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Introduction
As we move towards the micro blogging era, and with the ever-growing presence of digi-
tal news, delivering the relevant content to the right users based on the limited context 
information present in short texts has become more important than ever. For example, 
let’s take twitter, where the character limit per tweet is a mere 140 characters. Display-
ing ads relevant to a particular user requires understanding what type of tweet she/he 
generally produces. If the user generally tweets about sports, it is more appropriate if 
sports related ads are shown to their timeline. Other areas where short texts are used are 
web queries, news recommendations based on news titles, etc. These all require under-
standing short texts and delivering the right content. However, understanding short 
texts involves confronting many challenges that make the task difficult. Short texts like 
web queries and tweets generally lack proper syntactic formation. Unlike in longer docu-
ments, there is a dearth of enough statistical information in those short texts. Also, short 
texts with similar meaning may not share any common words between them. For exam-
ple, lets take two short texts, “new version of windows OS” and “upcoming Operating 
System from Microsoft”. The given short texts don’t share any keywords between them, 
but we know that these two are related. These factors make understanding short text a 
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challenging task. To identify the relatedness of these texts, we need to find common con-
cepts between them.

Finding concepts of words from the given short text and identifying the words that occur 
frequently with those words are collectively represented as semantic enrichment. Mapping 
of words into their concepts is an important task in understanding natural language. As we 
can see, concepts are the medium which glue terms that are not related syntactically to a 
common ground. For example, the terms “apple” and “orange” are not related syntactically 
but both of those terms can be glued by the concept “fruit”. Hence, finding the most appro-
priate concept of any given word is the main task in conceptualization. There is a challenge 
that is very hard to solve in conceptualization, which is the context sensitive nature of word 
to concept mapping. For instance, we can see the context of the word “apple” is “fruit” or 
“food” when it is used with words like “orchard” or “tree”. But the same word “apple” has 
the context of “company” or “firm” when it is used with “ipad”, “iphone” or some other 
technological terms. There are many approaches proposed to solve or mitigate this prob-
lem. One of them does this with a simple two-stage solution combining a topic model 
and a probabilistic knowledge base such that we can consider both semantic relationships 
among words for modeling the context, and conceptual relationships between words and 
concepts for mapping the words to concepts within the given context [1].

Use of universal probabilistic semantic networks like Probase to enrich the text adds 
far more context and meaning, enabling for better classification. However, there are 
many cases when using just the noun terms of a short text to generate concepts is not 
sufficient to clearly identify the context of those texts. This is especially true for ambigu-
ous short texts. Let us take for example two short texts: “five people hospitalized by eat-
ing poisonous apple” and “two people imprisoned for hacking into apple”. Here, using 
just the noun terms generates the same concepts for both the texts, as both of them con-
tain the noun terms “people and apple” but the context of these two texts are completely 
different. The context of those texts will be clear if we consider the verbs “eating” and 
“hacking” from the respective texts. Let us look at another example, “United defeated 
by City 2-1”. In this text, if we take the noun term only we cannot figure out its context 
properly. But if we take into consideration the verb “defeated”, we may get the sense that 
it is talking about a sporting events. It can also be showed that the adjectives used in the 
text also help to disambiguate it for higher accuracy in classification.

Our contribution through this paper will be generating richer concepts for a short text, 
considering the verbs in addition to the nouns present in the text, hence adding more 
precise features to the text. These added features generated from verbs help to remove 
ambiguity if any, present in the text that could not be removed through the concepts 
generated by the noun terms only. We then present a simple four layers deep neural net-
work which takes the enriched text as input and classify it into one of the categories.

Related works
We have long known that computers need huge amounts of common-sense and domain 
specific world knowledge to understand natural language [2, 3]. But the prior works on 
semantic relatedness were purely based on a statistical approach that did not use back-
ground knowledge [4, 5] or on lexical resources that incorporate very limited knowledge 
about the world [6, 7].
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Then various approaches came for enriching short texts that used domain-specific 
information. One of the approaches is to treat the short text as a web query and enrich 
the given text with the results from the search engine to that query (e.g titles of web 
page and snippets) [8–10]. This method takes advantage of variety of web documents to 
identify the appropriate context. Another effective approach used external knowledge 
base such as WordNet [11, 12], Wikipedia [13, 14], the Open Directory Project (ODP) 
[15] etc. to enrich the given short text. As Gabrilovich [14] has demonstrated, there is 
value in using Wikipedia as an additional source of features for text categorization and 
determining the semantic relatedness between texts. The open editing policy of Wikipe-
dia yields amazing quality. A recent study [16] found Wikipedia accuracy to rival that of 
Britannica. Substantial works have been conducted in automatic web query classifica-
tion. One of them is web query classification using labeled and unlabeled training data 
[17]. Another approach for web query classification uses machine learning techniques 
in an automatic classifier to categorize queries by geographical locality [18]. Query type 
classification for web document retrieval is another related work [19].

