
Outlier edge detection using random
graph generation models and applications
Honglei Zhang1*  , Serkan Kiranyaz2 and Moncef Gabbouj1

Background
Graphs are an important data representation, which have been extensively used in many
scientific fields such as data mining, bioinformatics, multimedia content retrieval and
computer vision. For several hundred years, scientists have been enthusiastic about
graph theory and its applications [1]. Since the revolution of the computer technolo-
gies and the Internet, graph data have become more and more important because many
of the “big” data are naturally formed in a graph structure or can be transformed into
graphs.

Outliers almost always happen in real-world graphs. Outliers in a graph can be out-
lier nodes or outlier edges. For example, outlier nodes in a social network graph may

Abstract 

Outliers are samples that are generated by different mechanisms from other normal
data samples. Graphs, in particular social network graphs, may contain nodes and
edges that are made by scammers, malicious programs or mistakenly by normal users.
Detecting outlier nodes and edges is important for data mining and graph analytics.
However, previous research in the field has merely focused on detecting outlier nodes.
In this article, we study the properties of edges and propose effective outlier edge
detection algorithm. The proposed algorithms are inspired by community structures
that are very common in social networks. We found that the graph structure around an
edge holds critical information for determining the authenticity of the edge. We evalu-
ated the proposed algorithms by injecting outlier edges into some real-world graph
data. Experiment results show that the proposed algorithms can effectively detect out-
lier edges. In particular, the algorithm based on the Preferential Attachment Random
Graph Generation model consistently gives good performance regardless of the test
graph data. More important, by analyzing the authenticity of the edges in a graph, we
are able to reveal underlying structure and properties of a graph. Thus, the proposed
algorithms are not limited in the area of outlier edge detection. We demonstrate three
different applications that benefit from the proposed algorithms: (1) a preprocessing
tool that improves the performance of graph clustering algorithms; (2) an outlier node
detection algorithm; and (3) a novel noisy data clustering algorithm. These applica-
tions show the great potential of the proposed outlier edge detection techniques. They
also address the importance of analyzing the edges in graph mining—a topic that has
been mostly neglected by researchers.

Keywords:  Outlier detection, Graph mining, Outlier edge

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Zhang et al. J Big Data (2017) 4:11
DOI 10.1186/s40537-017-0073-8

*Correspondence:
honglei.zhang@tut.fi
1 Department of Signal
Processing, Tampere
University of Technology,
Finland, Korkeakoulunkatu 1,
FI‑33101 Tampere, Finland
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-8229-852X
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-017-0073-8&domain=pdf

Page 2 of 25Zhang et al. J Big Data (2017) 4:11

include: scammers who steal users’ personal information; fake accounts that manipulate
the reputation management system; or spammers who send free and mostly false adver-
tisements [2–4]. Researchers have been working on algorithms to detect these malicious
outlier nodes in graphs [5–8]. Outlier edges are also common in graphs. They can be
edges that are generated by outlier nodes, or unintentional links made by normal users
or the system. Outlier edges are not only harmful but also greatly increase the system
complexity and degrade the performance of graph mining algorithms. In this paper, we
will show that the performance of the community detection algorithms can be greatly
improved when a small amount of outlier edges are removed. Outlier edge detection can
also help evaluate and monitor the behavior of end users and further identify the mali-
cious entities. However, in contrast to the focus on the outlier node detection, there have
been very few studies on outlier edge detection.

In this paper, we first propose an authentic score of an edge using the clustering prop-
erty of social network graphs. The authentic score of an edge is determined by the differ-
ence of the actual and the expected number of edges that link the two groups of nodes
that are around the investigating edge. We use random graph generation models to pre-
dict the number of edges between the two groups of nodes. The edges with low authen-
tic scores, which are also called weak links in this paper, are likely to be outliers. We
evaluated the outlier edge detection algorithm that is based on the authentic score using
injected edges in real-world graph data.

Later, we show the great potentials of the outlier edge detection technique in the areas
of graph mining and pattern recognition. We demonstrate three different applications
that are based on the proposed algorithms: (1) a preprocessing tool for graph cluster-
ing algorithms; (2) an outlier node detection algorithm; (3) a novel noisy data clustering
algorithm.

The rest of the paper is organized as follows: the prior art is reviewed in "Previous
work"; the methodology to determine the authentic scores of edges is in "Methods"; eval-
uation of the proposed outlier edge detection algorithms are given in "Evaluation of the
proposed algorithms"; various applications that use or benefit from outlier edge detec-
tion algorithms are presented in "Applications"; and finally, conclusions and future direc-
tions are included in "Conclusions".

Previous work
Outliers are data instances that are markedly different from the rest of the data [9]. Out-
liers are often located outside (mostly far way) from the normal data points when pre-
sented in an appropriate feature space. It is also commonly assumed that the number of
outliers is much less than the number of normal data points.

Outlier detection in graph data includes outlier node detection and outlier edge detec-
tion. Noble and Cook studied substructures of graphs and used the Minimum Descrip-
tion Length technique to detect unusual patterns in a graph [6]. Xu et al. considered
nodes that marginally connect to a structure (or community) as outliers [10]. They used
a searching strategy to group the nodes that share many common neighbors into com-
munities. The nodes that are not tightly connected to any community are classified as
outliers. Gao et al. also studied the roles of the nodes in communities [11]. Nodes in
a community tend to have similar attributes. Using the Hidden Markov Random Field

Page 3 of 25Zhang et al. J Big Data (2017) 4:11

technique as a generative model, they were able to detect the nodes that are abnormal in
their community. Akoglu et al. detected outlier nodes using the near-cliques and stars,
heavy vicinities and dominant heavy links properties of the ego-network- the induced
network formed by a focal node and its direct neighbors [12]. They observed that some
pairs of the features of normal nodes follow a power law and defined an outlier score
function that measures the deviation of a node from the normal patterns. Dai et al.
detected outlier nodes in bipartite graphs using mutual agreements between nodes [7].

In contrast to proliferative research on outlier node detection, there have been very
few studies on outlier edge detection in graphs. Liu et al. find outlier pairs in a com-
plex network by evaluating the structural and semantic similarity of each pair of the con-
nected nodes [13]. Chakrabarti detected outlier edges by partitioning nodes into groups
using the Minimum Description Length technique [14]. Edges that link the nodes from
different groups are considered as outliers. These edges are also called weak links or
weak ties in literature [15]. Obviously this method has severe limitations. First, one shall
not classify all weak links as outliers since they are part of the normal graph data. Sec-
ond, many outlier edges do not happen between the groups. Finally, many graphs do not
contain easily partitionable groups.

Detection of missing edges (or link prediction) is the opposite technique of outlier
edge detection. These algorithms find missing edges between pairs of nodes in a graph.
They are critical in recommendation systems, especially in e-commerce industry and
social network service industry [16, 17]. Such algorithms evaluate similarities between
each pair of nodes. A pair of nodes with high similarity score is likely to be connected
by an edge. One may use the similarity scores to detect outlier edges. The edges whose
two end nodes have a low similarity score are likely to be the outlier edges. However, in
practice, these similarity scores do not give satisfactory performance if one uses them to
detect outlier edges.

Methods
Notation

Let G (V ,E) denote a graph with a set of nodes V and a set of edges E. In this article, we
consider undirected, unweighted graphs that do not contain self-loops. We use lower
case a, b, c, etc., to represent nodes. Let ab denote the edge that connects nodes a and
b. Because our graph G is undirected, ab and ba represent the same edge. Let Na be the
set of neighboring nodes of node a, such that Na = {x|x ∈ V , xa ∈ E}. Let Sa = Na ∪ {a}
(i.e. Sa contains node a and its neighboring nodes). Let ka be the degree of node a, so
that ka = |Na|. Let A be the adjacency matrix of graph G. Let n = |V | be the number of
nodes and m = |E| be the number of edges of graph G.

Freeman defines the ego-network as the induced subgraph that contains a focal node
and all of its neighboring nodes together with edges that link these nodes [18]. To study
the properties of an edge, we define the edge-ego-network as follows:

Definition 1  An edge-ego-network is the induced subgraph that contains the two end
nodes of an edge, all neighboring nodes of these two end nodes and all edges that link
these nodes.

Page 4 of 25Zhang et al. J Big Data (2017) 4:11

Let Gab = G
(

Vab,Eab
)

 denote the edge-ego-network of edge ab, where Vab = Sa ∪ Sb
and Eab =

{

xy|x ∈ Vab, y ∈ Vab and xy ∈ E
}

.

