
Vaccination allocation in large dynamic
networks
Justin Zhan1*†, Timothy Rafalski1†, Gennady Stashkevich2† and Edward Verenich2†

Background
Event propagation over a network is a complex and frequently studied human phenom-
ena [1–3]. Historical examples of information exchange between humans in a social net-
work, past and present, can be seen during colonial expansion of the British Empire [4],
memes passed between friends on any assortment of social networks on the internet [1]
and transmission of human or animal pathogens such as the virus H1N1 over airways
[5]. In the information age computer networks can mirror these types of information
exchange, with event information being passed along from node to node when network
neighbors communicate through various network protocols [6].

This information can be useful, whether in the form of postal delivery of early colonial
directives and parcels [4], neutral, shared irrelevant Facebook posts [7], or detrimental,
such as human pathogens or computer attacks [5, 8]. In this paper we will use consist-
ent terminology of a negative event for the purpose of visualization for the reader. Some
examples may include: how to spread, as in infection, or how to prevent the spread, as
in vaccination, of this negative event, or attack. Malicious attacks can take many forms,
such as, malware, viruses, undesirable information, or even memes that might violate
a networks posting policy [8, 9]. In terms of this paper “vaccination”? is defined as a
set of nodes that can be inoculated, removed, and/or protected from these malicious
attacks. The main assumption is that if these specific sets of nodes are given pre-emptive

Abstract 

Network infections that are already in progress cause challenges to those officers try-
ing to preserve those nodes not yet infected. Static solutions can take advantage of
global knowledge of the network to produce quick and approximate answers for those
members who should be vaccinated. In dynamic situations however, small changes
can severely alter those static solutions making them irrelevant. Yet in dynamic situa-
tions it can not be known with certainty which small changes will affect the solution
and those that will not. Computational resources are wasted recalculating a global
solution for the entire network, when a local recalculation may be enough. This paper
presents a dynamic node vaccination solution that seeks to take advantage of these
local recalculations.

Keywords:  Dynamic networks, Immunization, Dominance tree

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Zhan et al. J Big Data (2017) 4:2
DOI 10.1186/s40537-016-0061-4

*Correspondence:
justin.zhan@unlv.edu
†All the authors have equal
contributions

1 Department of Computer
Science, University of Nevada,
4505 Maryland Parkway, Las
Vegas, NV 89154, USA
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-016-0061-4&domain=pdf

Page 2 of 17Zhan et al. J Big Data (2017) 4:2

measures then the attack will only be effective on a minimum number of nodes in the
network.

The development and growth of networks has led to a diverse number of academic
domains with shared properties and/or unique properties. Network traversal by means
of graph theory [10], network communication protocols [6], static networks [11],
dynamic networks [9] and network security [12] are network domains with similar ter-
minology and visualizations. If a similarity exists across such diversity then it is possi-
ble to explore a similar solution that models important aspects borrowed from similar
domains. This paper examines networks with nodes that are sparsely connected that
may have a hierarchical structure that can be exploited using parts of graph theory to
develop a solution.

Large networks can suffer disastrous results if an attack is allowed to migrate over a
network. Various problems have been considered in the literature regarding this issue.
Stopping a known attack at a source node before it can infect its neighbor nodes is a
trivial problem. Once the attack spreads beyond the source node, however, its complex-
ity rises as more nodes are exposed and infected through available edges [13]. Another
trivial situation for an active infection network is if the amount of vaccine available is
much larger than the number of non-infected adjacent nodes to any infected nodes. The
more typical case occurs when non-infected nodes outnumber the amount of vaccine by
a large degree [11]. This limitation causes a cost-benefit solution for which choices must
be made in order to create an outcome that is favorable to the network administrators.
Giving system administrators a variety of implementations allows them to choose the
best option, or possible combinations of near optimal solutions, for their system [14].

Several solutions exist to prevent the spread of attacks over closed static systems;
however these solutions have limited application to dynamic systems. An effective solu-
tion for arbitrary static networks with sparse connectivity is called Data-Aware Vac-
cine Allocation [11] or DAVA. DAVA is a framework that treats infected sub-graphs as
super nodes and all its infected node neighbors as rooted bidirectional sub-trees that
has a representational optimal solution in the form of a set of adjacent neighbors of the
infected root super node. The framework determines this set by using a benefit system
derived from a probability of propagation set, an infection set, and the main network
graph. Thoroughly discussed by Zhang and Prakash the DAVA algorithm has been
proven effective for “vaccine” distribution over an arbitrary network given prior infor-
mation [11]. However this solution has limited application if new nodes are being added
to the network over a consistent time interval.

