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Introduction
Streaming data is increasingly important for online services. Facebook [1] and LinkedIn 
[2] have analysed event related data for understanding usage in their ecosystems. Twitter 
has created a big data streaming architecture, which is able to serve and process thou-
sands of tweets in a second [3–5]. Also, several systems [6], methods [7, 8], and bench-
marking tools [9–11] have been created for facilitating implementation of tweet related 
processing and analysis by 3rd parties. Especially, new stream processing technologies 
(Spark [12], AsterixDB [13]) have been created, which could be selected for implemen-
tation of stream extraction, storage and analysis functionalities. Although stream pro-
cessing performance has been studied [12, 14], comparative feasibility analysis of the 
technologies has not been extensively performed in the context of semi-structured data 
processing.
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This article focuses on performance analysis of Spark streaming, Cassandra, and 
AsterixDB technologies for stream processing of semi-structured social media data 
(tweets). Especially, Spark streaming has been integrated with Cassandra for data per-
sistence, which has been compared to AsterixDB on Eucalyptus cloud environment on 
a DSM multiprocessor platform. The results indicated that AsterixDB achieved signifi-
cantly higher throughput and lower latency, when data feeds were utilized and stream 
processing was implemented with Java. Performance of AsterixDB also scaled better, 
when the amount of nodes on the cloud platform was increased. However, stream pro-
cessing in AsterixDB was delayed by batching of streamed tweets.

The document is structured as follows. First, background and literature review are 
presented, which is followed by comparison of AsterixDB and Spark streaming tech-
nologies. Then, research design and methodology is provided, and experiments are 
described. Subsequently, results are presented, analysed, discussed, and concluded. In 
the final chapter the research method is described in detail.

Background and literature review
As mentioned above, semi-structured data has been processed in several commercial 
use cases. On a more detailed level, Facebook has collected log data with Scribe, and 
performed analysis on Hive-Hadoop clusters [1]. LinkedIn has logged activity data from 
users with Kafka, which has been analysed with batch-based analysis tools [2]. Twitter 
processes tweets for the creation of new end user services [3]. Twitter’s big data system 
architecture aims at real time analysis by tokenization, annotation, filtering, and inverted 
indexing of tweets with their EarlyBird search engine [4]. Twitter’s latest development is 
Heron, which has replaced Storm as their stream processing technology [5]. Tweets have 
been utilized for creating insights in several businesses. Examples include competitive 
analysis among US pizza chains [15] and retail companies [16], and insights created for 
supply chain practises [17].

Methods and algorithms for social big data can be categorized into network analyt-
ics, community detection algorithms, text analytics, information diffusion models and 
methods, and information fusion [18]. Sentiment analysis [19] can be considered as part 
of text-based analytics, and it has been extensively studied [8]. Sentiment analysis is a 
classification problem, where sentiment can be analysed on document-level, sentence-
level or aspect-level [19]. Classification techniques for sentiment analysis can be broadly 
classified into lexicon-based and machine learning approaches [20]. In the lexicon-based 
approach a sentiment/opinion lexicon is utilized for sentiment analysis. Machine learn-
ing can be divided into supervised or un-supervised learning approaches [20]. In the 
supervised approach a classification model is typically trained based on labelled training 
documents. Training data is not needed in the unsupervised approach, where sentiment 
categories are learned based on text-based corpus.

Several tools have been developed for sentiment analysis of tweets. 20 different com-
mercial and open source sentiment analysis tools have been tested in different test beds 
[21]. It was discovered that Sentiment140 achieved best overall performance (accuracy 
>61–71  %) across the test beds among stand-alone tools. In the SemEval competition 
overall sentiment of tweets has been evaluated with an accuracy of ~64 % [22]. Almost 
all teams utilized supervised learning in the algorithms. Also, many web services are 
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available for sentiment analysis [23]. Experiments with a Twitter data set indicated that 
AlchemyAPI achieved best accuracy (62.5 %).

SentiWordNet was selected as an open lexical resource for experimentation of this 
work, because an earlier study indicated good coverage and comparable prediction per-
formance to alternatives [24]. SentiWordNet uses a synset of three numerical scores to 
describe polarity (objectivity, negativity, and positivity) of terms in the synset [25]. Each 
synset contains one or more words, which are associated with polarity scores. Senti-
WordNet 3.0 improves accuracy by ~20 %, when compared to the original solution [26].

Several tools and systems have been developed for extraction and analysis of tweets. 
Previous literature on data collection, data management, and languages for querying 
and analysing of tweets has been reviewed, of which only some are reported here [6]. 
Twarql encodes extracted tweets in a structured format [resource description frame-
work (RDF)], and enables querying of tweets with SPARQL protocol and RDF query lan-
guage (SPARQL) [27]. A large-scale distributed system for real time sentiment analysis 
has been developed [28]. The system consists of a lexicon builder, and a sentiment clas-
sifier, which are executed with MapReduce, and a distributed database system (HBase). 
The system scales in terms of processing time, when data size and number of instances 
are increased. Taghreed is a system for scalable querying and visualization of geotagged 
tweets/microblogs [29]. The system is able to manage, query, and visualize billions of 
tweets with main memory indexes, an optimized query engine, a recovery manager, and 
an interactive visualizer. Nimbus offers tunable filters for Twitter streams [30]. It has 
integrated Spark, web server, and MySQL for storing and filtering of tweets. A sentiment 
analysis process using part-of-speech tagging, and identification of negation phrases has 
been proposed, which has been validated with a product review data set from Amazon.
com [31].

