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Abstract 

Data sensing, information processing, and networking technologies are being fast 
embedded into the very fabric of the contemporary city to enable the use of inno-
vative solutions to overcome the challenges of sustainability and urbanization. This 
has been boosted by the new digital transition in ICT. Driving such transition pre-
dominantly are big data analytics and context-aware computing and their increasing 
amalgamation within a number of urban domains, especially as their functionality 
involve more or less the same core enabling technologies, namely sensing devices, 
cloud computing infrastructures, data processing platforms, middleware architectures, 
and wireless networks. Topical studies tend to only pass reference to such technologies 
or to largely focus on one particular technology as part of big data and context-aware 
ecosystems in the realm of smart cities. Moreover, empirical research on the topic, with 
some exceptions, is generally limited to case studies without the use of any common 
conceptual frameworks. In addition, relatively little attention has been given to the 
integration of big data analytics and context-aware computing as advanced forms of 
ICT in the context of smart sustainable cities. This endeavor is a first attempt to address 
these two major strands of ICT of the new wave of computing in relation to the infor-
mational landscape of smart sustainable cities. Therefore, the purpose of this study is to 
review and synthesize the relevant literature with the objective of identifying and dis-
tilling the core enabling technologies of big data analytics and context-aware comput-
ing as ecosystems in relevance to smart sustainable cities, as well as to illustrate the key 
computational and analytical techniques and processes associated with the function-
ing of such ecosystems. In doing so, we develop, elucidate, and evaluate the most rel-
evant frameworks pertaining to big data analytics and context-aware computing in the 
context of smart sustainable cities, bringing together research directed at a more con-
ceptual, analytical, and overarching level to stimulate new ways of investigating their 
role in advancing urban sustainability. In terms of originality, a review and synthesis of 
the technical literature has not been undertaken to date in the urban literature, and 
in doing so, we provide a basis for urban researchers to draw on a set of conceptual 
frameworks in future research. The proposed frameworks, which can be replicated and 
tested in empirical research, will add additional depth and rigor to studies in the field. 
In addition to reviewing the important works, we highlight important applications as 
well as challenges and open issues. We argue that big data analytics and context-aware 
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computing are prerequisite technologies for the functioning of smart sustainable cit-
ies of the future, as their effects reinforce one another as to their efforts for bringing a 
whole new dimension to the operating and organizing processes of urban life in terms 
of employing a wide variety of big data and context-aware applications for advancing 
sustainability.

Keywords:  Smart sustainable cities, Urban sustainability, Big data analytics, Context-
aware computing, Sensors, Models, Data processing, Cloud computing, Middleware, 
Big data and context-aware applications

Introduction
The contemporary city is evolving into becoming computerized on a hard-to-imagine 
scale due to the rapid development of ICT. This is increasingly fueled by new discover-
ies in computer science and data science, coupled with the quick-paced ubiquity and 
massive use of computational and data analytics within a variety of urban domains to 
address the complex challenges of sustainability and urbanization facing the city. This 
is manifested in the ongoing large-scale design, development, deployment, and imple-
mentation of sensor technologies, data processing platforms, cloud computing infra-
structures, middleware architectures, and wireless communication networks across 
urban environments. In parallel, the increasing convergence, prevalence, and advance of 
urban ICT is giving rise to new faces of cities that are quite different from what has been 
experienced hitherto on many scales. This is increasingly boosted by data acquisition 
and storage, information processing, data networking, and intelligence decision support 
increasingly infiltrating urban systems as operating and organizing processes of urban 
life. Accordingly, it has been suggested that the potential of monitoring, understanding, 
and analyzing the city through advanced ICT can well be leveraged in advancing its con-
tribution to the goals of sustainable development. Indeed, the cities that are engaging on 
the new transition in ICT are getting smarter in how to become more sustainable (e.g. 
[1–8]). Besides, cities as complex systems, with their domains becoming more intercon-
nected and their processes being highly dynamic, rely more and more on sophisticated 
technologies to realize their potential for responding to the challenge of sustainability 
and urbanization. Among these technologies are big data analytics and context-aware 
computing, which are rapidly gaining momentum and generating worldwide attention 
in the realm of smart sustainable urban development (e.g. [1, 2, 5, 6, 9–11]). Big data and 
context information constitute the fundamental ingredients for the next wave of urban 
functioning and planning, especially in relation to sustainability. There indeed is a vari-
ety of potential uses of big data analytics and context-aware computing to address urban 
sustainability issues from the source thanks to the deep insights, intelligent decision-
making processes, and efficient services delivery enabled by data mining, machine learn-
ing, and statistics and related modeling, simulation, and prediction methods. This points 
to new opportunities and alternative ways to develop, operate, and plan future cities.

The prospect of smart sustainable cities is becoming the new reality with the recent 
advances in and integration of ICT of various forms of pervasive computing and the 
underlying cutting-edge enabling technologies. Smart sustainable cities typically rely on 
the fulfillment of the prevalent ICT visions of the new wave of computing, where eve-
ryday objects communicate with each other and collaborate across heterogeneous and 



Page 3 of 50Bibri and Krogstie ﻿J Big Data  (2017) 4:38 

distributed computing environments to provide information and services to urbanites 
and diverse urban entities. The most prevalent forms of pervasive computing in rela-
tion to the urban domain are UbiComp, AmI, the IoT, and SenComp [6]. Context-aware 
behavior and big data capability are considered as prerequisites for realizing the novel 
applications pertaining to such technologies (e.g. [2, 5, 6, 9–14]). In all, the expansion of 
these computing trends as to the underlying technologies and applications are increas-
ingly stimulating smart sustainable city initiatives and projects in ecologically and tech-
nologically advanced nations [3].

The past 5 years have seen extensive investments in ICT infrastructure in cities, which 
have improved the ability to collect and process large amounts of data throughout urban 
systems. Virtually every urban aspect, process, activity, and domain is now open to data 
collection and processing and often even instrumented for data collection and process-
ing: operations, functions, and services in terms of management, control, optimiza-
tion, enhancement, planning, and so on. At the same time, information is now widely 
available on external states and events such as urban trends, environmental dynamics, 
socio-economic patterns, and so on. This broad availability of data has led to increasing 
interest in methods and techniques for inferring context knowledge as well as extracting 
useful knowledge from various forms and sources of data—the realm of context-aware 
computing and data science—for knowledgeable and strategic decision-making pur-
poses. In all, data are being produced and warehoused, the computing power is available 
and affordable, the environmental pressures and socio-economic concerns are alarming, 
and urbanization challenges are enormous.

The need to understand what constitutes the informational landscape of smart sus-
tainable cities in terms of big data analytics and context-aware computing technologies 
presents an important topic and new direction of research in the field of smart sustain-
able cities of the future. The prominence lies in identifying the core enabling technolo-
gies and related key techniques and processes required to design, develop, deploy, and 
implement big data and context-aware applications for advancing urban sustainability. 
Topical studies tend to only pass reference to such technologies or to largely focus on 
one particular technology as part of big data and context-aware ecosystems in the realm 
of smart cities. Moreover, empirical research on the topic, with some exceptions, is gen-
erally limited to case studies without the use of any common conceptual frameworks. 
In addition, relatively little attention has been given to the integration of big data ana-
lytics and context-aware computing as advanced forms of ICT in the context of smart 
sustainable cities. This topic is a significant research area that merits attention, and this 
endeavor is a first attempt to address these two major strands of ICT of the new wave 
of computing in relation to the informational landscape of smart sustainable cities. This 
is to highlight that computers have become far more powerful, networks have become 
ubiquitous, and techniques and algorithms have been developed that can combine a 
large number and variety of sensors and connect various datasets to enable broader and 
deeper computational and analytical solutions than previously possible. The conver-
gence of these phenomena is increasingly enabling many applications of smart comput-
ing and data science principles and big data analytics techniques.

The original contribution we make with this paper is to review and synthesize the 
relevant literature with the objective of identifying and distilling the core enabling 
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technologies of big data analytics and context-aware computing as ecosystems in rele-
vance to smart sustainable cities, as well as to illustrate the key computational and ana-
lytical techniques and processes associated with the functioning of such ecosystems. In 
doing so, we develop, elucidate, and evaluate the most relevant frameworks pertaining 
to big data analytics and context-aware computing in the context of smart sustainable 
cities, bringing together research directed at a more conceptual, analytical, and over-
arching level to stimulate new ways of investigating their role in advancing urban sus-
tainability. In terms of originality, a review and synthesis of the technical literature has 
not been undertaken to date in the urban literature, and in doing so, we provide a basis 
for urban researchers to draw on a set of conceptual frameworks in future research. The 
proposed frameworks, which can be replicated and tested in empirical research, will add 
additional depth and rigor to studies in the field. In addition to reviewing the important 
works, we highlight important applications as well as challenges and open issues.

The main motivation for this endeavor is to provide the necessary material to inform 
relevant research communities of the state-of-the-art research and the latest develop-
ment in the field of smart sustainable cities in terms of the major technological compo-
nents of their informational landscape, as well as a valuable reference for researchers and 
practitioners who are seeking to contribute to, or working towards, the design, develop-
ment, and implementation of smart sustainable city applications. Especially, with vast 
amounts of urban data being now available, diverse entities in connection with every 
urban domain are focused on exploiting data for sustainable advantage.

The remainder of this paper is structured as follows. In “Conceptual and theoretical 
background” section, we introduce and describe the main conceptual and theoretical 
constructs that make up the study. “Related work” section presents a survey of related 
work in terms of the state-of-the-art research, technological developments, issues, 
debates, gaps, and challenges. In “The core enabling technologies of big data analyt-
ics and context-aware computing for smart sustainable cities of the future” section, we 
identify, distill, describe, and discuss the core enabling technologies of big data analyt-
ics and context-aware computing necessary for the functioning of smart sustainable cit-
ies of the future, as well as touch upon some key related issues. “The state-of-the-art 
analytical and computational processes” section describes the state-of-the-art analytical 
and computational processes: data mining and context recognition, and also points out 
basic issues of context-aware applications. In “Context-aware computing and its com-
putational, technical, and urban dimensions” section, we delve into the urban, compu-
tational, technical, and conceptual dimensions of context-aware computing. “The key 
applications of big data analytics and context-aware computing technologies for urban 
sustainability” section presents, enumerates, and documents the key applications of big 
data analytics and context-aware computing technologies for urban sustainability. “The 
main scientific challenges of big data analytics and context-aware computing” section 
identifies and enumerates the key scientific and intellectual challenges of big data ana-
lytics and context-aware computing. Finally, we provide our conclusions together with 
some thoughts in “Conclusions” section.
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Conceptual and theoretical background
Smart sustainable cities

The concept of smart sustainable cities has emerged as a result of three important global 
trends at play across the world, namely the diffusion of sustainability, the spread of 
urbanization, and the rise of ICT [5]. As echoed by Höjer and Wangel [17], the inter-
linked development of sustainability, urbanization, and ICT has recently converged 
under what is labelled ‘smart sustainable cities.’ Accordingly, smart sustainable cities is 
a new techno–urban phenomenon that materialized around the mid–2010s (e.g. [5, 6, 
15–17, 72]). The idea revolves around leveraging the advance and prevalence of ICT in 
the transition towards the needed sustainable development in an increasingly urbanized 
world. Therefore, the development of smart sustainable cities is gaining increasing atten-
tion worldwide from research institutes, universities, governments, policymakers, and 
ICT companies as a promising response to the imminentchallenges of sustainability and 
urbanization.

  The term ‘smart sustainable city’, although not always explicitly discussed, is 
used to denote a city that is supported by a pervasive presence and massive use of 
advanced ICT, which, in connection with various urban systems and domains and how 
these intricately interrelate and are coordinated, enables the city to control available 
resources safely, sustainably, and efficiently to improve economic and societal out-
comes. Here ICT can be directed towards, and effectively used for, collecting, pro-
cessing, analyzing, and synthesizing data on every urban domain and system in terms 
of forms, structures, infrastructures, networks, facilities, services, and citizens. The 
resulting knowledge can then be employed to develop urban intelligence functions and 
build urban simulation models for strategic decision-making associated with sustain-
ability. Further, the combination of smart cities and sustainable cities, of which many 
definitions are available, has been less explored as well as conceptually difficult to 
delineate due to the multiplicity and diversity of the existing definitions (see [5] for an 
overview). ITU [18] provides a comprehensive definition based on analyzing around 
120 definitions, ‘a smart sustainable city is an innovative city that uses…ICTs and 
other means to improve quality of life, efficiency of urban operation and services, and 
competitiveness, while ensuring that it meets the needs of present and future genera-
tions with respect to economic, social and environmental aspects’. Another definition 
put forth by Höjer and Wangel ([17], p. 10), which is deductively crafted and based 
on the concept of sustainable development, states that ‘a smart sustainable city is a 
city that meets the needs of its present inhabitants without compromising the ability 
for other people or future generations to meet their needs, and thus, does not exceed 
local or planetary environmental limitations, and where this is supported by ICT’. This 
entails unlocking and exploiting the potential of ICT of the new wave of computing as 
an enabling, integrative, and constitutive technology for achieving the environmental, 
social, and economic goals of sustainability due to the underlying transformational, 
substantive, and disruptive effects [5, 6].

Context‑aware computing

Context awareness has been defined in multiple ways depending on the application 
domain in terms of the number and nature of the subsets of the context of a given entity 
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(e.g. traffic system, energy system, healthcare system, education system, information sys-
tem, human user, etc.) that can be integrated in the design and development of a given 
computational artifact. Originated in pervasive computing the term ‘context awareness’ 
is used to describe technology that ‘is able to sense, recognize, and react to contextual 
variables, that is, to determine the actual context of its use and adapt its functionality 
(and behavior) accordingly or respond appropriately to features of that context.’ ([19], 
p. 76). Another definition of context proposed by Dey [20] states: ‘context is any infor-
mation that can be used to characterize the situation of an entity. An entity is a per-
son, place, or object that is considered relevant to the interaction between a user and an 
application, including the user and applications themselves.’ Context-aware applications 
and systems in the urban domain entail the acquisition of contextual urban data using 
sensors of many types to perceive situations of urban life, the abstraction of contextual 
urban data by matching sensory readings to specific urban context concepts, and appli-
cation behavior through firing actions based on the outcome of reasoning against con-
textual urban information, i.e. the inferred context, to draw on Schmidt [21].

In recent years, the concept of context awareness has been expanded beyond the ambit 
of HCI applications to include urban applications, such as energy systems, transport sys-
tems, communication systems, traffic systems, power grid systems, healthcare systems, 
education systems, security systems, and so on (e.g. [1, 6, 9–11, 21–24]). Here context 
denotes, drawing on Chen and Kotz [25], the environmental conditions within the urban 
landscape that either determine applications’ behavior or in which application events 
occur and are interesting to different classes of users, including citizens, urban adminis-
trators, urban operators, urban authorities, and urban departments.