Large networks that are dynamic have vulnerabilities because of the changes made to
the network in real time [9]. Complications arise when new nodes vary in their impor-
tance to the networks due to location of edges and varying probability to infection [8].
For example a node could be added to the network that has edges to nodes that were not
connected before or that create a cycle that was not present before the edge was added.
This addition may or may not change the overall benefit of the sub-tree that contains
the node due to probability changes or dominance changes caused by this addition. In a
static system this addition or removal now would represent a new graph which requires
the entire network to be examined from the start. This paper seeks to make the distinc-
tion that these new nodes will not necessarily alter the current benefit solution of its

Page 3 of 17Zhan et al. J Big Data (2017) 4:2

associated sub-trees thus would not alter the optimal solution; it would require less work
than recalculating the entire tree with new benefits and optimal solution. As a bonus,
overall network information would be gained that could be applied to machine learn-
ing to enhance the information about this network. This gain might be exploited when
examining local or global solutions.

Similarly to a multi-task learning problem [2], dynamic network node vaccination,
or removal, has a main task, namely the optimal solution and then sub tasks to calcu-
late and determine the overall benefit for top-k vaccination order subgroups. Individual
nodes that have outlier tendencies might alter any current branch benefit, thus alter-
ing the top-k benefit order. It is from this concept that the idea of local solutions are of
greater interest than global solutions for dynamic networks. If these local changes could
be determined to have little or no changes to the benefits of the global sub-tree to which
the local solution belongs, then it maybe possible to exploit this information to make an
algorithm more efficient.

This paper presents a dynamic network algorithm, VAILDN, that is able to receive
nodes sequentially from a network and then devise an optimal set of vaccination nodes
to ensure maximum protection of the network. While performing effectively on static
solutions DAVA group of algorithms slow down due to the fact that the global solution
always must be determined, even though changes may occur only for local solutions.
This paper will show that it is possible to adjust the optimal solution without examining
the entire network which will save time over static algorithms. In addition this paper will
show that VAILDN has the same level of accuracy as do DAVA type algorithms.

Dynamic solutions using dominator trees also present challenges that are not consid-
ered when using static solutions. These challenges include the addition or removal of
edges to the graph that may redraw the dominator tree if a cycle is created or destroyed.
In a dynamic environment it is possible that children may be detected before the parents
in terms of the overall graph. This will not affect the global solution however, as edges
are added, local connections and dominance are built that could be exploited for time
saving when any parent does arrive.

In this paper first related works are discussed in “Preliminaries” section. The main
algorithm is broken into three phases and presented in “Experiments” section. “Results”
section describes the experiments in which this algorithm was compared to random
baseline algorithms and vaccination methods for static networks. The final sections dis-
cuss the experimental results and the conclusions, including suggestions for future work.

Related work
This paper combines several resources into a cohesive solution that would be able to deal
with active infections in a large dynamic network. Static solutions for networks having
prior information were examined [15] and interesting solutions are present that could be
expanded to dynamic networks by using a multi-task approach. Topics for consideration
include, epidemiology, multi-task learning, data-aware vaccination allocation, domi-
nance trees, network hierarchy, and large dynamic network optimization.

The topic of population vaccination has been well studied with a variety of mod-
els based on different approaches. Sometimes the global solution may not be obvious
[16] or maybe difficult to obtain [17]. A localized approach could target specific groups

Page 4 of 17Zhan et al. J Big Data (2017) 4:2

that are known to have higher propagation probabilities or more frequent contact with
infected. A global static approach could be too costly due to number of nodes in the net-
work [14]. A dynamic solution that examines edges could be beneficial in calculating the
optimal solution [16].

In references to “Data-Aware Vaccination Allocation” [11] this paper demonstrates
that the Data Aware Vaccination problem is NP-hard using a reduction from the MinKU
set problem [18]. In order to demonstrate the variety of the problem and the general
application of DAVA two common discrete-time models were used for virus infection,
the susceptible-infected-removed (SIR) model and the immune response (IR) model.
The SIR model [19] used for the general case, is based on chicken-pox-like infections,
during which a time cycle consists of two phases, an independent infection probabil-
ity and a recovery probability δ. If an infection is transferred from an infected node to
a healthy node successfully (the probability of the infection is given by the weights of
the edges) then that healthy node will be infected during next round. If recovery of an
infected node occurs, then that node is “cured” and no longer will able to participate in
the epidemic. The second model, the IR model [11], is a specific case of the SIR model
during which the interaction between an infected and a healthy node happens only once,
and the recovery probability, δ = 1. The solution algorithms suggested by Zhang and
Prakash the DAVA, DAVA-prune, and DAVA fast algorithms were demonstrated to per-
form better within static networks in which an infection already was in progress when
compared with five different static network algorithms.