Apart from enriching the given short texts, work has been done to extract efficient 
representations of those texts so as to perform information retrieval or classification. 
Recently, Salakhutdinov and Hinton [20] have proposed semantic hashing which is a 
novel information retrieval mechanism. In this model, we stack RBMs [21] which learns 
the document representation through a compact binary code. The semantic of a docu-
ment is supposedly captured by the code.

The approaches mentioned above can produce satisfactory result to some extent, but 
they each have their own limitations. Treating a short text as search query may work well 
for popular queries but for unpopular queries, the search engine will most likely return 
some irrelevant results which acts as a noise to the short query instead of enriching it. 
Enriching a short text with the information obtained from WordNet also has its prob-
lems. Although WordNet contains information about general terms, it does not contain 
information for proper nouns such as “USA” or “Microsoft”. Also, it does not weigh the 
senses based on the frequency of their usage. There is another approach to semantic 
enrichment which uses Probase for enriching the given short text [22]. Probase [1, 23, 
24] is a large collection of worldly concepts and their likely instances presented in proba-
bilistic form. It contains about millions of such concepts and instances. The basic idea is 
to extract the noun terms from the given short text and perform a lookup into Probase 
to generate multiple concepts that relate to those noun terms. We can also extract co-
occurring terms from Probase for those noun terms. Then, these concept terms and co-
occurring terms [22] along with those noun terms form the enriched short text. This 
approach produces by far the best classification result over other previous works.

Preliminaries
We start our discussion with (i) Probase, a huge network connecting concepts and 
instances semantically, in a probabilistic manner, (ii) VerbNet, a manually constructed 
verb list which represents the categories of short texts and (iii) backpropagation, a widely 
used method to find gradient descent which in turns effectively helps to train the neu-
ral network and (iv) Deep neural network, a neural network with multiple hidden layers 
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which captures the abstract relationships among different features of data hierarchically 
and an auto-encoder, one of the unsupervised deep learning algorithm.

Probase

Probase [23] is a very large network of millions of concepts where the semantic entities 
are quantified by probabilistic method. These concepts are obtained by mining the web-
pages which contain it. It basically works by matching the patterns in it’s syntax. Concepts 
are further enriched by its instances and attributes using relationships like “is a”, “has a” 
etc. For example, apple and orange are two of the most used instances of concept fruit. 
Such concepts and instances are quantified in Probase by probability score of having t as 
a instance given c as a concept: p(t|c). Given all the concepts, p(c|t) is the probability of 
concept c provided instance c, which is also contained in Probase. In addition, Probase 
gives p(t1|t2), the probability of co-occurring two instances t1 and t2. Probase also contains 
numerous other scores and probabilities. This abundant probability information among 
concepts and instances allows us to provide additional context in text understanding.

VerbNet

This is the manually constructed list of verbs that represents the categories of short text 
we are considering. In this paper, we have considered news titles from the dataset of our 
experiment as short texts. As our dataset contains news titles from seven categories, our 
extracted verbs fall in one of those categories. So we compiled a list of 160 verbs that 
somewhat represents any of those categories. For example, a verb like play, win or lose 
can represent the football news category, while verbs like endanger and protect can rep-
resent environment category.

For each category, verbs are extracted from the news title and are sorted in terms 
of their frequency. While doing so, the common verbs like ‘come’, ‘look’, ‘see’ etc. are 
ignored. Auxiliary verbs are not taken into consideration too, as they are insignificant 
to the classification task. From each of the compiled lists of frequently occurring verbs, 
around 20 most frequent verbs are selected and inserted to the semantic vocabulary. 
This enabled each of those frequently occurring verbs to be features of short text based 
on which classification is done. We experimented with different verbs size from each 
category but the improvement was insignificant as verbs size was increased. The optimal 
verbs size from each category was fixed to 20.

