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Background
Event propagation over a network is a complex and frequently studied human phenom-
ena [1–3]. Historical examples of information exchange between humans in a social net-
work, past and present, can be seen during colonial expansion of the British Empire [4], 
memes passed between friends on any assortment of social networks on the internet [1] 
and transmission of human or animal pathogens such as the virus H1N1 over airways 
[5]. In the information age computer networks can mirror these types of information 
exchange, with event information being passed along from node to node when network 
neighbors communicate through various network protocols [6].

This information can be useful, whether in the form of postal delivery of early colonial 
directives and parcels [4], neutral, shared irrelevant Facebook posts [7], or detrimental, 
such as human pathogens or computer attacks [5, 8]. In this paper we will use consist-
ent terminology of a negative event for the purpose of visualization for the reader. Some 
examples may include: how to spread, as in infection, or how to prevent the spread, as 
in vaccination, of this negative event, or attack. Malicious attacks can take many forms, 
such as, malware, viruses, undesirable information, or even memes that might violate 
a networks posting policy [8, 9]. In terms of this paper “vaccination”? is defined as a 
set of nodes that can be inoculated, removed, and/or protected from these malicious 
attacks. The main assumption is that if these specific sets of nodes are given pre-emptive 
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measures then the attack will only be effective on a minimum number of nodes in the 
network.

The development and growth of networks has led to a diverse number of academic 
domains with shared properties and/or unique properties. Network traversal by means 
of graph theory [10], network communication protocols [6], static networks [11], 
dynamic networks [9] and network security [12] are network domains with similar ter-
minology and visualizations. If a similarity exists across such diversity then it is possi-
ble to explore a similar solution that models important aspects borrowed from similar 
domains. This paper examines networks with nodes that are sparsely connected that 
may have a hierarchical structure that can be exploited using parts of graph theory to 
develop a solution.

Large networks can suffer disastrous results if an attack is allowed to migrate over a 
network. Various problems have been considered in the literature regarding this issue. 
Stopping a known attack at a source node before it can infect its neighbor nodes is a 
trivial problem. Once the attack spreads beyond the source node, however, its complex-
ity rises as more nodes are exposed and infected through available edges [13]. Another 
trivial situation for an active infection network is if the amount of vaccine available is 
much larger than the number of non-infected adjacent nodes to any infected nodes. The 
more typical case occurs when non-infected nodes outnumber the amount of vaccine by 
a large degree [11]. This limitation causes a cost-benefit solution for which choices must 
be made in order to create an outcome that is favorable to the network administrators. 
Giving system administrators a variety of implementations allows them to choose the 
best option, or possible combinations of near optimal solutions, for their system [14].

Several solutions exist to prevent the spread of attacks over closed static systems; 
however these solutions have limited application to dynamic systems. An effective solu-
tion for arbitrary static networks with sparse connectivity is called Data-Aware Vac-
cine Allocation [11] or DAVA. DAVA is a framework that treats infected sub-graphs as 
super nodes and all its infected node neighbors as rooted bidirectional sub-trees that 
has a representational optimal solution in the form of a set of adjacent neighbors of the 
infected root super node. The framework determines this set by using a benefit system 
derived from a probability of propagation set, an infection set, and the main network 
graph. Thoroughly discussed by Zhang and Prakash the DAVA algorithm has been 
proven effective for “vaccine” distribution over an arbitrary network given prior infor-
mation [11]. However this solution has limited application if new nodes are being added 
to the network over a consistent time interval.

Large networks that are dynamic have vulnerabilities because of the changes made to 
the network in real time [9]. Complications arise when new nodes vary in their impor-
tance to the networks due to location of edges and varying probability to infection [8]. 
For example a node could be added to the network that has edges to nodes that were not 
connected before or that create a cycle that was not present before the edge was added. 
This addition may or may not change the overall benefit of the sub-tree that contains 
the node due to probability changes or dominance changes caused by this addition. In a 
static system this addition or removal now would represent a new graph which requires 
the entire network to be examined from the start. This paper seeks to make the distinc-
tion that these new nodes will not necessarily alter the current benefit solution of its 
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associated sub-trees thus would not alter the optimal solution; it would require less work 
than recalculating the entire tree with new benefits and optimal solution. As a bonus, 
overall network information would be gained that could be applied to machine learn-
ing to enhance the information about this network. This gain might be exploited when 
examining local or global solutions.