This paper presents the propagation probabilities based on population simulations.
Due to the related natures of networks and human communities [20] it was worth
exploring to simulate how human communities interact in order to assign non-random
meaning to the propagation. A normalization of a population simulation yields sufficient
data values to test the research. People can be considered nodes and their contact can
be considered edges. Much like human populations contact among nodes is dynamic
and should benefit from a dynamic solution. Contacts of certain individuals may have
more weight than others thus the importance of calculating a local solution needs to be
stressed. For example the elderly or infirm might be of concern only to their local group
associations rather than to the network as a whole [17].

Network exploration and node importance are two fundamental concepts to this work.
Research in the field of network exploration has resulted in many good algorithms and
two popular methods include depth-first-search (dfs) [21] and breadth-first-search (bfs)
[10]. Dfs can be used to maximize propagation results as well as to define subdomina-
tors and dominators [11] as a dominator tree is built. Dfs is an effective tool for network
exploration when the entire network is known and is relatively sparse. Highly connected
graphs will benefit more from bfs due to the exploration of individual levels before the
depth of each sub-tree is explored. This distinction is important for this study because
the assumption for a dominance tree is based around the fact that the nodes are sparsely
connected. Dominator trees are used to discover the interconnectedness of nodes in a
sparse network [21]. A dominator tree will yield sub-trees that show the relative connec-
tion between nodes, thus can yield maximum solutions based on those sub-trees [11]. If
the structure of a dominator tree is correct [22] a new relational mapping of a network
can be built quickly to determine which parent nodes singularly expose their children

Page 5 of 17Zhan et al. J Big Data (2017) 4:2

to infection. A dominator tree shows that if there is a non-unique cycle between two
nodes x and y then x and y will be the only common nodes to all paths. As nodes in
a network become more and more connected, dominance will lose its significance as
many nodes begin to share the same dominator. This is why the assumption was made
in this study that the graphs had some hierarchical structure present and that they were
sparsely connected.

The building of the dominator tree becomes more challenging in a dynamic setting.
Shortest path algorithms were shown to be useful to determine dominance in linear time
[23]. In a dynamic setting it is not simply the shortest path alone which determines dom-
inance. Any edge that creates a cycle between nodes in a sub-tree will upset the domi-
nance and create the need to recalculate dominance for any nodes who are siblings to
any node in the cycle. Another consideration for dominance is when an edge is removed
the original dominance must be restored to all nodes that were either in the shortest
path to the dominator or those neighbors of the shortest path nodes.

A multi-task solution is necessary for large dynamic networks due to the number of
sub-problems created by sequential node entry into the network. Collaborative Online
Multi-task Learning (COML) [2], an important aspect considered in this study was writ-
ten to deal with the discovery of individual distributions that may not be properly rec-
ognized by the main task. It is the dynamic nature of the sub-trees that are formed with
sequential node entry into the network that can form these subtasks. COML demon-
strates that subtasks can be learned effectively at the same time as the main task. Thus
information about individuals and the group are maintained independent of each other.
Predictions made from using these learned distributions could be useful in making clas-
sifications for unknown instances that enter the system.

One of the main libraries used for implementation was the networkX library. This
package is a library of graph objects and a variety of associated functions beneficial to
this study. It was possible to use the graph representations as a cornerstone for the build-
ing, analysis, and traversal of the network. This graph could then be dissected into its
representative dominance tree in order to yield the final solution [24].

Preliminaries
Notation

For the infectionSetMerge algorithm

• • graph represents a networkx graph object
• • infectedSet is a list of nodes all who can propagate the infection
• • InfectedSuper is the name for the node, I ′x, that will represent the node with all

infected edges and will serve as the root of the dominance tree
• • x is each member of the infected set
• • y is a variable that represents the other vertex that shares an edge with x
• • pIx ,y is the propagation probability of that edge
• • newGraph is the resultant graph with all infected nodes merged into one super

infected node

For the BuildTree algorithm

Page 6 of 17Zhan et al. J Big Data (2017) 4:2

• • graph is the newGraph from infectedSetMerge with the infected super node infect-
edSuper

• • changedsub-trees is a list of sub-trees from the super node that have been altered by
the addition or removal of an edge

• • Tree and domTree are the dominance tree being built with the infected super node
as root

• • Tree.benefit is the associated benefit dictionary that is based off of domTree

For the solutionDecision algorithm

• • k is the number of available vaccines
• • The table of benefits is retrieved from the dominance tree.

Algorithm outline

This paper outlines three main phases used in the study to implement the process of
node detection which would maximize the number of “saved” nodes if an attack already
is in progress. These three phases which were incorporated into the final algorithm are:

Phase1 The InfectionSetMerge phase,during which all connected infected nodes are
combined into one supernode that will server as the root in Phase 2.
Phase2 The Tree Building phase, during which the nodes are entered sequentially and
the sub-trees are built, propagation probabilities are set, and sub-trees are marked if
changed; and
Phase3 The Benefit and Solution Decision phase during which, if necessary, the ben-
efits are recalculated and compared to the current solution set. If there is a difference
all benefits are sorted and the solution set of the top-k benefits are chosen.