Big data analytics: characteristics and techniques

The term ‘big data’ is used to describe the growth, proliferation, heterogeneity, complex-
ity, availability, temporality, changeability, and utilization of data across many applica-
tion domains, which renders the processing of these data exceed the computational and 
analytical capabilities of standard software applications and conventional database infra-
structure. In short, the term essentially denotes datasets that are too large for traditional 
data processing systems. Traditional analytic systems are not suitable for handling big 
data (e.g. Katal et al. [26]; [27]). This implies that big data entails the use of tools (clas-
sification, clustering, regression algorithms, etc.), techniques (data mining, machine 
learning, statistical analysis, etc.), and technologies (Hadoop, HBase, MongoDB, etc.) 
that work beyond the limits of the data analytics approaches that are used to extract use-
ful knowledge from large masses of data for timely and accurate decision-making and 
enhanced insights. As a common thread running through most of the definitions of big 
data, the related information assets are of high-volume, high-variety, and high-velocity 
and thus require cost-effective, innovative forms of data processing, analysis, and man-
agement for enhanced decision-making and insight. While there is no canonical or defin-
itive definition of big data in the context of smart sustainable cities, the term can be used 
to describe a colossal amount of urban data, typically to the extent that their manipula-
tion, analysis, management, and communication present significant computational, ana-
lytical, logistical, and coordinative challenges. It is near on impossible to humanly make 
sense of or decipher big urban data based on existing computing practices. Important 
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to note is that such data are invariably tagged with spatial and temporal labels, largely 
streamed from various forms of sensors, and mostly generated automatically and rou-
tinely. Regardless of the lack of agreement about the definition of big data, there seems 
to be consensus that big data will lead to, in light of the projected advancements and 
innovations, immense possibilities and fascinating opportunities in the coming years. 
Moreover, big data solutions requires novel technologies to proficiently process large 
volumes of data emanating from multiple sources, in unprecedented quantities, and in 
quick time.

Big data are often characterized by a number of Vs. The main of which—identified as 
the most agreed upon Vs—are volume, variety, and velocity (e.g. [28, 29]). Additional 
Vs include veracity, validity, value, and volatility (e.g. [27]). The emphasis here is on the 
main characteristics of big data, namely the huge amount of data, the velocity at which 
the data can be analyzed, and the wide variety of data types.

The term ‘big data analytics’ refers commonly to any vast amount of data that has the 
potential to be collected, stored, retrieved, integrated, selected, preprocessed, trans-
formed, analyzed, and interpreted for discovering new or extracting useful knowledge, 
which can subsequently be evaluated and visualized in an understandable format prior to 
its deployment for decision-making purposes (e.g. a change to or enhancement of opera-
tions, strategies, practices, and services). Other computational mechanisms involved in 
big data analytics include search, sharing, transfer, querying, updating, modeling, and 
simulation. In the context of smart sustainable cities, big data analytics denotes a col-
lection of sophisticated and dedicated software applications and database systems run 
by machines with very high processing power, which can turn a large amount of urban 
data into useful knowledge for well-informed decision-making and enhanced insights 
pertaining to various urban domains, such as transport, mobility, traffic, environment, 
energy, land use, planning, and design.

The common types of big data analytics include predictive, diagnostic, descriptive, 
and prescriptive analytics. These are applied to extract different types of knowledge or 
insights from large datasets, which can be used for different purposes depending on the 
application domain. Urban analytics involves the application of various techniques based 
on data science fundamental concepts—i.e. data-analytic thinking and the principles of 
extracting useful knowledge (hidden patterns and meaningful correlations) from data, 
including machine learning, data mining, statistical analysis, regression analysis (explan-
atory modeling versus predictive modeling), database querying, data warehousing, or a 
combination of these. The use of these techniques depends on the urban domain as well 
as the nature of the urban problem to be tackled or solved.

Related work
Research on big data analytics and context-aware computing has been active for more 
than 2 decades, resulting in the development of many concepts, approaches, and systems 
spanning a large number and variety of application domains. Context-aware comput-
ing has been researched extensively by the HCI community from various perspectives, 
including conceptual (e.g. [19, 20, 30, 31]), theoretical (e.g. [25, 32, 33]), critical (e.g. [12, 
34, 35]), and philosophical (e.g. [36]). The notion of intelligence alluded to in pervasive 
computing, in which context awareness has been given a prominent role, has generated a 
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growing level of criticism over the past decade, questioning its feasibility in terms of the 
inherent complexity surrounding the modeling of all kinds of situations of life (based on 
the cognitive, affective, emotional, social, behavioral, conversational, and physical sub-
sets of context), as well as challenging its added value as to transforming the way people 
live (e.g. [19, 35–39]). The whole premise is that it is too difficult to identify and model 
the specifics of context in real life given their extreme subtlety, subjectivity, and fluidity. 
In addition, the failure of the original promise of intelligence points to a two-sided prob-
lem: the persistent elusiveness of ordinary human reasoning and knowing what people 
really want and the permissiveness of the definitional looseness of intelligence in terms 
of what can be expected of the role and scope of artificial reasoning in context-aware 
interaction paradigms ([38], p. 12). Context awareness research and development con-
tinues to grapple with the problem of what the intelligence in context-aware computing 
can stand for. Nonetheless, the notion of intelligence as enabled by context awareness 
capabilities has inspired a whole generation of scholars and researchers into a quest 
for the immense, fascinating opportunities enabled by the incorporation of computer/
machine intelligence into our everyday lives, as well as a large body of research into new 
techniques and methods for enhancing the sensing, analysis, reasoning, inference, and 
modeling processes. These have been of extreme value to several other applications 
(industrial, urban, and organizational) than those directed for human users, in which 
these processes are inapt to handle the complexity of the nature and scope of inferences 
(context knowledge) generated by computationally constrained reasoning mechanisms 
and oversimplified models and on the basis of limited, uncertain, incomplete, or imper-
fect data collected through sensors. However, the issues stemming from these challenges 
are under scrutiny and investigation by the research community towards alternative 
directions (e.g. [39]), most notably situated intelligence which entails that the cognitive 
processes and behavior of a situated system should be the outcome of a close coupling 
between the system (agent) and the environment (user) (see [40]). This form of intel-
ligence entails ‘assisting people in better assessing their choices and decisions and thus 
enhancing their actions and activities’, and the ‘quest for situated forms of intelligence is 
seen by several eminent scholars as an invigorating alternative for artificial intelligence 
research within context-aware computing’ ([19], p. 9).

However, the emphasis in this paper is on the notion of intelligence as enabled 
by context awareness capabilities but in relation to urban applications rather than 
human-inspired HCI applications. Urban intelligence in this sense involves enhancing 
the efficiency of energy systems, communication systems, traffic systems, transporta-
tion systems, and so on, as well as the delivery of several classes of city services (utility, 
healthcare, safety, learning, etc.), based mainly on the physical, situational, spatiotempo-
ral, and socio-economic subsets of context. Especially, building and maintaining com-
plex models of smart sustainable cities functioning in real time from routinely sensed 
data has become a clear prospect [2, 5, 6].

In addition, there are several thorough surveys of context modeling and reasoning in 
pervasive computing (e.g. [19, 39–43]). While these surveys tend to differ as regards to 
both technical emphases (e.g. machine learning techniques, ontological methods, and 
logical approaches) as well as comparative views on research into modeling and reason-
ing techniques applied in context awareness, the focus of the analysis and evaluation 
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revolves around the most common approaches into context representation and reason-
ing and their integration. Integrated approaches have been mainly proposed to overcome 
the shortcomings (information incompleteness and uncertainty, lack of expressiveness, 
inflexibility, lack of scalability, etc.) associated with the application of a single approach. 
For instance, context recognition methods based on probabilistic reasoning inher-
ently suffer from ad-hoc static models, scalability, and data scarcity, and the ontology 
approach allows easy incorporation of machine understandability and domain knowl-
edge, which provide rich expressiveness and facilitates reusability and intelligent pro-
cessing at a higher level of automation [42]. However, the ontology approach falls short 
in handling information uncertainty and vagueness (e.g. [41]). Important to underscore 
is that most reviews focus on context awareness in relation to the HCI domain, while the 
literature on context awareness in relation to the urban domain remains scant, in par-
ticular as to large-scale applications in the context of smart sustainable cities.

Furthermore, several studies (e.g. [42–48]) have addressed middleware technologies 
associated with pervasive computing environments and distributed applications. Mid-
dleware plays a key role in the functionality of distributed context-aware applications, 
as it represents the logic glue in a distributed computing system by connecting and 
coordinating many components constituting distributed applications. Among the key 
topics addressed in the literature include architectures for pervasive context-aware ser-
vices in smart spaces in terms of middleware components and prototype applications, 
middleware for context representation and management in pervasive computing, mid-
dleware-based development of context-aware applications with reusable components, 
middleware for real-time systems, and so forth. There is a need for further research in 
the area of middleware with regard to the use of large-scale context-aware applications 
as part of the informational landscape of smart sustainable cities, as well as to the mod-
eling and management of context information in distributed pervasive applications and 
in open and dynamic pervasive environments.

Research on big data analytics has been active since the mid-1990s (e.g. [29, 47–51]), 
and several books have been written on the topic from a business intelligence perspec-
tive. As a prerequisite for realizing the IoT as an ICT vision of pervasive computing, 
big data analytics entails extracting useful knowledge from large masses of data for 
enhanced decision-making and insights pertaining to a large number and variety of 
domains. In recent years, the concept and application of big data analytics has been 
expanded beyond the ambit of business intelligence (e.g. banking, customer relationship 
management, targeted marketing, fraud detection, and manufacturing) to include the 
area of urban development as to such domains as energy, environment, transport, mobil-
ity, traffic, power grid, buildings, planning and design, healthcare, education, safety, the 
quality of life, socio-economic forecasting, and so on in the context of sustainability (e.g. 
[1, 2, 5, 6, 50–54]). Moreover, big data analytics has become a key component of the ICT 
infrastructure of smart sustainable cities [5, 6]. In this context, big data analytics targets 
optimization and intelligent decision support pertaining to the control, optimization, 
automation, management, and planning of urban systems as operating and organizing 
processes of urban life, as well as to the enhancement of the associated ecosystem and 
human services related to utility, healthcare, education, safety, and so on. Additionally, 
it targets the improvement of practices, strategies, and policies by changing them based 
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on new trends and emerging shifts. In all, the analytical outcomes of data mining/knowl-
edge discovery (see [55] for an overview with relevant use cases) serve to improve urban 
operational functioning, optimize resources utilization, reduce environmental risks, and 
enhance the quality of life and well-being of citizens.

Furthermore, many reviews or surveys have been conducted in recent years on big 
data analytics. While they offer different perspectives on, and highlight various dimen-
sions of, the topic, they overlap in many computational, analytical, and technologi-
cal aspects. Also, they are more often than not oriented towards business intelligence 
(e.g. [56, 57]), and tend to put emphasis on different components of big data analytics, 
such as techniques, algorithms, software tools, platforms, and applications. Chen et al. 
[58] provide a systematic review of data mining in technique view, knowledge view, and 
application view, supported with the latest application cases related mostly to business 
intelligence. In their survey, Zhang et  al. [59] explore new research opportunities and 
provide insights into selecting suitable processing systems for specific applications, pro-
viding a high-level overview of the existing parallel data processing systems categorized 
by the data input as stream processing, machine learning processing, graph processing, 
and batch processing. Singh and Singla [60] provide an overview of the leading tools 
and technologies for big data storage and processing, throw some light on other big data 
emerging technologies, as well as cover the business areas from which big data are being 
generated. In their review, Tsai et  al. [61] discuss big data analytics and related open 
issues, focusing on how to develop a high performance data processing platforms to effi-
ciently analyze big data and to design an appropriate mining algorithm to extract useful 
knowledge from big data, in addition to presenting some research directions. One of the 
aspects emphasized in their work is the steps (selection, preprocessing, transformation, 
mining, and interpretation/evaluation) of the whole process of knowledge discovery in 
databases (KDD), as summarized by Fayyad et al. [49]. Most of research articles focus 
typically more on data mining than other steps of KDD process. Tsai et al. [61] simplify 
the whole process into three parts (input, data analytics, and output) and seven steps 
(collection, selection, preprocessing, transformation, mining, evaluation, and interpreta-
tion). Katal et al. [26] provide a varied discussion covering several big data issues, chal-
lenges, tools, characteristics, sources, and best practices in relation to such applications 
as social media, sensor data, log storage, and risk analysis. Karun and Chitharanjan [62] 
deliver a whole review on Hadoop in terms of HDFS infrastructure extensions, mak-
ing a comparison of Hadoop Infrastructure Extensions (HadoopDB, Hadoop++, Co-
Hadoop, Hail, Dare, Cheetah, etc.) on the basis of scalability, fault tolerance, load time, 
data locality, and data compression. Chen et al. [63] reviews the big data background and 
the associated technologies, including applications and challenges (in relation to data 
generation, acquisition, storage, and analysis). However, the literature on the core ena-
bling technologies of big data analytics is scant in relation to smart sustainable cities and 
related sustainability applications.

In addition, a number of smart city infrastructures (e.g. [53, 62–70]) have been pro-
posed and some of them have been applied in recent years as part of case studies. These 
infrastructures are based on cloud computing and tend to focus on technological aspects 
(especially big data analytics, context-aware computing, development and monitor-
ing, etc.), urban management, privacy and security management, or citizen services in 
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terms of the quality of life. There have been no research endeavors undertaken thus far 
to develop comprehensive or integrated infrastructures for smart sustainable cities as 
a holistic urban development approach. But there have been some attempts to address 
some aspects of environmental sustainability in the context of smart cities. For example, 
Lu et al. [71] propose a framework for multi-scale climate data analytics based on cloud 
computing. Speaking of the climate in this context, there is still a risk of a mismatch 
between urban climate targets and the opportunities offered by ICT solutions (e.g. [7]).

In all, despite the recent increase of research on big data analytics and context-aware 
computing, the bulk of work tends to deal largely with the domain of business intelli-
gence and the field of HCI respectively in terms of techniques, algorithms, processes, 
architectures, platforms, and services, thereby barely exploring their relevance and role 
in the urban domain in terms of advancing sustainability and integrating its dimen-
sions. Especially, a new research wave has started to focus on how to enhance smart 
city approaches as well as sustainable city models by combining the two urban develop-
ment strategies in an attempt to achieve the required level of urban operations, func-
tions, designs, and services in line with the goals of sustainable development (e.g. [5, 6, 
72]). In particular, this holistic urban development approach emphasizes the combina-
tion of big data analytics and context-aware computing as a set of advanced technolo-
gies, techniques, processes, and applications and related platforms, architectures, and 
infrastructures [5, 6]. In other words, these two advanced forms of ICT are being given 
a prominent role in smart sustainable cities, and the evolving data-centric and context-
aware approach is seen to hold great potential to address the challenge of sustainability 
under what is labelled ‘smart sustainable cities’ of the future [5, 6]. The way forward for 
future cities to advance sustainability and provide the quality of life to their citizens is 
through advanced ICT that ensures the utilization of big data and the access to con-
textual information (see, e.g. [1, 2, 5, 6, 11]). Local city governments are investing in 
advanced ICT to provide technological infrastructures supporting AmI and UbiComp, 
as well as to foster respect for the environmental and social responsibility [11].

