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Background
A rule is that each and every paradigm-shift idea passes through four phases in its life-
time. In the phase #1, the idea is radicalized (people laugh on it). In the phase #2, the 
idea is attacked (some people aggressively try to destroy it). In the phase #3, the idea is 
accepted (most of those who were attacking it, now keep telling around that it was their 
idea, or at least that they always were supportive of that idea). In the final phase #4, the 
idea is considered as something that existed forever (those who played roles in initial 
phases are already dead, physically or professionally, by the time the fourth phase started).

The main question for each paradigm-shift research effort is how to make the first two 
phases as short as possible? In the rest of this text, this goal is referred to as the “New 
Paradigm Acceptance Acceleration” goal, or the NPAA goal, for short.

The Maxeler Application Gallery project is an attempt to achieve the NPAA goal in the 
case of dataflow supercomputing. The dataflow paradigm exists on several levels of com-
puting abstraction. The Maxeler Application Gallery project concentrates on the data-
flow approach that accelerates critical loops by forming customized execution graphs 
that map onto an reconfigurable infrastructure (currently FPGA-based). This approach 
provides considerable speedups over the existing control flow approaches, unprec-
edented power savings, as well as a significant size reduction of the overall supercom-
puter. This said, however, dataflow supercomputing is still not widely accepted, due to all 
kinds of barriers, ranging from the NIH syndrome (Not Invented Here), through 2G2BT 
(Too Good To Be True) till the AOC syndrome (Afraid Of Change) widely present in the 
high-performance community.

Abstract 

This paper describes the vision behind and the mission of the Maxeler Application 
Gallery (AppGallery.Maxeler.com) project. First, it concentrates on the essence and per-
formance advantages of the Maxeler dataflow approach. Second, it reviews the sup-
port technologies that enable the dataflow approach to achieve its maximum. Third, 
selected examples of the Maxeler Application Gallery are presented; these examples 
are treated as the final achievement made possible when all the support technolo-
gies are put to work together (internal infrastructure of the AppGallery.Maxeler.com 
is given in a follow-up paper). As last, the possible impact of the Application Gallery is 
presented and the major conclusions are drawn.
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The technical infrastructure of the Maxeler Application Gallery project is described 
in [1]. The paper at hand describes: (1) the essence of the paradigm that the Maxeler 
Application Gallery project is devoted to (2) the whereabouts of the applications used 
to demonstrate the superiority of the dataflow approach over the control flow approach, 
and (3) the methodologies used to attract as many educators and researchers as possible, 
to become believers into this “new” and promising paradigm shift.

This paper is organized as follows: in the next section we introduce the essence of 
the paradigm. Next, we introduce the support technologies required by the paradigm. 
Thereafter selected examples incorporated into the Maxeler Application Gallery pro-
ject are presented along with the details of the selected examples. A separate section is 
dedicated on the expected impact while the conclusions summarize the paper. In addi-
tion, Figs. 1, 2 illustrate the structure and impact of a typical AppGallery.Maxeler.com 
example.

The major references of relevance for this paper are: [2] about trading off latency and 
performance [3], about splitting temporal computing (with mostly sequential logic) and 
spatial computing (with combinational logic only) [4], about the Maxeler dataflow pro-
gramming paradigm [5], about selected killer applications of dataflow computing [6], 
and [7] about the essence of the paradigm [8], about algorithms proven successful in the 
dataflow paradigm, and [9] about the impacts of the theories of Cutler, Kolmogorov, Fey-
nman, and Prigogine. See [10–12] for issues in arithmetic, reconfigurability, and testing.

Case description
The dataflow supercomputing paradigm essence

At the time when the von Neumann paradigm for computing was formed, the technol-
ogy was such that the ratio of arithmetic or logic (ALU) operation latencies over the 
communication (COMM) delays to memory or another processor t(ALU)/t(COMM) 
was extremely large (sometime argued to be approaching infinity).

In his famous lecture notes on Computing, the Nobel Laureate Richard Feynman pre-
sented an observation that in theory, ALU operations could be done with zero energy, 
while communications can never reach zero energy levels, and that speed and energy 
of computing could be traded. In other words, this means that in practice, the future 
technologies will be characterized with t(COMM)/t(ALU) extremely large (in theory, 
t(COMM)/t(ALU) approaching infinity), which is exactly the opposite of what was 
the case at the times of von Neumann. That is why a number of pioneers in dataflow 
supercomputing accepted to use the term Feynman Paradigm for the approach utilized 
by Maxeler computing systems. Feynman never worked in dataflow computing, but his 
observations made many to believe into the great future of the dataflow computing para-
digm (along with his involvement with the Connection Machine design).