Similarly to a multi-task learning problem [2], dynamic network node vaccination, 
or removal, has a main task, namely the optimal solution and then sub tasks to calcu-
late and determine the overall benefit for top-k vaccination order subgroups. Individual 
nodes that have outlier tendencies might alter any current branch benefit, thus alter-
ing the top-k benefit order. It is from this concept that the idea of local solutions are of 
greater interest than global solutions for dynamic networks. If these local changes could 
be determined to have little or no changes to the benefits of the global sub-tree to which 
the local solution belongs, then it maybe possible to exploit this information to make an 
algorithm more efficient.

This paper presents a dynamic network algorithm, VAILDN, that is able to receive 
nodes sequentially from a network and then devise an optimal set of vaccination nodes 
to ensure maximum protection of the network. While performing effectively on static 
solutions DAVA group of algorithms slow down due to the fact that the global solution 
always must be determined, even though changes may occur only for local solutions. 
This paper will show that it is possible to adjust the optimal solution without examining 
the entire network which will save time over static algorithms. In addition this paper will 
show that VAILDN has the same level of accuracy as do DAVA type algorithms.

Dynamic solutions using dominator trees also present challenges that are not consid-
ered when using static solutions. These challenges include the addition or removal of 
edges to the graph that may redraw the dominator tree if a cycle is created or destroyed. 
In a dynamic environment it is possible that children may be detected before the parents 
in terms of the overall graph. This will not affect the global solution however, as edges 
are added, local connections and dominance are built that could be exploited for time 
saving when any parent does arrive.

In this paper first related works are discussed in “Preliminaries” section. The main 
algorithm is broken into three phases and presented in “Experiments” section. “Results” 
section describes the experiments in which this algorithm was compared to random 
baseline algorithms and vaccination methods for static networks. The final sections dis-
cuss the experimental results and the conclusions, including suggestions for future work.

Related work
This paper combines several resources into a cohesive solution that would be able to deal 
with active infections in a large dynamic network. Static solutions for networks having 
prior information were examined [15] and interesting solutions are present that could be 
expanded to dynamic networks by using a multi-task approach. Topics for consideration 
include, epidemiology, multi-task learning, data-aware vaccination allocation, domi-
nance trees, network hierarchy, and large dynamic network optimization.

The topic of population vaccination has been well studied with a variety of mod-
els based on different approaches. Sometimes the global solution may not be obvious 
[16] or maybe difficult to obtain [17]. A localized approach could target specific groups 
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that are known to have higher propagation probabilities or more frequent contact with 
infected. A global static approach could be too costly due to number of nodes in the net-
work [14]. A dynamic solution that examines edges could be beneficial in calculating the 
optimal solution [16].

In references to “Data-Aware Vaccination Allocation” [11] this paper demonstrates 
that the Data Aware Vaccination problem is NP-hard using a reduction from the MinKU 
set problem [18]. In order to demonstrate the variety of the problem and the general 
application of DAVA two common discrete-time models were used for virus infection, 
the susceptible-infected-removed (SIR) model and the immune response (IR) model. 
The SIR model [19] used for the general case, is based on chicken-pox-like infections, 
during which a time cycle consists of two phases, an independent infection probabil-
ity and a recovery probability δ. If an infection is transferred from an infected node to 
a healthy node successfully (the probability of the infection is given by the weights of 
the edges) then that healthy node will be infected during next round. If recovery of an 
infected node occurs, then that node is “cured” and no longer will able to participate in 
the epidemic. The second model, the IR model [11], is a specific case of the SIR model 
during which the interaction between an infected and a healthy node happens only once, 
and the recovery probability, δ = 1. The solution algorithms suggested by Zhang and 
Prakash the DAVA, DAVA-prune, and DAVA fast algorithms were demonstrated to per-
form better within static networks in which an infection already was in progress when 
compared with five different static network algorithms.

This paper presents the propagation probabilities based on population simulations. 
Due to the related natures of networks and human communities [20] it was worth 
exploring to simulate how human communities interact in order to assign non-random 
meaning to the propagation. A normalization of a population simulation yields sufficient 
data values to test the research. People can be considered nodes and their contact can 
be considered edges. Much like human populations contact among nodes is dynamic 
and should benefit from a dynamic solution. Contacts of certain individuals may have 
more weight than others thus the importance of calculating a local solution needs to be 
stressed. For example the elderly or infirm might be of concern only to their local group 
associations rather than to the network as a whole [17].