The core enabling technologies of big data analytics and context‑aware 
computing for smart sustainable cities of the future
Like other application areas to which big data analytics and context-aware computing 
as advanced strands of ICT of the new wave of computing are applied, smart sustain-
able cities require these two related digital ecosystems and their components to be put 
in place, spanning different spatial scales in the form of enabling technologies necessary 
for designing, developing, deploying, and implementing the diverse applications that 
support, and ideally integrate, the dimensions of urban sustainability. As scientific and 
technological areas, these two strands involve low-level data collection, intermediate-
level information processing, and high-level application action and service delivery (e.g. 
[19]). Worth noting is that as a result of the ongoing effort to realize and deploy smart 
sustainable cities, which are evolving due to the advance and prevalence of the enabling 
technologies of ICT of the new wave of computing, all the three areas are under vigor-
ous investigation in the creation of urban environments merging the informational and 
physical landscapes of such cities for advancing sustainability.
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There are many permutations of the core enabling technologies underlying big data 
analytics and context-aware computing. However, they all pertain to ICT of the new 
wave of computing, an integration of UbiComp, AmI, the IoT, and SenComp, which will 
in the near future be the dominant mode of monitoring, understanding, analyzing, and 
planning smart sustainable cities to improve sustainability [5, 6]. It is worth iterating 
that both big data analytics and context-aware computing share the same core enabling 
technologies because they are an integral part of ICT of the new wave of computing, as 
we will elucidate below. As such, they involve unobtrusive and ubiquitous sensing tech-
nologies and networks, sophisticated data management and analysis approaches, data 
processing platforms, cloud computing and middleware infrastructures, and advanced 
wireless communication technologies. These are to provide solutions in the form of use-
ful and context knowledge for the purpose of achieving the required level of sustainabil-
ity in the context of smart sustainable cities. Moreover, to have effective and successful 
solutions on the basis of core enabling technologies, it is required to select a number of 
design and development priorities in a planned manner prior to any deployment and 
implementation. For example, it is essential to consider flexible design, quick deploy-
ment, extensible implementation, more comprehensive interconnections, and more 
intelligence (e.g. [73]). However, while most of the core enabling technologies are gen-
eral and apply to many application domains, others remain specific to the urban applica-
tion domain, specifically to the special requirements and objectives of smart sustainable 
cities.

Pervasive sensing for urban sustainability

Collecting and measuring urban big data

In the emerging field of smart sustainable urban planning (e.g. [5, 6]), many scholars in 
different disciplines and practitioners in different professional domains advocate par-
ticularly the inclusion of ubiquitous sensing. Sensor ubiquity is a core feature of smart 
sustainable cities of the future, which rely on the fulfillment of the prevalent ICT visions 
of pervasive computing. Within the next 15  years or so, most of the data that will be 
used to monitor, understand, analyze, and plan the systems of smart sustainable cities 
will come from digital sensing of observations, transactions, and movements associated 
with the operating and organizing processes of urban life, which can provide readings 
on many environmental, social, economic, and physical phenomena. These data will be 
available in various forms, with temporal tags and geotags, coupled with a variety of data 
mining methods and data visualization techniques for displaying and presenting patterns 
and correlations. A large number of methods for collecting and capturing urban big data 
from new varieties of digital access are being fashioned and deployed across urban envi-
ronments. Examples of digital access include the satellite-enabled GPS in vehicles and 
on citizens, traces left from online transactions processing and related demand-supply 
situations, online interactions (e.g. social media sites), numerous kinds of web sites, and 
online interactive data systems pertaining to crowd-sourcing. Satellite remote-sensing 
data are also becoming widely deployed, in addition to a variety of scanning technologies 
associated with the IoT. The convergence of these phenomena are increasingly paving 
the way for big data analytics (and context-aware computing) to become the dominant 
mode of urban analytics in relation to urban operational functioning and planning, 
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as well as for exploiting and extending a variety of data mining and machine learning 
techniques through which the generation of models will be essential in a wide range of 
engineering solutions for advancing urban sustainability, i.e. improving the contribu-
tion of smart sustainable cities to the goals of sustainable development. Such cities are 
to be monitored, understood, analyzed, and planned across several spatial levels mostly 
on the basis of data routinely and automatically collected by sensors. With the flourish-
ing smart sustainable urban planning approach (e.g. [2, 5]), pervasive sensing is gain-
ing increased momentum and prevalence as to measuring and collecting data on urban 
functioning and change in a new way, from the ground up, by means of powerful sens-
ing technologies (motion, behavior, orientation, location, etc.). At present, for instance, 
sensing urban change from the ground up occurs ‘through new sensing technologies 
that depend on hand-held and remote devices through to assembling transactional data 
from online transactions processing which measure how individuals and groups expend 
energy, use information, and interact’ ([2], p. 492) with respect to resources. Linking 
and meshing data from various types of sophisticated measuring devices (RFID, NFC, 
GPS, laser scanners, etc.) with the automation of standard secondary sources of data and 
unconventional data no doubt provides a rich nexus of possibilities as to providing new 
and open sources of data necessary for monitoring and understanding how smart sus-
tainable cities will function in a more effective and efficient way.

At present, the urban environment is pervaded by huge quantities of active devices of 
diverse kinds and forms to particularly automate routine decisions. The fabric of smart 
sustainable cities is expected to be, arguably, enveloped with an electronic skin, which 
can be sewed together and entrenched with even more advanced embedded measuring 
devices, information processing systems, and communication networks. These include 
countless intelligent sensing and computing devices and related sophisticated and dedi-
cated techniques and algorithms, as well as widespread diffusion of wirelessly ad-hoc, 
mobile network infrastructures and related protocols. The primary aim is to build an 
entirely new holistic system which supports the following:

• • The acquisition and coordination of data from multiple distributed sources.
• • The management and organization of data streams.
• • The integration of heterogeneous data into coherent databases and their warehous-

ing.
• • The preprocessing and transformation of data.
• • The management and seamless composition of extracted models and patterns 

respectively.
• • The evaluation of the quality of the extracted models and patterns.
• • The visualization and exploration of behavioral patterns and models.
• • The simulation of the mined patterns and models.
• • The deployment of the obtained results for decision support and efficient service 

provision.

Regardless of their scales, new sensing and computing devices are projected to be 
equipped with quantum-based processing capacity, unlimited memory size, and high 
performance communication capabilities, all linked by mammoth bandwidth and 
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wireless (internet) connectivity as well as middleware architectures connecting several 
kinds of distributed, heterogeneous hardware systems and software applications [19]. All 
of the above is to be directed for advancing the contribution of smart sustainable cities 
to the goals of sustainable development. Explicitly, future urban ICT driven by the new 
wave of computing will result in a blend of advanced applications, services, and compu-
tational (data) analytics enabled by constellations of instruments across several spatial 
scales linked via multiple networks, which can provide a fertile environment conducive 
to monitoring, understanding, analyzing, evaluating, and planning the sustainability of 
future cities.

Recent advances in sensor technology have given rise to a new class of miniaturized 
devices characterized by advanced signal processing methods, high performance, multi-
fusion techniques, and high-speed electronic circuits. The trends toward ICT of the new 
wave of computing, coupled with the evolving concept of smart sustainable cities, are 
driving research into ever-smaller sizes of sensors capable of powerfully sensing com-
plex and varied aspects of urban life and environment at very low cost. The production 
of sensing devices with a low cost-to-performance ratio is further driven by the rapid 
development of sensor manufacturing technologies (e.g. [19]). The increasing miniaturi-
zation of computer technology is making it possible to develop miniature on-body and 
remote sensors that allow registering various human and urban parameters without dis-
turbing citizens or interfering with urban activities, thereby the commonsensical infiltra-
tion of sensors into daily urban life and environment. This is instrumental in enhancing 
the computational understanding and data processing of human mobility, urban 
dynamic processes, and urban operational functioning, a process that entails analysis, 
interpretation, modeling, and evaluation of big data for enhanced decision-making and 
deep insights. The new wave of urban computing is about the omnipresence of invis-
ible technology in urban environments and thus citizens’ everyday life. Countless tiny, 
distributed, networked sensor devices will be invisibly embedded in cities for data col-
lection. The research in the area of micro- and nano-engineering [74] is expected to yield 
major shifts in ICT performance and the way mechatronic components and devices are 
manufactured, designed, modeled, and implemented, thereby radically changing the 
nature and structure of sensing devices and thus the way cities will be monitored, under-
stood, analyzed, probed, and planned in the near future.

Sensor‑based urban sustainability mining

As part of urban reality mining (e.g. [2, 75]), urban sustainability mining, which pertains 
to sensing complex environmental and socio-economic systems by means of ubiquitous 
sensors embedded throughout urban environments, is a key determinant of how cit-
ies developing and responding to the challenge of sustainability are becoming smarter. 
Mining of urban sustainability depends on dedicated, powerful software applications to 
log urban infrastructures, spatial organizations and interactions, and mobility and travel 
behavior as well as ecosystem and public services. The analysis of derived large data-
sets helps to extract computationally complex activity, behavior, process, and environ-
ment models to identify and gain predictive insights into new forms, structures, systems, 
and processes as to how smart sustainable cities can increase their contribution to sus-
tainability through enhancing urban intelligence functions for decision-making in this 
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regard. Therefore, sensor-based big data have enormous potential to gain new insights 
into and drive decisions about how sustainability can be better translated into the built, 
infrastructural, operational, and functional forms of smart sustainable cities across sev-
eral spatial scales. Further studies in this direction are most likely to enhance mobility, 
transport engineering, energy engineering, planning, spatial and physical structures, and 
data-driven characterization of urban functioning in the context of sustainability.

Sensor technologies in context‑aware computing

Sensor types and sensing areas in context‑aware applications  As with big data analytics, 
context-aware computing involves a wide variety of sensors. A sensor can be described 
as a device that detects or measures a physical property or some type of input from the 
physical environment, and then indicates or reacts to it in a particular way (e.g. [19]). 
The output is a signal in the form of human-readable display at the sensor location or 
a recorded data that can be transmitted over a network for further processing. Com-
monly, sensors can be classified according to the type of energy they detect as signals, and 
include, but are not limited to, the following types:

Location sensors (e.g. GPS, active badges).
Optical/vision sensors (e.g. photo-diode, color sensor, IR and UV sensor).
Light sensors (e.g. photocells, photodiodes).
Image sensor (e.g. stereo-type camera, infrared).
Sound sensors (e.g. microphones).
Temperature sensors (e.g. thermometers).
Heat sensors (e.g. bolometer).
Electrical sensors (e.g. galvanometer).
Pressure sensors (e.g. barometer, pressure gauges).
Motion sensors (e.g. radar gun, speedometer, mercury switches, tachometer).
Orientation sensors (e.g. gyroscope).
Physical movement sensors (e.g. accelerometers).
Biosensors (e.g. pulse, galvanic skin response measure).
Vital sign processing devices (heart rate, temperature).
Wearable sensors (e.g. accelerometers, gyroscopes, magnetometers).
Identification and traceability sensors (e.g. RFID, NFC).

While there are different ways of sensing that could be utilized for detecting various 
features of context, in the realm of smart sustainable cities not all the above are of use in 
relation to context-aware applications in terms of optimization, control, management, 
operation, and service delivery associated with sustainability dimensions. How many 
and what types of sensors can be used in relation to a given context-aware application 
is determined by the way in which context is operationalized (defined so that it can be 
technically measured and thus conceptualized) in terms of the number of the entities 
of context that are to be incorporated in the system based on the application domain, 
and also whether and how these entities can be combined to generate a high-level 
abstraction of context (e.g. the physical, situational, behavioral, and social dimension of 
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context). Too often, in relation to both citizens and urban systems, various kinds of sen-
sors are used to detect context.

Acquisition of sensor data about citizens and urban systems (energy, traffic, transport, 
mobility, etc.) and their behavior and functioning is an important factor in addition to 
the knowledge domain for analysis of such data by data processing units. In relation to 
context-aware applications pertaining to citizens, data can be generated from multiple 
sources, including software equivalents in relation to citizens’ devices, such as smart-
phones, computers, laptops, and other everyday objects. In other words, data are collected 
and captured from a variety of digital sensors as well as online interactive applications. 
Observed information about the citizen and urban system’ states or situations in conjunc-
tion with the dynamic models for the citizen and system’ relevant processes serve as input 
for the process of computational understanding. This entails the analysis and estimation 
of what is going on in the surrounding environment in the context of smart sustainable 
cities. Accordingly, for a context-aware application or system to be able to infer high-level 
context abstraction based on the interpretation of and reasoning on context information, 
it is first necessary to acquire low-level data from physical sensors (and other sources). 
Researchers from different application domains within the field of context-aware com-
puting have investigated context recognition for the past 2 decade or so by developing 
a diversity of sensing devices (in addition to methods and techniques for signal and data 
processing, pattern recognition, modeling, and reasoning tasks). Thus, numerous types of 
sensors are currently being used to detect various attributes of context.

Multi‑sensor data fusion and  its application in  context‑aware applications and  sys‑
tems  In context-aware computing, underlying the multi-sensor fusion methodology is 
the idea that an abstraction of context as an amalgam of different, interrelated contextual 
elements can be generated or inferred on the basis of information detected from multi-
ple, heterogeneous data sources, which provide different, yet related, sensor information. 
Thus, sensors should be integrated to yield optimal context recognition results, i.e. pro-
vide robust estimation of context. A given dimension of the context, a higher level of the 
context, can be deduced by using a number of external or internal contexts as an atomic 
level of the context. Figure 1 illustrates multisensor fusion for context awareness.

The use of multi-sensor fusion approach in context-aware applications and systems 
allows gaining access simultaneously to varied information necessary for accurate 
estimation or inference of context. Multi-sensor fusion systems have the potential to 
enhance the information gain while keeping the overall bandwidth low [19]. Figure  1 
illustrates a multi-sensor fusion approach.

Fig. 1  Use of multiple sensors for context awareness
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Wireless communication network technologies and smart network infrastructures  In the 
context of smart sustainable cities, wireless solutions are set to proliferate in ways that 
are hard to imagine, as ICT continues to be fast embedded and interwoven into the very 
fabric of current smart and sustainable cities in terms of their systems and processes 
in an increasingly computerized urban society. This is a future world of pervasive com-
puting infrastructures and communication networks. Countless sensors will use various 
wirelessly ad-hoc and mobile networks to provide cities with all kinds of data necessary 
for a wide variety of applications and services. In particular, the widespread diffusion of 
wireless network technologies will, as a by-product of their normal operations, enable to 
sense, collect, and coordinate massive repositories of spatiotemporal data pertaining to 
urban systems, which represent city-wide proxies for all kinds of activities and operating 
and organizing processes.