In order to get instant insight into analysed results, tweets have to be processed in near 
real time. Several technologies have been developed, which could be selected for serving 
such purpose [32]. In this paper Spark streaming and AsterixDB technologies have been 
focused on. Spark divides a data stream into batches, which are stored in memory, and 
processed via parallel operations [12]. Spark streaming architecture is comprised of a 
master, worker nodes, and a client library. The master schedules tasks based on data, 
which is received from the client library. Worker nodes receive data from the master, 
and execute tasks on it. Spark offers a distributed memory abstraction to the program-
mer with resilient distributed datasets (RDD) [33]. Additionally, Spark offers Java, Scala, 
and Python programming APIs for creation of stream processing tasks. Spark can also 
be connected to databases, for example with adapters [34].

Spark has achieved high per-node throughput, sub-second latency, and fault recovery 
[12]. Shark [35], an enhanced version of Spark, provides 100× faster queries than Apache 
Hive, and machine learning 100× faster than Hadoop. Nowadays, development of Shark 
has been continued as part of the Spark project [36]. The on-going work of Spark has 
focused on improvement of usability and performance with visualization, expansion 
of data science APIs, and memory management outside of Java virtual machine (JVM) 
(Tungsten) [37, 38]. Benchmarking of Spark against Apache Flink indicated that graph 
processing, data mining, and relational queries were processed faster with Flink [39]. 
Spark was faster in batch processing algorithms. Spark performance bottlenecks have 
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been analysed with SQL benchmarks [40]. It was discovered that CPU was often the bot-
tleneck (as opposed to I/O), improvement of network performance led only to a small 
improvement in the total execution time of jobs, and many straggler causes could be 
identified and fixed.

Spark’s performance has also been studied in the context of machine learning, particu-
larly with Spark’s machine learning library (MLlib) [41]. MLlib’s linear regression has 
been used for predicting power load based on weather data and power load data [42]. A 
model (MLlib’s logistic regression) has been trained based on context specific grammars 
for predicting sentiment polarity of internet movie database (IMDb) reviews [43], which 
achieved ~64  % accuracy. Another model has been created for sentiment analysis of 
tweets, which was trained based on hashtags and emoticons [44]. Running time of tweet 
classification decreased, when the amount of nodes was increased in the Spark cluster.

AsterixDB may also be used for processing of streaming data. One of the main design 
goals of AsterixDB has been to create a ‘one size fits a bunch’ architecture, where one 
technology can be utilized in multiple use cases without gluing multiple technolo-
gies together [45]. AsterixDB has a flexible data model and query language (AQL) for 
describing, querying, and analysing semi-structured data [13]. Algebricks is a data 
model-agnostic layer in AsterixDB for parallel query processing and optimization [46]. It 
pushes jobs into AsterixDB’s Hyracks run time as distributed acyclic graphs (DAG). The 
implementation architecture of AsterixDB consists of a cluster controller, metadata con-
troller, and node controllers [45]. The cluster controller accepts AQL statements pushed 
from clients (over HTTP), which are distributed as job descriptions to Hyracks data flow 
engine [47], and node controllers [45].

The first performance results of data ingestion tests indicated that MongoDB had a 
lower latency with simple write operations, but AsterixDB outperformed MongoDB, 
when multiple elements were saved in a batch over representational state transfer 
(REST) API [45]. Recently, data feed management has been integrated as a new architec-
tural component to AsterixDB [14]. The feature enables fault tolerant push/pull-based 
streaming and pre-processing of semi-structured data from different sources (e.g. Twit-
ter, TCP socket) with user defined functions (UDF) [48]. UDFs enable programming 
with other languages (e.g. Java) than AQL. Performance results indicate that an inte-
grated solution (Storm + MongoDB) provided lower ingestion performance in compari-
son to AsterixDB [14]. Performance of AsterixDB has been compared to other big data 
management systems with a micro-benchmark [49]. Results indicated that AsterixDB 
achieved in most cases comparable performance to the fastest system.

As streaming technologies have been developed, new tools are needed for their evalu-
ation. OLTP-Bench has been introduced for benchmarking DBMSs, and database-as-a-
service systems [50]. It is bundled with different workloads including derivations from 
other benchmarks [such as Yahoo! cloud serving benchmark (YCSB)]. It also includes 
a synthetic workload generator for simulating Twitter. Linked Data Benchmark Coun-
cil (LDBC) has developed a benchmark for simulating social networks [51]. It pro-
vides interactive workloads for benchmarking graph-based databases, RDF databases, 
and relational DBMSs. Big Data generator suite (BDGS) has been developed for gen-
erating scalable big data while employing data models derived from real data [10]. The 
tool includes text, graph, and table generators for simulating real world datasets from 
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Wikipedia, Facebook, Amazon Movie reviews etc. BDGS has been used in performance 
testing of DataMPI, Spark, and Hadoop [11]. IoTABench has been developed for evalu-
ating big data systems for internet of things (IoT) [52]. The tool uses a Markov-chain 
based synthetic data model for data generation. SparkBench covers machine learning, 
graph computation, SQL queries, and streaming applications for benchmarking Spark 
[53]. StreamBench is a messaging system between streaming data generation and con-
sumption [9]. It uses web log processing and network traffic monitoring data sets as 
streaming data sources. Streaming data is transmitted with Apache Kafka to the target 
technologies under study. A prototype has been developed for benchmarking of plat-
forms in the context of online social networks [54]. The benchmark crawls data from 
Twitter, and provides several analytical workloads for different data sources.

For this article, Spark streaming has been integrated with Cassandra for persistence, 
and its performance has been compared to AsterixDB. Processing of tweets has been 
experimented by simulating Twitter as a social media data source, and by perform-
ing analytical queries to the streamed tweets in near real time. The analytical Twitter-
related algorithms were content analysis (word count), and sentiment analysis of tweets. 
Especially, SentiWordNet 3.0 has been implemented with both technologies as a lex-
icon-based sentiment analysis method [26]. A new test client has been developed for 
benchmarking of the streaming technologies, because existing tools were either not 
applicable [10, 50, 51], not publicly available [9, 52, 54], or technology-specific [53]. Also, 
scalability of the technologies has been analysed on Eucalyptus cloud platform. Similar 
feasibility analysis of the streaming technologies has not been performed earlier in this 
context, according to the author’s best knowledge.