Obviously, when computing technology is characterized with extremely large 
t(COMM)/t(ALU), the control flow machines of the multi-core type (like Intel) or the 
many-core type (like NVidia) could never be as fast as the dataflow machines like Max-
eler, for one simple reason: Buses of the control flow machines will never become of zero 
length, while many edges of the execution graph can easily be made zero length.
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The main technology related question now is: “Where is the ratio of t(ALU) and 
t(COMM) now?”

According to the above mentioned sources, the energy needed to do an IEEE Float-
ing Point Double Precision Multiplication will be only 10pJ around the year 2020, while 
the energy needed to move the result from one core to another core of a multi-core or 
a many-core machine is 2000pJ, which represents a factor of 200×. On the other hand, 
moving the same result over an almost-zero-length edge in a Maxeler dataflow machine, 
in some cases, may take less than 2pJ, which represents a factor of 0.2×.

Therefore, the times have arrived for the technology to enable the dataflow approach 
to be effective. Here the term technology refers to the combination of: the hardware 
technology, the programming paradigm and its support technologies, the compiler tech-
nology, and the code analysis, development, and testing technology. These technologies 
are shed more light at in the next section.

Fig. 1  GitHub repository of the linear regression application
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The paradigm support technologies

As far as the hardware technology, a Maxeler dataflow machine consists of either a con-
ventional computer with a Maxeler PCIe board (e.g., Galava, Isca, Maia etc. all collec-
tively referred as DataFlow Engines—DFEs), or is a 1U box1 that could be stacked into a 
40U rack, or into a train of 40U racks.

As far as the programming paradigm and the support technologies, the Maxeler data-
flow machines are programmed in space, rather than in time, which is the case with 
typical control flow machines. In the case of Maxeler (and the Maxeler Application Gal-
lery project), the general framework is referred to as OpenSPL (Open Spatial Program-
ming Language, http://www.OpenSPL.org), and its specific implementation used for 
the development of AppGallery.Maxeler.com applications is called MaxJ (shorthand for 
Maxeler Java).

1  1U refers to the minimal size in rack-mount servers; the number (×U) indicates the size of the rack-mount.

Fig. 2  Code of the linear regression kernel written in MaxJ language

http://www.OpenSPL.org
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As far as compilation, it consists of two parts: (a) Generating the execution graph, and 
(b) Mapping the execution graph onto the underlying reconfigurable infrastructure. The 
Maxeler compiler (MaxCompiler) is responsible for the first part. The synthesis tools 
from the FPGA device vendor are responsible for the second part. As interface between 
these two distinct phases VHDL is used.

As far as the synergy of the compiler and the internal “nano-accelerators” (small add-
on at the hardware structure level, invisible at the level of the static dataflow concept, 
and invisible to the system designer, but under the tight control of the compiler), the 
most illustrative is the fact that the compiled code for a board based on Altera or Xilinx 
chips is much slower compared to the code compiled for a Maxeler board having the 
same type and the same number of Altera or Xilinx chips. This is due to many differ-
ent “nano-accelerators” present at the Maxeler board. These are invisible on the concept 
level and invisible to the dataflow programmer, but extremely important for the con-
cept implementation, visible to the Maxeler compiler, and it knows how to utilize them. 
These add-ons are here referred to as “nano-accelerators”.

As far as the tools for analysis, development, and testing, they have to take care of the fol-
lowing issues: (a) When the paradigm changes, the algorithms that previously were the best 
ones, according to some criterion, now are not any more, so the possible algorithms have to 
be re-evaluated, or new ones have to be created; (b) When the paradigm changes, the usage of 
the new paradigm has to be made simple, so the community accepts it, with as short as pos-
sible delays, and (c) When the paradigm changes, the testing tools have to be made compatible 
with the needs of the new paradigm, and the types of errors that occur most frequently.

The best example of the first is bitonic sort, which is considered among the slowest in 
control flow and among the fastest in dataflow. The best example of the second is WebIDE.
Maxeler.com with all its features to support programmers. The most appropriate example 
of the third is related to the on-going research aimed at including a machine learning assis-
tant that analyses past errors and offers hints for the future testing-oriented work.

All the above support technologies have to be aware of the following: If the tempo-
ral and the spatial computing are separated (hybrid computing with only combinational 
logic in the spatial part), and if latency is traded for better performance (maximal accel-
eration even for the most sophisticated types of data dependencies between different 
loop iterations), benefits occur only if the support technologies are able to utilize them!