Also, smart networks are necessary for big data applications in terms of connecting 
the components and entities of smart sustainable cities, including diverse citizens’ eve-
ryday objects (computers, smart phones, cars, house devices, etc.) and city infrastruc-
tures and facilities as well as urban departments, authorities, and enterprises. Such 
networks are intended to provide efficient means for transferring the collected data 
from heterogeneous and distributed sources to data warehouses where big data are to 
be stored, coalesced, organized, and integrated for processing and analysis in connection 
with intelligent decision support systems. This involves transferring responses back to 
the different citizens’ devices and urban entities’ systems for the purpose of improving 
different aspects of sustainability.

In relation to ICT of the new wave of computing, networking is a core enabling tech-
nology, in addition to cheap, low-power sensing and computing devices. In this context, 
the role of networking lies in tying hardware and software systems all together for the 
functioning of ubiquitous applications and services in urban areas, to draw on Bibri [19]. 
Accordingly, many heterogeneous components and devices across dispersed infrastruc-
tures and disparate networks need to interconnect as part of vast architectures enabling 
big data analytics, context-aware computing, intelligence functions, and service provi-
sioning on a hard-to-imagine scale [19]. To put it differently, wireless network technolo-
gies are prerequisite for coordinating data as well as linking up many diverse distributed 
sensing devices and computing components and enabling them to interact in the midst 
of a variety of hardware and software systems necessary for realizing smart urban envi-
ronments for advancing sustainability. Wireless technologies, especially satellite-enabled 
GPS, Wi-Fi, and mobile phone networks, enable to sense, collect, and coordinate mas-
sive environmental and socio-economic data representing enormous proxies for the 
operations, functions, and services of smart sustainable cities and thus powerful phys-
ical-environmental and socio-behavioral microscopes (e.g. [6]). This may facilitate, by 
means of big data analytics (data mining and database integration capabilities) which 
offer the prospect for adding value in terms of massive data analysis and integration, 
discovering the hidden patterns, correlations, and models that characterize, on the one 
hand, human mobility and movement as part of daily trajectories and activities of citi-
zens and, on the other hand, physical structures and spatial organizations, which can 
be instrumental in strategic decision-making associated with urban sustainability plan-
ning (see [6]). In all, while pervasive sensing and computing infrastructures allow for 
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monitoring, understanding, and analyzing urban life in terms of infrastructure, built 
form, administration, and ecosystem and human services, pervasive networking infra-
structures allow for collecting and coordinating extensive data in terms of how these 
data are stored, made accessible, and utilized.

In the context of smart sustainable cities, advanced digital networks are crucial to 
urban operational functioning and planning due to the interrelationships between urban 
components and domains that are too many to catalogue (transport, mobility, communi-
cation, building, energy, environment, water, waste, land use, healthcare, etc.). These are 
planned to be further heavily networked while the activities relating to these domains 
to be linked up. The key domains ‘which currently are being heavily networked involve: 
transport systems of all modes in terms of operation, coordination, timetabling, utili-
ties networks which are being enabled using smart metering, local weather, pollution 
levels and waste disposal, land and planning applications, building technologies in terms 
of energy and materials, health information systems in terms of access to facilities by 
patients the list is endless. The point is that we urgently need a map of this terrain so that 
we can connect up these diverse activities’ ([2], p. 493). Especially, the evolving techno-
urban contexts are opening spaces for smart sustainable initiatives in domain network-
ing at current times of tension as alternative trajectories are actively being sought due to 
the challenge of sustainability, which entails creating innovative solutions that further 
facilitate collaboration among urban domains and hence integrate urban systems.

In parallel, the aim of emerging technological platforms such as UbiComp, AmI, the 
IoT, and SenComp is to orchestrate and coordinate the various computational entities in 
the informational landscape of smart sustainable cities and merging it with their physical 
landscape into an open system that helps diverse urban entities cope with and plan their 
activities in relation to improving sustainability. Besides, the growing depth, scale, and 
complexity of urban networks in terms of both domains and technological infrastruc-
tures call for developing and coordinating such networks and enhancing their digital 
capabilities in ways that increase and sustain the contribution of smart sustainable cities 
to the goals of sustainable development. Advanced wireless technologies are extremely 
placed to initiate this development and coordination. Moreover, with their ever-grow-
ing volume, variety, velocity, and timeliness, data on the state of urban networks as built 
artifacts as well as on that of their use as part of urban activities and processes provide 
enormous potential to improve urban operational functioning and planning (see, e.g. [1, 
2]) in terms of sustainability, efficiency, and the quality of life by exploiting the analyti-
cal power of big data for deep insights and enhanced decision-making. To effectively use 
these data when implementing big data applications in smart sustainable cities requires 
fostering these data by advanced wireless technologies, especially in relation to real-time 
applications. The rationale is that such applications entail that the data from distrib-
uted sources should be aggregated and fused prior to being transferred in real-time to 
cloud computing infrastructures or data processing platforms for stream processing and 
decision-making. Important to note is that the aggregation and fusion should be carried 
out in ways that enable data to remain reliable, accurate, and correct for more effective 
results and thus beneficial knowledge in terms of decision-making processes. This is in 
turn of critical importance for maintaining the quality and performance of real-time big 
data applications in terms of decision-making processes [76].
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Data processing platforms for big data analytics

There is a variety of available data processing platforms for big data analytics, which 
provide the stream processing required by real-time big data applications in relation to 
various urban domains. Therefore, data processing platforms are a key component of the 
ICT infrastructure of smart sustainable cities of the future with respect to big data appli-
cations. Among the leading platforms for big data storage, processing, and management 
include Hadoop MapReduce, IBM Infosphere Streams, Stratosphere, Spark, and NoSQL-
database system management (e.g. [1, 28, 53, 60, 62, 63]). These platforms work well on 
cluster systems to meet the requirements of big data applications for smart sustainable 
cities; entail scalable, evolvable, optimizable, and reliable software and hardware compo-
nents; and provide high performance computational and analytical capabilities (namely 
selection, preprocessing, transformation, mining, evaluation, interpretation, and visu-
alization), in addition to storage, coordination, and management of large datasets across 
distributed environments. As ecosystems, they perform big data data analytics related to 
a wide variety of large-scale applications intended for different uses associated with the 
process of sustainable urban development, such as management, control, optimization, 
assessment, and improvement, thereby spanning a variety of urban domains and sub-
domains. In all, they are prerequisite for data-centric applications for smart sustainable 
cities of the future. The focus on Hadoop MapReduce is justified by the suitability of its 
functionalities as to handling urban data as well as to its advantages associated with load 
balancing, cost effectiveness, flexibility, and processing power compared to other data 
processing platforms. Hadoop MapReduce has become the primary big data storage and 
processing system given its simplicity, scalability, and fine-grain fault tolerance [59]. For 
example, it is capable of handling all data types collected from multiple sources to derive 
actionable insights. However, it does pose issues regarding processing efficiency, rigid 
data flow, and low-level abstraction. NoSQL (e.g. Mongo DB and Cassandra) is also fast 
becoming a choice for storing and sorting structured and unstructured data and clutter-
ing them with greater efficiency and scalability.

Cloud computing for big data analytics: characteristic features and benefits

Big data analytics can also be performed in the cloud. This involves both big data plat-
form as a service (PaaS) and infrastructure as a service (IaaS) (e.g. [77]). Having attracted 
attention and gained popularity worldwide, cloud computing is becoming increasingly a 
key part of the ICT infrastructure of both smart cities and sustainable cities (e.g. [1, 5, 7, 
53, 66, 67, 71]) as an extension of distributed and grid computing due to the prevalence 
of sensor technologies, storage facilities, pervasive computing infrastructures, and wire-
less communication networks. Especially, most of these technologies have become tech-
nically mature and financially affordable by cloud providers. By commoditizing services, 
low cost open source software, and geographic distribution, cloud computing is becom-
ing increasingly an attractive option [78].

Big data analytics is associated with cloud computing (e.g. [1, 77]; [79], an Internet-
based computing model that is increasingly seen as the most suitable solution for highly 
resource intensive and collaborative applications as an on-demand network access to a 
shared pool of computing resources (memory capacity, energy, computational power, 
network bandwidth, interactivity, etc.) [1, 7, 80]. This entails that computer-processing 
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resources, which reside in the cloud, are virtualized and dynamic, which implies that 
only display devices for information and services need to be physically present in rela-
tion to urban domains where diverse stakeholders (administrators, planners, landscape 
architects, sustainability strategists, authorities, citizens, etc.) can make use of software 
applications and services to improve sustainability. Such stakeholders can access cloud-
based software applications through a web browser and a lean client (a computer pro-
gram that depends on its server to fulfill its computational roles) or mobile devices while 
software tools and urban data of all kinds are stored on servers at a remote location. 
Indeed, cloud computing model is based on hosted services in the sense of application 
service provisioning running client server software locally. In this respect, smart sustain-
able city applications pertaining to transport, traffic, mobility, energy, public health, civil 
security, education, and so on reside ‘in the cloud’ and can be accessible per demand. 
Moreover, the software development platform can be offered in a public, private, or 
hybrid network, where the cloud provider manages the platform that runs the applica-
tions and relieves the cloud clients from the burden of securing dedicated platforms, 
which would otherwise be very demanding and costly in terms of resources and time. 
The cloud clients can accordingly benefit from tested, scalable, reliable, and maintain-
able platforms offered by the cloud provider. Another advantage involves service pro-
cess optimization through advanced functionalities of software development platforms, 
namely flexibility, interoperability, reusability, scalability, and cooperation. There is 
also a great opportunity to slash or minimize energy consumption associated with the 
operation of ICT infrastructure, especially when it comes to large-scale deployments 
like in the case of smart sustainable cities as to different departments and service agen-
cies. Beloglazov et al. [81] develop policies and algorithms that aim at increasing energy 
efficiency in cloud computing. Energy consumption is way too lower than if all urban 
entities have their own software development platforms. These are indeed shared by 
multiple users as well as dynamically reallocated per demand. This approach maximizes 
the use of computational power and reduces energy usage and thus mitigate GHG emis-
sions associated otherwise with powering a variety of functions as well as data centers 
dispersed throughout the departments and service agencies of smart sustainable cities. 
Whether public or private, the cloud provider includes the cloud environment’s servers, 
storage, networking, and data center operations. This implies that the cloud provider has 
the actual energy-consuming computational resources; users or clients can simply log 
on to the network without installing anything, thereby curbing energy usage and mak-
ing the best of the available computational power. Energy efficiency in cloud computing 
can result from energy-aware scheduling and server consolidation [82]. Mastelic et al. 
[83] provides a survey on energy efficiency in cloud computing. Also, cloud computing is 
seen as a form of green computing, especially if it is based on renewable energy like solar 
panels. It has other intuitive benefits because it relies on sharing of resources and maxi-
mizing the effectiveness of the shared resources, thereby reducing the costs otherwise 
incurred by ICT operations as to human, technical, and organizational resources. In 
cloud computing, supercomputers in large data centers as a distributed system of many 
servers are used to deliver services in a scalable manner as well as to enable the stor-
age and processing of vast quantities of data. Cloud computing offers great opportuni-
ties for streamlining data processing [84]. In all, cloud computing constitutes an efficient 
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and elegant solution in terms of facilitating the huge demand for computing resources 
associated with big data analytics for decision-making processes in relation to the opera-
tional functioning and planning of cities in terms of sustainability. Through the use of 
cloud computing, smart sustainable cities can accordingly have higher possibilities to 
perform more effectively and efficiently thanks to the advanced technological features 
underlying the functioning of cloud computing model.

In addition, cloud computing performs service-oriented computing. In this regard, it 
can rapidly process large and complex data produced from urban activities and simul-
taneously serve citizens in relation to healthcare, education, housing, utility, and so on, 
providing a kind of integrated and specialized center for information services to both 
the general public and urban departments across various urban domains. In light of this, 
with reference to smart sustainable cities, cloud computing has the ability to run smart 
applications on many connected computers and smartphones at the same time for dif-
ferent purposes associated with increasing sustainability performance.

In sum, among the key advantages provided by cloud computing technology include 
cost reduction, location and device independence, virtualization (sharing of servers and 
storage devices), multi-tenancy (sharing of costs across a large pool of cloud provider’s 
clients), scalability, performance, reliability, and maintenance. Therefore, opting for 
cloud computing to perform big data analytics in the realm of smart sustainable cities 
remains thus far the most suitable option for the operation of infrastructures, applica-
tions, and services whose functioning is contingent upon how urban domains interrelate 
and collaborate, how efficient they are, and to what extent they are scalable as to achiev-
ing and maintaining the required level of sustainability.

Middleware infrastructure for context‑aware computing: characteristics and functions

Middleware infrastructure is associated with pervasive computing environments and 
distributed applications. These encompass UbiComp, AmI, and SenComp environ-
ments and applications. Middleware infrastructure (e.g. [44, 47, 48]) plays a key role in 
the functionalities of complex distributed applications, including context-aware appli-
cations. Thus, context-aware computing, which is associated with UbiComp, AmI, and 
SenComp, requires middleware infrastructure to operate. This infrastructure can also 
run on cloud computing [platform as a service (PaaS) and infrastructure as a service 
(IaaS)]—i.e. cloud middleware.

Middleware infrastructure represents the logic glue in a distributed computing sys-
tem, as it connects and coordinates many components constituting distributed applica-
tions. This occurs, more specifically, ‘in the midst of a variety of heterogeneous hardware 
systems and software applications needed for realizing smart environments and their 
proper functioning. To put it differently, in order for the massively embedded, distrib-
uted, networked devices and systems, which are invisibly integrated into the environ-
ment, to coordinate require middleware components, architectures, and services. 
Middleware allows multiple processes running on various sensors, devices, computers, 
and networks to link up and interact to support (and maintain the operation of con-
text-aware applications needed by citizens and urban entities to cope with and perform 
their) activities wherever and whenever needed.’ ([19], p. 50). Indeed, it is the ability of 
multiple, heterogenous hardware and software systems to cooperate, interconnect, and 
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communicate seamlessly across disparate networks that create smart environments 
rather than just their ubiquitous presence and massive use. In the context of smart sus-
tainable cities, such systems in their various forms (e.g. sensors, smartphones, comput-
ers, databases, data warehouses, application integration methods, application servers, 
web servers, context management systems, and messaging systems) are highly distrib-
uted, interoperable, and dynamic, involving a myriad of embedded devices and informa-
tion processing units ‘whose numbers are set to increase by orders of magnitude and 
which are to be exploited in their full range to transparently provide services on a hard-
to-imagine scale, regardless of time and place’ [19]. This in turn allows for the function-
ing of context-aware applications across the diverse domains of smart sustainable cities.

There are different approaches to conceptualizing middleware. According to Schmidt 
[46], middleware consists of the following four distinct layers based on their intended 
functionality:

(1)	 Host-infrastructure middleware
(2)	 Distribution middleware
(3)	 Common middleware services
(4)	 Domain-specific middleware services.