AsterixDB and Spark streaming for stream processing
AsterixDB and Spark streaming have been compared in Table 1 in terms of stream pro-
cessing characteristics. Data can be streamed into AsterixDB via REST API or with 
data feeds from different sources (Twitter, RSS, TCP socket) [14]. Spark streams can 
be implemented with TCP sockets. Also, built-in adapters are available for other data 
sources (e.g. Kafka, Twitter etc.). Both technologies provide support for a variety of pro-
gramming languages for processing of streaming data. Asterix query language (AQL) 
may be used (over REST API) for data definition and manipulation. Alternatively, other 
programming languages (e.g. Java) can be used for data processing with UDFs. The main 
programming language of Spark is Scala, but support is available also for other program-
ming languages (Java, Python, R).

Table 1  Comparison of AsterixDB and Spark streaming for stream processing [29, 34]

Streaming  
interfaces

Programming 
languages

Scalability Data model Data access

AsterixDB REST API, data 
feeds (tweet, 
RSS)

AQL, UDF master–slave 
cluster

Semi-structured 
(Asterix data 
model)

AQL, XQuery, 
HiveQL

Spark TCP sockets, Kafka, 
Flume, Twitter, 
ZeroMQ, Kinesis

Scala, Java, Python, 
R

Stand-alone, 
Apache Mesos, 
Hadoop YARN

RDD Spark SQL/data 
frames. Internally: 
database APIs or 
adapters



Page 6 of 25Pääkkönen ﻿J Big Data  (2016) 3:6 

Different clustering techniques can be used for distributing computing across several 
nodes. AsterixDB utilizes a master–slave model, whereas Spark has several clustering 
possibilities. AsterixDB has JavaScript object notation (JSON)-based Asterix data model 
(ADM) for semi-structured data. Data in Spark is handled as parallelizable RDDs, which 
may also be persisted in-memory. Data in AsterixDB can be accessed with AQL, whereas 
Spark provides access with Spark SQL/data frames. Spark doesn’t have persistent stor-
age (besides persisting in-memory), but a database may be accessed with native drivers 
or APIs. One example is Spark Cassandra connector, which provides database access to 
Cassandra from Spark [34].

Research design and methodology
This work has been motivated by the following factors: (a) Business needs for data 
increasingly include requirements for near real time analysis [3, 55]. (b) Stream-based 
data is often semi-structured (e.g. loosely coupled structure such as JSON) instead of 
following a strict database model [32]. (c) Different technologies have been developed 
for stream processing of data [32]. Technology selection for a business case may require 
extensive evaluation, before an optimal decision can be made [56, 57]. This study aims to 
facilitate decision making process of technology selection by providing new information 
regarding feasibility. (d) Performance in terms of scalability on a cloud computing plat-
form has not been studied in the context of this study.

Spark streaming and AsterixDB were focused on in this study based on the follow-
ing rationale. AsterixDB has been developed for processing of semi-structured stream-
based data [13]. However, few performance studies are available, where performance of 
AsterixDB would have been compared with other technologies (an exception is com-
parison to Storm + MongoDB [14]). On the other hand, Spark has had excellent stream 
processing performance. However, earlier performance tests [12, 37, 39] have not con-
sidered integration between Spark and a database, which may affect performance. In this 
work, Cassandra has been integrated with Spark for persistence, because it has been lin-
early scalable [58], and an adapter has been developed for facilitating integration with 
Spark [34]. Also, performance and scalability of Spark streaming has not been compared 
against AsterixDB in earlier literature according to the author’s best knowledge. The fol-
lowing research questions are posed:

RQ 1:	� How AsterixDB and Spark streaming + Cassandra perform relative to each 
other, when semi-structured data is processed as a stream?

RQ 1.1:	� How the technologies perform, when content analysis and/or sentiment 
analysis of tweets is performed as a stream?

RQ 1.2:	� How the technologies perform, when the number of processing nodes is 
increased on Eucalyptus cloud platform?

This study is based on quantitative research methods. Particularly, processing latency 
and throughput in stream processing has been measured and compared, when semi-
structured data is processed with the technologies under study. See “Methods” chapter 
for a detailed description of the test procedures.
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Test setup

The tests were performed on Eucalyptus v3.4.2 cloud platform (HP Helion Eucalyp-
tus). The platform has been installed on a HW rack (Dell PowerEdge R820), which has 
512  GB RAM, 4 Intel Xeon E5 4620 processors (8 cores/processor), and eight hard 
drives (15 K) configured with redundant array of inexpensive disks (RAID) 0 (striping). 
The HW could be characterized as a distributed shared memory (DSM) multiprocessor 
system, where processors’ cores communicate via Intel’s QuickPath interconnect (QPI) 
to get access to DSM, and are controlled by an operating system (CentOS 6.5 of Euca-
lyptus). Performance of the HW for write-intensive services has been tested earlier on 
Eucalyptus cloud platform [59].

Test setup for experiments has been described in Fig. 1. The setup consisted of a test 
client, and the technologies under study. The test client was executed in one virtual 
machine (VM) (80 GB RAM, 12 virtual CPUs). AsterixDB, Spark streaming, and Cas-
sandra were executed on dedicated VMs (40 GB RAM, 6 virtual CPUs). Scalability was 
experimented up to eight VMs. AsterixDB cluster had one master, and multiple slave 
nodes. Spark experiments were executed in local and cluster modes. Spark cluster had 
one Spark master node, and multiple slaves. Spark algorithms were uploaded to Spark 

Fig. 1  Test setup for execution of experiments
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master for execution of jobs. Cassandra was executed on the same VM with a Spark 
master/slave.