Motivation

Graphs representing real-world data, in particular social network graphs, often exhibit
the clustering property- nodes tend to form highly dense groups in a graph [19]. For
example, if two people have many friends in common, they are likely to be friends too.
Therefore, it is common for social network services to recommend new connections to a
user using this clustering property [16]. As a consequence, social network graphs display
an even stronger clustering property compared to other graphs. New connections to a
node may be recommended from the set of neighboring nodes with the highest number
of common neighbors to the given node. The common neighbors (CN) score of node a
and node b is defined as

Common neighbors score is the basis of many node similarity scores that have been used
to find missing edges [16]. Some common similarity indices are:

• • Salton index or cosine similarity (Salton)

• • Jaccard index (Jaccard)

• • Hub promoted index (HPI)

• • Hub depressed index (HDI)

Next we shall investigate how to detect outlier edges in a social network using the clus-
tering property. According to this property, if two people are friends, they are likely to
have many common friends or their friends are also friends of each other. If two people
are linked by an edge, but do not share any common friends and neither do their friends
know each other, we have good reason to suspect that the link between them is an out-
lier. So, when node a and node b are connected by edge ab, there should be edges con-
nect the nodes in set Sa and the nodes in set Sb. However, the number of connections
should depend on the number of nodes in these two groups. Let us consider the different
cases as shown in Fig. 1.

In these four cases, edge ab is likely to be a normal edge in case (d) because nodes a
and b share common neighboring nodes c and d, and there are connections between

(1)sCN = |Na ∩ Nb|.

(2)sSalton =
SCN

√

kakb

(3)sJaccard =
SCN

|Na ∪ Nb|

(4)sHPI =
SCN

min(ka, kb)

(5)sHDI =
SCN

max(ka, kb)

Page 5 of 25Zhang et al. J Big Data (2017) 4:11

neighboring nodes of a and those of b. In the case of (a), (b) and (c), |Na ∩ Nb| = 0, which
implies that nodes a and b do not share any common neighboring nodes. However edge
ab in case (c) is more likely to be an outlier edge because nodes a and b have each many
neighboring nodes but there is no connection between any two of these neighboring
nodes. In case (a) and (b) we do not have enough information to judge whether edge ab
is an outlier edge or not. If we apply the node similarity scores to detect outlier edges,
we find that SCN = 0 for cases (a), (b) and (c). Thus, the node similarity scores defined
by Eqs. (1), (2), (3), (4) and (5) all equal to 0. For this reason, these node similarity scores
cannot effectively detect outlier edges.

In case (c), edge ab is likely to be an outlier edge because the expected number of
edges between node a together with its neighboring nodes and node b together with its
neighboring nodes is high, whereas the actual number of edges is low. So, according to
the clustering property, we propose the following definition for the authentic score of an
edge:

Definition 2  The authentic score of an edge is defined as the difference between the
number of actual edges and the expected value of the number of edges that link the two
sets of neighboring nodes of the two end nodes of the given edge. That is:

where mab is the actual number of edges that links the two sets of nodes- one set is node
a together with its neighboring nodes and the other set is node b together with its neigh-
boring nodes, and eab is the expected number of edges that link the aforementioned two
sets of nodes.

We can rank the edges by their authentic scores defined in Eq. (6). The edges with low
scores are more likely to be outlier edges in a graph.

Let α(S,T) =

∣

∣

∣ab|a ∈ S, b ∈ T and ab ∈ E
∣

∣

∣ denote the number of edges that links the
nodes in sets S and T. We suppose the graph G is generated by a random graph genera-
tion model. Let ǫ(S,T) denote the expected value of the number of edges that links the
nodes in sets S and T by the generation model. "Expected number of edges between two

(6)sab = mab − eab,

(a) (b)

(c) (d)
Fig. 1  Different cases of edge-ego-networks. (a) ka = kb = 1, |Na ∩ Nb| = 0 (b) ka = kb = 2, |Na ∩ Nb| = 0 (c)
ka = kb = 6, |Na ∩ Nb| = 0 (d) ka = kb = 6, |Na ∩ Nb| = 2

Page 6 of 25Zhang et al. J Big Data (2017) 4:11

sets of nodes" describes two generation models and the functions of calculating ǫ(S,T).
Obviously α(S,T) and ǫ(S,T) are symmetric functions. That is:

Theorem 1  α(S,T) = α(T , S) and ǫ(S,T) = ǫ(T , S).

Let Pa,b and Ra,b be the two sets of nodes that are related to end nodes a and b. Node
set Ra,b depends on set Pa,b. The actual number of edges and the expected number of
edges of the sets of nodes related to the two end nodes may vary when we switch the end
nodes a and b. We use the following equations to calculate mab and eab:

Schemes of node neighborhood sets

For a ego-network, Coscia and Rossetti showed the importance of removing the focal
node and all edges that link to it when studying the properties of ego-networks [20]. It
is more complicate to study the properties of an edge-ego-network since there are two
ending nodes and two sets of neighboring nodes involved. Considering the common
nodes of the neighboring nodes and the end nodes of the edge being investigated, we
now define four schemes that capture different configurations of these two sets.

Let Sa\b = Sa\
{

b
}

 be the set of nodes that contains node a and its neighboring nodes
except node b. Let Na\b = Na\

{

b
}

 be the set of nodes that contains the neighboring
nodes of a except node b. Obviously Sa\b = Na\b ∪ {a}. Fig. 2 shows the edge-ego-net-
work Gab and the two sets of nodes Sa\b and Sb\a corresponding to case (d) in Fig. 1.

We first define two sets of nodes that are related to node a and its neighboring
nodes: Na\b and Sa\b. Next, we define two sets of nodes that are related to node b and
its neighboring nodes with regard to the sets of nodes Na\b and Sa\b: Sb\a\Sa\b and
Sb\a. In Fig. 2, Na\b =

{

c, d, e, g , h
}

, Sa\b =
{

a, c, d, e, g , h
}

, Sb\a\Sa\b =
{

b, f , i, j
}

 and

(7)mab =
1

2

(

α
(

Pa,b,Ra,b

)

+ α
(

Pb,a,Rb,a

))

;

(8)eab =
1

2

(

ǫ
(

Pa,b,Ra,b

)

+ ǫ
(

Pb,a,Rb,a

))

.

Fig. 2  The sets of the nodes of the edge-ego-network G
ab

 in the case (d) of Fig. 1. Sa\b contains node a and
its neighboring nodes except node b; Sb\a contains node b and its neighboring nodes except node a

Page 7 of 25Zhang et al. J Big Data (2017) 4:11

Sb\a =
{

b, c, d, f , i, j
}

. In the case of a social network graph, Na\b would consist of friends
of user (node) a except b; Sa\b consists of a and friends of a except b; Sb\a\Sa\b con-
sists of b and friends of b except a and those who are friends of a; Sb\a consists of b and
friends of b except a.

Based on the set pairs of nodes a and b, we define the following four schemes and their
meanings in the case of a social network graph. We use superscript (1), (2), (3) and (4) to
indicate the four schemes respectively.

• • Scheme 1 : P(1)

a,b = Na\b and R(1)

a,b = Sb\a\Sa\b

How many of a’s friends know b and his friends outside of the relationship with a?

• • Scheme 2 : P(2)

a,b = Na\b and R(2)

a,b = Sb\a

How many of a’s friends know b and his friends?

• • Scheme 3 : P(3)

a,b = Sa\b and R(3)

a,b = Sb\a\Sa\b

How many of a and his friends know b and his friends outside of the relationship
with a?

• • Scheme 4 : P(4)

a,b = Sa\b and R(4)

a,b = Sb\a

How many of a and his friends know b and his friends?

For the edge-ego-network Gab shown in Fig. 2, scheme 1 examines edges ef , cb and db ;
scheme 2 examines edges ef , ec, cb, cd, dc and db; scheme 3 examines edges ab, ef , cb
and db; scheme 4 examines edges ab, ac, ad, ef , ec, cb, db, dc and cd.

Next we study the symmetric property of these four schemes.

Theorem 2  α

(

P
(2)

a,b ,R
(2)

a,b

)

= α

(

P
(2)

b,a ,R
(2)

b,a

)

 and α
(

P
(4)

a,b ,R
(4)

a,b

)

= α

(

P
(4)

b,a ,R
(4)

b,a

)

The proof of this theorem is given in Appendix. Theorem 2 shows that the number
of edges that link the nodes from the two groups defined in scheme 2 and scheme 4 are
symmetric. That is the values remains the same if the two end nodes are switched. We
can use m(2)

ab
= α

(

P
(2)

a,b ,R
(2)

a,b

)

 and m(4)

ab
= α

(

P
(4)

a,b ,R
(4)

a,b

)

 instead of Eq. 7.