Presentation of the Maxeler application gallery project

The next section of this paper contains selected examples from the Maxeler Application 
Gallery project, visible at the web (AppGallery.Maxeler.com). Each example is presented 
using the same template.

The presentation template, wherever possible, conditionally speaking, includes the fol-
lowing elements: (a) The whereabouts (b) The algorithm implementation essence sup-
ported with a figure, (c) The coding approach changes made necessary by the paradigm 
changes, supported by GitHub details, (d) The major highlights, supported with a figure, 
(e) The advantages and drawbacks, (f ) The future trends, and (g) Conclusions related to 
complexity, performance, energy, and risks leading to possible problems in the domains 
of complexity, performance, energy, and creation of new risks that recursively open a 
new round of all the above.
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Discussion and evaluation
Selected Maxeler application gallery examples

The following algorithms will be briefly explained: brain network, correlation, classifica-
tion, dense matrix multiplication, fast Fourier transform 1D, fast Fourier transform 2D, 
motion estimation, hybrid coin miner, high speed packet capture, breast mammogram 
ROI extraction, linear regression, and n-body simulation. These twelve applications were 
selected, based on the speed-up provided. All these were published recently; however, 
they represent results of decade-long efforts.

The problem of transforming control flow algorithms to dataflow algorithms is not 
new. It can be found in the theory of systolic arrays. For example, the Miranker and Win-
kler’s method [13], which is an extension of the Kuhn’s method [14], is best suited for 
transforming algorithms consisting of loops with constant execution time and depend-
encies within iterations, to systolic arrays, but it also supports other algorithms. Figure 3 
demonstrates this method applied to the problem of dataflow programming.

Although various methods help in transforming algorithms from control flow to data-
flow, a programmer has to be somehow aware of the main characteristics of the underly-
ing hardware in order to produce optimal code. For example, if one has to process each 
row of a matrix separately using dataflow engines (DFEs), where each element depends 
on the previous one in the same row, the programmer should reorder the execution, so 
that other rows are being processed before the result of processing an element is given to 
the next element in the same row.

Therefore, one can say that changing the paradigm requires changing the hardware in 
order to produce results quicker with lower power consumption, but also changing our 
way of thinking. In order to do that, we have to think big, as Samuel Slater, known as 
“The Father of the American Factory System”. Instead of thinking how we would solve a 
single piece of the problem, we should rather think of how a group of specialized work-
ers would solve the same problem, and then focus on the production system as a whole, 
imagining the worker in a factory line. For state of the art, see [15–16].

Fig. 3  The Miranker and Winkler’s method
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Brain network

In July 2013, Maxeler has developed a brain network simulator for extracting network 
activity by extracting a dynamic network from brain activity of slices of a mice brain 
(application icon is given in Fig.  4). The application implements a linear correlation 
analysis of brain images to detect brain activity, as shown in Fig. 5. Figure 6 depicts a 
part of the linear correlation kernel that exploits available parallelism potentials of data-
flow engines (DFEs). Figure 7 depicts details of the implementation. While the Maxeler 
code is more complicated than the one for the control flow algorithm, the achievements 
in power reduction and speed are noticeable. DFEs have higher potentials for further 
development comparing to conventional processors, making it possible to develop a 
dynamic community analysis. For a data center processing, a MaxNode with four MAX3 
DFEs is equivalent in speed to 17 high-end Intel nodes, where the energy consumption 
of each MaxNode is comparable to Intel nodes.

Fig. 4  Application icon for brain network

Fig. 5  The brain network algorithm
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Correlation

In February 2015, Maxeler has developed a dataflow implementation of the statistical 
method to analyse the relationship between two random variables, by calculating sums 
of vectors given as streams (application icon is given in Fig. 8). Figure 9 depicts calcu-
lating the sum of a moving window of elements by adding a new element and substi-
tuting the old one from the previous sum. Figure  10 depicts crucial parts of the code 
that can be accelerated using DFEs. Figure 11 depicts which sums are calculated using 
CPU and which ones are calculated using DFEs. Dataflow achieves better performances 
in computation of sums of products, both in speed and power consumption, while some 
additional hardware is needed for implementing the code using the Maxeler framework. 
Comparing MAX2 and MAX4 Maxeler cards performance, as well as Intel’s CPU devel-
opment in the same period (2005 and 2010, respectively), we can expect higher increase 
in processing power in the dataflow computing, enabling much more than 12 pipes to 

for (int i=0; i<num_pipes; ++i){
//Get the temporal series on current pipe
DFEVector<DFEVar> temporal_series_row = row_buffer[i]["temporal_series"];