InfectionSetMerge

In many cases in which a negative event is occurring, many nodes might be present
whose neighbors are infected. Edges between any number of these infected nodes in a
path can be condensed into a single node. For purposes of this experiment once a node
was infected it remained as such. The purpose of this phase was to condense the Infec-
tion Set into a single node, which then was used as the root for the master tree from
which the optimal solution was derived. The algorithm for building this single node can
be stated as follows: if there is a edge between two infected nodes then a union of those
two nodes is performed. The infection propagation then must be updated to reflect the
propagation of both nodes. Once this has been completed a single node is returned. As
further research continues in this field, it might be possible to consider the possibility of
multiple non-connected infection nodes, which would be put into a final Infection Set
where each set would have its optimal solution. Algorithm 1 for InfectionSetMerge is
expressed as follows:

Page 7 of 17Zhan et al. J Big Data (2017) 4:2

Tree Building

The Tree Building phase has two main goals using a similar idea structure to a multitask
learning model [8]. Nodes are entered sequentially and processed for each goal. In the
initial stages this algorithm must calculate and store an entire collection of propagation
probabilities. Then the dominance tree is built using relations between nodes. Due to the
nature of dominance, while the graph contains the edges of the tree, new edges now are
in the tree that represent dominance only; these new nodes do not actually exist in the
original graph. This can complicate the real time solution due to the fact that edges that
are added may create new edges in the tree thus altering dominance while edges that are
removed may cause some of these dominance tree edges to represent an incorrect level
of dominance that must be found and corrected. As the tree is being built any changed
sub-tree from the infected super node was tracked in order to recalculate benefit for
Phase 3. Algorithm 2 for BuildTree is as follows:

Solution Decision

The last step keeps track of all the current benefits of sub-trees as nodes are added and/
or removed in real time. This means that the solution set can be achieved by sorting the
benefits sub-trees that have root nodes that are the neighbors of the infected super node

Page 8 of 17Zhan et al. J Big Data (2017) 4:2

and then returning the solution set. It is assumed that there always will be changes to the
sub-trees as nodes are added and removed. This step must be performed each time but
at a minimal cost. Algorithm 3 for SolutionDecision is as follows:

Vaccine allocation in large dynamic network

Given a set of sequentially input nodes, n(x, y), where x is a vector of neighbors, and y
is the probability of an infection, an active infection set I, and a budget k of vaccination
allocation can be an output of the optimal vaccination solution set. This protects the
maximum number of nodes that can be achieved only when changes to the top-k benefit
sub-trees have been detected. The overall solution combines the three phases from the
above subsections. The time saved in performing the benefit checks as new nodes are
added to the network will make this program more efficient than running the optimal
solution program by itself, especially as the network grows in size.

Complexity analysis

The time complexity analysis for Phase 1 mainly is dependent on the number of nodes
in the infections set. Each recursion from InfectionSetMerge Line 14 would be a subset
of the main Infection Set thus the time complexity would be O(|IV | + |IE|). BuildTree
is based upon taking the graph, building the dominance tree representation of the graph
and then calculating the dictionary of benefits for the individual sub-trees. This makes
the worst time O(|V| + |E|) with the additional constant costs of calculating the ben-
efits. At this point, there is a significantly large difference between a static approach and
a dynamic approach. Static algorithms must repeat this process for each benefit needed
regardless if it is new or not. In the real time solution the average time is dependent
on the number of sub-trees changed by the addition or removal of an edge. There are
constant multipliers that are dependent on the number of sub-trees changed; however
in sparsely connected graphs this number always should be much lower than the total
of the sub-trees in the graph. Also another factor that may change the solution is how
close the sub-trees are to the infected supernode. Changes to nodes close to the infected
super node will require rebuilding large sections of the current dominance tree. Again,

Page 9 of 17Zhan et al. J Big Data (2017) 4:2

the overall changes to the graph should not be close to the infected set (Note For the
Gnutella set only 400 edges are adjacent to the infected super node out of 20,000 edges
in total). The third phase is a linear sorting of the benefits dictionary. A rare but worst
case for sorting for this would be O(n); however this is an extreme exception [25]. The
average case is O(1).

Experiments
The goal of this experimentation was to answer the following questions:

• • How does the algorithm developed in this study compare speed and accuracy with
the baseline algorithms?

• • How does the speed of this algorithm compare with DAVA Prune and DAVA fast?
• • How does the accuracy of this algorithm compare to DAVA fast?