Theorem 3  ǫ

(

P
(4)

a,b ,R
(4)

a,b

)

= ǫ

(

P
(4)

b,a ,R
(4)

b,a

)

This theorem can be directly derived from P(4)

a,b = R
(4)

b,a, R
(4)

a,b = P
(4)

b,a and Theorem 1. So
eab = ǫ

(

P
(4)

a,b ,R
(4)

a,b

)

. Note scheme 4 is symmetric in calculating both of the actual and
expected number of edges of the two groups.

Expected number of edges between two sets of nodes

With the four schemes described above, we get the number of edges that connect nodes
from the two sets using Eq. 7. To calculate the authentic score of an edge by Eq. (6), we
should find the expected number of edges between these two sets of nodes. Next we
will use random graph generation models to determine the expected number of edges
between these two sets of nodes.

Page 8 of 25Zhang et al. J Big Data (2017) 4:11

Erdős‑ Rényi random graph generation model

The Erdős-Rnyi model, often referred as G(n, m) model, is a basic random graph genera-
tion model [21]. It generates a graph of n nodes and m edges by randomly connecting
two nodes by an edge and repeat this procedure until the graph contains m edges.

Suppose we have n nodes in an urn and predefined two sets of nodes S and T. We
randomly pick two nodes from the urn. Note, the intersection of sets S and T may not
be empty. The probability of picking the first node from set S\T is |S|−|S∩T |

n and the prob-
ability of picking the first node from set S ∩ T is |S∩T |

n . If the first node is from set S, the
probability of picking the second node from set T is |S|−|S∩T |

n
|T |
n−1

+
|S∩T |

n
|T |−1

n−1
. Since the

graph is undirected, we may also pick up a node from set T first and then pick up the
second node from set S. So, the probability that we generate an edge that connects a
node set S and a node from set T by randomly picking is:

We repeat this procedure m times to generate a graph, where m is the number of edges
in graph G. The expected number of edges that connect the nodes in set S and the nodes
in set T is:

Note, here we ignore the duplicate edges during this procedure. This has little impact on
the final results for real-world graphs where m ≪ n(n− 1). In Eq. (10), let

where dG is the density (or fill) of graph G.
Next we will find the expected number of edges under the four schemes defined in

"Schemes of node neighborhood sets". Since edge ab is already fixed, we should repeat
the random procedure m− 1 times. For real-world graphs where m ≫ 1, we can safely
approximate m− 1 by m.

Now we can apply Eq. (10) under the four schemes. Let ka and kb be the degrees of
nodes a and b. Let kab = |Na ∩ Nb| be the number of common neighboring nodes of
nodes a and b. The expected number of edges for each scheme is:

• • Scheme 1:

• • Scheme 2:

• • Scheme 3:

(9)p(S,T) = (|S||T | − |S ∩ T |)
2

n(n− 1)
.

(10)ǫ(S,T) = (|S||T | − |S ∩ T |)
2m

n(n− 1)
.

(11)dG =
2m

n(n− 1)
,

(12)e
(1)

ab
=

(

kakb −
1

2
(ka + kb)(1+ kab)+ kab

)

dG

(13)e
(2)

ab
=

(

kakb −
1

2
(ka + kb)− kab

)

dG

(14)
e
(3)

ab
=

(

kakb −
1

2
(ka + kb)kab

)

dG

Page 9 of 25Zhang et al. J Big Data (2017) 4:11

• • Scheme 4:

Preferential attachment random graph generation model

The Erdős- Rnyi model generates graphs that are lacking some important properties of
real-world data, in particular the power law of the degree distribution [1]. Next we intro-
duce a random graph generation model using a preferential attachment mechanism that
generates a random graph in which degrees of each node are known. Our preferential
attachment random graph generation model (PA model) is closely related to the modu-
larity measurement that evaluates the community structure in a graph. Newman defines
the modularity value as the difference of the actual number of edges and the expected
number of edges of two communities [22]. The way of calculating the expected number
of edges between two communities follows preferential attachment mechanism instead
of using the Erdős- Rényi model. In the Erdős- Rényi model, each node is picked with the
same probability. However, by the preferential attachment mechanism, the nodes with
high degrees are picked with high probabilities. Thus an edge is more likely to link nodes
with a high degree.

We can apply the preferential attachment strategy to generate a random graph with n
nodes, m edges and each node has a predefined degree value. We first break each edge
into two ends and put all the 2m ends into an urn. A node with degree k will have k enti-
ties in the urn. At each round, we randomly pick two ends (one at a time with substitu-
tion) from the urn, link them with an edge and put them back into the urn. We repeat
this procedure m times. We call this procedure Preferential Attachment Random Graph
Generation model, or PA model in short. Note, we may generate duplicate edges or even
self-loops with this procedure. Thus the expected number of edges estimated by this
model is higher than a model that does not generate duplication edges and self-loops.
This defect can be ignored when ka and kb are small. Later we will show a method that
can compensate this bias, especially when ka and kb are large.

If we have two nodes a and b, the probability that an edge is formed in each round is:

Then the expected number of edges that link the nodes a and b after m iterations is:

If we have two sets of nodes S and T, the expected number of edges that link the nodes
in set S and the nodes in set T is:

Applying Eq. (18) to the four schemes defined in "Schemes of node neighborhood sets",
we get the expected number of edges for each scheme is

(15)e
(4)

ab
= (kakb − kab)dG

(16)pab =
kakb

2m2
.

(17)eab =
kakb

2m
.

(18)ǫ(S,T) =
∑

a∈S

∑

b∈T

eab =
1

2m

∑

a∈S

∑

b∈T

kakb.

Page 10 of 25Zhang et al. J Big Data (2017) 4:11

• • Scheme 1:

• • Scheme 2:

• • Scheme 3:

• • Scheme 4:

Authentic score using the PA model

Authentic score compensation

We may apply Eqs. (19), (20), (21) or (22) to Eq. (6) to calculate the authentic score of
an edge. As mentioned in "Preferential attachment random graph generation model",
the PA model generates graphs with duplicate edges and self-loops. Thus the estimated
expected number of edges that link two sets of nodes are higher than an accurate model.
The gap is even more significant when the number of edges is large. To compensate for
this bias, we refine the authentic score function for the PA model as

where γ > 1. The power function of the first term increases the value, especially when
mab is large. This eventually compensates the bias introduced in the second term. In
practice, we normally choose γ = 2.

Matrix of degree products

To get eab using Eqs. (19), (20), (21) or (22), we should find the sum of kakb for every pair
of nodes in the corresponding edge-ego-network. We can store the values of kakb for
every pair of nodes to prevent unnecessary multiplication operations and thus reduce
the processing time. However, storing this information would require a storage space in
the order of n2, which is not applicable when n is large. We observe that we do not need

(19)e
(1)

ab
=

1

4m







�

i∈P
(1)
a,b

�

j∈R
(1)
a,b

kikj +
�

i∈P
(1)
b,a

�

j∈R
(1)
b,a

kikj







(20)e
(2)

ab
=

1

4m







�

i∈P
(2)
a,b

�

j∈R
(2)
a,b

kikj +
�

i∈P
(2)
b,a

�

j∈R
(2)
b,a

kikj







(21)e
(3)

ab
=

1

4m







�

i∈P
(3)
a,b

�

j∈R
(3)
a,b

kikj +
�

i∈P
(3)
b,a

�

j∈R
(3)
b,a

kikj







(22)e
(4)

ab
=

1

4m







�

i∈P
(4)
a,b

�

j∈R
(4)
a,b

kikj +
�

i∈P
(4)
b,a

�

j∈R
(4)
b,a

kikj







(23)sab = m
γ

ab
− eab,

Page 11 of 25Zhang et al. J Big Data (2017) 4:11

to calculate the product of the degrees for every pair of nodes in graph G. What we need
is the pair of nodes that appear together in every edge-ego-network.

The distance of two nodes in a graph is defined as the length of the shortest path
between them. It is easy to see that the maximum distance of two nodes in an edge-ego-
network is 3. Next, we use the property of the adjacency matrix to find the pairs of nodes
that appear together in edge-ego-networks.

Let dij be the distance of node i and node j. Let B(k) = Ak, where A is the adjacency
matrix of graph G and k is a natural number. Let Bij(k) be the element of the matrix
B(k). Then Bij(k) is the number of walks with length k between node i and node j. If
Bij(k) = 0 , there is no walk with length k between nodes i and j.

Proposition 3.1  If dij = k, Bij(k) �= 0

Proof  If dij = k, there exists at least one path with length k from node i to node j. Since
a path of a graph is a walk between two nodes without repeating nodes, there exists at
least one walk with length k between the node i and the node j. So Bij(k) �= 0.