//Calculate E[ab] starting with summation...
//Use DSPs to implement "multiply and add" (9bitsx9bits -> 1 DSP -> 30 DPSs)
DFEVar average_product  = constant.var(0);
for (int j=0; j<window; ++j){

average_product += temporal_series_row.get(j).cast(dfeInt(9))* 
temporal_series_column.get(j).cast(dfeInt(9));

}
//Obtain E[ab] dividing by window... 
//implemented as product of inverse in order to use DSPs (18x20 on single DSP)
average_product *= constant.var(dfeFixMax(18, 1.0/window, 

SignMode.TWOSCOMPLEMENT), 1.0/window);
//Calculate product between average E[a]*E[b] (24x24 still on DSP)
DFEVar product_between_average = ((DFEVar)row_buffer[i]["average"]) * 

((DFEVar)column_point["average"]);
//Calculate covariance as E[ab]-E[a]*E[b]
DFEVar covariance = average_product - product_between_average;

//Calculate product between standard deviations std(a)*std(b)... 
//mapped on DSPs (24x24 on two DSPs)
DFEVar product_between_deviations = (((DFEVar)row_buffer[i]["standard_deviation"]) * 

((DFEVar)column_point["standard_deviation"]));
//Reduce resources used for division by squash optimization
//optimization.pushSquashFactor(0.5);
//optimization.popSquashFactor();

//Finally, calculate the correlation (range [-1,1] rounded with 30 fractional bits)
optimization.pushFixOpMode(Optimization.bitSizeExact(32), Optimization.offsetExact(-30), 

MathOps.DIV);
correlation[i] = covariance/product_between_deviations;
optimization.popFixOpMode(MathOps.DIV);

}
Fig. 6  The kernel code
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be placed on the chip, while at the same time memory bandwidth will further increase 
the gap between dataflow and control flow paradigms. In order to achieve good price-
performance ratio, one needs to have a relatively big stream of data, which is usually the 
case.

Fig. 7  Details of the implementation

Fig. 8  Application icon for correlation

Fig. 9  The moving sum algorithm
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Classification

In March 2015, Maxeler developed a dataflow implementation of the classification 
algorithm, by engaging multiple circuits to compute the squared Euclidean distances 
between points and classes and to compare these to the squared radii (application icon 
is given in Fig. 12). Figure 13 depicts the classification algorithm. Figure 14 depicts a part 
of the CPU code responsible for classifying, where the most inner loop can be parallel-
ized using the dataflow approach. Figure 15 depicts parallel processing of n dimensions 
of vectors p and q using DFEs. The dataflow paradigm offers both better bandwidth and 
better computing performances, but only if one provides a relatively big stream of data. 
Otherwise, a flow throughout the PCIe towards the DFEs may last longer than execut-
ing corresponding code on the CPU. Maxeler already offers many more data streams 

Fig. 10  Extracting the most compute-demanding code for acceleration using DFEs (dataflow engines)

Fig. 11  Details of the implementation
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that could feed DFEs, comparing to the conventional CPUs, and it is expected that this 
gap will grow in the future. Noticeable differences in computing paradigms are obvious, 
since the dataflow implementation of the algorithm uses 160 ROMs in parallel to fill up 
the chip. In the DFE context, ROMs (Read Only Memory) refer to custom look-up tables 
used to implement complex non-linear functions.

Dense matrix multiplication

In February 2015, Maxeler published a dataflow implementation of the dense matrix 
multiplication algorithm, by splitting vector–vector multiplications on DFEs, in order 

Fig. 12  Application icon for classification

Fig. 13  The classification algorithm

Fig. 14  The CPU code for classification
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to increase the performance (application icon is given in Fig. 16). Figure 17 depicts the 
matrix–matrix multiplication algorithm. Figure  18 depicts the Maxeler manager code 
responsible for connecting streams to and from the DFEs. Figure 19 depicts parallel pro-
cessing of parts of the matrix on the DFEs. The dataflow paradigm reduces complexity 
of the problem of multiplying matrices, but the price of that is sharing results between 
DFEs. Problems including multiplying matrices tend to increase in time, forcing us to 
switch between control flow algorithms and dataflow algorithms. Once the matrix size 
exceeds thousand elements, single MAX4 MAIA DFE at 200 MHz with 480 tile size per-
forms around 20 time faster than the ATLAS SSE3 BLAS on the single core of Intel Xeon 
E5540.