Backpropagation

It is the most widely used method of training artificial neural networks. Using back-
propagation [25], one can effectively approximate a real, discrete or vector valued target 
functions [26]. It generally takes place in two stages. First is the propagation stage. When 
training examples are presented to the network, it propagates forward, with each units 
in every layers taking the weighted sum of inputs and calculating output based on some 
activation function, until an output is generated from the output layer. We, then com-
pare the generated output with the actual output and find the error using some error 
function. Now, the assumption is this error is due to the partial contribution from each 
neurons in previous layers. So, the error is propagated backwards with each neurons 
associated with some error value. This completes the propagation stage.
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These back propagated error values are used to compute the gradient descent [27] 
of the loss function. We apply some weight update rule based on the gradient descent 
of loss function to optimize the weight of the network and hence, train the network to 
learn the function required to describe the input examples.

In Fig. 1, we show a simple neural network with three layers. First layer is L1 which 
consists of four nodes. Second is the hidden layers with two nodes represented by L2 and 
last one is an output layer with four nodes each representing a component of output. 
The nodes in hidden layer and output layer can be activated by same function or differ-
ent ones. We have shown two functions α and β acting on these layers. If i is an arbitrary 
node in a certain layer and j is a node that connects its output to it, then we can repre-
sent the weight from jth node in previous layer to ith node in next layer by wij.

If we take squared error as the error function, which is given as:

where E is the squared error, h is the estimated output from the network, and y is the 
actual output.

For each neuron j in the network, its output is:

where α is the differentiable and non-linear activation function. Sigmoid function is the 
commonly used such function.

E =
1

2
(h− y)2

aj = α(zj) = α

(

n
∑

i=1

wijai

)

α(z) =
1

1+ e−z

Fig. 1  A three-layer neural network
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We can apply following chain rule to compute the descent of error with respect to each 
weight of the network.

Applying some calculus, we can find

where, δj = ∂E
∂aj

α′(zj).

Deep neural network and autoencoder

Deep neural network is simply a neural network with multiple hidden layers. Due to this 
multiple hidden layers, it can effectively represent any complex input in a hierarchical 
abstraction. But simply training a deep network with backpropagation to compute the gra-
dient of error will not produce good result. In some cases, the results are even worse than 
the network with single hidden layers. This lack of progress using deep networks can be 
mainly attributed to vanishing gradient problem or exploding descent problem. What these 
mean is that due to the random initialization of weights and backpropagating errors one 
layer at a time, the weights learn at different speeds. Specifically, as we go backwards from 
output layer weights learn at decreasing speed. Or sometimes, weights learn very much 
faster as we go backwards. Either way, the gradient of weights are unstable. This is the main 
reason for deep networks to get stuck at learning as we increase the hidden layers.

The effective solution to this obstacle in training deep network was first proposed 
by Hinton [28]. It applied greedy layer by layer pre-training of the layers in unsuper-
vised fashion. What it does is adjusts the weight of the network to the comparable value 
instead of feeding inputs to network with randomly generated weights. Then, in second 
stage, supervised training is performed with the labeled data to fine tune the weights. 
Hence, deep neural networks trained in this way can effectively find the optimal repre-
sentation of the network parameters.

An autoencoder is one of the deep learning algorithm which is basically a three layer 
neural network that tries to reconstruct the input with minimal error. Figure 1 depicts 
the working of an autoencoder. The network takes an input and constructs a hidden 
representation through hidden layer. This is an encoding phase. The output layer just 
tries to reconstruct the input so the hidden representation can be taken as a code to the 
original input. Input reconstruction is the decoding phase. This process is completely 
unsupervised.

Formally, an autoencoder takes an input x ∈ [0, 1]d and encodes it to the hidden repre-
sentation h ∈ [0, 1]d

′ through some mapping function s.

where s is any mapping function like sigmoid and W and b are the weight and bias from 
input to hidden layer. The latent code h is then mapped back in the form of y which is the 
reconstruction of original input x. y has the same size as x.