Theorem 4  Let K (k) = B(1)+ B(2)+ · · · + B(k). If dij ≤ k, Kij(k) �= 0

Proof  Let dij = l, where l ≤ k. From Proposition 3.1, Bij(l) �= 0. Since B(k) is a nonneg-
ative matrix where Bij(k) ≥ 0, we have Kij(k) = Bij(1)+ · · · + Bij(l)+ · · · + Bij(k) �= 0.

According to Theorem 4, to find the pairs of nodes with a distance of 3 or less, we need
to find the nonzero elements in matrix K(3). Let I be the indicator matrix whose ele-
ments indicate whether the distance between a pair of nodes is equal to or less than 3.
Such that:

Let matrix D denote the degree matrix whose diagonal elements are the degree of each
node, that is:

Let

where ◦ denotes the Hadamard product of two matrices. The value of the nonzero ele-
ments in matrix E is the expected number of edges between the two nodes under the
PA model. Using matrix E, we can easily calculate the authentic score for each scheme.
For example the authentic score of the edge ab using scheme 1 and the score function
defined by Eq. (6) is:

(24)Iij =

{

1 if Kij(3) �= 0

0 if Kij(3) = 0
.

(25)Dij =

{

ki if i = j
0 otherwise

.

(26)E =
1

2m

(

(DI) ◦ (DI)T
)

,

Page 12 of 25Zhang et al. J Big Data (2017) 4:11

Evaluation of the proposed algorithms
In this section we evaluate the performance of the proposed outlier edge detection algo-
rithms. Due to the availability of the datasets with identified outlier edges, we gener-
ate test data by injecting random edges to real-world graphs. This experimental setup is
effective to evaluate algorithms that detect outliers, since the injected edges are random
thus do not follow the actual principle that generated the real-world graph. We also eval-
uate the proposed outlier detection algorithms by measuring the change of some impor-
tant graph properties when outlier edges are removed. In next section, we will show that
the proposed algorithms are not only effective in simulated data but also powerful in
solving real-world problems in many areas.

We first inject edges to a real-world graph data by randomly picking two nodes from
the graph and linking them with an edge, if they are not linked. The injected edges are
formed randomly, and thus they do not follow any underlying rule that generated the
real-world graph. An outlier edge detection algorithm returns the authentic score of
each edge. Given a threshold value, the edges with lower scores are classified as outliers.

With multiple algorithms, we vary the threshold value and record the true positive
rates and the false positive rates of each algorithm. We use the receiver operating char-
acteristic (ROC) curve—a plot of true positive rates against false positive rates at various
threshold values—to subjectively compare the performance of different algorithms. We
also calculate the area under the ROC curve (AUC) value to quantitatively evaluate the
competing algorithms.

Comparison of different combinations of the proposed algorithm

The proposed algorithm involves two random graph generation models and four
schemes. Two authentic score functions are proposed for the PA Model. With the first
experiment, we study the performance of different combinations using real-world graph
data.

We take the Brightkite graph data as the test graph [23]. Brightkite is a social network
service in which users share their location information with their friends. The Bright-
kite graph contains 58, 228 nodes and 214, 708 edges. The data was received from the
KONECT graph data collection [24].

We injected 1000 random “false” edges to the graph data. If an algorithm yields the
same authentic scores to multiple edges, we randomly order these edges. We compare
the detection results of the algorithms using the Erdős- Rényi (ER) model and the PA
model with the combination of the four schemes explained in "Schemes of node neigh-
borhood sets" and the two score functions defined in Eqs. (6) and (23). Table 1 shows the
AUC values of the ROC curves of all combinations. Italic font indicates the best score
among all of them.

From the experimental results, we see that the performance of the PA model with
score function defined by Eq. (23) is clearly better than that of the score function defined
by Eq. (6). The term mγ in Eq. (23) increases the value even more when m is large. After

(27)s
(1)

ab
=
1

2







�

i∈P
(1)
a,b

�

j∈R
(1)
a,b

�

Aij − Eij
�

+
�

i∈P
(1)
b,a

�

j∈R
(1)
b,a

�

Aij − Eij
�






.

Page 13 of 25Zhang et al. J Big Data (2017) 4:11

the bias of the PA model is corrected, the performance of the outlier edge detection
algorithm is greatly improved. The choice of the score function defined by Eqs. 6 and 23
has little impact to the ER model based algorithms.

The results also show that the combination of the PA model and the score func-
tion defined by Eq. (23) is superior than other combinations by a significant margin.
Scheme 2 gives better performance than the other schemes, especially for ER Model
based algorithms. In the rest of this paper, we use scheme 2 for the ER Model based algo-
rithm. With the combination of the PA Model and the score function defined by Eq. 23,
the difference between each scheme is insignificant. Because of the symmetric property
of scheme 4, we use it for the PA model with the score function defined by Eq. 23.

Comparison of outlier edge detection algorithms

In this section we perform comparative evaluation of the proposed outlier edge detec-
tion algorithms against other algorithms. All test graphs originate from the KONECT
graph data collection. Table 2 shows some parameters of the test graph data. The density
of a graph is defined in Eq. (11). GCC, which stands for the global clustering coefficient,
is a measure of clustering property of a graph. It is the ratio of the number of closed tri-
angles and the number of connected triplet nodes. The higher GCC value is, the stronger
clustering property a graph has.

We compared the performance of the two proposed algorithms [ER model combined
with scheme 2 and the score function defined by Eq. (6) and PA model combined with
scheme 4 and the score function defined by Eq. (23)] with three other algorithms that
use node similarity scores for missing edge detection. We use the Jaccard Index and
Hub Promoted Index (HPI) as defined in Eqs. (3) and (4). We also use the preferential

Table 1  AUC values of the ROC curves using Brightkite graph Data

Italic indicates the best score of each experiment

ER model PA model

Eq. (6) Eq. (23) Eq. (6) Eq. (23)

Scheme 1 0.885 0.885 0.880 0.904

Scheme 2 0.885 0.885 0.882 0.905

Scheme 3 0.878 0.878 0.873 0.902

Scheme 4 0.879 0.879 0.878 0.903

Table 2  Test graph data for comparing outlier edge detection Algorithms

Nodes Edges Density GCC (%) Reference

Advogato 6.5 k 51 k 1.2× 10
−3 9.2 [25]

Twitter-icwsm 465 k 835 k 3.9× 10
−6 0.06 [26]

Brightkite 58 k 214 k 1.3× 10
−4 11 [23]

Facebook-wosn 63 k 817 k 4.0× 10
−4 14.8 [27]

Ca-cit-HepPh 28 k 4.6 m 8.0× 10
−3 28 [28]

Youtube-friend 1.1 m 3.0 m 4.6× 10
−6 0.6 [29]

Web-Google 875 k 5.1 m 6.7× 10
−6 5.5 [30]

Page 14 of 25Zhang et al. J Big Data (2017) 4:11

attachment index (PAI) that is another missing edge detection metric that works for out-
lier edge detection. The PAI for edge ab is defined as

Figure 3 shows the ROC curves of different algorithms on the Brightkite graph data. For
reference, the figure also shows an algorithm that randomly orders the edges by giving
random scores to each edge.

As Fig. 3 shows, the ROC curve of the algorithm that gives random scores is roughly a
straight line from the origin to the top right corner. This line indicates that the algorithm
cannot distinguish between an outlier edge and a normal edge, which is expected. The
ROC curve of an algorithm that can detect outlier edges should be a curve above this
straight line, as all algorithms used in this experiment. As mentioned in "Motivation",
the Jaccard Index and HPI both use the number of common neighbors. Thus their scores
are all 0 for edges that connect two end nodes that do not share any common neighbors.
In real-world graphs, a large amount of edges have a Jaccard Index or HPI value 0, espe-
cially for graphs that contain many low degree nodes.

The PAI value is the product of the degrees of the two end nodes of an edge. Sorting
edges with their PAI values just puts the edges with low degree end nodes to the front.
The figure shows that the PAI value can detect outlier edges with fairly good perfor-
mance. This indicates that most of the injected edges connecting the nodes with low
degrees. Considering most of the nodes in a real-world graph are low degree nodes, this
is an expected behavior.

Figure 3 indicates that the proposed outlier edge detection algorithms are clearly supe-
rior to the competing algorithms. The algorithm based on the PA model performs better
than the one based on the ER model.

Table 3 shows the AUC values of the ROC curves on all test graph data. Italic font
shows the best AUC values for each test graph.