Settings

The baseline algorithms used were: k-random, k-random adjacent, and k-random tier
1. The algorithm k-random chooses the k-random nodes for vaccination. The adjacent
k-random algorithm randomly chooses nodes that are neighbors of the infected super
node using the graph as a basis. k-random tier 1 randomly chooses nodes that are sub-
trees of the infected super node. Due to dominance, in the study there have might have
been edges between the infected supernode and its neighbors that were not present in
the graph. In addition the DAVA, DAVA-fast, and DAVAprune algorithms were imple-
mented for comparison. Due to the real time nature of the data the original code as pre-
sented by Li et al. [2] was not used for tests in this study. However the algorithms were
maintained by means of an implementation that used their paper as a guide. If a domi-
nance tree was needed for an algorithm, k-random tier 1 or DAVA-prune for example,
the tree was built using the BuildTree algorithm from this paper in order to maintain
consistency and reduce variability. The first set of tests used the IR model and a propaga-
tion of 1. Later tests used a variety of propagations, either 0.5 or 0.9, in order to simulate
the propagation of negative information across the network.

The tests were ran at the Supercomputing Center, Cherry Creek, at University of
Nevada Las Vegas (UNLV). The trials were run on a single node with two Intel Xeon
E5-2697v2 12core, 128Gb ram [26].

Three main sources of data were used (Table 1). The first was a random driver that cre-
ated a network of random size with a random number of infected nodes. The number of
nodes that were adjacent to the infected node also were randomized. For each random
run those adjacent to the infected super node were slightly different; however the results
were consistent for all the trials. The second dataset was obtained from the Stanford
Network Analysis Project (SNAP), which is the Gnutella peer to peer network from 2002
with 6301 nodes and 20,777 edges [27]. The third set was an undirected graph of emails,
also from SNAP, and consisted of 36,692 nodes and 183,831 edges [27]. While the first
data source was used to test the concept, the other networks provided real world solu-
tion sets with scalabilities that could be compared to other networks.

The trial driver used to test the algorithms attempted to simulate a real time network.
The network was created, either by means of the random driver or by using a .csv file of

Page 10 of 17Zhan et al. J Big Data (2017) 4:2

edges obtained from SNAP. Periods then were created to simulate changes in the net-
work over time. For the purposes of this experiment a dynamic solution was presented
in which changes might occur to the network as the solution was being run. Changes
that occured that may affect the network included both adding and removing edges. The
changes for each period were randomized for each trial but were kept consistent while
the algorithms were run. Changes were made to the graph and then a copy of that graph
was passed to each of the algorithms. The changes were chosen randomly using stand-
ard randomization functions (Python™). The percent of node change and variance for
each period were fixed in order to demonstrate the concept and to reduce difference
in performance. The time and infection results were averaged over 100 runs for each
algorithm.

Results
Figure 1a shows the time comparison for the baseline algorithms, DAVA types, and
VAILDN for the Email-Enron set, and Fig. 1b is the time comparison for the baseline
algorithms, DAVA types, and VAILDN for the Gnutella set. The complete rebuilding of
the dominance tree accumulated more and more costs as the number of vaccines were
increased. This cost increase grew as the networks grew. The slope for the VAILDN algo-
rithm demonstrates a slower growth as the network increased in size. Figure 1c repre-
sents the time comparison for the baseline algorithms, DAVA types, and VAILDN with
the random set.

Figure 2a, the Gnutella set, and Fig. 2b, the random set, present a zoom in of the ran-
dom algorithms and VAILDN. These figures demonstrate how VAILDN’s cost saving
measures are consistent when compared to simply randomly choosing k nodes for vac-
cination and choosing k random nodes that are adjacent to the infected super node. The
overall results show that using the Enron set, the Gnutella set, and random set VAILDN
performs faster than the DAVA types and with similar times to the k-random algorithms.

As shown in Fig. 3 even when the propagation is changed there is little change in the
performance of the various algorithms. Because benefit calculation is similar for each
of the algorithms not much change was expected. The benefit calculation is similar in
all algorithms thus improvements were seen in which the sub-trees are recalculated if a
change in the sub-tree was made.

Figure 4 shows the number of infected nodes that result once the k vaccinations have
been delivered. Figure 4a is the Enron set, Fig. 4b is the Gnutella set, and Fig. 4c is the
random set. In all cases VAILDN has similar numbers to the DAVA algorithms. All these
outperform the random algorithms. There was a loss in the accuracy of VAILDN as the
network got larger when compared to the DAVA algorithms but this loss decreases as

Table 1  Dataset information

Set name Total nodes Infected set infectedSuper adj

Random 4000 300 525

Gnutella 6301 53 401

Email-Enron 36,692 200 1932

Page 11 of 17Zhan et al. J Big Data (2017) 4:2

the size of the network increases. In the Gnutella set the loss is about 2 and 0.04% in the
Enron set. This groups still outperforms the random algorithms.