Algorithms and implementation

Word count and sentiment analysis algorithms were implemented for simulating stream 
processing of tweets. Word count algorithm calculated frequency of words from the past 
50 tweets. Sentiment analysis algorithm was implemented based on SentiWordNet 3.0 
[26] as follows. First, words of a stored tweet were extracted. Then, for each word a score 
(positive, negative) based on SentiWordNet was calculated. For each matching entry in 
SentiWordNet, the score was summed, and finally the sum was divided by the number of 
matching entries to get a final score for the word. The final scores of individual words in 
a tweet were summed together to provide an overall estimation of sentiment in a tweet.

Two implementations of SentiWordNet 3.0 were created. In the 1st version of the algo-
rithm words and associated scores (of SentiWordNet 3.0) were stored into memory as a 
table [e.g. (words, SentimentScores)]. In the 2nd version of the algorithm, an inverted 
index was created. An inverted index improves search performance by finding data 
quickly based on indexed words [60]. The inverted index was comprised of two tables. 
The first table contained for each word indexed positions pointing to the other table [e.g. 
(word, index_positions)]. The second table contained sentiment scores for each indexed 
position [e.g. (index, SentimentScores)]. Thus, sentiment scores could be quickly found 
based on indexed words of the first table, and indexes of the second table instead of iter-
ating each word in SentiWordNet (1st version of algorithm). The inverted index was cre-
ated before execution of an experiment.

The word count algorithm and the first version of sentiment analysis algorithm were 
implemented to AsterixDB with AQL. An inverted index for sentiment analysis was 
implemented to AsterixDB with Java as a UDF, which was installed with a command 
line tool of the database. All algorithms were executed based on analytical AQL que-
ries, which were received from the test client. See Additional files 1 and 2 for detailed 
description of algorithms for AsterixDB (Additional files 1 and 2).

Spark’s algorithms were implemented mainly with Scala, but Java was used for connec-
tions to Cassandra. Implementation of word count and sentiment analysis algorithms, 
and tweet loading process were executed in separate Spark processes. In each process, 
a socket received tweets/query commands from the test client. Tweets were loaded into 
Cassandra or the requested algorithm was executed based on the received content. See 
Additional files 3 and 4 for detailed description of algorithms for Spark +  Cassandra 
(Additional files 3 and 4).

Clustering and database access

AsterixDB master–slave architecture was experimented for clustering. With Spark 
streaming the algorithms were executed both in local mode, and cluster mode (Fig. 2). 
In the local mode, tweet receiver and both algorithms were executed in Spark driver. 
In the cluster mode a few modifications were needed for execution of analytical que-
ries. First, a pool was created for storing connections to Cassandra. The driver managed 
the connection pool, and provided one connection for each worker. Second, sentiment 
analysis data structures were cached in the driver, in order to avoid costly serialization/
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deserialization between the Spark driver and workers. In practice, caching was imple-
mented with Spark’s broadcast variables.

The following fields of a received tweet were saved into a database:

• • TwitterUserType: screen-name, language, friends_count, statuses_count, name, fol-
lowers_count.

• • TweetMessageType: tweet_id, sender_location, send_time, message_text, twitter_
user_type.

The structure was created for tweets based on Twitter search API [61]. In both data-
bases tweets were indexed based on tweet_id, which was used as the primary key. A 
tweet data set was created based on TweetMessageType to AsterixDB. One table was 
created into Cassandra with Spark streaming, which was used for storing of tweets.

Experiments

Several tests were performed in a cloud environment in order to find answers to the 
research questions. Initially, experiments were conducted separately for streaming and 
analysis of tweets without stream processing. Also, performance of Cassandra access 
from Spark was experimented. Subsequently, streaming and analysis of tweets was per-
formed in near real time. The experiments were conducted initially on one cloud node. 
Finally, the amount of nodes was increased (up to 8 nodes) for studying scalability of the 
technologies. In the following the experiments are shortly described (Configuration of 
the experiments is provided in ’’Test configuration " section).

Preliminary experiment: Tweet loading

The purpose was to find out how fast tweets can be streamed into the cloud platform 
without processing of tweets. AsterixDB’s REST API and data feeds were experimented 
for data ingestion. Respectively, loading of tweets was implemented to Spark with TCP 
sockets.

Preliminary experiment: reading from Cassandra with Spark

The purpose was to study reading performance of tweets from Cassandra with Spark. 
Particularly, Spark access to Cassandra with a native Java API and Spark Cassandra con-
nector [34] were experimented.

Fig. 2  Implementation architecture of algorithms with AsterixDB and Spark
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Preliminary experiment: Tweet analysis

The purpose was to study performance of analytical processing queries without stream 
processing. In the experiments performance of word count and sentiment analysis algo-
rithms was tested.

Experiment: stream processing (RQ 1.1)

The purpose was to study performance of tweet ingestion and analytical processing que-
ries in near real time. Also, the effect of Cassandra was studied, by executing stream pro-
cessing with Spark streaming without a database. In the experiments analytical queries 
were transmitted adaptively from the test client based on the rate tweets were written 
into the database.

Experiment: scalability (RQ 1.2)

The purpose of the test was to find out how performance of a technology scales, when 
the amount of processing nodes in the cloud infrastructure is increased.

Results and analysis
Preliminary experiment: Tweet loading

First, preliminary experiments were executed for evaluation of different APIs/drivers 
and algorithms (Fig.  3). AsterixDB achieves 11× throughput in comparison to Spark 
(with Cassandra’a Java driver), when data feeds are utilized for loading of tweets. Spark’s 
performance was significantly lower, when Cassandra Spark connector was used. Lower 
performance was most probably caused by transformation of tweets (serialization) 
between Spark/Scala and Cassandra, when the tweets were saved into Cassandra [62]. 
AsterixDB has low throughput, when tweets are ingested using the REST API.