Network exploration and node importance are two fundamental concepts to this work. 
Research in the field of network exploration has resulted in many good algorithms and 
two popular methods include depth-first-search (dfs) [21] and breadth-first-search (bfs) 
[10]. Dfs can be used to maximize propagation results as well as to define subdomina-
tors and dominators [11] as a dominator tree is built. Dfs is an effective tool for network 
exploration when the entire network is known and is relatively sparse. Highly connected 
graphs will benefit more from bfs due to the exploration of individual levels before the 
depth of each sub-tree is explored. This distinction is important for this study because 
the assumption for a dominance tree is based around the fact that the nodes are sparsely 
connected. Dominator trees are used to discover the interconnectedness of nodes in a 
sparse network [21]. A dominator tree will yield sub-trees that show the relative connec-
tion between nodes, thus can yield maximum solutions based on those sub-trees [11]. If 
the structure of a dominator tree is correct [22] a new relational mapping of a network 
can be built quickly to determine which parent nodes singularly expose their children 
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to infection. A dominator tree shows that if there is a non-unique cycle between two 
nodes x and y then x and y will be the only common nodes to all paths. As nodes in 
a network become more and more connected, dominance will lose its significance as 
many nodes begin to share the same dominator. This is why the assumption was made 
in this study that the graphs had some hierarchical structure present and that they were 
sparsely connected.

The building of the dominator tree becomes more challenging in a dynamic setting. 
Shortest path algorithms were shown to be useful to determine dominance in linear time 
[23]. In a dynamic setting it is not simply the shortest path alone which determines dom-
inance. Any edge that creates a cycle between nodes in a sub-tree will upset the domi-
nance and create the need to recalculate dominance for any nodes who are siblings to 
any node in the cycle. Another consideration for dominance is when an edge is removed 
the original dominance must be restored to all nodes that were either in the shortest 
path to the dominator or those neighbors of the shortest path nodes.

A multi-task solution is necessary for large dynamic networks due to the number of 
sub-problems created by sequential node entry into the network. Collaborative Online 
Multi-task Learning (COML) [2], an important aspect considered in this study was writ-
ten to deal with the discovery of individual distributions that may not be properly rec-
ognized by the main task. It is the dynamic nature of the sub-trees that are formed with 
sequential node entry into the network that can form these subtasks. COML demon-
strates that subtasks can be learned effectively at the same time as the main task. Thus 
information about individuals and the group are maintained independent of each other. 
Predictions made from using these learned distributions could be useful in making clas-
sifications for unknown instances that enter the system.

One of the main libraries used for implementation was the networkX library. This 
package is a library of graph objects and a variety of associated functions beneficial to 
this study. It was possible to use the graph representations as a cornerstone for the build-
ing, analysis, and traversal of the network. This graph could then be dissected into its 
representative dominance tree in order to yield the final solution [24].

Preliminaries
Notation

For the infectionSetMerge algorithm

• • graph represents a networkx graph object
• • infectedSet is a list of nodes all who can propagate the infection
• • InfectedSuper is the name for the node, I ′x, that will represent the node with all 

infected edges and will serve as the root of the dominance tree
• • x is each member of the infected set
• • y is a variable that represents the other vertex that shares an edge with x
• • pIx ,y is the propagation probability of that edge
• • newGraph is the resultant graph with all infected nodes merged into one super 

infected node

For the BuildTree algorithm
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• • graph is the newGraph from infectedSetMerge with the infected super node infect-
edSuper

• • changedsub-trees is a list of sub-trees from the super node that have been altered by 
the addition or removal of an edge

• • Tree and domTree are the dominance tree being built with the infected super node 
as root

• • Tree.benefit is the associated benefit dictionary that is based off of domTree

For the solutionDecision algorithm

• • k is the number of available vaccines
• • The table of benefits is retrieved from the dominance tree.

Algorithm outline

This paper outlines three main phases used in the study to implement the process of 
node detection which would maximize the number of “saved” nodes if an attack already 
is in progress. These three phases which were incorporated into the final algorithm are:

Phase1 The InfectionSetMerge phase,during which all connected infected nodes are 
combined into one supernode that will server as the root in Phase 2.
Phase2 The Tree Building phase, during which the nodes are entered sequentially and 
the sub-trees are built, propagation probabilities are set, and sub-trees are marked if 
changed; and
Phase3 The Benefit and Solution Decision phase during which, if necessary, the ben-
efits are recalculated and compared to the current solution set. If there is a difference 
all benefits are sorted and the solution set of the top-k benefits are chosen.