Another conceptualization of middleware entails a common multilayer architecture 
that provides particular functionalities and constitute the basis for upper layers of more 
abstraction. It includes the following components:

• • Infrastructure and communications (messaging services) pertaining to entities of the 
upper layer

• • Services and agents related to semantic descriptions
• • Middleware services concerned with the software environment
• • Intelligence associated with the coordination of application actions and involving a 

number of devices in the environment.

As regards to some of its characteristic features compared to cloud computing, mid-
dleware-based architectures entail reusable software infrastructure that resides between 
the application programs (in this case context-aware applications) and the underlying 
hardware and operating systems. That is to say, middleware sits between the kernel and 
applications. Incidentally, the functionality of network protocol stacks (TCP/IP) was pre-
viously provided separately by middleware, but nowadays is integrated in every operat-
ing system. Moreover, middleware simplifies and supports the development of complex 
distributed applications, using such tools as web servers, application servers, messag-
ing systems, and content management systems. These applications collaborate with, or 
leverage services from, other disparate applications that are systematically tied using 
methods of application integration. In addition to handling the distribution and hetero-
geneity of computing resources associated with the logic of context-aware applications 
in this context, middleware is intended to bridge the gap between the applications and 
the underlying lower-level hardware and software infrastructure to ensure and boost 
coordination, cooperation, interconnection, dynamicity (e.g. sensors join and leave AmI 
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infrastructure in a dynamic fashion), and interoperability of the different components 
of distributed applications (e.g. [19, 45, 85]). These functionalities are in fact necessary 
for supporting scalable systems as well as highly heterogeneous and distributed compo-
nents, such as agents and services. In relation to this, middleware support and deploy 
data-centric distributed systems (e.g. network-monitoring systems, sensor networks, 
and dynamic web) whose ubiquity creates large application networks spreading over 
large geographical areas [19]. Especially, AmI and UbiComp infrastructures are highly 
dynamic and involve high degree of heterogeneity (e.g. [86]. As to interoperability, for 
instance, context-aware applications run on different operating systems, thereby the role 
of middleware in enabling interoperability between applications by supplying services 
for exchanging data in a standard way. Indeed, in the realm of context-aware comput-
ing, which entails distributed processing in the sense of multiple applications being 
connected to create larger applications over a network, middleware provides services 
beyond or more than those available from the operating system of these applications to 
enable the various elements of the underlying distributed system to communicate and 
manage data, thereby serving as a kind of a software glue. Therefore, distributed process-
ing is empowered by middleware for transferring signals from various sources and for 
realizing information fusion from multiple perceptive components [44].

Middleware and cloud computing infrastructures differ in their technical details as to 
how they provide application services and which kind of services they are concerned 
with, as well as in the characteristic features of their operation and complexity. Yet, they 
denote computing models where machines in large data centers across distributed envi-
ronments can be used to deliver a variety of services and meet the needs of different 
urban constituents in terms of the use of big data and context-aware applications for 
improving sustainability. Hence, both are prerequisite for in the operation of smart sus-
tainable cities. This is anchored in the underlying assumption that big data and context-
aware applications are an integral part of ICT of the new wave of computing, and smart 
sustainable cities typically rely on the fulfillment of its underlying visions.

Big data management

Given the volume, variety, and velocity characterizing big data, effective and suitable 
big data management tools are extremely important to ensure a useful utilization of big 
data in terms of analytics and the related results and inferences. Accordingly, as smart 
sustainable cities involve the generation of large, varied, and time-based data pertain-
ing to such urban domains as transport, traffic, mobility, energy, environment, land use, 
healthcare, education, and so on, huge data management capabilities are necessary to 
allow to make sense of these data. Especially the field of urban sustainability necessi-
tates these domains to be interrelated and coordinated to collaborate and inform one 
another. In this respect, the urban data are generated on a regular basis in the form of 
massive repositories, i.e. huge amounts of data on environmental and socio-economic 
aspects of urban areas, which provide a powerful microscope of, and a real-time view 
of what is happening in, the city as to sustainability performance across several spatial 
scales and over multiple temporal scales. A successful utilization of these valuable data 
in smart sustainable cities requires advanced big data management tools and methods. 
This entails the development and implementation of scalable and powerful architectures, 
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best practices, and dedicated computational processes for properly managing data life-
cycle throughout various phases of data use, particularly in terms of addressing the 
issue of variety and velocity, i.e. recognizing their different formats and sources as well 
as organizing, cataloguing, classifying, and controlling all classes and structures of data. 
In addition, for smart sustainable city applications, big data management should pro-
vide tools for scalable handling of massive data to serve real-time applications and sup-
port offline applications (see [1]). For the interested reader, there are several studies that 
have addressed the topic of big data management (e.g. [84–89]) in terms of concepts, 
approaches, techniques, and challenges.

Advanced big data analytics techniques and algorithms

In smart sustainable cities, big data analytics should involve highly sophisticated and 
dedicated techniques and algorithms (data mining, machine learning, statistics, database 
query, etc.) that can perform complex computational processing of data for timely and 
accurate decision-making purposes. Traditional techniques and algorithms are inad-
equate for handling big data associated with smart sustainable city applications due to 
their high-volume, high-variety, and high-velocity. Urban big data necessitate high speed 
processing power and high performance to obtain useful results necessary to enhance 
decision-making pertaining the urban operational functioning and planning of smart 
sustainable cities. Therefore, existing techniques and algorithms need to be improved 
in ways that can handle the extreme volume of data, the wide variety of data types, 
and the time constraints on data processing. In particular, data mining algorithms and 
techniques are by far unfit for handling big data because they are designed to deal with 
limited and well-defined datasets (e.g. [90]). In the context of smart sustainable cities, 
such techniques and algorithms need to be exploited, enhanced, and extended in order 
to yield the desired outcomes in terms of extracting the useful knowledge (patterns 
and correlations) necessary for improving sustainability performance (see, e.g. [2, 5, 6]. 
Alternative or novel solutions in this regard are required to be designed with more scal-
ability and flexibility to handle dynamic and real-time aspects of big data applications 
for smart sustainable cities, among other things. Moreover, they are to operate as an 
integral part of cloud computing (PaaS) and thus collaborate across diverse networks for 
aggregating, fusing, processing, analyzing, and visualizing data collected from countless 
sensing devices from multiple sources, stored in massive repositories, and coordinated 
through smart networks. In other words, they need to work effectively across disparate 
networks, dispersed infrastructures, distributed geographical locations, and heterogene-
ous computing environments, as well as to be capable of operating in highly scalable and 
dynamic settings, to reiterate. New approaches to storing, managing, coordinating, and 
analyzing big data, in particular in relation to smart sustainable city applications should 
rely on advanced artificial intelligence programs and machine learning techniques. This 
is in contrast to loading big data into traditional relational databases for analysis, a pro-
cess that relies on data schema and is time consuming and computationally expensive. 
For a detailed account of big data analytics techniques and algorithms from a general 
perspective, the interested reader might want to read Provost and Fawcett [57]. For a 
relevant account of data mining techniques and algorithms, the interested reader can be 
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directed to Barbi [55]. Also, Chen et al. [58] provide a thorough survey on data mining 
techniques and algorithms.

Privacy mechanisms and security measures

It is highly important to ensure that all technological components associated with big 
data and context-aware applications for smart sustainable cities are supported by secu-
rity measures and privacy mechanisms. It is essential to control big data [91] and context 
data [92]. Massive repositories of urban data are at stake, and failure to protect these 
data will pose risks and threats to the functioning of smart sustainable cities as well as to 
the safety and well-being of their citizens on several scales. Therefore, security measures 
and privacy mechanisms should be at the core of urban policy and governance practice 
associated with the design, development, deployment, and implementation of big data 
and context-aware applications within smart sustainable cities. Any attempt of an unau-
thorized access, malicious attack, or abuse of information on citizens, infrastructures, 
networks, and facilities can compromise the integrity of such applications and related 
services. Smart sustainable cities generate colossal amounts of data on virtually every 
urban process, which are to be stored, processed, and shared. Urban environments ‘are 
now being continually forged and re-forged in (sensorial), informational, and communi-
cative processes. It is a world where…cities think of us, where the environment reflex-
ively monitors our behavior’ ([93], p. 1), including whether and the extent to which we 
behave in a sustainable way through the activities we perform in cities.

However, it is commonly held views that the more cities think of and know about 
us and technologies monitor urban environments and collect information, ‘the larger 
becomes the privacy threats, and the larger…the networks, the higher the security risks’ 
([92], p. 218). When sensing, computing, and networks become ubiquitous, ‘when eve-
rything is embedded with intelligence and connected to everything else via the internet 
and other networks, the threats and vulnerabilities will become even greater than they 
are nowadays’ ([92], p. 218). There is a need for technological safeguards as a response 
to the risks posed by the emerging urban trends of big data analytics and context-aware 
computing. Clear guidelines, recommendations, and requirements must be identified 
and put in place in relation to big data and context-aware applications for smart sustain-
able cities. Among the privacy mechanisms proposed thus far for addressing the issue of 
privacy include ‘anonymity, pseudonymity, unlinkability, and unobservability’, yet they 
need to be ‘fully developed, evaluated, and instantiated in their operating environment 
to test their performance—how well they work’ [92]. Big data and context-aware applica-
tions for smart sustainable cities require the development of more robust, if not uncon-
ventional, privacy-protecting safeguards by considering the most likely ways through 
which the information from different urban domains can be leaked and breached. As 
regards to the security, the scientific challenges ‘include methods supporting the evalu-
ation of risk exposure…, security design principles to enable control of the risk expo-
sure, methods for…security analysis, security of big (and context) data…, secure cloud 
of physical and smart things, cyber physical systems security, lightweight security solu-
tions, authentication and access control…, identification and biometrics…, cyber-attacks 
detection and prevention, and so on’ ([92], p. 223–4). While information security risks 
are of diverse nature, including ‘modification, destruction, theft, or lack of availability of 
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computer assets such as hardware, software, data, and services’ ([94], p. 442), integrity 
and confidentiality—i.e. protection of information from modification and unauthorized 
use—should be more of focus as categories of security threats in the ICT of the new 
wave of computing networks than in the traditional networks [92]. This is due to the 
fact that there are ‘possible conflict of interests between communicating entities; net-
work convergence; large number of ad-hoc communications; small size and autonomous 
mode of operation of devices; and resource constraints of mobile devices’ ([95], p. 50). Of 
critical importance, nevertheless, is to develop a new security paradigm which supports 
advanced features of context-aware technology, as conventional password entry schemes 
using traditional input devices have proven to be vulnerable to attacks. To address these 
issues, new research endeavors are focusing on such new techniques as authenticat-
ing with minds; pointing and selection using gaze and keyboard; and gaze-based user 
authentication [92]. In relation to this, Wright et al. [95] suggest some research direc-
tions, including ‘improving access control methods by multimodal fusion, context-aware 
authentication and unobtrusive biometric modalities’, and ‘increasing security by detec-
tion of unusual patterns.’

Standards and open standards

It is important to follow standards when it comes to data integration to make sense of data 
proliferation as well as to ensure data quality. Standard rules are also needed for evaluat-
ing the accuracy and correctness of data and for dealing with such issues as uncertainty 
and incompleteness of data, especially in relation to real-time big data (and context-
aware) applications which require the data to be described using advanced models of the 
very urban systems that that data are associated with in case of missing and inconsistent 
data. It is of equal importance to set and comply with standard rules with respect to new 
applications for advancing urban sustainability to achieve seamless integration between 
the available urban systems (in terms of infrastructural, physical, operational, and func-
tional forms) and the introduced big data (and context-aware) applications across diverse 
urban domains. In this regard, the way forward is to carry out a thorough investigation of 
the different urban entities and actors as well as the infrastructure, built form, administra-
tion, and ecosystem and human services as to their operation as urban systems to stra-
tegically assess the benefits of new solutions and the readiness of urban stakeholders to 
join any smart movement associated with improving urban sustainability. In light of such 
investigation, new practices, regulations, and standard models of design and rules can be 
developed for big data and context-aware applications for smart sustainable cities.

Concerning other areas related to big data and context-aware applications for smart 
sustainable cities, it can be advantageous to pursue open standards for designing and 
implementing solutions with respect to various urban domains, as such applications 
involve large-scale and heterogeneous data systems. The rationale behind open stand-
ards in this respect is to provide some flexibility for scaling up, upgrading, improving, 
and maintaining applications for smart sustainable cities, as new challenges are most 
likely to emerge and thus operative solutions may become inadequate to handle poten-
tial complexities and difficulties as to translating sustainability into the built, infrastruc-
tural, operational, and functional forms of such cities.
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The state‑of‑the‑art analytical and computational processes
The process of data mining

One of the fundamental concepts of data science is the automated extraction of useful 
knowledge from large masses of urban data to solve urban sustainability problems (phys-
ical, environmental, social, and economic) related to diverse urban domains, which can 
be treated systematically by following a set of reasonably well-defined stages, i.e. several 
codifications of the process of data mining, most notably the cross industry standard 
process for data mining (CRISP-DM). This process provides a framework to structure 
urban thinking about data analytics problems related to different dimensions of sustain-
ability, as in smart sustainable urban planning practice, it is important to devise ana-
lytical solutions based on careful analysis and evaluation of the relevant problems using 
high-powered analytical and evaluative tools, as well as creativity, common sense, and 
specialized knowledge. Therefore, structured thinking about urban data analytics is of 
significance to supporting decision-making processes concerning different dimensions 
of sustainability within almost all urban domains. A codification of the data mining pro-
cess, drawing on Shearer [50, 51], involves the following steps:

1.	 Urban sustainability problem understanding
2.	 Data understanding
3.	 Data preparation
4.	 Model building
5.	 Results evaluation
6.	 Results deployments.

For a detailed description and discussion of these steps, including an account of 
data mining techniques, algorithms, and tasks based on supervised and unsuper-
vised methods, the interested reader can be directed to [55]. Also, Chen et  al. [58] 
provide a systematic review of data mining in technique view, knowledge view, and 
application view, supported with the latest application cases related mostly to business 
intelligence. A well-understood process of urban analytics places a structure on the 
problems pertaining to urban sustainability, allowing reasonable consistency, repeat-
ability, and objectiveness. The codification of the data mining process espoused here 
is adapted from CRISP-DM [50, 51], as illustrated in Fig. 2. The deep technical details 
of the sub-processes of the data mining process and how they relate to urban domains 
and subdomains in the context of sustainability dimensions is beyond the scope of this 
paper.

Applicable to the domains of smart sustainable cities, the process of data mining 
emphasizes the idea of iteration. This implies that solving a particular urban sustainabil-
ity problem may require going through the process more than once.

The objective of the process of data mining is to discover new knowledge in large 
masses of urban data pertaining to different sustainability dimensions to improve the 
environmental and socio-economic performances of smart sustainable cities. Accord-
ingly, such process is concerned with solving problems related to the spatial, physi-
cal, infrastructural, operational, and functional forms of such cities in the context of 
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sustainability. For an optimal outcome in the case of spatial data mining, for example, 
it is invaluable to integrate different methods (spatial analysis, spatial statistics, fuzzy 
logic, probability theory, cluster analysis, etc.), especially these methods are not mutu-
ally exclusive [65]. As to the spatial data, they include such features as spatial, massive 
temporal, massive multidimensional, and complex [96].

