs. It will then give each
subject to a different thread and each thread will align the query sequence with subject
sequence for each seed available. It will also extend the alignment of the seed till the
score cut-off and expected cut-off are not met. This pair of the seed of query sequence
and the part of the subject sequence with their score is called high scoring segment pairs
(HSPs). By distributing tasks on all the processor available on GPU, it will parallelize the
calculation of the HSPs and after calculating all the HSPs, it will return these HSPs to the
mapper. After running the mapper process, Hadoop will do sorting and shuffling on the
output generated by the mapper and all results will be merged according to the query
Id, so the reducer will get the query Id as a key and lists of subject Ids and their scores
as values. The reducer will collect all the score belonging to the same subject & the same
query Id and calculate the sum of all those scores. It then gives query Id and subject Id as
a key and their sum of score as a value, which is finally stored in an output file.

The tool used to partition the database is “makeblastdb”. The benefit of partitioning the
database is that it will properly distribute on a cluster and it will easily fit in an available
memory. The block size available on Hadoop is 128 MB, that is why the maximum parti-
tion size of the database should be 128 MB, so that the time consumed by disk I/O could
be reduced. The searching will be done for all the partitions, which are on a single node
in a single mapper iteration. The formula to calculate expected score for limiting the
alignment is eScore = K ∗m ∗ n ∗ e

−s∗�, where n is the length of the query sequence,
m is the length of the subject sequence, K and λ are statistical parameters estimated by
fitting the distribution of local alignment scores and s is the current score. The algorithm
for HCudaBLAST is appeared in Fig. 1.

Page 6 of 8Khare et al. J Big Data (2017) 4:41

Experimental setup
The evaluation of the HCudaBLAST algorithm is done on a cluster of machines, setup
with Hadoop framework and each such machine has Nvidia CUDA capability in it. Two
machines in this cluster have Intel Xeon E5-2630 processor and 6 cores with 8 GB RAM
and these machines have two CUDA devices, first one is Tesla C2075 with 14 multipro-
cessors and computing capability of 2.0 and second one is Quadro 2000 with four mul-
tiprocessor and computing capability of 2.1. Another three machines have Intel Xeon
E31245 processor and 4 cores with 8 GB RARM and these machines have one CUDA
device Quadro 600 with computing capability of 2.1. All the physical machines in a clus-
ter was connected with a single switch in a local LAN. The cluster created here running
Hadoop version 2.7 and CUDA toolkit 7.5 on each machine. Here, one machine act as
a master node which runs NameNode and ResourceManager on it and all other four
machines run DataNode and NodeManager on it. All the code run on Hadoop is written
in Java programming language and the native code running on GPUs written in C, which
called by Java using Native Interface (JNI).

The database comprises of approximate six million sequences of proteins and it has
been taken from the NCBI web site [13]. The different size of query sequences have
also been taken from same web site to perform the searches. This experiment has been
performed in twofolds—one with two million sequences and the other with 6 million
sequences with different size of queries and different number of partitions of the data-
base to properly analyze the time taken by the algorithm.

Tables 1 and 2 show the results given by this experiment and the time taken by both
Hadoop implementation of BLAST and HCudaBLAST. Obviously, HCudaBLAST shows
a significant improvement in terms of time taken with different number of subject
sequences and different size of query sequence.

Fig. 1  Algorithm for HCudaBLAST

Page 7 of 8Khare et al. J Big Data (2017) 4:41

Conclusion
After seeing Tables 1 and 2, we can conclude the following:

– – BLAST implementation on Hadoop and CUDA can indeed be combined together.
–– The experimental setup that we had, consisted of differently configured machines in

our cluster. It needs to be seen whether machines with same configuration in the clus-
ter can give even better result then the one we got.

–– In our experimental setup, we have machines with multiple cores on CPU itself, so we
can make part of algorithm to use CPU multi-threading environment and gain better
results.

–– HCudaBLAST performs almost 1.5 times better than the individual Generic BLAST
implementation on Hadoop.

Authors’ contributions
Dr. NK carried out the molecular genetic studies, participated in the sequence alignment and drafted the manuscript.
FK participated in the sequence alignment, the design of the study and performed the statistical analysis. AK conceived
of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and
approved the final manuscript.

Author details
1 Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003, India. 2 IIIT, Delhi, India.