∂E

∂wij
=

∂E

∂aj

∂aj

∂zj

∂zj

∂wjk

∂E

∂wij
= δjai

h = s(Wx + b)

y = s(W ′h+ b′)
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where W ′ and b′ are weights and bias from hidden to output layer. The reconstruction 
error can be measured with one of the loss functions. The squared loss error and cross 
entropy error is given below. Any one of them can be used.

The approach
To start with, first we describe the following phrases used in our system:

• • Semantic features Every noun and verb terms from the input short text, concepts 
representing them, and co-occurring terms constitutes the Semantic features. This is 
the result for any given short text after we perform co-occurring phase.

• • Semantic vocabulary A list of top-k(eg-3000) semantic features that occurs in highest 
frequency in our training dataset.

• • Semantic feature vector For each enriched input short texts, a fixed sized vector 
(equal to the size of vocabulary) where each position gives the count of semantic fea-
ture present in it.

Now let us consider our dataset contains n training examples (short texts). 
After enrichment with noun and verb terms, we represent those short texts as: 
XE = x1, x2, x3, ..., xn ∈ Rk∗n as described above, where k is the feature vector dimension. 
The position of the semantic feature is used to identify each row of feature vector. Here, 
xij represents the number of times feature j occurs in the enriched short text i. Our main 
aim is to learn the correct category of the provided input short text and output the label 
Y corresponding to that category.

To get enriched text XE from input text X, it first goes through pre-processing, con-
ceptualization and co occurrence phase.

Our proposed solution to the problem defined above is sketched in algorithmic view 
below:

Algorithm 1 outlines the pre-processing of the input text. The first step in pre-process-
ing is to remove the punctuation from the input text. Then it extracts the noun terms 

L(xz) = ||x − y||2

L(x, z) = −

d
∑

k=1

[xk logzk + (1− xk)log(1− zk)]
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and stores them in a list. Similarly, it extracts Verb terms from input text and stores 
them in a separate list. For each noun in Noun list, if PROBASE contains it then add 
those terms to a pre-processed list. It does the same for each of the verb terms, but it 
looks into VERBNET instead of PROBASE. This algorithm has the run time complexity 
of O(n) as each operation of removing punctuation and extracting noun and verb terms 
depends linearly on the size of the input.

Algorithm 2 takes the output from algorithm 1 as input and performs conceptualiza-
tion. For each term in its input, algorithm 2 performs the look-up into PROBASE to find 
n relevant concepts for the term and adds those concepts along with the terms in the 
conceptualization list. Algorithm  2 also prunes the irrelevant concepts gathered from 
PROBASE. We talk about this in detail in the upcoming section. The run time complex-
ity of this algorithm is O(n) as the loop runs for n times which is the size of input.

This algorithm finds the co-occurring terms of the output terms from the concep-
tualization algorithm. For each term in its input, it finds top m relevant co-occurring 
terms. Again, PROBASE is used to find the terms. These generated co-occurring terms 
are stored in a list along with the terms from previous algorithms. Some filtering of irrel-
evant terms is done which is described in the next section. It runs on O(n) as well.

Algorithm  4 is concerned with predicting the correct category of input short text. 
After an input text goes through all of the previous algorithms, it is represented in vec-
tor form, normalized and then fed to our deep neural network model. The model then 
returns the prediction for the input text.

Enrichment and classification flow

Understanding short text boils down to two major phases, the enrichment phase and the 
classification phase. The enrichment phase adds context to the original short text while 
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the classification phase classifies the enriched text to a certain category. Hence, our pro-
posed system contains mainly two modules: the enrichment module and classification 
module. First we describe the enrichment module, and then the classification module in 
a later sub-section:

Let X be the input short text which first goes through the enrichment phase.

Pre‑processing

We extract noun and verb terms from X. So new representation of X is: 
Xp = x1, x2, x3, . . . , xk, where xi, 1 ≤ i ≤ k is the extracted noun, or verb terms of X. 
While pre-processing the given input text, we consider the longest phrase that is con-
tained in PROBASE. For example, in short text “New York Times Bestseller”? although 
New York is a noun term in itself, we take “New York Times”? as a single term. We need 
to remove stopwords and perform word stemming, before parsing such terms.

Conceptualization

We enrich XP obtained from pre-processing by finding the concepts of all the xi in XP 
with the help of probase and our manually built verb network which further adds news 
features to XP. It is just a lookup operation in the networks which generates the ranked 
list of concepts which relate to the xi in XP. We denote the result of this phase by XC: 
XC = x1, x2, x3, ..., xm.