Discussion
These experiments demonstrate how a real time solution for a dynamic network can
outperform a static solution. VAILDN is able to compute the solution as edges are exam-
ined in real time. This suggests that a local solution to the vaccination problem may be
a better overall solution as the network grows in size or has a global solution that is dif-
ficult to calculate. Random vaccination is fast but it is not as effective as VAILDN.

Fig. 1  Top-k vaccines and the average time in seconds per run. a Enron set. b Gnutella set. c Random set

Page 12 of 17Zhan et al. J Big Data (2017) 4:2

The main assumption for algorithms that use dominance as a basis is that either there
are sparse connections or there is some overall hierarchical structure to the network.
Network analysis in a static situation can reveal this type of information with many of
the basic tools already established, such as depth first or breadth first searches. Dynamic
networks, however present a complex field of parameters that can confound a single
method of finding a solution. A dynamic network that is relatively stable might mimic a
static environment; however edges can still be presented that could disrupt the assump-
tions of dominance or sparsity.

In VAILDN adding edges allowed the exploitation of the current dominance tree in
order to establish new dominance of siblings and children. The removal of edges pre-
sented a specific challenge because after removing an edge the current tree structure
gave little information about how to restore dominance. This is in contrast to adding
edges where the dominance tree structure is already present. The method that was used
relied on determining the siblings of each level for all the grandchildren of the common
dominator. Removing edges was the most time consuming part of the algorithm, if it
could be improved the efficiency will increase even more.

Fig. 2  Time comparison zoom of Gnutella and Random. a Gnutella set. b Random set

Page 13 of 17Zhan et al. J Big Data (2017) 4:2

In Fig. 5 VAILDN still compares similarly to the DAVA algorithms with regards to
accuracy. The change in the weight calculation does little to affect the benefit solution.
These results suggest that VAILDN is still beneficial with varying weight differences.

Conclusion and future work
A real time solution is able to deal with the reality of a modern and changing network
dynamic. A solution can be determined quickly, as only the information local to the
incoming, or removed, edge is considered. The accuracy of VAILDN is comparable to
the static solution with diminishing losses. This means a network can make real time
decisions about how the information is being distributed over the network. Dynamic
networks offer difficult challenges with regard to issue detection. This algorithm is able
to determine a real time solution with the assumption that the network is sparse.

Densely connected graphs create a low level dominance tree that makes finding the
optimal solution challenging. To compensate for this a few future directions are open
for exploration. This solution can be further refined by adding a factor that will calculate
how much effect an edge propagation might have on its sub-tree solution. This will allow
no change to the solution set if a small benefit is added, thus saving time. This could rep-
resent highly unlikely, yet present, connections between network members.

To continue this research, community clusters, rather than dominance trees, might
be another structure for detecting the optimal solution. Even if a community is densely

Fig. 3  Average runtime of Gnutella set at different propagations. a Gnutella set at p = 0.5. b Gnutella set at
p = 0.9

Page 14 of 17Zhan et al. J Big Data (2017) 4:2

connected, the communities themselves maybe sparsely connected. This implies that
with community detection, a local outbreak solution maybe able to be determined
quickly offering a better solution than the global solution. A machine learning approach
could be applied to determine which solution, dominance tree or community clustering,
presents the most beneficial to the host network in that configuration.

This paper used terminology that indicated the information that was propagated
was negative in nature (Table 2). This may not always be the case. The development of

Fig. 4  Comparison of average infected nodes. a Enron set. b Gnutella set. c Random set

Page 15 of 17Zhan et al. J Big Data (2017) 4:2

algorithms for information distribution with limited resources may be able to build on
this algorithm as a real time solution for information distribution. The real time solution
presented here is a heuristic solution that demonstrates the value of information propa-
gation over a dynamic network.
Author details
1 Department of Computer Science, University of Nevada, 4505 Maryland Parkway, Las Vegas, NV 89154, USA. 2 Air Force
Research Laboratory, 26 Electronics Parkway, Rome, NY 13341, USA.