The process of context recognition

Smart sustainable cities as intelligent urban environments provide important contextual 
information that should be exploited in such way that the intelligent actions taken by 
diverse context-aware applications related to both citizens and systems within such envi-
ronments must be relevant to the current context. Context recognition is the process 
whereby various contextual features of the urban environment (physical, environmental, 
spatiotemporal, socio-economic, situational, and behavioral) are detected, monitored, 
analyzed, and interpreted to generate relevant inferences though reasoning processes. 
It encompasses many different tasks, namely context modeling in terms of knowledge 
representation and reasoning, contextual features monitoring, data processing and pat-
tern recognition, and intelligent decision-making and action-tacking. The whole process 
involves the following steps:

Urban Sustainability 
Problem Understanding 

Data 
Understanding 

Data    
Preparation 

Model       
Building  

Results    
Evaluation

   Results 
Deployment

Data

Fig. 2  The data mining process applied to urban sustainability problems
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1.	 Create computational models of contexts pertaining to the citizen and urban system 
(energy, traffic, transport, building, mobility, healthcare, utility, etc.) in a way that 
allows software agents/systems to perform reasoning and manipulation

2.	 Monitor and capture relevant contextual features depending on the application 
domain

3.	 Process observed information (low-level contextual data) through aggregation and 
fusion to generate a high-level abstraction of context

4.	 Decide which algorithm or a set of algorithms to use. This is based on the way in 
which contexts as related to some aspects of sustainability are modeled, represented, 
and reasoned about (often based on a hybrid modeling approach)

5.	 Carry out pattern recognition and generate inferences
6.	 Make a timely decision and take the most appropriate action accordingly.

These steps can be applicable to the recognition of different dimensions of context, e.g. 
situational, spatiotemporal, behavioral, and environmental. Researchers from different 
application domains in the field of context-aware computing have investigated context 
recognition for the past 2 decades by developing and enhancing a variety of approaches, 
techniques, and algorithms in relation to a wide variety of context-aware applications 
[19].

Basic issues of context‑aware applications

Placing reliance on context knowledge through recognizing, interpreting, and reason-
ing about contextual data from sensors to infer a high-level abstraction of a context and 
react to it by performing application actions to support citizens or operate urban sys-
tems is a process that is non-trivial and often extremely difficult to realize, regardless 
of the application domain in the context of smart sustainable cities. A central concern, 
in particular, is the issue of linking the perceived context (observed contextual data) to 
application behaviors—firing context-dependent actions. Drawing on Bibri [19], there 
are four basic issues related to generic contextual model that are central and necessary to 
be addressed to create context-aware applications pertaining to smart sustainable cities:

1.	 Perception as precondition. To create context-aware applications it is inevitable 
to provide them with perception capabilities as to various types of urban context, 
including the domains of sensing, abstraction, and modeling (conceptualization and 
representation)

2.	 Finding and analyzing situations pertaining to citizens and urban systems that are of 
relevance to context-aware applications. When such applications are based on some 
kind of implicit interaction, it becomes a central problem to find the situations that 
should have an effect on their behavior

3.	 Abstracting from situations to context. Describing a situation is already a high-level 
abstraction of context. To describe what should have an influence on application 
classes of situations have to be selected which will influence the behavior of context-
aware applications
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4.	 Linking context to behavior. To describe application classes of situations and in a 
more abstracted way, contexts must be linked to actions carried out by context-aware 
applications.

Context‑aware computing and its computational, technical, and urban 
dimensions
Context awareness technology for urban sustainability

The focus in this paper is on the physical, situational, spatiotemporal, and socio-eco-
nomic features of the citizen context as to the interactive applications pertaining to 
healthcare, education, learning, security, accessibility, utility, and so forth, as well as on 
the physical, operational, environmental, and spatiotemporal aspects of the urban sys-
tem context as to the operating and managing processing relating to energy, transport, 
traffic, mobility, power grid, and so on. Thus, the capabilities of context awareness tech-
nology directed for enhanced decision-making and service delivery processes are of high 
relevance to smart sustainable cities in terms of urban analytics associated with sustain-
ability. The adaptive and responsive features of context-aware applications and systems 
constitute forms of urban intelligence in its wider sense. One of the cornerstones of ICT 
of the new wave of computing (UbiComp, AmI, and SenComp) is the intelligent behav-
ior of applications and systems in response to the different contexts of citizens and urban 
systems (situations, events, locations, settings, behaviors, activities, etc.).

Context-aware computing is becoming increasingly a key component of the infra-
structure of smart sustainable cities (e.g. [5, 6, 11, 97] and future smart cities (e.g. [98]). 
Having access to context information in smart sustainable city applications plays a key 
role in supporting decision-making processes pertaining to sustainability (e.g. [1, 5, 6, 
11]). As one of the prerequisites technologies for enabling ICT of the new wave of com-
puting and for realizing the ICT visions of pervasive computing, context awareness aims 
to ‘support human action, interaction, and communication in various ways wherever 
and whenever needed’ ([19], p. 1) by enabling sensorily and computationally augmented 
urban environments to provide the most efficient services to citizens and intelligent sup-
port to urban actors within a variety of settings (e.g. [5, 6]). Entailing a set of advanced 
computational functionalities, context-aware applications are able to, by relying on con-
text knowledge, control over processes and automate operative tools as well as provide 
services and support decision-making needs, thereby exhibiting intelligent behavior. In 
short, context awareness technology is associated with control, automation, optimiza-
tion, and management, as well as with the adaptation of services. The system behavior’s 
adaptation is based either on pre-programmed heuristics or real-time reasoning capa-
bilities. The purpose of machine learning and reasoning is to monitor the behaviors 
of urban systems and citizens and the changes in their environment using sensors of 
many types to generate inferences (high-abstractions of contexts) based on reasoning 
mechanisms, and then use physical actors (actuators) or application actions to react 
and pre-act accordingly in ways that are more constructive in terms of enhancing urban 
operations, functions, and services in line with the goals of sustainable development. 
The widespread adoption of diverse sensors within cities provides interactions through 
opportunistic and people-centric sensing [99, 100]. In this regard, context-aware appli-
cations can monitor what is happening in urban environments, analyze, interpret, and 
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respond to them in a variety of ways—be it in relation to smart energy, smart street 
lights, smart traffic, smart transport, smart mobility, smart education, smart health-
care, or smart safety—across several spatial and temporal scales (e.g. [4]). It is becoming 
increasingly evident that smart urban environments based on context-aware technolo-
gies—especially within smarter cities as future forms of smart cities, namely ambient 
cities, sentient cities, ubiquitous cities, Internet-of-everything, and real-time cities (e.g. 
[2, 5, 9, 10, 98–105]; Kyriazis et al. 106)—which can support sustainable urban living in 
various ways through intelligent service provision and decision support, will be com-
monplace in the near future.

Context awareness and its feasibility in urban intelligence

Being of prominence and significance to ICT of the new wave of computing in the con-
text of smart sustainable cities [5, 6, 55], context awareness is grounded in the idea that 
it becomes possible to, through the use of artificial intelligence, detect, monitor, analyze, 
and model situations of urban life in ways that enable a wide variety of applications and 
systems to adaptively and proactively take more knowledgeable actions. This relates to 
the prevailing idea in AmI, UbiComp, and SenComp that the environment can sense 
and intelligently react to contextual features of urban systems and citizens in the realm 
of smart sustainable cities of the future [5, 6]. This constitutes also a core characteris-
tic aspect of what is labelled ‘smarter cities’ [5, 6]. However, in contrast to the context-
aware applications directed to humans (cognitive, emotional, social, and conversational 
features of context), where the feasibility issues are essentially linked with the inherent 
complexity surrounding the modeling of situations of human life [19], the context-aware 
applications directed for urban systems are not expected to involve such feasibil-
ity issues since it is possible to model situations of urban systems as intelligent oper-
ating and organizing entities. However, these models should be sophisticated enough 
and well suited to include the evolution of urban phenomena under major changes. In 
other words, new models should focus on addressing the problems of sustainability and 
urbanization. Investigating approaches to context modeling (representation and rea-
soning techniques) constitutes a large part of a growing body of research on the use of 
context awareness as a technique for developing context-aware applications and systems 
that can adapt to and act autonomously on behalf of citizens and urban systems. ICT of 
the new wave of computing will enhance the quality and speed of urban models in terms 
of both computational capabilities and structures, as well as the scope of the evolving 
issues that new modeling approaches can address [2]. Moreover, with the huge poten-
tial of artificial intelligence programs and machine learning and data mining techniques 
being under development for smart sustainable cities of the future, novel methods will 
emerge to address the issues related to most of the reasoning processes suggested for 
urban scenarios as to the complexity of generating inferences based on relatively limited 
and imperfect sensor data. Explicitly, new development are expected to provide ways 
of filling in missing data and addressing data uncertainty and vagueness using dynamic 
models of the very systems that these data pertains to.
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Sensor observations and dynamic urban models

Context-aware applications and systems involve sensors to monitor or observe different 
contextual aspects of intelligent entities in urban environments, analyze and interpret 
the collected contextual data, generate inferences by reasoning against context models, 
and then react (and pre-act) accordingly. These processes pertain to both urban systems 
and information systems used by citizens. Regarding urban systems, multilevel inte-
grated modeling is central to the endeavor of merging real-time data with traditional 
data across urban domains as sectional sources in a way that link real-time issue to long 
term strategic planning in terms of sustainability, i.e. energy systems, transport sys-
tems, and traffic systems. However, the idea of smart sustainable cities of the future is 
that, based on context-aware computing, related applications and systems can be made 
more perceptive and responsive by becoming aware of their surroundings (monitoring 
or observing the urban environment in its various forms, including physical, environ-
mental, operational, behavioral, spatiotemporal, and socio-economic) and reacting to 
this awareness that can be attained by means of multiple, diverse sensors embedded 
throughout the urban environment that help build and maintain diverse models that 
represent the state of the dynamically changing and evolving urban world. Both the 
observed information about and the existing dynamic models for this world serve as 
input for the process of computational understanding, which involves the analysis and 
estimation of what is happening in the urban environment. The dynamic models can 
be viewed as interpretations of the urban environment, and thus are to be continuously 
improved to inform intelligent decision-making through machine reasoning about the 
meaning of all kinds of relevant situations taking place in that environment. Hence, they 
stand between the urban environment to be sensed and analyzed based on context data 
and the abstract notion of application actions. Dynamic models represent situations as 
problem and solution statements or sets of propositions expressing relationships among 
urban constructs which form the vocabulary of, and used to describe problems and to 
specify their solutions within urban sustainability domain, to draw on Bibri [19]. They 
therefore serve as an important input together with the collected sensor data from mul-
tiple sources to context-aware applications and systems. Important to note is that new 
dynamic models should be developed based on what constitutes smart sustainable cities 
in terms of their systems, processes, and forms. They are key in context information pro-
cessing associated with real-time (and sometimes offline) applications in relation to such 
cities. Crucially, such models must be comprehensive, consistent, flexible, robust, and 
have a high degree of fidelity with real world urban phenomena.

A common use of the sensing and computing devices in smart sustainable cities of 
the future is to build and maintain an urban world model (see Fig. 3), which allows vari-
ous context-aware applications and systems to be constructed and operate intelligently 
to catalyze and boost the process of sustainable development using such strategies as 
optimization, control, and management concerning urban systems as well as service effi-
ciency and enhancement with regard to citizens.

Figure 3 illustrates an adaptive context awareness process where the smart sustainable 
city information and urban systems incrementally create the urban world they observe 
using sensors (and datasets). In this process, the users of such systems (citizens and 
urban operators/administrators) can be taken into the loop to train and detect contexts 
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on the spot; the systems learn new situations by example, with their users as the teach-
ers. This flexible learning scheme, which is essential to the evolution of urban models, 
is known as incremental learning, that is, old classes can be retrained should they have 
changed, and new classes can be trained with no need to retrain the ones that were 
already trained (see [19]). In this way, urban contexts can be learned and recognized 
automatically, that is, sensor observations can be associated to human-defined context 
labels using machine learning and reasoning techniques.

Urban context recognition techniques and algorithms

Machine learning and hybrid modeling in context‑aware computing

Context-aware computing as a prerequisite enabling technology for AmI, UbiComp, 
and SenComp is heralding new ways of interaction and applications in the context of 
smart sustainable cities. Pattern recognition algorithms in context-aware computing are 
under vigorous investigation in the development of smart urban environments. A mul-
titude of such algorithms and their integration are being proposed and studied on the 
basis of the way in which urban contexts are operationalized, modeled, represented, and 
reasoned about. This can be done during a specification process whereby either con-
cepts of context and their interrelationships are described based on urban knowledge 
(from city-directed disciplines) and represented in a computational format that can be 
used as part of reasoning processes to generate inferences, i.e. ontologies are used to 
represent and reason about context information, or contexts are learned and recognized 
automatically, i.e. machine learning techniques are used to build context models and 
perform further means of pattern recognition, i.e. probabilistic and statistical reasoning. 
While several context recognition algorithms have been applied in the area of context-
aware computing, the most commonly used ones are those that are based on machine 
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learning techniques and ontological approaches. Such techniques and approaches have 
been integrated in various context-aware applications. This falls under what is referred 
to as hybrid context modeling and reasoning approaches, which involve both knowledge 
representation formalisms and reasoning mechanisms. (See [19] for examples of hybrid 
approaches developed in relation to various application domains). Hybrid approaches 
involve other methods, such as case-based methods, rule-based methods, logic pro-
graming, and database modeling techniques. The interested reader can be directed to 
Bibri [19] for a detailed overview of ontological approaches, to Bettini [41] for case-
based methods, to Chen and Nugent [42] for a short account of logical modeling and 
reasoning and related algorithms in terms of logical theories and representation formal-
isms, and to Strimpakou et al. [48] for database modeling techniques.

Hierarchical hybrid models are assumed to bring clear advantages in terms of the set 
of the requirements defined for a generic context model used by context-aware applica-
tions. For example, they can provide solutions to overcome the weaknesses associated 
with the expressive representation and reasoning in description logic. Bettini et al. [41] 
contend that there is likelihood to satisfactorily address a larger number of the identified 
requirements by hierarchical hybrid context model if hybrid approaches can be further 
extended to design such model. The authors propose a model that is intended to provide 
a more comprehensive solution in terms of expressiveness and integration of different 
forms of reasoning. In this model, the representation formalism used to represent data 
retrieved from a module executing some sensor data fusion technique should, in order 
to support the scalability requirements of context-aware services, enable the execution 
of efficient reasoning techniques to infer high-level context data on the basis of raw ones 
by, for example, executing rule-based reasoning in a restricted logic programming lan-
guage. As suggested by the authors, a more expressive, ontology-based context model 
is desirable on top of the respective representation formalism, as it inevitably does not 
support a formal definition of the semantics of context descriptions. See Bibri [19] for 
an illustration of the corresponding framework and a description of its multiple layers. 
This framework can be adapted so to fit in with context-aware applications pertaining to 
smart sustainable cities.