Where xi, 1 ≤ i ≤ m are the union of terms from XP and the terms obtained from con-
ceptualization and m > k. There are cases when irrelevant concepts of given terms can 
appear in this phase. For instance, given a short text “apple and microsoft”? a concept 
like “fruit”? may appear, which is irrelevant in this context. So we apply following mecha-
nism to remove such ambiguity.
Mechanism In case of ambiguity of two or more concepts given the terms, we can 

employ a simple Naive Bayesian mechanism proposed by Song et al. [10]. It estimates 
the posterior probabilities of each concepts given the instances. As a result, most com-
mon concepts associated with the instances get higher posterior probability. The prob-
ability of a concept is given formally c as:

which is proportional to: p(c)
∏M

i p(ei|c).

Using this, given a short text “apple and microsoft”?, we can get the higher posterior 
probabilities for concepts like “corporation”, “IT firm” etc. whereas irrelevant concept 
like “fruit” gets lower probability and hence pruned.

Co‑occurring terms

We take the result from previous phase and enrich it using the co-occurring terms. The 
result of this is the finally enriched version of the original short text which is given by:

where xi, 1 ≤ i ≤ n are the union of terms from XC and the terms obtained from this 
phase and n > m.

(1)p(c|E) =
p(E|c)p(c)

p(E)

(2)XE = x1, x2, x3, ..., xn



Page 10 of 15Zhan and Dahal ﻿J Big Data  (2017) 4:34 

Co-occurrences give the important information to understand the meaning of words. 
These are the words that frequently co-occur with the original terms. We know from 
Distributional hypothesis [29] “words that occur in the same context tend to have similar 
meanings”.

To find the co-occurring words, we take the terms obtained from the pre-processing 
phase, and enrich with terms that frequently co-occur with these terms. For each origi-
nal term, we look into probase to find the co-occurring terms.

DNN model

We designed a four layer deep neural network as the learning element for our input text. 
It was trained in semi-supervised fashion as we discussed earlier. It is as shown in Fig. 2.

Each layers except the input layer shown in the figure, are pre-trained with an auto-
encoder. This is done in layer by layer fashion. To pre-train the first hidden layer, we 
train an auto-encoder with input layer and hidden layer same as in Fig. 2. The output 
layer tries to reconstruct the original input. Once this is done, we pre-train second hid-
den layer with separate auto-encoder. This auto-encoder has the previously trained hid-
den layer as its input and tries to generate code for its input. All subsequent layers are 
pre-trained in same manner. We used sigmoid as activation function and cross-entropy 
error as defined above for loss function. Through this pre-training, the parameters of our 
network achieve some nearly optimal value.

The pre-training phase alone can not optimize the network parameters completely 
although they can attain some good values. So we perform supervised fine-tuning to our 
pre-trained network. Fine-tuning process is as shown in Fig. 3.

We feed our DNN model with a feature vector that represents our short text through 
input layer. To correctly predict the category, we add softmax layer to our pre-trained 
network. Output oi for any node i is computed as:

oi =
exp(ai)

∑n
m=1 exp(am)

,

Fig. 2  Architecture of DNN model
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where n is the total nodes on softmax layer. Output from this network is the predic-
tion class for the given input vector. As shown above, our DNN model goes through two 
training stages. First is unsupervised pre-training and then the supervised fine-tuning 
[30].

Experiment
For short text understanding, we experimented with the task of classifying news titles 
into categories. We used news titles as the short text and classified them into specific 
categories.

Data set

We extracted the news titles from the Guardian web site for our classification purpose. 
We used seven different data sets which include news titles from seven categories. The 
seven categories were World News, Football news, Tech news, Art and Entertainment 
news, Business News, Environment news and Travel news. For each category, there were 
7000 news titles as training data and 1000 news titles as test data. So we performed our 
experiment on altogether 49,000 training data and 7000 test data.

Feature vocabulary creation

The first task was to create a feature vocabulary out of the obtained dataset. This feature 
vocabulary is the list of 3000 most frequently occurring concepts from all of the dataset. 
We passed each news title from dataset through pre-processing, conceptualization, and 
co-occurring terms phase and sorted a list of 3000 most frequently occurring concepts 
or terms.