Fig. 5  Comparison of average infected nodes with changed propagation. a Gnutella set at p = 0.5. b Gnu-
tella set at p = 0.9

Table 2  Acronym list

Acronym Meaning

bfs Breadth-first-search

COML Collaborative Onlinie Multi-task Learning

DAVA Data Aware Vaccine Allocation

dfs Depth-first-search

IR Immune Response (model)

NP-Hard Non-deterministic Polynomial-time Hard

SIR Susceptible-Infected-Removed (model)

SNAP Stanford Network Analysis Project

UNLV University of Nevada, Las Vegas

Page 16 of 17Zhan et al. J Big Data (2017) 4:2

Acknowledgements
We gratefully acknowledge the United States Department of Defense (W911NF-14-1-0119, W911NF-13-1-0130,
W911NF-16-1-0416), the National Science Foundation (1560625, 1137443, 1247663, 1238767), United Healthcare
Foundation (#1592), Oak Ridge National Laboratory (#4000144962), and National Consortium for Data Science for their
support. Through these financial support, the following articles have been published [28–42].

Authors’ contributions
 JZ, TR, GS, and EV developed the concept for the manuscript. JZ and TR drafted the manuscript. JZ, GS, and EV revised
the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 26 October 2016 Accepted: 9 December 2016

References
	1.	 Leskovec J, Backstrom L, Kleinberg J. Meme-tracking and the dynamics of the news cycle. In: Proceedings of the

15th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’09. New York: ACM;
2009. p. 497–506.

	2.	 Li G, Hoi SCH, Chang K, Liu W, Jain R. Collaborative online multitask learning. IEEE Trans Knowl Data Eng.
2014;26(8):1866–76.

	3.	 Wu Y, Deng S, Huang H. Information propagation through opportunistic communication in mobile social networks.
Mob Netw Appl. 2012;17(6):773–81.

	4.	 Nkwi WG, de Bruijn M. “Human Telephone Lines”: flag post mail relay runners in british southern cameroon
(1916–1955) and the establishment of a modern communications network. Int Rev Soc Hist; 59:211–35, 12 2014.
Copyright-Copyright © Internationaal Instituut voor Sociale Geschiedenis 2014; Last updated—2015-07-25;
SubjectsTermNotLitGenreText-Cameroon; United Kingdom–UK.

	5.	 Hwang GM, Mahoney PJ, James JH, Lin GC, Berro AD, Keybl MA, Goedecke DM, Mathieu JJ, Wilson T. A model-based
tool to predict the propagation of infectious disease via airports. Travel Med Infect Dis. 2012;10(1):32–42.

	6.	 Memon I. A secure and efficient communication scheme with authenticated key establishment protocol for road
networks. Wirel Pers Commun. 2015;85(3):1167–91.

	7.	 Pempek TA, Yermolayeva YA, Calvert SL. College students’ social networking experiences on facebook. J Appl Dev
Psychol. 2009;30(3):227–38.

	8.	 Cai F, Qingfeng H, LanSheng H, Li S, Xiao-Yang L. Virus propagation power of the dynamic network. EURASIP J Wirel
Commun Netw. 2013;2013(1):1–14.

	9.	 Wang J, Liu Y, Deng K. Modelling and simulating worm propagation in static and dynamic traffic. IET Intell Transp
Syst. 2014;8(2):155–63.

	10.	 Merrill D, Garland M, Grimshaw A. High-performance and scalable gpu graph traversal. ACM Trans Parallel Comput.
2015;1(2):14:1–30.

	11.	 Zhang Y, Prakash BA. Data-aware vaccine allocation over large networks. ACM Trans Knowl Discov Data.
2015;10(2):20:1–32.

	12.	 Battiti R, Cigno RL, Sabel M, Orava F, Pehrson B. Wireless LANs: from warchalking to open access networks. Mob
Netw Appl. 2005;10(3):275–87.

	13.	 Emmert-Streib F, Dehmer M. Exploring statistical and population aspects of network complexity. PLoS ONE.
2012;7(5):1–17.

	14.	 Dewri R, Ray I, Poolsappasit N, Whitley D. Optimal security hardening on attack tree models of networks: a cost-
benefit analysis. Int J Inform Secur. 2012;11(3):167–88.

	15.	 Yaesoubi R, Cohen T. Dynamic health policies for controlling the spread of emerging infections: influenza as an
example. PLoS ONE. 2011;6(9):1–11.

	16.	 Cohen R, Havlin S, ben Avraham D. Efficient immunization strategies for computer networks and populations. Phys
Rev Lett. 2003;91:247901.

	17.	 Dushoff J, Plotkin JB, Viboud C, Simonsen L, Miller M, Loeb M, et al. Vaccinating to protect a vulnerable subpopula-
tion. PLoS Med. 2007;4:05.

	18.	 Vinterbo SA. Privacy: a machine learning view. IEEE Trans Knowl Data Eng. 2004;16(8):939–48.
	19.	 Hethcote HW. The mathematics of infectious diseases. SIAM Rev. 2000;42:599.
	20.	 NDSSL. Synthetic data products for societal infrastructures and protopopulations: Data set 2.0. ndssl-tr-07-003. 2007.

http://ndssl.vbi.vt.edu/Publications/ndssl-tr-07-003.pdf.
	21.	 Lengauer T, Tarjan RE. A fast algorithm for finding dominators in a flowgraph. ACM Trans Program Lang Syst.