Fig. 15  Streaming the data through DFEs

Fig. 16  Application icon for dense matrix multiplication
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Fast Fourier transform 1D

In April 2015, Nils Voss and Maxeler developed a dataflow implementation of the algo-
rithm that performs Fast Fourier transform (FFT) by exploiting the dataflow parallel-
ism (application icon is given in Fig.  20). Figure  21 depicts the 1D FFT process that 
transforms a function to a series of sinusoidal functions it consists of. Figure 22 depicts 
the Maxeler Kernel responsible for Fourier Transform. Figure  23 depicts parallel pro-
cessing of signal components using DFEs. The dataflow paradigm offers better perfor-
mances comparing to CUDA, since DFEs are much closer to each other, which leads to 
a faster communication. The only constraint is the size of a chip, i.e., number of avail-
able DFEs. Since computers are used for signal processing for a long time already, and 

Fig. 17  The matrix–matrix multiplying algorithm

public GemmManager(GemmEngineParameters params) {
super(params);
configBuild(params);

DFEType type = params.getFloatingPointType();

int tileSize = params.getTileSize();

addMaxFileConstant("tileSize", tileSize);
addMaxFileConstant("frequency", params.getFrequency());

DFELink a = addStreamFromCPU("A");
DFELink b = addStreamFromCPU("B");

addStreamToCPU("C") <== TileMultiplierKernel.multiplyTiles(this, "TM", type, tileSize, a, b);
}

Fig. 18  The Maxeler manager connecting DFEs for matrix multiplication

Fig. 19  Dividing of multiplications over several DFEs
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Fig. 20  Application icon for the 1D Fast Fourier transform

Fig. 21  The Fourier transform process

public class FftKernel extends Kernel {
public FftKernel(KernelParameters kp, FftParams params) {

super(kp);

DFEComplexType type = new DFEComplexType(params.getBaseType());
DFEVectorType<DFEComplex> vectorType = new

DFEVectorType<DFEComplex>(type, 4);

DFEVector<DFEComplex> in = io.input("fft_in", vectorType);
FftFactory4pipes fftFactory = new FftFactory4pipes(this, params.getBaseType(),

params.getN(), 0);
io.output("fft_out", vectorType) <== fftFactory.transform(in, 1);

}
}

Fig. 22  The DFE code for the 1D Fast Fourier transform
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signal frequencies are constantly increasing, processing power should increase over time 
accordingly. This leads to dataflow processing. The presented application adapts the 
radix-4 decimation-in-time algorithm implemented in the class FftFactory4pipes, which 
is more efficient than using a radix-2 algorithm.

Fast Fourier transform 2D

In April 2015, Nils Voss and Maxeler developed a dataflow implementation of the 
algorithm that performs 2D FFT using 1D FFT (application icon is given in Fig.  24). 
Figure  25 depicts the 2D FFT algorithm for a signal h (n, m) with N columns and M 
rows. Figure 26 depicts the Maxeler Kernel responsible for FFT 2D. Figure 27 depicts 
using 1D FFT for calculating 2D FFT. While DFEs offer faster signal processing, com-
munications between DFEs and the CPU may in some cases last too long. In order to 
have results in time, processing may have to use FPGAs directly, or a CPU with a lower 

Fig. 23  Parallelizing of data processing using DFEs

Fig. 24  Application icon for classification
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Fig. 25  The 2D Fast Fourier transform process

public class FftKernel extends Kernel {
public FftKernel(KernelParameters kp, FftParams params) {

super(kp);

DFEComplexType type = new DFEComplexType(params.getBaseType());
DFEVectorType<DFEComplex> vectorType = 

new DFEVectorType<DFEComplex>(type, 4);

DFEVar numMat = io.scalarInput("num_matrices", dfeUInt(32));
DFEVar inputEnable = control.count.simpleCounter(32) 

< params.getM()*params.getN()/4*numMat;
DFEVector<DFEComplex> in = io.input("fft_in", vectorType, inputEnable);

FftFactory4pipes fftFactoryRows = 
new FftFactory4pipes(this, params.getBaseType(), params.getN(), 0);

FftFactory4pipes fftFactoryCols =
new FftFactory4pipes(this, params.getBaseType(), params.getM(), 0);

DFEVector<DFEComplex> fftRowsOut = fftFactoryRows.transform(in, 1);

TransposerMultiPipe transRowsToCols = 
new TransposerMultiPipe(this, fftRowsOut, params.getN(), params.getM(), true);

DFEVector<DFEComplex> fftColOutput =
fftFactoryCols.transform(transRowsToCols.getOutput(), 1);

TransposerMultiPipe transColsToRows = 
new TransposerMultiPipe(this, fftColOutput, params.getM(), params.getN(), true);

io.output("fft_out", vectorType) <== transColsToRows.getOutput();
}

}
Fig. 26  The DFE code for 2D FFT

Fig. 27  Implementing the 2D FFT using 1D FFT data processing on DFEs
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precision. As time passes, frequencies of signals tend to become higher, requiring 2D 
FFT to run faster, in order to process signals in real-time. The application presented 
adapts the radix-4 decimation-in-time algorithm, implemented in the class FftFactor-
y4pipes, which is more efficient than using a radix-2 algorithm.