Input representation

After feature vocabulary was constructed, the next task was to represent each input 
short text (news title) into a vector form that can be fed into our deep neural network. 

Fig. 3  Fine-tuning of the DNN model
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For this, we passed each text through all the phases and generated their relevant con-
cepts and co-occurring terms. Input representation of a given short text is the 3000 
dimensional vector, where ith row of this vector represents the frequency of ith item of 
feature vocabulary in this enriched short text.

Deep neural network training and evaluation

We used the DNN model as described above for the training purpose (both pre-train-
ing and fine tuning). At first, all the parameters of the network, that is the weights and 
biases, are randomized using Gaussian distribution. To update these parameters we used 
mini-batches gradient descent technique. The size of batches for pre-training and fine 
tuning are 100 and 500 respectively. Instead of updating the parameters after every train-
ing examples (stochastic gradient descent) or updating the parameters once after all the 
training examples have been processed (batch gradient descent), this technique speeds 
up the training process as gradient of loss is averaged over each mini-batch (Table 1).

In this research, our DNN has a size of 3000, 500, 250 and 128 i.e. input layer has 
3000 elements and sub-sequent hidden layers are of 500, 250 and 128, sizes. The model 
parameters like number of units in hidden layers, batch size etc. are set based on the 
result of validation set.

Result

Table 1 shows the classification accuracy of various methods applied to “Wikipedia Short 
Sentences” dataset as stated in [22]. We wanted to see the effect of adding verb terms in 
overall accuracy. So we re-implemented the EDNN-SVM done in [22] and tested with 
our dataset. In our work, we call EDNN-SVM method applied to our dataset as EDNN-
N as it uses just the noun terms for enrichment. The accuracy of this experiment was 
58.02%.

After that, we included the verb terms along with noun terms and noun phrases in fea-
ture vocabulary as well as feature vector and conducted the experiment to see if inclu-
sion of verb terms can remove the ambiguity (if any) and improve the accuracy of the 
result. We call this EDNN-NV model. The accuracy obtained was 60.25%. So there was 
about 2% increase in accuracy after considering verb terms present in a given short text. 
Figure 4 shows the accuracy of each category predicted by our model EDNN-NV. We 
have a lowest accuracy for World News category which is 33.33%. Similarly, we have 
highest accuracy for Football News category which is 74.91%. The other five categories 

Table 1  Comparison among various classification methods [22]

Method Enriched method Input representation Accuracy (%)

OS-SVM Not enriched 3000D semantic feature vectors 29.00

CACT-SVM CACT 3000D semantic feature vectors 47.52

WordNet-SVM WordNet-based 3000D semantic feature vectors 36.15

Wiki-SVM Wikipedia-based 3000D semantic feature vectors 39.06

EDNN-SVM CACT Learned 128D binary code vectors 51.35

WordNet-SH-SVM WordNet-based Learned 128D binary code vectors 40.21

Wiki-SH-SVM Wikipedia-based Learned 128D binary code vectors 42.76
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have accuracy in between these percentages. Figure 5 compares the results of EDNN-N 
and our EDNN-NV model

Conclusions
Our research tackled the problem of classifying short texts. The challenge of short texts 
are lack of enough context and the ambiguity that may arise due to it. So, we imple-
mented the conceptualization and co-occurring terms enrichment technique in our 
work, for a given short text and presented a novel idea of including verb terms in text 
enrichment. First, we computed the sorted list of verbs occurring in the dataset and fil-
tered the list with the verbs that somewhat represent the categories we had considered. 
Then, we inserted those filtered verbs into the previously computed feature vocabulary. 

Fig. 4  Each category comparison

Fig. 5  Without using verb terms(EDNN-N) vs using verb terms(EDNN-NV) on our dataset
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This way, the representative verbs become the feature for incoming short text. We also 
presented a simple four layers deep neural network to classify the input short text.

Hence, our research shows that albeit low, the inclusion of verb terms in addition to 
noun terms helps to improve the classification of short text. Although the size of Verb-
Net is relatively smaller and just contains the representative verb in the dataset, it can be 
scaled up by mining the web. Through this work, we just wanted to show that verb terms 
can help improve the short text classification. This paves a way for considering other 
parts of speech like Adjectives to be included for classification.
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