1979;1(1):121–41.
	22.	 Georgiadis L, Tarjan RE. Dominator tree certification and divergent spanning trees. ACM Trans Algorithms.

2015;12(1):11–42.
	23.	 Buchsbaum AL, Kaplan H, Rogers A, Westbrook JR. Corrigendum: a new, simpler linear-time dominators algorithm.

ACM Trans Program Lang Syst. 2005;27(3):383–7.
	24.	 Aric A, Hagberg, Daniel A. Schult, Pieter J. Swart. Exploring network structure, dynamics, and function using Net-

workX. In: Proceedings of the 7th Python in Science Conference (SciPy2008). Pasadena; 2008. p. 11–5.
	25.	 python. Time complexity. 2015. https://wiki.python.org/moin/TimeComplexity. Accessed 1 Aug 2016.
	26.	 NSCEE. How to run jobs with pbs/pro on cherry-creek. 2016. http://wiki.nscee.edu. Accessed 1 Aug 2016.

http://ndssl.vbi.vt.edu/Publications/ndssl-tr-07-003.pdf
https://wiki.python.org/moin/TimeComplexity
http://wiki.nscee.edu

Page 17 of 17Zhan et al. J Big Data (2017) 4:2

	27.	 Leskovec J, Krevl A. SNAP Datasets: Stanford large network dataset collection. 2014. http://snap.stanford.edu/data.
	28.	 Chopade P, Zhan J (2016) Towards a framework for community detection in large networks using game-theoretic

modeling. IEEE Trans Big Data (accepted)
	29.	 Pirouz M, Zhan J, Tayeb S (2016) An optimized approach for community detection and ranking. J Big Data 3:22
	30.	 Gan W, Lin C-W, Chao H-C, Zhan J (2016) Data mining in distributed environment: a survey. WIREs Data Min Knowl

Disc (accepted)
	31.	 Wu JM-T, Zhan J, Lin JC-W (2017) An ACO-based approach to mine high-utility itemsets. Knowl-Based Syst

116:102–113
	32.	 Lin JC-W, Yang L, Fournier-Viger F, Wu M-T, Hong T-P, Wang LS-L, Zhan J (2016) Mining high-utility itemsets based on

particle swarm optimization. J Eng Appl Artif Intell 55(C):320–330
	33.	 Lin JC-W, Wu T-Y, Fournier-Viger P, Lin G, Zhan J, Voznak M (2016) Fast algorithms for hiding sensitive high-utility

itemsets in privacy-preserving utility mining. J Eng Appl Artif Intell 55(C):279–284
	34.	 Lin JC-W, Li T, Fournier-Viger P, Hong T-P, Wu JM-T, Zhan J (2016) Efficient mining of multiple fuzzy frequent itemsets.

Int J Fuzzy Syst 18:1-9
	35.	 Lin JC-W, Li T, Fournier-Viger P, Hong T-P, Zhan J, Voznak M (2016) An efficient algorithm to mine high average-utility

itemsets. Adv Eng Inform 30(2):233–243
	36.	 Lin JC-W, Liu Q, Fournier-Viger P, Hong T-P, Voznak M, Zhan J (2016) A sanitization approach for hiding sensitive

itemsets based on particle swarm optimization. J Eng Appl Artif Intell 53(C):1–18
	37.	 Zhan J, Gudibande V, Parsa SPK (2016) Idenfication of Top-K influential communities in large networks. J Big Data

3:16
	38.	 Pirouz M, Zhan J (2016) Optimized relativity search: node reduction in personalized page rank estimation for large

graphs. J Big Data 3:12
	39.	 Selim H, Zhan J (2016) Towards shortest path identification on large networks. J Big Data 3:10
	40.	 Chopade P, Zhan J (2016) Structural and functional analytics for community detection in large-scale complex net-

works. J Big Data 2(1):1
	41.	 Fang X, Zhan J (2016) Sentiment analysis using product review data. J Big Data 2(1):1
	42.	 Zhan J, Fang X (2014) A computational framework for detecting malicious actors in communities. Int J Inf Priv Secur

Integr 2(1):1–20

http://snap.stanford.edu/data

	Vaccination allocation in large dynamic networks
	Abstract
	Background
	Related work
	Preliminaries
	Notation
	Algorithm outline
	InfectionSetMerge
	Tree Building
	Solution Decision
	Vaccine allocation in large dynamic network

	Complexity analysis

	Experiments
	Settings

	Results
	Discussion
	Conclusion and future work
	Acknowledgements
	References