Motion estimation

In April 2015, Maxeler developed a dataflow implementation of the motion estimation 
algorithm based on comparing reference blocks and moved blocks (application icon 
is given in Fig.  28). Figure  29 shows the pseudo-code of the motion estimation algo-
rithm. The DFE code from Fig. 30 computes, in parallel, the sum of absolute differences 
between source blocks and the reference block for 4 × 4 sub-blocks. Figure 31 presents 
relevant components of the system that incorporates Deblocking Filter besides motion 
estimation into motion compensation and then selects either the corresponding output 
or intraframe prediction for further processing. The dataflow approach offers faster par-
allel image processing comparing to control flow counterparts at the cost of transferring 
frames from the CPU to DFEs. Today’s security cameras tend to capture more and more 

Fig. 28  Application icon for motion estimation

Iterate on each source block, i
W = corresponding search window,
Initialize min to maximum integer for all sub-blocks
Iterate on each reference block, j in W

curr = SAD of i and j and their sub-blocks
For each sub-block, if min > curr

min = curr
minBlock = j

For each sub-block, output minBlock in the form a motion vector
Fig. 29  The pseudo-code of the motion estimation algorithm
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events that need to be processed in order to extract valuable information. By having two 
read ports for the buffer, one can read blocks from two rows in parallel, which allows 
the kernel to start reading the first block of a row before the reading of the previous row 
is finished, and thus, further reducing the energy consumption per frame and further 
increasing the performance.

for (int blockRow = 0; blockRow < blockSize / 4; blockRow++) {
for (int blockCol = 0; blockCol < blockSize / 4; blockCol++) {

List<DFEVar> srcBlock = new ArrayList<DFEVar>();
List<DFEVar> refBlock = new ArrayList<DFEVar>();
for (int row = 0; row < 4; row++) {

for (int col = 0; col < 4; col++) {
srcBlock.add(source[row + blockRow * 4][col + blockCol * 4]);
refBlock.add(reference[row + blockRow * 4][col + blockCol * 4]);
sadList[row*4 + col] = absDiff(source[row + blockRow * 4][col +
blockCol * 4], reference[row + blockRow * 4][col + blockCol * 4]);

}
}
output[0][blockCol + blockRow * blockSize / 4] = adderTree(sadList);

}
}

Fig. 30  The kernel code of the motion estimation algorithm

Fig. 31  Implementing the motion estimation using DFEs
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Hybrid coin miner

In March 2014, Maxeler developed a dataflow implementation of the algorithm that per-
forms hybrid coin miner, an application that runs both SHA-256 and Scrypt algorithms 
simultaneously on DFEs (application icon is given in Fig. 32). Figure 33 depicts the sim-
plified chain of bitcoin ownership. Figure  34 depicts the Maxeler kernel code respon-
sible for a 224-bit comparison that has to be processed over and over again. Figure 35 
shows the block diagram connecting DFEs with relevant blocks of the system. In case of 
coin mining, DFEs do not offer as good speedup as it might be expected, but the power 
consumption is approximately one order of magnitude lower. A 224-bit comparison is 
huge, and currently cannot be auto-pipelined by MaxCompiler, so it is done manually by 

Fig. 32  Application icon for hybrid coin miner

Fig. 33  The used simplified chain of bitcoin ownership
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breaking it into a many 16-bit comparisons and chaining the results, thus reducing the 
energy consumption. Meanwhile, the technology continues improving. The FPGAs don’t 
enjoy a 50×–100× increase in the mining speed, as the transition from CPUs to GPUs; 
however, a typical 600 MH/s graphics card consumed more than 400 w of power, a typi-
cal FPGA mining device would provide a hash-rate of 826 MH/s at only 80 w of power.   