Supervised versus unsupervised methods

The concepts of supervised and unsupervised were inherited from the area of machine 
learning, a subfield of artificial intelligence that deals with artificial systems that are able 
to improve their performance overtime, in response to their experience in the world. 
Specifically, machine learning is the subfield of computer science that is concerned with 
the development of software programs that provide computer systems with the ability 
to learn from experiences without pursuing explicitly programmed instructions—that 
is, to teach themselves to grow and change when exposed to new data [19]. As a widely 
quoted, more formal definition provided by Mitchell ([107], p. 2), ‘A computer program 
is said to learn from experience E with respect to some class of tasks T and performance 
measure P, if its performance at tasks in T, as measured by P, improves with experience 
E’. Such improvement often involves analyzing data from the environment and making 
predictions about unknown variables.
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Making the computer systems deployed throughout urban environments able to com-
pute, communicate, and share data does not make them intelligent; rather, the key and 
challenge to really equipping these systems with intelligence and augment such environ-
ments with it lies in the way the systems learn and keep up to date with the needs and 
requirements of citizens and urban system respectively by themselves in the context of 
sustainability. In fundamentally operational terms, this description resonates with the 
idea that computer systems can think, a technological feature that underlies the preva-
lent ICT visions of pervasive computing, most notably UbiComp, AmI, and SenComp 
in terms of context-aware applications. However, it is computationally unfeasible to 
build models for all sorts of situations of urban life concerning context-aware applica-
tions. The underlying assumption is that training sets are finite, urban life situations are 
dynamic, and behavioral patterns of urban systems are uncertain, and so on, adding to 
the limited routinely generated sensor data in the context of real-time urban function-
ing. Besides, ‘notwithstanding the huge potential of machine learning techniques, the 
underlying probability theory usually does not yield assurances of the performance of 
algorithms; rather, probabilistic (and statistical) reasoning limits to the performance are 
quite common. This relates to computational learning theory, a branch of theoretical 
computer science that is concerned with the computational analysis of machine learning 
algorithms and their performance in relation to different application domains’ ([19], p. 
172). In relation to context-aware applications, machine learning involves a wide vari-
ety of algorithms which can be classified into different categories based on the following 
methods [19]:

• • Supervised and unsupervised learning (explained below).
• • Semi-supervised learning (combines both labeled and unlabelled examples to gener-

ate an appropriate classifier).
• • Transductive inference (attempts to predict new outputs on specific test cases from 

observed training cases).
• • Learning to learn (learns its own inductive bias based on previous experience).
• • Reinforcement learning (executes actions which trigger the observable state of a 

dynamic environment to change, and attempts to gather information about how 
the environment reacts to actions as well as to synthesize a sequence of actions that 
maximizes some notion of cumulative reward).

Indeed, issues of agency and cognition in terms of how an intelligent agent use learned 
knowledge to reason and act in its environment are characteristic to machine learning.

For a descriptive account of supervised and unsupervised methods for predictive and 
descriptive data mining in the context of smart sustainable cities, the reader can be 
directed to Bibri [55]. This article also covers a number of use cases for each method, in 
addition to new insights into the next wave of urban analytics in light of data science and 
the application of data mining and knowledge discovery to urban sustainability.

Context recognition techniques and algorithms

Context recognition algorithms based on supervised and unsupervised learning meth-
ods primarily use probabilistic and statistical reasoning. Supervised learning requires the 
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use of labelled data on which an algorithm is trained, and training sets are called labeled 
data because the value for the class label is known. Following training the algorithm can 
classify unknown and future data. Thus, the basic idea of supervised learning is to clas-
sify data in formal categories that an algorithm is trained to recognize. In this sense, 
the machine learning process examines a set of atomic contexts which have been pre-
assigned to categories, and makes inductive abstractions based on these data that assist 
in the process of classifying unknown and future atomic contexts into high-level con-
texts. Supervised learning algorithms require an important training period during which 
several examples of each context and related concepts are collected and analyzed. The 
quality of training influences the outcome of the classification critically. And the granu-
larity of the learned context concepts is influenced by the availability and nature of the 
low-level contextual data from sensors [41]. In all, supervised learning algorithms enable 
context-aware applications and systems to keep a trace of their previous observed expe-
riences in the form of trained classes of context and employ them to dynamically learn 
the parameters of the stochastic context models (a pattern that may be analyzed statisti-
cally but not predicted precisely). This enables them to generate predictive models based 
on the observed agents’ context profiles. The general process using a supervised learning 
algorithm for context recognition encompasses several steps, namely, borrowing Chen 
and Nugent’s [42] terminology:

(1)	 To acquire sensor data representative of relevant context features/attributes per-
taining to citizens or urban systems, including related labelled annotations.

(2)	 To determine the input data features and their representation.
(3)	 To aggregate data from multiple data sources and transform them into the appli-

cation-dependent features, e.g. through data fusion, noise elimination, dimension 
reduction and data normalization.

(4)	 To divide the data into a training set and a test set.
(5)	 To train the recognition algorithm on the training set.
6)	To test the classification performance of the trained algorithm on the test set.
(7)	 To apply the algorithm in the context of context recognition. It is common to repeat 

steps (4) to (7) with different partitioning of the training and test sets in order to 
achieve better generalization with the recognition models.

There are a wide range of algorithms and models for supervised learning and con-
text recognition. In the area of context recognition, the basic idea of classification is to 
determine different context labels on the basis of a set of context categories (training 
examples) learned from the real world as models. The algorithm is presented with a set 
of inputs and their desired outputs, e.g. association of sensor data with real world con-
texts, and the goal is to learn a general rule that maps inputs (e.g. sensor data) to out-
puts (context labels), so that the algorithm can map new sensor data into one of these 
context labels. The quality of classification, how well a classifier performs, is inextricably 
linked to the richness of the learning experience of the algorithm, and also depends criti-
cally on the features of the contextual data to be classified. Building new models, train-
ing new classes, during the analysis of the collected sensor data is important for making 
future inductive abstractions in terms of classifying unknown and future contextual data 
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(i.e. performance) through gaining experience. Classification of contexts is done using a 
classifier that is learned from a comprehensive training set of annotated context exam-
ples. Classifiers represent tasks entailing the use of pattern matching to determine a best 
match between the features extracted from sensor data and a context description. This 
is about classifying sensor cues into a known category and storing general patterns of 
context. There are various supervised learning classifiers, and they vary in terms of per-
formance, which depends on the application domain to which they can be applied. For 
example, binary decision tree uses a decision tree as a predictive model which maps sen-
sor observations to inferences about the context’s target value. Support vector machine 
(SVM) builds a model that predicts into which of two categories a new example falls, 
assuming that each training example is marked as belonging to one of these two cat-
egories. Other classifiers include neural network, k-nearest neighbor, dynamic and naive 
Bayes, and Hidden Markov Models (HMMs). They have been applied in a wide variety of 
context awareness domains within both laboratory-based as well as real-world environ-
ments (see [19] for a set of selected examples). Important to note is that no one classifier 
is superior to another, nor is there a single classifier that works best for all on all given 
problems. It follows that to determine a suitable classifier for a given problem domain is 
linked to the complexity and nature of that problem domain. Still, among the supervised 
learning algorithms, HMMs and Bayes networks are thus far the most commonly applied 
methods in the area of context recognition. While both of them have been shown to be 
successful in context-aware computing, they are both very complex and require lots of a 
large amount of labelled training and test data. This is in fact the main disadvantages of 
supervised learning algorithms in the case of probabilistic methods, adding to the fact 
that it could be computationally costly to learn each context in a probabilistic model for 
an infinite richness or large diversity of contexts in real world application scenarios (see 
[42]). Moreover, given that context-aware applications usually incorporate different con-
textual features that should be combined in the inference of a particular dimension of 
context, adding to the fact that one feature may involve different types of sensor data, 
the repetitive diversification of the partitioning of the training and test sets may not lead 
to the desired outcome with regard to the generalization with the context recognition 
models. This has implication for the accuracy of the estimation of context, that is, the 
classification of dynamic contextual data into relevant context labels. Machine learning 
methods in the case of probabilistic methods ‘choose a trade-off between generalization 
and specification when acquiring concepts from sensor data recordings, which does not 
always meet the correct semantics, hence resulting in wrong detections of situations’ 
([41], p. 11). A core objective of a learning algorithm is to generalize from its experience 
whereby generalization denotes the ability of a learning mechanism to perform accu-
rately on not previously seen context examples after having experienced a learning data 
set—the combination of context patterns and their class labels. While this is a decision 
that should be made, the resulting context models are often ad-hoc and not reusable. 
In fact, supervised leaning algorithms inherently suffer from several limitations, namely 
scalability, data scarcity, inflexibility, ad-hoc static models; these methods ‘should tackle 
technical challenges in terms of their robustness to real-world conditions and real-time 
performance’ [42]. New research endeavors should focus on creating alternative theo-
ries based on new discoveries in human-directed sciences in terms of developing less 
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complicated, computationally elegant, and, more importantly, effective and robust algo-
rithms with wider applicability, irrespective of the application domain.

Distinct from supervised learning, unsupervised learning tries to directly build rec-
ognition models from unlabeled data. With having no labels, the learning algorithm is 
left on its own to group similar inputs or density estimates that can be visualized effec-
tively [108]. Thus, unsupervised learning provides context-aware applications with the 
ability to find context patterns in cues as abstraction from raw sensor data—i.e. features 
extracted from the data stream of multiple, diverse sensors. Probabilistic algorithms 
can be used for finding explanations for streams of data, helping recognition systems 
to analyze processes that occur over time [126]. The basic idea of unsupervised learn-
ing algorithm is to manually assign a probability to each possible context and to use a 
pre-defined stochastic model to update these likelihoods on the basis of both new sensor 
readings and the known state of the system (see [42]). The general process of unsuper-
vised learning algorithms for context recognition includes the following steps Chen and 
Nugent ([42], p. 414):

(1)	 To acquire unlabeled sensor data.
(2)	 To aggregate and transform the sensor data into features.
(3)	 To model the data using either density estimation (to estimate the properties of the 

underlying probability density) or clustering methods (to discover groups of similar 
examples to create learning models).

There exist several algorithms for unsupervised learning that are based on probabil-
istic reasoning, such as Bayes networks, graphical models, multiple eigenspaces, and 
different variants of HMMs. Further, unsupervised learning probabilistic methods are 
capable of handling the uncertainty and incompleteness of sensor data. Probabilities can 
be used to serve various purposes in this regard, such as modeling uncertainty, reason-
ing on uncertainty, and capturing domain heuristics (see, e.g. [41, 42]. However, unsu-
pervised learning probabilistic methods are usually static and highly context-dependent, 
adding to their limitation as to the assignment of the handcrafted probabilistic param-
eters (e.g. modeling uncertainty, capturing heuristics) for the computation of the context 
likelihood (see [42]). Indeed, they seem to be less applied than supervised learning in the 
domain of context recognition.

Conceptual context models and a framework for integrating the key ingredients

As high-level abstractions of contexts can be semantically abstracted from contextual 
cues extracted from low-level context data obtained from physical sensors, human 
knowledge and interpretation of the urban world must be formally conceptualized and 
modeled according to certain formalisms. In smart sustainable cities, conceptual con-
text models are concerned with what constitutes various types of contexts and their con-
ceptual structures depending on the application domain. While the semantics of what 
constitutes ‘context’ has been widely discussed in the literature and defining what consti-
tutes context information has been studied extensively in relation to humans (e.g. [19]), 
little, if no, attention has been given to what constitutes context information in relation 
to urban systems (energy, traffic, transport, etc.). This is a fertile research area in the 
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realm of smart sustainable cities. Generally, context information in the urban domain 
refers to the representation of the situation of an entity (energy system in a building, a 
traffic system in a district, a transport system in an urban area characterized by mixed-
land use and density, etc.) in some computer system run by, for example, an urban 
department, where a set of contextual features are of interest to a provider of operational 
functioning services for assessing the timeliness and context-dependent aspects of the 
system behavior. Works that can identify qualitative features of urban system context 
information remain scant. And those related to citizens are numerous and diverse (see 
[19] for a detailed survey). However, most of the latter class of works does not provide 
formal representations of the proposed models.

However, one of the challenges in smart sustainable cities is to provide frameworks 
that cover the class of context-aware applications that exhibit computational under-
standing and intelligent behavior in relation to sustainability performance. Here com-
putational understanding entails performing the analysis and interpretation of context 
data, including reasoning about such data, and estimating what is happening in the 
urban environment (high-level abstractions of context pertaining to various urban sys-
tems), a process for which input are observed information about the situations of urban 
systems over time (i.e. urban monitoring) and dynamic models for the spatial, spati-
otemporal, physical, infrastructural, environmental, and socio-economic processes 
of smart sustainable cities. Note that different types of models are needed. Intelligent 
behavior entails context-aware applications coming up with and firing situation-depend-
ent actions that provide support for different aspects of sustainability. With the above in 
mind, a basic framework can be suggested, which combines different models and meth-
ods, as illustrated in Fig. 4.

Figure  4 shows a basic framework which combines urban state and history models, 
environment state and history models, dynamic process models (about urban func-
tioning), dynamic environment process models, ontologies and knowledge from city-
related disciplines (including urban sustainability), and analysis methods on the basis 
of such models, such as spatial analysis, spatiotemporal analysis, environmental analy-
sis, behavioral analysis, and so on. As a template for the class of context-aware appli-
cations showing computational understanding and intelligent behavior, the framework 
can encompass slots where the content of applications specific to various urban systems 
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Fig. 4  A framework for integrating the key ingredients
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together with the generic operative methods can be filled in order to obtain an execut-
able design for a working application. Accordingly, context-aware applications can show 
advanced computational understanding of the urban environment and react from this 
understanding in a knowledgeable manner through intelligent decision-making for 
improving different aspects of sustainability through optimization, control, manage-
ment, and planning of urban systems.

A basic multilayered architecture of context information processing

Researchers from different application domains have investigated context awareness 
for the past 2 decades or so by developing a diversity of architectures (see [19] for an 
overview). Context awareness involves a wide range of architectures that basically aim 
to provide the appropriate infrastructures for context-aware applications pertaining to 
diverse application domains. Context-aware applications are based on a multilayered 
architecture, as shown in Fig. 5. Here the focus is on urban systems.

Layer 1—physical sensors

Signals in the urban environment are detected from multiple sources using sensors of 
many types. This sensor layer is usually defined by open-ended (unrestricted) collection 
of sensors embedded in urban systems and spread in their surrounding environment. 
The data supplied by sensors, irrespective of the application domain (traffic, energy, 
transport, mobility, etc.), are usually very different, ranging from slow sensors to fast and 
complex sensors that provide larger volume and higher velocity of data.