InfectionSetMerge

In many cases in which a negative event is occurring, many nodes might be present 
whose neighbors are infected. Edges between any number of these infected nodes in a 
path can be condensed into a single node. For purposes of this experiment once a node 
was infected it remained as such. The purpose of this phase was to condense the Infec-
tion Set into a single node, which then was used as the root for the master tree from 
which the optimal solution was derived. The algorithm for building this single node can 
be stated as follows: if there is a edge between two infected nodes then a union of those 
two nodes is performed. The infection propagation then must be updated to reflect the 
propagation of both nodes. Once this has been completed a single node is returned. As 
further research continues in this field, it might be possible to consider the possibility of 
multiple non-connected infection nodes, which would be put into a final Infection Set 
where each set would have its optimal solution. Algorithm 1 for InfectionSetMerge is 
expressed as follows:
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Tree Building

The Tree Building phase has two main goals using a similar idea structure to a multitask 
learning model [8]. Nodes are entered sequentially and processed for each goal. In the 
initial stages this algorithm must calculate and store an entire collection of propagation 
probabilities. Then the dominance tree is built using relations between nodes. Due to the 
nature of dominance, while the graph contains the edges of the tree, new edges now are 
in the tree that represent dominance only; these new nodes do not actually exist in the 
original graph. This can complicate the real time solution due to the fact that edges that 
are added may create new edges in the tree thus altering dominance while edges that are 
removed may cause some of these dominance tree edges to represent an incorrect level 
of dominance that must be found and corrected. As the tree is being built any changed 
sub-tree from the infected super node was tracked in order to recalculate benefit for 
Phase 3. Algorithm 2 for BuildTree is as follows:

Solution Decision

The last step keeps track of all the current benefits of sub-trees as nodes are added and/
or removed in real time. This means that the solution set can be achieved by sorting the 
benefits sub-trees that have root nodes that are the neighbors of the infected super node 
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and then returning the solution set. It is assumed that there always will be changes to the 
sub-trees as nodes are added and removed. This step must be performed each time but 
at a minimal cost. Algorithm 3 for SolutionDecision is as follows:

Vaccine allocation in large dynamic network

Given a set of sequentially input nodes, n(x, y), where x is a vector of neighbors, and y 
is the probability of an infection, an active infection set I, and a budget k of vaccination 
allocation can be an output of the optimal vaccination solution set. This protects the 
maximum number of nodes that can be achieved only when changes to the top-k benefit 
sub-trees have been detected. The overall solution combines the three phases from the 
above subsections. The time saved in performing the benefit checks as new nodes are 
added to the network will make this program more efficient than running the optimal 
solution program by itself, especially as the network grows in size.

Complexity analysis

The time complexity analysis for Phase 1 mainly is dependent on the number of nodes 
in the infections set. Each recursion from InfectionSetMerge Line 14 would be a subset 
of the main Infection Set thus the time complexity would be O(|IV  | + |IE|). BuildTree 
is based upon taking the graph, building the dominance tree representation of the graph 
and then calculating the dictionary of benefits for the individual sub-trees. This makes 
the worst time O(|V| + |E|) with the additional constant costs of calculating the ben-
efits. At this point, there is a significantly large difference between a static approach and 
a dynamic approach. Static algorithms must repeat this process for each benefit needed 
regardless if it is new or not. In the real time solution the average time is dependent 
on the number of sub-trees changed by the addition or removal of an edge. There are 
constant multipliers that are dependent on the number of sub-trees changed; however 
in sparsely connected graphs this number always should be much lower than the total 
of the sub-trees in the graph. Also another factor that may change the solution is how 
close the sub-trees are to the infected supernode. Changes to nodes close to the infected 
super node will require rebuilding large sections of the current dominance tree. Again, 
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the overall changes to the graph should not be close to the infected set (Note For the 
Gnutella set only 400 edges are adjacent to the infected super node out of 20,000 edges 
in total). The third phase is a linear sorting of the benefits dictionary. A rare but worst 
case for sorting for this would be O(n); however this is an extreme exception [25]. The 
average case is O(1).

Experiments
The goal of this experimentation was to answer the following questions:

• • How does the algorithm developed in this study compare speed and accuracy with 
the baseline algorithms?

• • How does the speed of this algorithm compare with DAVA Prune and DAVA fast?
• • How does the accuracy of this algorithm compare to DAVA fast?