High speed packet capture

In March 2015, Maxeler developed a high speed packet capture algorithm by using DFEs 
to process packets (application icon is given in Fig. 36). Figure 37 depicts the capturing 
process. Figure 38 depicts the Maxeler CaptureKernel. Figure 39 depicts the high speed 
packet capture implementation. The Maxeler DFEs offer faster processing, but the com-
munication has to flow to the DFEs and later from DFEs to the CPU. As time passes, 
network traffic grows exponentially, as well as the need for processing the packets for 
various purposes, requiring FPGAs to be used in order to increase the speed and reduce 
the energy consumption. The JDFE’s 192 Gb LMEM used as a buffer allows bursts of up 
to ~20 s of lossless 10Gbps capture from a single port, reducing the energy consumption 
per Gb of processed packets.

final int B = 16;
final int N = a.getType().getTotalBits();
if (N < B) {

throw new RuntimeException("Size must be a multiple of " + B);
} else if (N == B) {

return (a < b);
} else {

DFEVar aHi = a.slice(N-B, B).cast(dfeUInt(B));
DFEVar bHi = b.slice(N-B, B).cast(dfeUInt(B));
DFEVar aLo = a.slice(0, N-B).cast(dfeUInt(N-B));
DFEVar bLo = b.slice(0, N-B).cast(dfeUInt(N-B));
return (aHi < bHi) | ((aHi === bHi) & ltPipelined(aLo, bLo));

}
Fig. 34  The DFE code for a 224-bit comparison

Fig. 35  Connecting DFEs with relevant blocks of the system
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Fig. 36  Application icon for classification

Fig. 37  The high-speed packet capturing process

CaptureKernel( KernelParameters parameters, Types types )
{

super(parameters);
this.flush.disabled();
EthernetRXType frameType = new EthernetRXType();
DFEStruct captureData = types.captureDataType.newInstance(this);
NonBlockingInput<DFEStruct> frameInput = io.nonBlockingInput("frame", frameType,

constant.var(true), 1, DelimiterMode.FRAME_LENGTH, 0,
NonBlockingMode.NO_TRICKLING);

DFEStruct timestamp = io.input("timestamp", TimeStampFormat.INSTANCE);
frameInput.valid.simWatch("valid");
frameInput.data.simWatch("frame");
timestamp.simWatch("timestamp");
captureData[CaptureDataType.FRAME] <== frameInput.data;
captureData[CaptureDataType.TIMESTAMP] <== timestamp;
io.output("captureData", captureData, captureData.getType(), frameInput.valid);

}
Fig. 38  The capture kernel
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Breast mammogram ROI extraction

In April 2015, the University of Kragujevac developed a dataflow implementation of 
the algorithm that automatically extracts a region of interest from the breast mammo-
gram images (application icon is given in Fig. 40). Figure 41 depicts the breast mammo-
gram ROI extraction process that consists of pectorial muscle removal and background 
removal. Figure  42 depicts the main part of the Maxeler kernel responsible for the 
extraction. Figure  43 depicts the Maxeler manager responsible for the process. This 
DFEs-based approach offers faster signal processing, but the further work may include 
implementing other algorithms on DFEs that could also detect potential tumour. Breast 
cancer is more and more often the cause of death than ever before, requiring sophisti-
cated computing techniques to be used in order to prevent the worst case scenario. The 
experimental results showed that there is a significant speedup in the breast mammo-
gram ROI extraction process using the dataflow approach, around seven times, reducing 
the energy consumption at the same time.

Fig. 39  The packet capturing process using DFEs
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Linear regression

In December 2014, Maxeler developed a dataflow implementation of the linear regres-
sion algorithm by parallelizing calculations using DFEs (application icon is given in 
Fig.  44). Figure  45 depicts the linear regression algorithm. Figure  46 depicts the main 
part of the CPU code that could be accelerated by computing in parallel. Figure  47 
depicts the process of calculating linear regression coefficients. This DFEs-based 
approach offers faster calculation even in the case when there is only a single dataset 
to demonstrate the principles. Linear regression is used for various purposes, includ-
ing data mining, which is required for processing more and more data. The experimen-
tal results showed that there is a significant speedup in the linear regression algorithm 
using the dataflow approach, even with a small dataset, while the energy consumption is 
reduced.

Fig. 40  Application icon for breast mammogram ROI extraction

Fig. 41  The breast mammogram ROI extraction process
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N‑body simulation

In May 2015, Maxeler developed a dataflow implementation of the algorithm that simu-
lates effects on each body in the space on every other body (application icon is given in 
Fig. 48). Figure 49 depicts the amount of calculations of the n-body algorithm. Figure 50 
depicts the main part of the n-body implementation on the DFE. Figure 51 depicts the 
simplified kernel graph. While the DFEs-based approach offers faster processing and 
higher memory bandwidth, the input data has to be reordered in order to achieve better 
performance. This algorithm is used in various fields, and the problem sizes keep grow-
ing. The experimental results showed that there is a significant speedup near to thirty 
times, with a trend of increasing with increasing the input data size.