Layer 2—context data processing

This layer is dedicated to aggregate, fuse, organize, and propagate contextual data. At 
this stage, signal processing and machine learning techniques (pre-processing, analysis, 
and pattern recognition) are used to recognize situations of urban systems from sensor 

Sensors embedded throughout urban environments, including RFID, NFC, GPS, laser 
 scanners, infrared, accelerometers, gyroscopes, and many more sensing devices
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Fig. 5  A basic multilayered architecture of context information processing in relation to urban systems
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signals and labelled annotations in the case of classification, for example. The recogni-
tion can also occur through mapping sensor readings to matching properties described 
in ontologies of particular urban domains in the case of hybrid models, and using these 
ontologies to aggregate and fuse sensor observations to generate situations of urban sys-
tems. Which recognition approach to espouse is determined by how context is modeled 
and thus encoded and reasoned about. However, as contextual data need at this stage to 
be organized in the form of information, this layer introduces abstractions of real world 
situations.

Layer 3—context representation and reasoning

As the core of context modeling, this layer involves the application of representation 
and reasoning techniques, which usually entail an integration of different modeling 
approaches for an effective outcome as to the estimation of the situation of urban sys-
tems. Indeed, this hybrid method allows to address issues such as uncertainty, incom-
pleteness, and vagueness associated with contextual information.

Layer 4—application action

At this layer actions are fired based on the generated inferences. Specifically, decisions 
are taken as to what actions are to be executed on the basis of high-level abstractions of 
situations produced through reasoning processes. The type of actions to be performed 
is typically dependent on the application domain. For example, the actions taken at the 
application level can be oriented towards supporting energy efficiency, traffic congestion 
reduction, transport management, and so on. Furthermore, there is variety of context 
query languages that can be used by context-aware applications, as there is no specific 
requirement in context awareness architectures with respect to which query languages 
to use. However, the selection of the query language is contingent upon the applied 
modeling approaches in terms of representation and reasoning techniques. ‘The mean-
ing of the queries must be well-specified because in the implementation the queries are 
mapped to the representations used in layer 3. An important role of the middle layer and 
the query language is to eliminate direct linking of the context providing components to 
context consuming components… Thus, the query language should support querying a 
context value regardless of its source… It should be noted that since the CQL acts as a 
facade for the applications to the underlying context representation, the context infor-
mation requirements of the applications are imposed as much on the query language as 
on the context representation and context sources’ ([43], p. 2).

Figure 5 illustrates four layers of context information processing. The architecture also 
includes examples of existing techniques and methods that can be used in context-aware 
applications, depending on the application domain and its complexity and scale.

However, while some advanced design alternatives for context awareness architectures 
are being deployed in smart sustainable cities, it will take some time before standard, 
interoperable context information modeling and management become a reality.
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The key applications of big data analytics and context‑aware computing 
technologies for urban sustainability
The prospect of developing and implementing smart sustainable cities based on big 
data analytics and context-aware computing as a set of technologies and applications is 
becoming increasingly a reality. This new techno-urban phenomenon is opening entirely 
new windows of opportunity for smart cities to explicitly incorporate sustainability and 
for sustainable cities to smarten up their contribution to sustainability. Smart sustain-
able cities as a techno-urban innovation represent transformative processes that have 
been fueled by the increasing infiltration of information intelligence into urban systems 
in terms of operations, functions, services, designs, practices, and policies. This informa-
tion intelligence enabled and driven by big data analytics and context-aware computing 
could be leveraged in the advancement of urban sustainability by enhancing and inte-
grating urban systems as well as by facilitating coordination and collaboration among 
diverse urban domains.

Accordingly, the two identified classes of applications of ICT of the new wave of com-
puting pertain to big data analytics and context-aware computing in the context of smart 
sustainable cities. In other words, data-centric and context-aware applications constitute 
key components of the informational landscape of various models of smart sustainable 
city (see [6] for a detailed account of these models). As noted by Bibri and Krogstie [4], 
their effects reinforce one another as to their efforts for transforming urban life sustaina-
bly by employing and merging smart solutions to improve urban sustainability. The basic 
idea is that the opportunities for the deployment of the advanced solutions being offered 
by ICT of the new wave of computing are tremendous in the context of urban sustaina-
bility. Indeed, the applications associated with big data analytics and context-aware com-
puting are compatible with the goals of sustainable development. They include, but are 
not limited to, the following:

• • Data-centric and context-aware transport and mobility (e.g. [2, 4, 14, 22, 23, 98, 102, 
105–112]).

• • Data-centric and context-aware traffic lights and signals (e.g. [1, 22, 54]).
• • Data-centric and context-aware energy systems (e.g. [1, 2, 22, 113, 114]).
• • Data-centric and context-aware grid (e.g. [1, 23, 76, 109–115]).
• • Data-centric and context-aware environment (e.g. [22, 116, 117].
• • Data-centric and context-aware buildings (e.g. [3, 4, 23]).
• • Data-centric and context-aware public safety and civil security [10, 22].
• • Data-centric and context-aware planning and design (e.g. [2, 6, 8, 118]).
• • Data-centric and context-aware healthcare [11, 14, 92, 116, 119].
• • Data-centric and context-aware education and learning (e.g. [1, 3, 22, 102]).
• • Data-centric and context-aware citizen services (the quality of life) (e.g. [1, 11, 53, 67, 

97]).
• • Data centric and context-aware urban infrastructures and facilities monitoring and 

management (e.g. [113, 120, 121]).

In all, the application of big data analytics and context-aware computing in smart 
sustainable cities offers the prospect of significantly improving different aspects of 
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sustainability. One of the core ideas underlying the use of these advanced technologies 
is to integrate and harness solutions and approaches through coordinating, coupling, 
and integrating urban domains. Hence, exposing big data and context information via 
a sustainable, socially synergistic, evolvable, dynamic, extensible, scalable, and reliable 
ecosystem offers a wide range of benefits and opportunities with respect to urban sus-
tainability. As noted by Bibri and Krogstie [5] with reference to sustainable urban forms, 
ICT of the new wave of computing as a set of enabling and constitutive technologies 
can make substantial contributions—not only in terms of catalyzing and boosting the 
development processes of sustainable urban forms, but also in terms of planning such 
forms in ways that continuously evaluate, forecast, and thus strategically optimize their 
contribution to sustainability.

The main scientific challenges of big data analytics and context‑aware 
computing
The rising demand for big data analytics and context-aware computing as disruptive tech-
nologies, coupled with their potential to serve many urban domains in terms of sustain-
ability, comes with major scientific and intellectual challenges that need to be addressed 
and overcome with regard to the design, development, and deployment of data-centric 
and context-aware applications in the context of smart sustainable cities. In terms of 
context-aware computing, the challenges center around system engineering, design, and 
modeling. They include, but are not limited to, the following, to draw on Bibri [19]:

• • 	 Constraints of design science and engineering.
• • 	 Paradigms that govern the assembly of context-aware applications pertaining to 

diverse urban domains and their integration in connection with sustainability, as well 
as to dynamic models of their knowledge representation and run-time behavior.

• • 	 Tailored methodologies and tools for engineering urban context awareness.
• • 	 General methods for acquiring, storing, processing, analyzing, mining, modeling, 

querying, and making sense of context data for context-aware applications.
• • 	 The performance of real-time context-aware applications given that they need to be 

timely in taking actions.
• • 	 Provision of context data as a service to a wide range of applications within diverse 

urban domains based on integration with the service computing paradigm.
• • 	 Modeling and management of contextual information in large-scale distributed per-

vasive applications and in open and dynamic pervasive environments (e.g. [41, 48]).

Handling context-aware information in smart sustainable cities is a tremendous chal-
lenge (see [11]). Indeed, urban context awareness is a complex, multilevel problem as 
to its functioning and implementation, from low-level sensor data acquisition, through 
intermediate-level information processing and modeling, to high-level application 
action and service delivery.

In terms of big data analytics, the challenges are mostly scientific, computational, and 
analytical in nature. They include, but are not limited to, the following (e.g. [2, 5, 6, 101, 
117–125]; Katal et al. [26]).
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• • Constraints of design science and engineering.
• • Data analysis and evaluation.
• • Management of IoT data produced in dynamic and volatile environments.
• • Database integration across urban domains.
• • Privacy and security.
• • Establishing context (e.g. geolocation and time).
• • Data growth and sharing.
• • Data uncertainty and incompleteness.
• • Data quality and veracity.
• • Intelligence functions and simulation models.
• • Fault tolerance and scalability.
• • Storage and processing.

The main challenges of big data analytics arise from the nature of the data being gen-
erated in terms of their large, diverse, and time-evolving character. To put it differently, 
the scale, heterogeneity, and velocity of urban data makes it difficult to manage, inte-
grate, process, analyze, evaluate, and deploy. Adding to these primarily technical chal-
lenges are the financial, organizational, institutional, regulatory, and ethical ones, which 
are associated with the implementation, retention, and dissemination of big data across 
the domains and entities of smart sustainable cities. In addition, controversies over the 
application and benefit of big data analytics relate to limited access and related divide 
and ethical concerns about accessibility [28]. Nevertheless, understanding, exploiting, 
and extending, or simply advancing knowledge of, the available computation, analysis, 
and management capabilities associated with big data analytics and context-aware com-
puting in terms of conceptions, tools, principles, paradigms, methodologies, and risks, 
great opportunities could be realized in terms of improving, harnessing, and integrat-
ing urban systems and thus facilitating collaboration, coordination, and coupling among 
urban domains through data-centric and context-aware applications in the context of 
smart sustainable cities. It is safe to say that as long as big data and context data in urban 
analytics are driven by sustainable development agenda and thus utilized and imple-
mented strategically for the purpose of monitoring, understanding, probing, and plan-
ning smart sustainable cities, ICT of the new wave of computing will drastically change 
the way such cities function as to increasing their contribution to the goals of sustainable 
development over the long run. This requires the current open issues stemming from the 
aforementioned challenges to be under rigorous investigation and scrutiny by the socio-
technical systems involved in the underlying technological innovation system of big data 
analytics and context-aware computing, namely industry consortia, business commu-
nities, research institutes, universities, policy makers and networks, and governmental 
agencies.

Conclusions
Big data analytics and context-aware computing are rapidly growing areas of ICT that 
are becoming even more important to smart sustainable cities with respect to their 
operational functioning and planning to improve their contribution to the goals of 
sustainable development. These concepts were crystallized into realist notions in the 
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domain of sustainable urban planning not too long ago—until UbiComp, AmI, the IoT, 
and SenComp as the most prevalent ICT visions of pervasive computing have become 
achievable and deployable paradigms and also matured thanks to the recent advances in 
sensor technologies, data processing platforms, cloud computing and middleware infra-
structures, and wireless communication networks. This major technological transition 
is drastically changing how smart sustainable cities can be monitored, understood, ana-
lyzed, and planned to advance sustainability. Accordingly, big data analytics and context-
aware computing are opening unique windows of opportunity for enabling such cities 
to leverage their informational landscape by developing, deploying, and implementing a 
variety of advanced applications to enhance their operational functioning, planning, and 
design in line with the vision of sustainability.

The aim of this paper was to review and synthesize the relevant literature with the 
objective of identifying and distilling the core enabling technologies of big data analyt-
ics and context-aware computing as ecosystems in relevance to smart sustainable cities, 
as well as to illustrate the key computational and analytical techniques and processes 
associated with the functioning of such ecosystems. The main contribution of this paper 
lies in developing, elucidating, and evaluating a number of relevant frameworks pertain-
ing to big data analytics and context-aware computing in the context of smart sustain-
able cities by bringing together research directed at a more conceptual, analytical, and 
overarching level to stimulate new ways of investigating their role in advancing urban 
sustainability. The proposed frameworks, which can be replicated and tested in empiri-
cal research, will add additional depth and rigor to studies in the field. Big data analytics 
and context-aware computing share basically the same core enabling technologies in the 
realm of smart sustainable cities, especially their effects overlap in many aspects with 
regard to advancing the process of sustainable development. The underlying enabling 
technologies and related key computational and analytical techniques and processes 
consist of the following:

• • Data collection and preprocessing, e.g. data sensing methods and signal processing 
techniques

• • Data repositories or storage facilities, e.g. database and data warehouse servers
• • Data processing, e.g. data analytic systems, cloud computing models, middleware 

architectures, including software tools and database systems
• • Analysis techniques and algorithms, e.g. data mining, machine learning, statistics, 

and database query and related computational mechanisms
• • Wireless network technologies, e.g. the satellite-enabled GPS, mobile phone, 

LPWAN, and Wi-Fi networks, for collecting and coordinating data in terms of the 
data themselves and how that data are stored and made accessible

• • Data visualization for representing and displaying useful and context knowledge in 
understandable formats for human interpretation.

Adding to the above components are privacy and security mechanisms, open stand-
ards and standard rules, as well as conceptual frameworks (data mining process, context 
recognition process, context information processing, etc.) and related methods (super-
vised and unsupervised learning).
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Furthermore, the availability of the various permutations of the core enabling tech-
nologies underlying big data analytics and context-aware computing is justified by the 
varied technical details of the application domains pertaining to smart sustainable cit-
ies in terms of their complexity, scale, requirement, and objective. Regardless, to facili-
tate an effective functioning of big data and context-aware applications, it is important 
to ensure a seamless amalgamation of their core enabling technologies. This is of equal 
importance to better understand, monitor, analyze, and plan smart sustainable cities for 
the purpose of catalyzing and boosting the process of sustainable development towards 
achieving the long-term goals of sustainability.

The emerging ability to use big data and context-aware techniques and methods for 
advancing sustainability promises to revolutionize various urban domains. The key 
applications enabled by big data analytics and context-aware computing include trans-
port, mobility, traffic lights and signals, energy systems, power grid, environment, build-
ings, public safety and civil security, planning and design, healthcare, education and 
learning, the quality of life, and urban infrastructures and facilities monitoring and man-
agement. Besides all the benefits, the large-scale deployment and amalgamation of big 
data analytics and context-aware computing as advanced forms of ICT is beset with sev-
eral challenges due to the massive size, diverse nature, and fast-changing pace of big data 
and to the constraints of system engineering, design, and modeling of context awareness.

In all, the use of big data analytics and context-aware computing entails that smart sus-
tainable cities take the form of constellations of architectures, platforms, applications, 
and computational and data analytics capabilities connected through wirelessly ad-hoc 
and mobile networks with a modicum of intelligence across several spatial scales, which 
provide and coordinate continuous data regarding the physical, infrastructural, spatial, 
spatiotemporal, operational, functional, and socio-economic forms of such cities. We 
argue that big data analytics and context-aware computing are prerequisite technolo-
gies for the functioning of smart sustainable cities of the future, as their effects reinforce 
one another as to their efforts for bringing a whole new dimension to the operating and 
organizing processes of urban life in terms of employing a wide variety of smart and 
data-driven applications for advancing sustainability.
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