Preliminary experiment: reading from Cassandra with Spark

Prior to the execution of analytical query experiments, Cassandra Spark connector and 
Cassandra’s Java driver were tested for reading performance (Figs. 4, 5). In the tests data 
had to be brought from Cassandra to Spark driver for analysis. With Cassandra Spark 

Fig. 3  Tweet loading results. The figure presents throughput, when tweets are loaded to AsterixDB or to 
Cassandra with Spark
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connector data from Cassandra’s rows had to be serialized back to Spark’s driver, which 
eventually led to low reading throughput. However, when multiple tweets were fetched 
with one database read operation (with Cassandra Spark Connector), throughput 
increased significantly (up to 1000 tweets/s). When data was read directly in Spark with 
Cassandra’s Java driver, serialization wasn’t needed, and more than 1100 tweets could be 
read in a second.

Preliminary experiment: Tweet analysis (word count)

Subsequently, analytical queries were tested. When Cassandra Spark connector was 
used for calculation of word count among tweets, Spark had lower performance than 
AsterixDB (REST) (Fig.  6). However, Cassandra’s Java driver increased throughput 
higher in comparison to AsterixDB (with REST API).

Preliminary experiment: Tweet analysis (sentiment analysis)

When 1st version of sentiment analysis was experimented (Fig. 7), Spark achieved ~3× 
throughput (with Cassandra’s Java-driver) in comparison to AsterixDB AQL. When 
sentiment analysis with an inverted index was used with Spark, throughput was ~1100 
tweets/s, which is close to the reading performance of tweets. However, when sentiment 

Fig. 4  Reading throughput with Cassandra Spark connector. The amount of tweets per reading operation 
was varied

Fig. 5  Reading throughput with Cassandra’s Java driver. The target reading throughput was varied
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analysis algorithm was implemented as a UDF (with an inverted index), AsterixDB had 
~11× throughput in comparison to Spark. The increased performance required execu-
tion of multiple analysis operations (200) within one request over AsterixDB REST API, 
in order to avoid REST overhead in communication.

Based on the initial findings related to Cassandra Spark connector, Cassandra’s Java 
driver was utilized in further experiments. It was also decided that AQL wouldn’t be 
used in further tests for loading of tweets nor as an implementation of the sentiment 
analysis algorithm. Instead, sentiment analysis with an inverted index was used as a UDF 
in AsterixDB, and a data feed was used for loading of tweets.

Experiment: stream processing (word count)

AsterixDB has 1.5× throughput in comparison to Spark + Cassandra (Fig. 8), when a 
data feed was used for loading of tweets. AsterixDB can also provide lower latency, when 
compared to Spark streaming (Fig. 9).

Experiments: stream processing (sentiment analysis)

Figure  10 presents results, when tweets are processed with sentiment analysis algo-
rithms. Spark was tested with two implementations of sentiment analysis algorithms. 

Fig. 6  Reading throughput with word count algorithm

Fig. 7  Reading throughput, when sentiment analysis is performed
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When an inverted index was created for sentiment analysis, throughput increased 20×. 
Based on this result, the 2nd version of sentiment analysis algorithm was utilized for 
comparing AsterixDB and Spark in further stream processing experiments.

Fig. 8  Stream processing throughput with word count algorithm

Fig. 9  Stream processing latency with word count algorithm

Fig. 10  Stream processing throughput with sentiment analysis algorithm
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The impact of Cassandra can also be seen in the results. Cassandra’s impact is larg-
est, when an inverted index is used. AsterixDB was faster than Spark even, when Spark 
wasn’t integrated with a database. AsterixDB provides the best performance, as ~9000 
tweets can be processed in a stream, when sentiment analysis with an inverted index has 
been implemented as a UDF, and tweets are ingested with a data feed.

AsterixDB has significantly lower latency than Spark (Fig. 11). When latency of pro-
cessing is compared, Spark’s analytical queries are queued at the server, and latency is 
high. However, when no database is utilized, latency is less than 1 s.

Experiment: scalability of word count and sentiment analysis

Performance of the technologies was also compared, when the amount of VMs was 
increased, in order to study scalability aspects of the technologies (Fig. 12). When nodes 
were added in word count experiments, performance increased up to 4 nodes with 
both technologies. AsterixDB has a bit higher throughput with more virtual nodes. In 
the cluster mode, a pool was utilized for multi-threading of connections to Cassandra 
(Fig. 2), which most probably led to the increased throughput. When compared to per-
formance achieved with one Spark node (Fig.  10), performance in the cluster experi-
ments is higher.

Fig. 11  Stream processing latency with sentiment analysis algorithm

Fig. 12  Scalability of word count algorithm on Eucalyptus cloud plat form



Page 15 of 25Pääkkönen ﻿J Big Data  (2016) 3:6 

Figure  13 presents scalability of sentiment analysis algorithm on Eucalyptus cloud 
platform. AsterixDB achieves 3–6× throughput in comparison to Spark + Cassandra. 
Spark’s performance increases up to 4–8 nodes. AsterixDB’s performance does not sig-
nificantly increase with more nodes.

Figure  14 presents scalability results for simultaneous execution of word count and 
sentiment analysis algorithms. AsterixDB has 1.5–2× higher throughput in comparison 
to Spark + Cassandra, when the amount of nodes on the cloud platform is increased. It 
seems tweets are ingested into Cassandra faster than Spark is able to perform sentiment 
analysis, when the amount of nodes is increased.

Discussion
In the following, lessons learnt from the experiments are discussed. Additionally, the 
results are compared to earlier literature. Finally, reliability and validity of results, and 
future work are discussed.