Impact

The major assumption behind the strategic decision to develop the AppGallery.Maxeler.
com is to help the community to understand and to adopt the dataflow approach. The 
best way to achieve this goal is to provide developers with access to many examples that 
are properly described and that clearly demonstrate benefits. Of course, the academic 
community is the one that most readily accepts new ways of thinking and is the primary 
target here.

The impact of the AppGallery.Maxeler.com is best judged by the rate at which the PhD 
students all over the world have started submitting their own contributions, after they 
had undergone a proper education, and after they were able to study from the exam-
ples generated with the direct involvement of Maxeler. The education of students is 
now based on the MaxelerWebIDE (described in a follow-up paper) and on the Max-
eler Application Gallery. One prominent example is the Computing in space with the 
OpenSPL course at Imperial College taught at the Fall of 2014 for the first time (http://
cc.doc.ic.ac.uk/openspl14/).

Another important contribution of the Maxeler Application Gallery project is to make 
the community understand that the essence of the term “optimization” in mathematics 

DFEVar above_pixel = dfeUInt(32).newInstance(this);
DFEVar prev_pixel = stream.offset(image_pixel, -loopLength);
CounterChain chain = control.count.makeCounterChain();
DFEVar i = chain.addCounter(height, 1);
DFEVar j = chain.addCounter(width * loopLengthVal, 1);
DFEVar tempWhite = dfeUInt(32).newInstance(this);
DFEVar firstWhite = ((j < loopLengthVal)) ? 0 : tempWhite;
DFEVar result;
result = image_pixel;
result = ((i.eq(0)) & (firstWhite > 1)) ? 0 : result;
result = ((i > 0) & (firstWhite > 1) & (above_pixel < black)) ? 0 : result;
result = ((i <= height/10) & (image_pixel >= threshold)) ? 0 : result;
result = ((i > height/10) & (image_pixel >= threshold) & (above_pixel.eq(0))) ? 0 : result;
above_pixel <== stream.offset(result, -1024*loopLength);
tempWhite <== ((image_pixel >= black) & (prev_pixel < black) & (j >= loopLengthVal)) | 

((j < loopLengthVal) & (image_pixel >= black)) ? 
stream.offset(firstWhite+1, -loopLength) : stream.offset(firstWhite, -loopLength);

Fig. 42  The DFE code for breast mammogram ROI extraction

http://cc.doc.ic.ac.uk/openspl14/
http://cc.doc.ic.ac.uk/openspl14/
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has changed. Before, the goal of the optimization was to minimize the number of itera-
tions till convergence (e.g., minimizing the number of sequential steps involved) and to 
minimize the time for one loop iteration (e.g., eliminating time consuming arithmetic 
operations, or decreasing their number). This was so because, as indicated before, the 
ratio of t(ALU) over t(COMM) was very large.

Now that the ratio of t(ALU) over t(COMM) is becoming very small, the goal of opti-
mization is to minimize the physical lengths of edges in the execution graph, which is 
a challenge (from the mathematics viewpoint) of a different nature. Another challenge 
is also to create execution graph topologies that map onto FPGA topologies with mini-
mal deteriorations. This issue is visible from most of the Maxeler Application Gallery 
examples.

Fig. 43  The Maxeler manager responsible for breast mammogram ROI extraction
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Fig. 44  Application icon for linear regression

Fig. 45  The linear regression algorithm

Fig. 46  The possibility for acceleration
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Finally, the existence of Maxeler Application Gallery enables different machines to be 

Fig. 47  The process of calculating linear regression coefficients

Fig. 48  Application icon for classification

Fig. 49  The n-body algorithm
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compared, as well as different algorithms for the same application to be studied com-
paratively. Such a possibility creates an excellent ground for effective scientific work.

Conclusions
This paper presented the Maxeler Application Gallery project, its vision and mission, 
as well as a selected number of examples. All of the examples were presented using a 
uniform template, which enables an easy comprehension of the new dataflow paradigm 
underneath.

This work, and the Maxeler Application Gallery it presents, could be used in educa-
tion, in research, in development of new applications, and in demonstrating the advan-
tages of the new dataflow paradigm. Combined with the MaxelerWebIDE, the Maxeler 

Fig. 50  The DFE code of the n-body algorithm

Fig. 51  The dataflow graph of the n-body algorithm
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Application Gallery creates a number of synergistic effects (the most important of which 
is related the possibility to learn by trying ones own ideas).

Future research directions include more sophisticated intuitive and graphical tools 
that enable easy development of new applications, as well as their easy incorporation 
into the Maxeler Application Gallery presentation structure. In addition, significant 
improvement of the debugging tools is underway.
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