Acknowledgements
We thank our colleagues from Maulana Azad National Institute of Technology, Bhopal who provided insight and exper-
tise that greatly assisted the research. We also thank Dr. Akhtar Rasool, Assistant Professor; Mr. Amit Swami, Ph.D. Scholar;
Mr. Gourav Hajela, Ph.D. Scholar and many more for their so-called insights in the form of reviews and immensely
grateful comments on an earlier version of the manuscript, although any errors are our own and should not tarnish the
reputations of these esteemed persons.

Competing interests
The authors declare that they have no competing interests.

Table 1  Performance of HCudaBLAST compared to generic BLAST algorithm on Hadoop
with 2M sequences (BoH: BLAST on Hadoop, HCB: HCudaBLAST)

Query length Database hits BoH runtime (min) HCB runtime (min) Speed up

1000 148256049 12.43 7.33 1.69

2000 255375521 14.39 8.89 1.61

3000 593191597 15.69 9.99 1.57

4000 671434422 17.88 12.64 1.42

5000 829210234 19.32 14.88 1.30

Table 2  Performance of HCudaBLAST compared to generic BLAST algorithm on Hadoop
with 6M sequences (BoH: BLAST on Hadoop, HCB: HCudaBLAST)

Query length Database hits BoH runtime (min) HCB runtime (min) Speed up

1000 2943252019 16.82 10.25 1.64

2000 3560375127 17.88 12.57 1.42

3000 4298763021 19.89 14.22 1.39

4000 5878829120 22.23 18.24 1.21

5000 7112991378 25.55 20.78 1.23

Page 8 of 8Khare et al. J Big Data (2017) 4:41

Availability of data and materials
The data used in this article is publicly available in NCBI repository of protein databases and the link for the same is
mentioned in the references section.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
We are presenting this article without any kind of funding. We will be more than happy if you provide us some discount
in the matter and give us adequate time period for making the arrangement of fee.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 8 December 2016 Accepted: 7 November 2017

References
	1.	 Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol. 1981;147(1):195–7.
	2.	 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
	3.	 Lipman DJ, Pearson WR. Rapid and sensitive protein similarity searches. Science. 1985;227(4693):1435–41.
	4.	 Sleator RD, Shortall C, Hill C. Metagenomics. Lett Appl Microbiol. 2008;47(5):361–6.
	5.	 O’Driscoll A, Belogrudov V, Carroll J, Kropp K, Walsh Paul, Ghazal Peter, Sleator Roy D. HBLAST: parallelised sequence

similarity—a hadoop MapReducable basic local alignment search tool. J Biomed Inform. 2015;54:58–64.
	6.	 Vouzis PD, Sahinidis NV. GPU-BLAST: using graphics processors to accelerate protein sequence alignment. Bioinfor-

matics. 2011;27(2):182–8.
	7.	 Manavski SA, Valle G. CUDA compatible GPU cards as efficient hardware accelerators for Smith–Waterman sequence

alignment. BMC Bioinform. 2008;9(2):1.
	8.	 Shafer J, Rixner S, Cox AL. The hadoop distributed filesystem: balancing portability and performance. In: IEEE Inter-

national Symposium on Performance Analysis of Systems & Software (ISPASS); 2010. p. 122–33.
	9.	 Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM. 2008;51(1):107–13.
	10.	 Matsunaga A, Tsugawa M, Fortes J. Cloudblast: combining mapreduce and virtualization on distributed resources

for bioinformatics applications. In: IEEE Fourth International Conference on eScience; 2008. p. 222–9.
	11.	 Yan Y, Grossman M, Sarkar V. JCUDA: a programmer-friendly interface for accelerating Java programs with CUDA. In:

Euro-Par 2009 Parallel Processing; 2009. p. 887–99.
	12.	 Grossman M, Breternitz M, Sarkar V. Hadoopcl: Mapreduce on distributed heterogeneous platforms through seam-

less integration of hadoop and opencl. In: IEEE 27th International on Parallel and Distributed Processing Symposium
Workshops & Ph.D. Forum (IPDPSW); 2013. p. 1918–27.

	13.	 NCBI Database. ftp://ftp.ncbi.nih.gov/blast/db/. Accessed 29 Nov 2016.

ftp://ftp.ncbi.nih.gov/blast/db/

	HCudaBLAST: an implementation of BLAST on Hadoop and Cuda
	Abstract
	Introduction
	Background and related work
	BLAST with GPU computing
	Panagiotis D. Vouzis et al

	BLAST with distributed computing
	Andréa Matsunaga et al
	Aisling O’Driscoll et al

	Proposed work
	Experimental setup
	Conclusion
	Authors’ contributions
	References