Lessons learnt

In this article stream processing refers to processing after persisting of tweets to the 
database (near real time processing). In practise, the test client sent analytical queries 

Fig. 13  Scalability of sentiment analysis algorithm on Eucalyptus cloud platform

Fig. 14  Scalability of word count and sentiment analysis algorithms on Eucalyptus cloud platform with Spark
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adaptively based on the rate tweets were saved to the database. Tweets could also have 
been processed immediately after reception at the server. The alternative was experi-
mented shortly, when Spark was executed without Cassandra in sentiment analysis 
(Fig. 10). In this case tweets were processed in Spark after reception, and the result of 
algorithm(s) was returned to the test client. Real time processing could also have been 
implemented as a UDF to AsterixDB, by connecting the UDF to the data feed [48]. 
However, measurement of UDF latency may have been difficult, because the test client 
wouldn’t have received any indication, when the UDF had been completed for streamed 
tweets.

In the stream processing experiments tweets were read from a database, and 
algorithm(s) were executed based on tweet content. This approach led to serialization 
of tweet objects between Spark and Cassandra, when Spark Cassandra connector was 
utilized, which eventually led to low write/read performance. If algorithms could have 
been implemented without reading tweets from the database to Spark, Spark Cassandra 
connector may have had much better performance, and would have been more suitable 
for the purpose.

Maximum tweet loading throughput with AsterixDB was ~12,000 tweets. When data 
was loaded, tweets were dropped (not saved into database), when throughput increased 
above a threshold. In order to guarantee that all loaded tweets were saved correctly, the 
amount of tweets was checked after each experiment. Different policies may be utilized 
with data feeds [14]. In the experiments basic policy was used, which leads to buffering 
of excess records in memory [14]. The effect of other ingestion policies has been studied 
earlier [14].

As tweets were sent in a socket to AsterixDB feed, transmission was considered com-
pleted as soon as data was pushed to the socket. On the contrary, as tweets were saved 
into Cassandra with Cassandra query language’s (CQL) INSERT, the tweet had to be 
saved to commit log and memtable of at least one Cassandra replica node (consistency 
level = ONE).

Currently, AsterixDB ingests data within fixed-size frames to the database. The default 
size of a frame is 128  KB (compiler.framesize in asterix-configuration.xml), which has 
to become full in order for AsterixDB to save items to the database. Thus, algorithms 
had to be executed many (1000) tweets behind the last tweet, which was transmitted to 
AsterixDB. Alternatively, UDF could have been connected with a data feed, which would 
have enabled execution of UDF immediately after reception of tweets, but would have 
made UDF measurements difficult.

An inverted index significantly improved performance of sentiment analysis. Senti-
ment analysis algorithm with an inverted index was created as an UDF with Java, which 
was executed with calls over the REST API. Multiple analytical queries (200) were made 
within one REST API call to AsterixDB, in order to avoid REST connection overhead in 
sentiment analysis (Fig. 7), and for gaining better performance.

The three afore-mentioned issues have to be considered in interpretation of the 
results. Because tweets cannot be considered saved immediately after transmission, the 
loading results are more optimistic for AsterixDB. This issue does not affect comparison 
of stream processing results, because performance was measured based on execution of 
UDFs (sentiment analysis) or HTTP queries (word count). However, UDF execution had 
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to be delayed in streaming experiments of sentiment analysis, which should be acknowl-
edged in interpretation of the results. Also, in this case multiple analytical UDF queries 
(200) had to be performed within one HTTP REST API call for achieving the streaming 
performance results.

When tweets were loaded into Spark/Cassandra, throughput increased significantly, 
when connections to Cassandra were multi-threaded in the scalability experiments 
(Figs.  12, 13). Cassandra’s connection pool was debugged, which indicated that ~5 
threads were used simultaneously. A simple multi-threading client without Spark (with 
5 threads) was able to achieve ~6000 writes/s to Cassandra (vs. Fig. 13), which suggests 
that the current thread pool approach in Spark may be optimized.

The technologies may also be compared in terms of experiences related to program-
ming and deployment of algorithms. The development version of AsterixDB (v0.87) was 
compiled and installed for development of UDFs and deployment of data feeds. UDF 
algorithms were compiled in the development environment of AsterixDB, and installed 
with AsterixDB’s management tool. AQL algorithms were installed via the REST API. 
Library dependencies between Scala, Spark, Cassandra, and Spark Cassandra connec-
tor had to be resolved, before algorithms could be compiled and executed with Spark. 
Spark algorithm deployment differed from AsterixDB is terms of resource allocation for 
Spark processes (CPU, memory). The most demanding parts (to the author) in program-
ming and deployment of algorithms were learning of the AQL syntax, and functional 
programming paradigm of Spark/Scala.

Comparison to literature

AsterixDB’s data feeds and UDF have been reported to achieve higher ingestion per-
formance than an integrated solution (MongoDB +  Storm) [14]. This research came 
to a similar conclusion, when a different technology set (Spark + Cassandra) was com-
pared to AsterixDB. Reported tweet ingestion throughput per feed was ~10,000 tweet/s 
[14], which is close to the result achieved in this work (Fig.  3). The earlier study also 
focused on the impact of feed ingestion policy on performance, which is out of scope 
for this work. Latency of tweet ingestion over REST API was ~200 ms, which is higher, 
when compared to earlier insert experiments (~100 ms) [45]. An earlier study focused 
on experimentation of AsterixDB and three other data management systems with read-
only and data modification workloads [49]. However, the experiments differed from this 
work, which makes comparison of results difficult. The main differences of this work 
to earlier literature on AsterixDB are stream performance of tweet-related analytical 
queries, scalability aspects, and comparison to a new integrated solution (Spark and 
Cassandra).