Settings

The baseline algorithms used were: k-random, k-random adjacent, and k-random tier 
1. The algorithm k-random chooses the k-random nodes for vaccination. The adjacent 
k-random algorithm randomly chooses nodes that are neighbors of the infected super 
node using the graph as a basis. k-random tier 1 randomly chooses nodes that are sub-
trees of the infected super node. Due to dominance, in the study there have might have 
been edges between the infected supernode and its neighbors that were not present in 
the graph. In addition the DAVA, DAVA-fast, and DAVAprune algorithms were imple-
mented for comparison. Due to the real time nature of the data the original code as pre-
sented by Li et al. [2] was not used for tests in this study. However the algorithms were 
maintained by means of an implementation that used their paper as a guide. If a domi-
nance tree was needed for an algorithm, k-random tier 1 or DAVA-prune for example, 
the tree was built using the BuildTree algorithm from this paper in order to maintain 
consistency and reduce variability. The first set of tests used the IR model and a propaga-
tion of 1. Later tests used a variety of propagations, either 0.5 or 0.9, in order to simulate 
the propagation of negative information across the network.

The tests were ran at the Supercomputing Center, Cherry Creek, at University of 
Nevada Las Vegas (UNLV). The trials were run on a single node with two Intel Xeon 
E5-2697v2 12core, 128Gb ram [26].

Three main sources of data were used (Table 1). The first was a random driver that cre-
ated a network of random size with a random number of infected nodes. The number of 
nodes that were adjacent to the infected node also were randomized. For each random 
run those adjacent to the infected super node were slightly different; however the results 
were consistent for all the trials. The second dataset was obtained from the Stanford 
Network Analysis Project (SNAP), which is the Gnutella peer to peer network from 2002 
with 6301 nodes and 20,777 edges [27]. The third set was an undirected graph of emails, 
also from SNAP, and consisted of 36,692 nodes and 183,831 edges [27]. While the first 
data source was used to test the concept, the other networks provided real world solu-
tion sets with scalabilities that could be compared to other networks.

The trial driver used to test the algorithms attempted to simulate a real time network. 
The network was created, either by means of the random driver or by using a .csv file of 
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edges obtained from SNAP. Periods then were created to simulate changes in the net-
work over time. For the purposes of this experiment a dynamic solution was presented 
in which changes might occur to the network as the solution was being run. Changes 
that occured that may affect the network included both adding and removing edges. The 
changes for each period were randomized for each trial but were kept consistent while 
the algorithms were run. Changes were made to the graph and then a copy of that graph 
was passed to each of the algorithms. The changes were chosen randomly using stand-
ard randomization functions (Python™). The percent of node change and variance for 
each period were fixed in order to demonstrate the concept and to reduce difference 
in performance. The time and infection results were averaged over 100 runs for each 
algorithm.

Results
Figure  1a shows the time comparison for the baseline algorithms, DAVA types, and 
VAILDN for the Email-Enron set, and Fig. 1b is the time comparison for the baseline 
algorithms, DAVA types, and VAILDN for the Gnutella set. The complete rebuilding of 
the dominance tree accumulated more and more costs as the number of vaccines were 
increased. This cost increase grew as the networks grew. The slope for the VAILDN algo-
rithm demonstrates a slower growth as the network increased in size. Figure 1c repre-
sents the time comparison for the baseline algorithms, DAVA types, and VAILDN with 
the random set.

Figure 2a, the Gnutella set, and Fig. 2b, the random set, present a zoom in of the ran-
dom algorithms and VAILDN. These figures demonstrate how VAILDN’s cost saving 
measures are consistent when compared to simply randomly choosing k nodes for vac-
cination and choosing k random nodes that are adjacent to the infected super node. The 
overall results show that using the Enron set, the Gnutella set, and random set VAILDN 
performs faster than the DAVA types and with similar times to the k-random algorithms.

As shown in Fig. 3 even when the propagation is changed there is little change in the 
performance of the various algorithms. Because benefit calculation is similar for each 
of the algorithms not much change was expected. The benefit calculation is similar in 
all algorithms thus improvements were seen in which the sub-trees are recalculated if a 
change in the sub-tree was made.

Figure 4 shows the number of infected nodes that result once the k vaccinations have 
been delivered. Figure 4a is the Enron set, Fig. 4b is the Gnutella set, and Fig. 4c is the 
random set. In all cases VAILDN has similar numbers to the DAVA algorithms. All these 
outperform the random algorithms. There was a loss in the accuracy of VAILDN as the 
network got larger when compared to the DAVA algorithms but this loss decreases as 

Table 1  Dataset information

Set name Total nodes Infected set infectedSuper adj

Random 4000 300 525

Gnutella 6301 53 401

Email-Enron 36,692 200 1932
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the size of the network increases. In the Gnutella set the loss is about 2 and 0.04% in the 
Enron set. This groups still outperforms the random algorithms.