The comparison results show that the PA model algorithm gives consistently good per-
formance regardless of the test graph data. The experiment also shows the correlation

(28)sPAI = kakb.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
Po

si
tiv

e
R

at
e

ER Model

NM Model

Jaccard

HPI

PAI

Random

Fig. 3  ROC curve of different algorithms on the Brightkite graph data. The curves of the proposed methods
are clearly above other competing methods

Page 15 of 25Zhang et al. J Big Data (2017) 4:11

between the performance of the algorithms that are based on the random graph gen-
eration model and the GCC value of the test graph. For example, the ER model and PA
model algorithms works better on Facebook-Wosn and Brightkite graph data, which
have high GCC values as shown in Table 2. Performance of the ER model algorithm
degrades considerably on graphs with a very low GCC value, such as the twitter-icwsm
graph. This result agrees with the fact that both the ER model and the PA model algo-
rithms use the clustering property of graphs. We also observe that PAI works better on
graphs with low GCC values. We estimate that these graphs contain many star struc-
tures and two nodes with low degrees are rarely linked by an edge. The large number of
claw count (28 billion) and small number of triangle count (38 k) in twitter-icwsm graph
data partially confirm our estimation.

Change of graph properties

The proposed outlier edge detection algorithms are based on the clustering property of
graphs. Since outlier edges are defined as edges that do not follow the clustering prop-
erty, removing them should increase the coefficients that measure this property. On the
other hand, some outlier edges (also called weak links in this aspect) serves an impor-
tant role to connect remote nodes or nodes from different communities. Removing
such edges should also extensively increase the distance of the two end nodes. Thus the
coefficients that measure the distance between the nodes of a graph shall increase when
outlier edges are removed. In this experiment, we verify these changes caused by the
removal of the detected outlier edges.

The global clustering coefficient (GCC) and the average local clustering coefficient (ALCC)
are the de facto measures of the clustering property of graphs. GCC is defined in "Compari-
son of outlier edge detection algorithms". Local clustering coefficient (LCC) is the ratio of the
number of edges that connect neighboring nodes of a node and the number of all possible
edges that connect these neighboring nodes. The LCC of node a can be expressed as

Average local clustering coefficient is the average of the local clustering coefficients of all
nodes in the graph.

We use diameter, the 90-percentile effective diameter (ED) and the mean shortest
path (MSP) length as distance measures between the nodes in a graph. Diameter is the

(29)ca =

∣

∣

{

ij|i ∈ Na, j ∈ Na, ij ∈ E
}∣

∣

ka(ka − 1)
.

Table 3  AUC values of the ROC curves on different graph data

Italic indicates the best score of each experiment

ER PA Jaccard HPI PAI

Advogato 0.887 0.893 0.858 0.859 0.877

Twitter-icwsm 0.531 0.942 0.527 0.530 0.997

Brightkite 0.885 0.905 0.833 0.827 0.873

Facebook-wosn 0.968 0.970 0.947 0.946 0.878

Ca-cit-HepPh 0.970 0.967 0.993 0.991 0.888

Youtube-friend 0.770 0.842 0.731 0.738 0.898

Web-Google 0.985 0.992 0.944 0.945 0.859

Page 16 of 25Zhang et al. J Big Data (2017) 4:11

maximum shortest path length between any two nodes in a graph. 90-percentile effec-
tive diameter is the number of edges that are needed on average to reach 90% of other
nodes. The mean shortest path length is the average of the shortest path length between
each pair of nodes in the graph. Note, if the graph is not connected, we measure the
diameter, ED and MSP of the largest component in the graph.

In this experiment, we removed 5% of the edges with the lowest authentic score.
Table 4 shows the GCC, ALCC, Diameter, ED and MSP values before and after the out-
lier edges were removed. For comparison, we also calculated values of these coefficients
after same amount of edges are randomly removed 5% from the graph.

The results show that removing the detected outlier edges clearly increases the GCC
and ALCC values, while random edge removal slightly decreases the values. This con-
firms the enhancement of the clustering property after outlier edges are removed. The
diameter, ED and MSP values all increase when the detected outlier edges were removed.
This increase is much more significant than when random edges were removed. This
also confirms the theoretical prediction.

Applications
In this section, we demonstrate various applications that benefit from the proposed
outlier edge detection algorithms. In these applications, we use the algorithm of the PA
model combined with scheme 4 and the score function defined by Eq. 23.

Impact on graph clustering algorithms

Graph clustering is an important task in graph mining [31–33]. It aims to find clusters in
a graph- a group of nodes in which the number of inner links between the nodes inside
the group is much higher than that between the nodes inside the group and those out-
side the group. Many techniques have been proposed to solve this problem [34–37].

The proposed outlier edge detection algorithms are based on the graph clustering
property. They find edges that link the nodes in different clusters. These edges are also
called weak links in the literature. With the proposed techniques, we can now remove
detected outlier edges before applying a graph clustering algorithm. This should improve
the graph clustering accuracy and reduce the computational time.

In this application, we evaluate the performance impact of the proposed outlier edge
detection technique on different graph clustering algorithms. We use simulated graph
data with cluster structures as used in [36, 38–40]. We generated test graphs of 512
nodes. The average degree of each node is 24. The generated cluster size varies from
16 to 256. Let dout be the average number of edges that link a node from the cluster to

Table 4  Graph properties changes after noise edges removal

Original ER model PA model Random

GCC 0.111 0.121 0.120 0.105

ALCC 0.172 0.180 0.183 0.158

Diameter 18 19 20 18

ED 5.91 6.78 6.36 5.95

MSP 3.92 4.10 4.10 3.95

Page 17 of 25Zhang et al. J Big Data (2017) 4:11

nodes outside the cluster. Let d be the average degree of the node. Let µ = dout
d

 be the
parameter that indicates the strength of the clustering structure. The smaller µ is, the
stronger the clustering structure is in the graph. We varied µ from 0.2 to 0.5. Note, when
µ = 0.5, the graph has a very weak clustering structure, i.e. a node inside the cluster has
an equal number of edges that link it to other nodes inside and outside the cluster.

We use the Normalized Mutual Information (NMI) to evaluated the accuracy of a
graph clustering algorithm. The NMI value is between 0 and 1. The larger the NMI value
is, the more accurate the graph clustering result is. An NMI value of 1 indicates that the
clustering result matches the ground truth. More details of the NMI metric can be found
in [35, 41].

We first apply graph clustering algorithms to the test graph data and record their NMI
values and computational time. Then we remove 5% of the detected outlier edges from
the test graph data, and apply these graph clustering algorithms again to the new graph
and record their NMI values and computational time. The differences of the NMI values
and the computational time show the impact of the outlier edge removal on the graph
clustering algorithms.

The evaluated algorithms are LRW [42], GN [36], SLM [43], Danon [38], Louvain [34]
and Infomap [44]. MCL [45] is not listed since it failed to find the cluster structure from
this type of test graph data.

We repeated the experiment 10 times and calculated the average performance. Table 5
shows the NMI values before and after outlier edges were removed. The first number in
each cell shows the NMI values of the clustering result on the original graph and the sec-
ond number shows the NMI values of the clustering result on the graph after the outlier
edges were removed.

Table 6 shows the NMI value changes in percentage. A positive value indicates that the
NMI value has increased.

The results show that outlier edge removal improves the accuracy of most graph clus-
tering algorithms. The clustering accuracy of the SLM algorithm and the Louvain algo-
rithm decrease slightly in some cases.

Table 7 shows the computational time changes in percentage before and after outlier
edges are removed. Negative values indicate that the computational time is decreased.

These results show that outlier edge removal decreases the computational time of
most algorithms used in the experiment. In some cases, SLM and the Louvain algo-
rithms show significant gains in computation time. Note further that the increase of the

Table 5  The NMI values before and after outlier edges were removed

µ LRW GN SLM Danon Louvain Infomap

0.2 1.0/1.0 0.99/1.0 1.0/1.0 0.99/1.0 1.0/1.0 1.0/1.0

0.25 0.97/1.0 0.98/0.99 1.0/1.0 0.99/0.98 1.0/1.0 1.0/1.0

0.3 0.89/0.95 0.93/0.97 1.0/1.0 0.95/0.98 1.0/1.0 0.92/1.0

0.35 0.78/0.82 0.74/0.72 0.96/0.94 0.66/0.84 0.90/0.86 0.36/0.91

0.4 0.80/0.86 0.66/0.70 0.83/0.81 0.67/0.70 0.84/0.81 0.78/0.83

0.45 0.25/0.73 0.53/0.52 0.71/0.67 0.51/0.55 0.68/0.60 0.22/0.43

0.5 0.03/0.61 0.39/0.47 0.58/0.56 0.39/0.49 0.51/0.53 0/0.47

Page 18 of 25Zhang et al. J Big Data (2017) 4:11

computational time in the Infomap algorithm leads to a crucial improvement of the clus-
tering accuracy.