Earlier Spark experiments have reported sub-second latency for Grep, word count, 
and TopKCount applications [12]. Other word count experiments with Spark (without 
database integration) indicated a processing latency of 2–3 s [9], which is higher than the 
result reported in this paper (Fig. 9). The reported word count latency (in this paper) was 
on a sub-second range. The difference (to [9]) may be explained with a different data set, 
and version of Spark (v0.9 vs. v1.3.1). Execution of sentiment analysis with Cassandra led 
to queueing at Spark server, and much higher latencies (Fig. 11). However, when both 
algorithms were executed without a database, latency dropped lower than 1 s.
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Earlier studies of sentiment analysis have focused mostly on performance comparison 
between lexical-based and machine learning approaches [42, 43] in terms of prediction 
accuracy and agreement [22, 24, 31]. Additionally, performance of web services provid-
ing sentiment analysis has been studied [23]. Instead, this paper focused on performance 
of technologies in terms of throughput and latency, when the selected sentiment analysis 
method (SentiWordNet 3.0) [26] was implemented. Lexicon-based sentiment analysis 
with MapReduce has been studied in Amazon cloud infrastructure [28]. The achieved 
throughput (~1000–2000 tweets/s) is in the same range with results of this paper. How-
ever, their approach was batch-based, and this paper focused on stream-based analysis. 
Taghreed [29] can achieve high insertion rates, and low query latency for tweets. Their 
approach focused on geotagged tweets with spatial and temporal boundaries, which 
enables implementation of optimizations. Nimbus has integrated Spark with MySQL 
for providing a filter service for Twitter streams [30], while the approach of this paper 
focused on real-time processing performance. Twitter sentiment analysis in a Spark 
cluster indicated that performance improved, when the number of nodes in the cluster 
was increased [44]. The main difference to this study is that persistence to database was 
not considered in their study.

Earlier literature was studied for finding a tool, which could be reused for execution 
of Twitter-related experiments. OLTP-bench [50] has a synthetic workload generator 
for Twitter data and queries. However, it is aimed for testing DBMSs, and was not eas-
ily extendable for experimenting with streaming technologies. StreamBench [9] and a 
benchmark for social networks [54] could be utilized for testing of streaming applica-
tions, but the tools have not been made publicly available. SparkBench [53] is also an 
interesting alternative, but it is a Spark-specific benchmark. BDGS [10] may be used 
for creation of semi-structured data (e.g. Amazon movie reviews), but not for simula-
tion of Twitter related data sets. A micro-benchmark has been published [49], which 
can be used for simulation of social networking applications. The benchmark also aims 
at benchmarking of multiple big data management systems, but currently lacks stream-
ing functionality by concentrating on read-only or update-only workloads. For these rea-
sons, a new test client was implemented (Fig.  15). Implementation of the testing tool 
required 1–2 month of working effort. Thus, it would be beneficial to reuse the testing 
tool in similar experiments. A few SW components of the testing tool (statistics, diction-
ary, ContentManager) may be reused, if other algorithms or technologies would need 
to be evaluated. However, communication and actual message protocol (e.g. AsterixDB-
Content and AsterixDBImpl in Fig. 15) related to the target technologies would have to 
be re-implemented.

Reliability and validity of results and future work

Reliability of results may be improved by running longer and more test iterations. How-
ever, the experiments included ~180 different setup configurations, which set limits to 
the amount of time, which was available for experimentation. In this article performance 
was studied from the point of view of throughput and latency. Additionally, other meas-
ures (e.g. CPU/memory consumption at the server) could have been studied [40, 53].

The results can be considered valid for a DSM multiprocessor HW platform, where 
the HW resources have been virtualized into a cloud environment with Eucalyptus 
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technology. Alternatively, experiments could have been conducted on a computer clus-
ter, where nodes would have been connected via a high-speed network interface. Disks 
of the server rack were configured with RAID (level 0), which created a common virtual 
disk to the cloud environment. Instead, disks could have been configured without RAID, 
or solid-state drives (SSD) could have been used.

Future work may include feasibility analysis with more complex (CPU and memory-
intensive) algorithms (such as [31]). Also, it would be interesting to consider other senti-
ment analysis methods than SentiWordNet [63], or extend machine learning approach 
to sentiment analysis (e.g. [28, 44]). Other stream processing technologies (e.g. Storm, 
S4) with integrated databases could be compared to AsterixDB by reusing the testing 
tool in experiments. Experiments could also be replicated in an environment with clus-
tered nodes and high-speed disks (SSD).

Conclusions
The main research question was to study how AsterixDB performs relative to Spark 
streaming, which has been integrated with Cassandra, in the stream processing of semi-
structured data. The question was focused on by finding answers to two sub-research 
questions. The 1st sub-question was to find out how the technologies perform, when 
content analysis (word count) and sentiment analysis of tweets is performed in a stream. 
A test bed was created on Eucalyptus cloud platform, for testing the algorithms with 

Fig. 15  Architecture of the test client
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both technologies under study. The results indicated that AsterixDB provided higher 
throughput than Spark  +  Cassandra in the experimented scenarios. AsterixDB also 
achieved lower latency. The 2nd research question focused on scalability, when the num-
ber of processing nodes on the cloud platform is increased. The results indicated that 
AsterixDB scaled roughly similarly with Spark streaming in the execution of the word 
count algorithm. AsterixDB had 3–6× throughput with sentiment analysis, and 1.5–2× 
throughput, when word count and sentiment analysis were executed simultaneously 
in a cluster. Based on the experiments it can be concluded that AsterixDB performed 
relatively better in the processing of semi-structured Twitter data. However, buffering 
of tweets in a data feed produced more optimistic tweet loading results for AsterixDB, 
which should be taken into account in interpretation of the results. Also, due to the buff-
ering of tweets with AsterixDB’s, the calling of UDFs had to be delayed, which should 
be taken into account in interpretation of streaming experiments of sentiment analysis. 
This issue may be improved by writing more frequently to the database (in AsterixDB), 
which remains to be validated in future work.