Discussion
These experiments demonstrate how a real time solution for a dynamic network can 
outperform a static solution. VAILDN is able to compute the solution as edges are exam-
ined in real time. This suggests that a local solution to the vaccination problem may be 
a better overall solution as the network grows in size or has a global solution that is dif-
ficult to calculate. Random vaccination is fast but it is not as effective as VAILDN.

Fig. 1  Top-k vaccines and the average time in seconds per run. a Enron set. b Gnutella set. c Random set
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The main assumption for algorithms that use dominance as a basis is that either there 
are sparse connections or there is some overall hierarchical structure to the network. 
Network analysis in a static situation can reveal this type of information with many of 
the basic tools already established, such as depth first or breadth first searches. Dynamic 
networks, however present a complex field of parameters that can confound a single 
method of finding a solution. A dynamic network that is relatively stable might mimic a 
static environment; however edges can still be presented that could disrupt the assump-
tions of dominance or sparsity.

In VAILDN adding edges allowed the exploitation of the current dominance tree in 
order to establish new dominance of siblings and children. The removal of edges pre-
sented a specific challenge because after removing an edge the current tree structure 
gave little information about how to restore dominance. This is in contrast to adding 
edges where the dominance tree structure is already present. The method that was used 
relied on determining the siblings of each level for all the grandchildren of the common 
dominator. Removing edges was the most time consuming part of the algorithm, if it 
could be improved the efficiency will increase even more.

Fig. 2  Time comparison zoom of Gnutella and Random.  a Gnutella set. b Random set
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In Fig.  5 VAILDN still compares similarly to the DAVA algorithms with regards to 
accuracy. The change in the weight calculation does little to affect the benefit solution. 
These results suggest that VAILDN is still beneficial with varying weight differences.

Conclusion and future work
A real time solution is able to deal with the reality of a modern and changing network 
dynamic. A solution can be determined quickly, as only the information local to the 
incoming, or removed, edge is considered. The accuracy of VAILDN is comparable to 
the static solution with diminishing losses. This means a network can make real time 
decisions about how the information is being distributed over the network. Dynamic 
networks offer difficult challenges with regard to issue detection. This algorithm is able 
to determine a real time solution with the assumption that the network is sparse.

Densely connected graphs create a low level dominance tree that makes finding the 
optimal solution challenging. To compensate for this a few future directions are open 
for exploration. This solution can be further refined by adding a factor that will calculate 
how much effect an edge propagation might have on its sub-tree solution. This will allow 
no change to the solution set if a small benefit is added, thus saving time. This could rep-
resent highly unlikely, yet present, connections between network members.

To continue this research, community clusters, rather than dominance trees, might 
be another structure for detecting the optimal solution. Even if a community is densely 

Fig. 3  Average runtime of Gnutella set at different propagations. a Gnutella set at p = 0.5. b Gnutella set at 
p = 0.9
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connected, the communities themselves maybe sparsely connected. This implies that 
with community detection, a local outbreak solution maybe able to be determined 
quickly offering a better solution than the global solution. A machine learning approach 
could be applied to determine which solution, dominance tree or community clustering, 
presents the most beneficial to the host network in that configuration.

This paper used terminology that indicated the information that was propagated 
was negative in nature (Table 2). This may not always be the case. The development of 

Fig. 4  Comparison of average infected nodes. a Enron set. b Gnutella set. c Random set
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algorithms for information distribution with limited resources may be able to build on 
this algorithm as a real time solution for information distribution. The real time solution 
presented here is a heuristic solution that demonstrates the value of information propa-
gation over a dynamic network.
Author details
1 Department of Computer Science, University of Nevada, 4505 Maryland Parkway, Las Vegas, NV 89154, USA. 2 Air Force 
Research Laboratory, 26 Electronics Parkway, Rome, NY 13341, USA. 

Fig. 5  Comparison of average infected nodes with changed propagation. a Gnutella set at p = 0.5. b Gnu-
tella set at p = 0.9

Table 2  Acronym list

Acronym Meaning

bfs Breadth-first-search

COML Collaborative Onlinie Multi-task Learning

DAVA Data Aware Vaccine Allocation

dfs Depth-first-search

IR Immune Response (model)

NP-Hard Non-deterministic Polynomial-time Hard

SIR Susceptible-Infected-Removed (model)

SNAP Stanford Network Analysis Project

UNLV University of Nevada, Las Vegas
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