Outlier node detection in social network graphs

As mentioned in "Previous work", many algorithms have been proposed to detect outlier
nodes in a graph. In this section we present a technique to detect outlier nodes using the
proposed outlier edge detection algorithm.

In a social network service, if a user generates many links that do not follow the clus-
tering property, we have good reasons to suspect that the user is a scammer. To detect
this type of outlier nodes, we can first detect outlier edges. Then we find nodes that are
the end points of these outlier edges. Nodes that are linked to many outlier edges are
likely to be outlier nodes.

In this application, we use Brightkite data for outlier node detection. In the experi-
ment, we rank the edges according to their authentic scores. We take the first 1000 edges
as outlier edges and rank each node according to the number of outlier edges that it is
connected to.

Table 8 shows the top 8 detected outlier nodes: the node ID, the number of outlier
edges that the node links, the degree of the node, the rank of the degree among all nodes
and LCC values of the node.

The results show that the detected outlier nodes tend to have large degree values. In
particular, the LCC values of the detected outlier nodes are extremely low comparing
to the ALCC value (0.172) of the graph. This shows that the neighboring nodes of the
detected outlier nodes have very weak clustering property.

Table 6  Changes of normalized mutual information on graph clustering algorithms in per-
centage

µ LRW GN (%) SLM Danon (%) Louvain Infomap

0.2 0 0.8 0 1.0 0 0

0.25 3.3% 1.5 0 −1.0 0 0

0.3 7.3% 5.0 0 3.5 0 9.1%

0.35 5.7% −2.2 −2.1 26 −4.9% 155%

0.4 8.5% 6.7 −2.2 4.8 −3.0% 5.8%

0.45 190% −1.1 −6.2 8.4 −12% 95%

0.5 1730% 19 −4.4 26 2.4% ∞

Table 7  Changes of computational time on graph clustering algorithms in percentage

µ LRW (%) GN (%) SLM (%) Danon (%) Louvain (%) Infomap (%)

0.2 −52 −11 −36 −3.1 −33 −47

0.25 −23 −18 1.0 −1.0 −41 −16

0.3 −8.9 −9.3 7.7 −1.4 −31 −13

0.35 −11 −0.3 −21 −3.5 −35 31

0.4 −11 −5.7 −5.3 −3.0 −20 17

0.45 −16 2.8 −14.4 2.1 −41 33

0.5 −21 −6.7 −1.9 −3.4 −39 55

Page 19 of 25Zhang et al. J Big Data (2017) 4:11

Clustering of noisy data

Clustering is one of the most important tasks in machine learning [46]. During the last
decades, many algorithms have been proposed, i.e. [47–49]. The task becomes more
challenging when noise is present in the data. Many algorithms, especially connectivity-
based clustering algorithms, fail over such data. In this section we present a robust clus-
tering algorithm that uses the proposed outlier edge detection techniques to find correct
clusters in noisy data.

Graph algorithms have been successfully used in clustering problems [50, 51]. To
cluster the data, we first build a mutual k-nearest neighbor (MKNN) graph [52, 53]. Let
x1, x2, . . . , xn ∈ Rd be the data points, where n is the number of data points and d is the
dimension of the data. Let d(xi, xj) be the distance between two data points xi and xj. Let
Nk(xi) be the set of data points that are the k-nearest neighbors of the data point xi with
respect to the predefined distance measure d

(

xi, xj
)

. Therefore, the cardinality of the set
Nk(xi) is k. A MKNN graph is built in the following way. The nodes in the MKNN graph
are the data points. Two nodes xi and xj are connected if xi ∈ Nk(xj) and xj ∈ Nk(xi). The
constructed MKNN graph is unweighted and undirected.

With a proper distance function, data points in a cluster are close to each other
whereas data points in different clusters are far away from each other. Thus, in the con-
structed MKNN graph, a node is likely to be linked to other nodes in the same cluster
while the links between the nodes in different clusters are relatively less. This indicates
that the MKNN graph has the clustering property similar to social network graphs.

Outlier data points are normally far away from the normal data points. Some outlier
nodes form isolated small components in the MKNN graph. However, the outlier nodes
that fall between the clusters form bridges that connect different clusters. These bridges
greatly degrade the performance of connectivity-based clustering algorithms, such as
single-linkage clustering algorithm and complete-linkage clustering algorithm [46].

Based on these observations, we propose a hierarchical clustering algorithm by itera-
tively removing edges (weak links) according to their authentic scores. When a certain
amount of outlier edges is removed, different clusters form separate large connected
components—a connected component in a graph that contains a large proportion of
the nodes, and it is straightforward to find them in the graph. A breadth-first search or
a depth-first search algorithm can find all connected components in a graph with the
complexity of O(n), where n is the number of nodes. At each iteration step, we find large

Table 8  Outlier node detection results on Brightkite graph

Node id Outlier edges Degree Degree rank LCC

41 21 1134 1 0.005

458 16 1055 2 0.001

115 9 838 4 0.004

175 7 270 39 0.001

989 7 270 40 0.015

2443 7 379 16 0.010

36 5 467 11 0.005

158 5 833 5 0.004

Page 20 of 25Zhang et al. J Big Data (2017) 4:11

connected components in the MKNN graph and the data points that do not belong to
any large connected components are classified as outliers.

Using the proposed algorithm, we cluster a dataset taken from [54]. Figure 4 shows
some results of different number of detected clusters. Outliers are shown in light gray
color and data points in different clusters are shown in different colors.

As the Fig. 4 shows, the proposed algorithm cannot only classify outliers and nor-
mal data points but also find clusters in the data points. As more and more edges are
removed from the MKNN graph, the number of clusters increases.

Next we show how to determine the true number of clusters. Table 9 shows the num-
ber of removed edges and the number of detected clusters of this dataset.

As the result shows, removing a small amount of edges is enough to find correct clus-
ters in the data. One has to remove a large amount of edges to break a genuine cluster
into smaller components. We can simply define a threshold and stop the iteration if the
number of clusters does not increase any more.

To illustrate the performance of the proposed clustering algorithm, we use synthetic
data that are both noisy and challenging. Figure 5 shows the test datasets. We used tools
from [55] to generate the normal data points and added random data points as noise.

In our experiments, we use the Euclidean distance function. The number of nearest
neighbors is 30. At each iteration step, we remove 0.1% of total number of edges accord-
ing to their authentic scores. A large connected component is a component whose size is

(a) (b)

(c) (d)

(e) (f)
Fig. 4  Given the number of clusters, the clustering results of a dataset taken from [54]. a 1 cluster; b 2 clus-
ters; c 4 clusters; d 5 clusters; e 6 clusters; f 7 clusters

Table 9  Percentage of the removed edges and the number of detected clusters

Removed edges 2.6% 2.7% 2.8% 3.5% 6% 33.3%

Number of clusters 2 3 4 5 6 7

Page 21 of 25Zhang et al. J Big Data (2017) 4:11

larger than 5% of the total number of nodes. The clustering termination threshold is set
as 10% of the total number of edges.

We compare the proposed clustering algorithm with the k-means[46], the average-
linkage (a-link) [46], the normalized cuts (N-Cuts) [56] and the graph degree linkage
(GDL) [49] clustering algorithms. Since the competing algorithms cannot detect the
number of clusters, we use the value from the ground truth. Table 10 shows the NMI
scores of the proposed algorithm and the competing algorithms.

The results show that the k-means and the average linkage clustering algorithms fail on
complex-shaped clusters. GDL and the proposed algorithms are all graph-based cluster-
ing algorithms. They are able to find clusters with arbitrary shapes. From the NMI scores,
the proposed algorithm is clearly superior to the competing clustering algorithms.

Conclusions
In real-world graphs, in particular social network graphs, there are edges.

generated by scammers, malicious programs or mistakenly by normal users and the
system. Detecting these outlier edges and removing them will not only improve the
efficiency of graph mining and analytics, but also help identify harmful entities. In this
article, we introduce outlier edge detection algorithms based on two random graph

(a) (b) (c)

(d) (e) (f)
Fig. 5  Synthetic datasets for clustering. Clusters are separated by different colors and noise data is shown by
grey dots. a two spirals; b corners; c half kernels; d unbalanced densities; e cluster in cluster; f crescent and full
moon

Table 10  Clustering of noisy data results

Italics indicates the best score of each experiment

Dataset k-Means a-Link N-Cuts GDL Proposed

(a) 0.031 0.099 0.053 0.650 0.672

(b) 0.743 0.743 0.743 0.743 0.848

(c) 0 0.004 0.559 0.654 0.755

(d) 0.208 0.161 0.367 0.553 0.619

(e) 0.001 0.133 0.680 0.701 0.744

(f) 0.001 0.162 0.627 0.612 0.714

Page 22 of 25Zhang et al. J Big Data (2017) 4:11

generation models. We define four schemes that represent relationships of two nodes
and the groups of their neighboring nodes. We combine the schemes with the two ran-
dom graph generation models and investigate the proposed algorithms theoretically.
We tested the proposed outlier edge detection algorithms by experiments on real-world
graphs. The experimental results show that our proposed algorithms can effectively
identify the injected edges in real-world graphs. We compared the performance of our
proposed algorithms with other outlier edge detection algorithms. The proposed algo-
rithms, especially the algorithm based on the PA model, give consistently good results
regardless of the test graph data. We also evaluated the changes of graph properties
caused by the removal of the detected outlier edges. The experimental results show an
increase in both the clustering coefficients and the increase of the distance between the
nodes in the graph. This is coherent with the theoretical predictions.