Methods
Test client

Architecture of the test client has been described in Fig.  15. The test client simulated 
generation of tweets and analytical queries, which were executed against the technolo-
gies under study. Dictionary produced tweets randomly based on words contained in 
SentiWordNet 3.0 corpus [26]. Words having no negative or positive meaning were 
removed from the dictionary (total dictionary size = 15,344 words). Separate tweet data 
sources (AsterixDBContent/SparkContent) were implemented for producing technol-
ogy dependent content (tweets, queries) for both technologies under study. Also, sepa-
rate testers were implemented for Spark (Spark client impl.) streaming and AsterixDB 
(AsterixDBImpl). Statistics-component was utilized by the technology implementations 
for reporting events regarding loading of tweets and analytical queries, which were used 
for calculation of latency and throughput. StreamingManager read test configurations 
from a file prior to the execution of the tests.

Measurements

Test client was used for performing of measurements as follows. It transmitted tweets 
and queries to the REST API of AsterixDB in a HTTP POST, and AsterixDB replied with 
a HTTP 200 OK (details in Figs. 16, 17). AsterixDBImpl recorded a timestamp before 
sending of the request, and after receiving a reply, and calculated the difference, which 
was reported to the Statictics-component as latency.

Additionally, data feeds were used for loading of tweets into AsterixDB. Initially, a data 
feed was created with AQL to AsterixDB. Subsequently, TCP socket at the test client 
was used for streaming of tweets into AsterixDB. A timestamp was captured before/
after transmission of tweets, and the difference was calculated as latency.

Spark streaming measurements were conducted with the Test client, and Spark algo-
rithms (Fig.  1), which were submitted to Spark’s standalone cluster manager (in clus-
ter mode) (details in Figs. 16, 17). First, SparkClientImpl captured a timestamp, before a 
tweet/query had been transmitted to the server. After finalization of a job (write/query), 
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Spark algorithms transmitted a response back to the Test client, which captured a times-
tamp. Finally, the difference was reported to the statistics-component as latency.

The result of algorithms was transmitted to the test client as a response (AsterixDB: in 
HTTP 200 OK, Spark: in TCP connection). However, in Spark’s cluster mode the result 
of the algorithms wasn’t transmitted to the client, because of the difficulty of fetching the 
results from the distributed workers to the driver.

In a query test analytical queries were executed for duration of 20 min. In loading and 
stream processing tests, each test lasted for 200 s + 20 min. The first 200 s was consid-
ered as a warm-up phase, which was not included into the measurements.

During each test Statistics-component of the test client measured throughput within a 
2 s interval (based on received latency reports), which was saved into a measurement file 
after completion of a test. The throughput measurements were averaged to get an overall 
average throughput in a test case. A test case was executed three times in each test con-
figuration. The final throughput is an average of the test case iterations.

Test procedure: Tweet analysis

Figure  16 presents a sequence diagram for describing events in tweet analysis experi-
ments. In AsterixDB experiment, first the database is started (A1). Then, data structures 

Fig. 16  Communication in tweet analysis experiments. A AsterixDB, S Spark + Cassandra

Fig. 17  Communication in streaming processing experiments
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for tweets and a data feed (if used for tweet loading) are created (A2). Tweets are loaded 
to AsterixDB from the test client (A3), and the test client is stopped (A4). Subsequently, 
analytical queries are transmitted to AsterixDB via the REST API (A5). Finally, the test 
client is stopped (A6).

Spark’s experiment begins by starting Cassandra at the server node (S1), and by creat-
ing data structures to it (S2). Then, the test client starts listening for connections (S3). 
Spark streaming process is started at the server for loading of tweets (S4), and a connec-
tion is established to the test client (S5). Tweets are loaded into Spark + Cassandra from 
the test client (S6, S7), which is followed by stopping/restarting of the test client (S8, S9). 
Spark process of an algorithm is started at the server (S10), and a connection is estab-
lished to the test client (S11). Finally, commands for analytical queries are transmitted 
from the test client to the Spark server, which executes analytical jobs (S12, S13). Finally, 
the test client is stopped, which outputs the test results into a file (S14/A6).

Test procedure: stream processing

Communication in the stream processing experiments has been described in Fig. 17. Ini-
tially, AsterixDB is started (A1), data structures, and data feed (if used for loading of 
tweets) are created (A2). Then, tweets and analytical queries are transmitted simultane-
ously from the test client to the server (A3).

In Spark experiments, first Cassandra is started (S1), and data structures are cre-
ated (S2). Subsequently, listening is started at the test client (S3). Then, Spark processes 
(tweet loader, algorithms) are started at the server (S4), and connections are established 
to the test client (S5). The test client transmits tweets and commands for analytical que-
ries simultaneously to Spark processes (S6, S7). Finally, the test client is stopped, and 
results are output to a measurement file (A4/S8).

Test configuration

AsterixDB v0.86 was used for tweet loading experiments over REST API, and for testing 
implementation of algorithms with AQL. The development version (v0.87) of AsterixDB 
was used for experimentation with data feeds and UDF. Spark v1.3.1 was used with Cas-
sandra 2.1.2. Spark Cassandra connector v1.3.0 was used for connections to Cassandra.

In the following technology specific configurations of the experiments are provided:

• • Spark: block interval = 50 ms.
• • Spark: memory allocation = 30 GB per worker/VM (1 node experiment), memory 

was divided evenly to Spark processes [tweet receiver, algorithms (Fig. 1)] in cluster 
experiments.

• • Spark: CPU allocation: all virtual cores for VM (1 node experiment), virtual CPUs 
were divided evenly to Spark processes in cluster experiments.

• • Cassandra. Default consistency level for reads/writes = ONE.
• • Test client
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•	 Spark: one thread for analytical command queries, one thread for loading of tweets.
• 	 AsterixDB: 10 (1 node tests)/20 (clustering tests) threads for transmission of ana-

lytical commands. Thirty threads for loading of tweets over REST API. One thread 
for loading of tweets with a data feed.
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