Further more, we demonstrate the potential of the outlier edge detection using three
different applications. When used with the graph clustering algorithms, removing out-
lier edges from the graph not only improves the clustering accuracy but also reduces the
computational time. This indicates that the proposed algorithms are powerful preproc-
essing tools for graph mining. When used for detecting outlier nodes in social network
graphs, we can successfully find outlier nodes whose behavior deviates dramatically
from that of normal nodes. We also present a clustering algorithm that is based on the
edge authentic scores. The clustering algorithm can efficiently find true data clusters by
excluding noises from the data.

Outlier edge detection has great potentials in numerous Big Data applications. In the
future, we will apply the proposed outlier edge detection algorithms in applications in
other fields, for example computer vision and content-based multimedia retrieval in
the Big Visual Data. We observed that nodes and edges outside edge-ego-network also
contain valuable information in outlier detection. However, using this information dra-
matically increases the computational cost. We will work on fast algorithms that can effi-
ciently use the structural information of the whole graph.

Abbreviations
ALCC: average local clustering coefficient; AUC: area under the curve; CN: common neighbors; ED: effective diameter; ER:
Erdős- Rényi; GCC: global clustering coefficient; GDL: graph degree linkage; GN: Girvan–Newman; HDI: hub depressed
index; HPI: hub promoted index; LCC: local clustering coefficient; LRW: limited random walk; MC: mean conductance;
MCL: Markov Clustering Algorithm; MKNN: mutual k-nearest neighbor; MSP: mean shortest path; NMI: Normalized
Mutual Information; N-Cuts: normalized cuts; PA: preferential attachment; PAI: preferential attachment index; ROC:
receiver operating characteristic; SLM: smart local moving.

Authors’ contributions
HZ carried out the conception and design of the study, participated in the analysis and interpretation of data, and was
involved in drafting and revising the manuscript. SK and MG made substantial contributions to the design of the study,
the analysis and interpretation of the data, and were involved in critically reviewing the manuscript. All authors read and
approved the final manuscript.

Author details
1 Department of Signal Processing, Tampere University of Technology, Finland, Korkeakoulunkatu 1, FI‑33101 Tampere,
Finland. 2 Electrical Engineering Department, College of Engineering, Qatar University, Qatar, 2713, Al Hala St, Doha,
Qatar.

Competing interests
The authors declare that they have no competing interests.

Funding
Achademy of Finland supported this research.

Page 23 of 25Zhang et al. J Big Data (2017) 4:11

Appendix: Proof of Theorem 2

Proposition 6.1  α(S ∪ T ,R) = α(S,R)+ α(T ,R) if S ∩ T = ∅.

Proof  Let A be the adjacency matrix of an unweighted and undirected graph G. We
have α(S,T) =

∑

i∈S

∑

j∈T Aij. Given S ∩ T = ∅,

Next we prove Theorem 2.

Proof  For scheme 4, P(4)

a,b = Sa\b, R
(4)

a,b = Sb\a, P
(4)

b,a = Sb\a and R(4)

b,a = Sa\b. Using Theo-
rem 1, we can easily get α

(

P
(4)

a,b ,R
(4)

a,b

)

= α

(

P
(4)

b,a ,R
(4)

b,a

)

.

To prove Theorem 2 for scheme 2, we divide the nodes in edge-ego-network Gab into
five mutually exclusive sets:

• • V1 =
{

x|x ∈ Na and x /∈ Sb
}

;
• • V2 =

{

x|x ∈ Nb and x /∈ Sa
}

;
• • V3 =

{

x|x ∈ Na and x ∈ Nb

}

;
• • V4 = {a};
• • V5 =

{

b
}

.

From the definition, we have

Using the definition of α(S,T) and Proposition 6.1, we get

and

α(S ∪ T ,R) =
∑

i∈S∪T

∑

j∈R

Aij

=
∑

i∈S

∑

j∈R

Aij +
∑

i∈T

∑

j∈R

Aij

= α(S,R)+ α(T ,R)

P
(2)

a,b = Na\b = V1 ∪ V3,

R
(2)

a,b = Sb\a = V2 ∪ V3 ∪ V5,

P
(2)

b,a = Nb\a = V2 ∪ V3,

R
(2)

b,a = Sa\b = V1 ∪ V3 ∪ V4.

(30)

α

(

P
(2)

a,b ,R
(2)

a,b

)

=α(V1 ∪ V3,V2 ∪ V3 ∪ V5)

=α(V1,V2)+ α(V1,V3)+ α(V1,V5)

+ α(V3,V2)+ α(V3,V3)+ α(V3,V5)

(31)

α

(

P
(2)

b,a ,R
(2)

b,a

)

=α(V2 ∪ V3,V1 ∪ V3 ∪ V4)

=α(V2,V1)+ α(V2,V3)+ α(V2,V4)

+ α(V3,V1)+ α(V3,V3)+ α(V3,V4)

Page 24 of 25Zhang et al. J Big Data (2017) 4:11

Taking the fact that α(V1 ∩ V5) = 0, α(V2 ∩ V4) = 0, and α(V3,V4) = α(V3,V5), the
right hand side of Eqs. 30 and 31 are equal. Thus α

(

P
(2)

a,b ,R
(2)

a,b

)

= α

(

P
(2)

b,a ,R
(2)

b,a

)

.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 8 February 2017 Accepted: 13 April 2017

References
	1.	 Newman M. Networks: an introduction. 1st ed. New York: Oxford; 2010.
	2.	 Jiang M, Cui P, Beutel A, Faloutsos C, Yang S. CatchSync: catching synchronized behavior in large directed graphs. In:

Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining., KDD ’14.
New York: ACM; 2014. p. 941–50.

	3.	 Beutel A, Xu W, Guruswami V, Palow C, Faloutsos C. CopyCatch: stopping group attacks by spotting lockstep behav-
ior in social networks. In: Proceedings of the 22nd international conference on World Wide Web, 2013. p. 119–130.

	4.	 Yu R, Qiu H, Wen Z, Lin C, Liu Y. A survey on social media anomaly detection. SIGKDD Explor Newslett.
2016;18(1):1–14.

	5.	 Akoglu L, Tong H, Koutra D. Graph based anomaly detection and description: a survey. Data Mining Knowl Discov.
2015;29(3):626–88.

	6.	 Noble CC, Cook DJ. Graph-based anomaly detection. In: Proceedings of the Ninth ACM SIGKDD international
conference on knowledge discovery and data mining. KDD ’03, Washington, D.C. New York: ACM; 2003. p. 631–636.
doi:10.1145/956750.956831.

	7.	 Dai H, Zhu F, Lim EP, Pang H. Detecting anomalies in bipartite graphs with mutual dependency principles. In: 2012
IEEE 12th international conference on data mining (ICDM). IEEE; 2012. p. 171–80.

	8.	 Henderson K, Gallagher B, Eliassi-Rad T, Tong H, Basu S, Akoglu L, Koutra D, Faloutsos C, Li L. Rolx: structural role
extraction & mining in large graphs. In: Proceedings of the 18th ACM SIGKDD international conference on knowl-
edge discovery and data mining. ACM; 2012. p. 1231–9.

	9.	 Hodge VJ, Austin J. A survey of outlier detection methodologies. Artif Intell Rev. 2004;22(2):85–126.
	10.	 Xu X, Yuruk N, Feng Z, Schweiger TAJ. SCAN: a structural clustering algorithm for networks. Proceedings of the 13th

ACM SIGKDD international conference on knowledge discovery and data mining., KDD ’07. New York: ACM; 2007. p.
824–33.

	11.	 Gao J, Liang F, Fan W, Wang C, Sun Y, Han J. On community outliers and their efficient detection in information net-
works. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining.,
KDD ’10. New York: ACM; 2010. p. 813–22.

	12.	 Akoglu L, McGlohon M, Faloutsos C. oddball: spotting anomalies in weighted graphs. In: Zaki MJ, Yu JX, Ravindran
B, Pudi V, eds. Advances in knowledge discovery and data mining. Lecture notes in computer science. 2010. pp.
410–421.

	13.	 Liu L, Zuo WL, Peng T. Detecting outlier pairs in complex network based on link structure and semantic relationship.
Expert Syst Appl. 2017;69:40–9.

	14.	 Chakrabarti D. AutoPart: parameter-free graph partitioning and outlier detection. In: Boulicaut JF, Esposito F, Gian-
notti F, Pedreschi D, eds. Knowledge discovery in databases: PKDD 2004. Lecture notes in computer science. 2004. p.
112–24.

	15.	 Easley D, Kleinberg J. Networks, crowds, and markets: reasoning about a highly connected world. Cambridge Uni-
versity Press; 2010.

	16.	 Lu L, Zhou T. Link prediction in complex networks: a survey. Physica A Stat Mech Appl. 2011;390(6):1150–70.
	17.	 Barbieri N, Bonchi F, Manco G. Who to follow and why: link prediction with explanations. In: Proceedings of the 20th ACM

SIGKDD international conference on knowledge discovery and data mining., KDD ’14. New York: ACM; 2014. p. 1266–75.
	18.	 Freeman LC. Centered graphs and the structure of ego networks. Math Soc Sci. 1982;3(3):291–304.
	19.	 Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’networks. Nature. 1998;393(6684):440–2.
	20.	 Coscia M, Rossetti G, Giannotti F, Pedreschi D. DEMON: a local-first discovery method for overlapping communities.

In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining., KDD
’12. New York: ACM; 2012. p. 615–23.

	21.	 Bollobás B. Random graphs. 2 ed. Cambridge : New York; 2001.
	22.	 Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci. 2006;103(23):8577–82.
	23.	 Cho E, Myers SA, Leskovec J. Friendship and mobility: user movement in location-based social networks. In: Pro-

ceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. New York:
ACM; 2011. p. 1082–90.

	24.	 Kunegis J. Konect: the koblenz network collection. In: Proceedings of the 22nd international conference on World
Wide Web. New York: ACM; 2013. p. 1343–50.

	25.	 Massa P, Salvetti M, Tomasoni D. Bowling alone and trust decline in social network sites. In: IEEE International confer-
ence on dependable, autonomic and secure computing, 2009. DASC’09 Eighth. 2009. p. 658–63.

	26.	 De Choudhury M, Lin YR, Sundaram H, Candan KS, Xie L, Kelliher A. How does the data sampling strategy impact the
discovery of information diffusion in social media? ICWSM. 2010;10:34–41.

http://dx.doi.org/10.1145/956750.956831

Page 25 of 25Zhang et al. J Big Data (2017) 4:11

	27.	 Viswanath B, Mislove A, Cha M, Gummadi KP. On the evolution of user interaction in facebook. In: Proceedings of the
2nd ACM workshop on online social networks. New York: ACM; 2009. p. 37–42.

	28.	 Leskovec J, Kleinberg J, Faloutsos C. Graph evolution: densification and shrinking diameters. ACM Transa Knowl
Discov Data. 2007;1(1):2.

	29.	 Yang J, Leskovec J. Defining and evaluating network communities based on ground-truth. Knowl Inform Syst.
2015;42(1):181–213.

	30.	 Leskovec J, Lang KJ, Dasgupta A. Statistical properties of community structure in large social and information net-
works. In: Proceedings of the 17th international conference on World Wide Web. New York: ACM; 2008. pp. 695–704.

	31.	 Fortunato S. Community detection in graphs. Phys Rep. 2010;486(3–5):75–174.
	32.	 Coscia M, Giannotti F, Pedreschi D. A classification for community discovery methods in complex networks. Stat

Anal Data Min. 2011;4(5):512–46.
	33.	 Papadopoulos S, Kompatsiaris Y, Vakali A, Spyridonos P. Community detection in social media. Data Min Knowl

Discov. 2011;24(3):515–54.
	34.	 Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech

Theory Exp. 2008;2008(10):10008.
	35.	 Danon L, Diaz-Guilera A, Duch J, Arenas A. Comparing community structure identification. J Stat Mech Theory Exp.

2005;2005(09):09008.
	36.	 Newman ME, Girvan M. Finding and evaluating community structure in networks. Phys Rev E. 2004;69(2):026113.
	37.	 Schaeffer SE. Graph clustering. Comput Sci Rev. 2007;1(1):27–64.
	38.	 Danon L, Díaz-Guilera A, Arenas A. The effect of size heterogeneity on community identification in complex net-

works. J Stat Mech Theory Exp. 2006;2006(11):11010.
	39.	 Lancichinetti A, Fortunato S, Radicchi F. Benchmark graphs for testing community detection algorithms. Phys Rev E.

2008;78(4):046110.
	40.	 Newman ME. Fast algorithm for detecting community structure in networks. Phys Rev E. 2004;69(6):066133.
	41.	 Ana LN, Jain AK. Robust data clustering. In: Proceedings 2003 IEEE computer society conference on computer vision

and pattern recognition, 2003. vol. 2, p. 128–1332.
	42.	 Zhang H, Raitoharju J, Kiranyaz S, Gabbouj M. Limited random walk algorithm for big graph data clustering. J Big

Data. 2016;3(1):26.
	43.	 Waltman L, Eck NJV. A smart local moving algorithm for large-scale modularity-based community detection. The.

Eur Phys J B. 2013;86(11):1–14.
	44.	 Rosvall M, Bergstrom CT. Maps of random walks on complex networks reveal community structure. Proc Natl Acad

Sci. 2008;105(4):1118–23.
	45.	 Dongen S. Graph clustering by flow simulation. PhD thesis, Utrecht: Universiteit Utrecht; 2000.
	46.	 Theodoridis S, Koutroumbas K. Pattern recognition. 4 ed. Amsterdam; 2008.
	47.	 Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM Comput Surv. 1999;31(3):264–323.
	48.	 Lloyd S. Least squares quantization in PCM. IEEE Trans Inform Theory. 1982;28(2):129–37.
	49.	 Zhang W, Wang X, Zhao D, Tang X. Graph degree linkage: agglomerative clustering on a directed graph. In: Fitzgib-

bon A, Lazebnik S, Perona P, Sato Y, Schmid C, editors. Computer Vision - ECCV 2012. Lecture Notes in Computer
Science. 2012. p. 428–41.

	50.	 Harel D, Koren Y. On clustering using random walks. In: Hariharan R, Vinay V, Mukund M, editors. FST TCS 2001:
Foundations of software technology and theoretical computer science. Lecture notes in computer science. 2001.
pp. 18–41.

	51.	 Dong X, Frossard P, Vandergheynst P, Nefedov N. Clustering with multi-layer graphs: a spectral perspective. IEEE
Trans Sign Process. 2012;60(11):5820–31.

	52.	 Brito MR, Chávez EL, Quiroz AJ, Yukich JE. Connectivity of the mutual k-nearest-neighbor graph in clustering and
outlier detection. Stat Probab Lett. 1997;35(1):33–42.

	53.	 Ozaki K, Shimbo M, Komachi M, Matsumoto Y. Using the mutual k-nearest neighbor graphs for semi-supervised clas-
sification of natural language data. In: Proceedings of the fifteenth conference on computational natural language
learning. 2011. p. 154–62.

	54.	 Karypis G, Han E-H, Kumar V. Chameleon: hierarchical clustering using dynamic modeling. Computer.
1999;32(8):68–75.

	55.	 6 functions for generating artificial datasets - File Exchange - MATLAB Central. http://se.mathworks.com/matlabcen-
tral/fileexchange/41459. Accessed 23 Feb 2017.

	56.	 Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell. 2000;22(8):888–905.

http://se.mathworks.com/matlabcentral/fileexchange/41459
http://se.mathworks.com/matlabcentral/fileexchange/41459

	Outlier edge detection using random graph generation models and applications
	Abstract
	Background
	Previous work
	Methods
	Notation
	Motivation
	Schemes of node neighborhood sets
	Expected number of edges between two sets of nodes
	Erdős- Rényi random graph generation model
	Preferential attachment random graph generation model

	Authentic score using the PA model
	Authentic score compensation
	Matrix of degree products

	Evaluation of the proposed algorithms
	Comparison of different combinations of the proposed algorithm
	Comparison of outlier edge detection algorithms
	Change of graph properties

	Applications
	Impact on graph clustering algorithms
	Outlier node detection in social network graphs
	Clustering of noisy data

	Conclusions
	Authors’ contributions
	References

