
Kaur and Datta Journal of Big Data (2015) 2:17
DOI 10.1186/s40537-015-0027-y

RESEARCH Open Access

A novel algorithm for fast and scalable
subspace clustering of high-dimensional data
Amardeep Kaur* and Amitava Datta

*Correspondence:
amardeep.kaur@research.uwa.edu.au
School of Computer Science and
Software Engineering, University of
Western Australia, Stirling Highway,
6009, Perth, Australia

Abstract

Rapid growth of high dimensional datasets in recent years has created an emergent
need to extract the knowledge underlying them. Clustering is the process of
automatically finding groups of similar data points in the space of the dimensions or
attributes of a dataset. Finding clusters in the high dimensional datasets is an important
and challenging data mining problem. Data group together differently under different
subsets of dimensions, called subspaces. Quite often a dataset can be better understood
by clustering it in its subspaces, a process called subspace clustering. But the exponential
growth in the number of these subspaces with the dimensionality of data makes the
whole process of subspace clustering computationally very expensive. There is a
growing demand for efficient and scalable subspace clustering solutions in many Big
data application domains like biology, computer vision, astronomy and social networking.
Apriori based hierarchical clustering is a promising approach to find all possible higher
dimensional subspace clusters from the lower dimensional clusters using a bottom-up
process. However, the performance of the existing algorithms based on this approach
deteriorates drastically with the increase in the number of dimensions. Most of these
algorithms require multiple database scans and generate a large number of redundant
subspace clusters, either implicitly or explicitly, during the clustering process. In this
paper, we present SUBSCALE, a novel clustering algorithm to find non-trivial subspace
clusters with minimal cost and it requires only k database scans for a k-dimensional
data set. Our algorithm scales very well with the dimensionality of the dataset and is
highly parallelizable. We present the details of the SUBSCALE algorithm and its
evaluation in this paper.

Keywords: Data mining; High dimensional data; Subspace clustering; Scalable
data mining

Introduction
With recent advancements in information technology, voluminous data are being cap-
tured in almost every conceivable area, ranging from astronomy to biological sciences.
Thousands of microarray data repositories have been created for gene expression investi-
gation [1]; sophisticated cameras are becoming ubiquitous, generating a huge amount of
visual data for surveillance; the Square Kilometre Array Telescope is being built for astro-
physics research and is expected to generate several petabytes of astronoimcal data every
year [2]. All of these datasets (also called Big data) have a large number of dimensions
(attributes) and pose significant research challenges for the data mining community [3, 4].

© 2015 Kaur and Datta. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-015-0027-y-x&domain=pdf
http://orcid.org/0000-0002-0317-5303
mailto: amardeep.kaur@research.uwa.edu.au
http://creativecommons.org/licenses/by/4.0/

Kaur and Datta Journal of Big Data (2015) 2:17 Page 2 of 24

Each data point is a vector of measurements in a multidimensional space. Cluster-
ing is an unsupervised data mining process of grouping similar data points into clusters
(dense regions) without any prior knowledge of the underlying data distribution. A vari-
ety of distance measures can be used to quantify the similarity or density of the data
points. For the last two decades, there has been significant research work in cluster
analysis of the data [5–7]. Traditional clustering algorithms were designed to gener-
ate clusters in the full-dimensional space by measuring the proximity between the data
points using all of the dimensions of a dataset [8, 9]. But as the dimensionality of data
increases, some of the dimensions become irrelevant to some of the clusters. These clas-
sical clustering algorithms are ineffective as well as inefficient for the high-dimensional
Big data.
The high-dimensional data suffers from the Curse of Dimensionality [10] which has two

main implications: (1) As the dimensionality of data grows, the relative contrast among
similar and dissimilar points becomes less [11]. (2) Data tend to group together differently
under the different sets of dimensions [12]. Therefore, it becomes imperative to find the
clusters in the relevant subsets of dimensions of the data (called subspaces). The subspace
clustering is the process of finding clusters in the subspaces of the dataset. In this paper,
we focus our interest on finding all the clusters in all possible subspaces. The subspace
clustering is not ‘just clustering’ because we do not have any advance knowledge about the
number of subspaces which contain clusters, the dimensionality of these subspaces and
the number of clusters hidden in each subspace. As a k-dimensional data can have upto
2k − 1 possible axis-parallel subspaces, the exponential number of these subspaces poses
unique computational challenges for mining Big data with large number of dimensions.

Motivating examples

The area of subspace clustering is of critical importance with enormous applications for
Big data mining:

– In biology, high throughput gene expression data obtained from microarray chips
forms a matrix [13]. Each cell in this matrix contains the expression level of a gene
(row) under an experimental condition (column). The genes which co-express
together under the subsets of experimental conditions are likely to be functionally
similar [14]. One of the interesting characteristics of this data is that both genes
(rows) and experimental conditions (columns) can be clustered for meaningful
biological inferences. One of the assumptions in molecular biology is that only a
subset of genes are expressed under a subset of experimental conditions, for a
particular cellular process [15]. Also, a gene or an experimental condition can
participate in more than one cellular processes allowing the existence of
overlapping gene-clusters in different subspaces. Cheng and Church [16] were the
first to introduce biclustering which is just an extension of subspace clustering, for
microarray datasets. Since then many subspace clustering algorithms have been
designed for the understanding of cellular processes [17] and gene regulatory
networks [18], assisting in disease diagnosis [19] and thus, better medical
treatments. Eren et al. [20] have recently compared the performance of related
subspace clustering algorithms in microarray data and because of the combinatorial
nature of the solution space, subspace clustering is still a challenge in this domain.

Kaur and Datta Journal of Big Data (2015) 2:17 Page 3 of 24

– Many computer vision problems are associated with matching images, scenes, or
motion dynamics in video sequences. Image data is very high dimensional, e.g, a
low-end 3.1 megapixel camera can capture an 2048 × 1536 image of 3145728
dimensions. It has been shown that the solutions to these high-dimensional
computer vision problems lie in finding the structures of interest in the
lower-dimensional subspaces [21–23]. As a result subspace clustering is very
important in many computer vision and image processing problems, e.g,
recognition of faces and moving objects. Face recognition is a challenging area as
the images of the same object may look entirely different under different
illumination conditions and different images can look same under different
illumination settings. However, Basri et al. [21] have proved that all possible
illumination conditions can be well approximated by a 9-dimensional linear
subspace, which has further directed the use of subspace clustering in this area
[24, 25]. Motion segmentation involves segregating each of the moving objects in a
video sequence and is very important for robotics, video surveillance, action
recognition etc. Assuming each moving object has its own trajectory in the video,
the motion segmentation problem reduces to clustering the trajectories of each of
the object [26], another subspace clustering problem.

– In online social networks, the detection of communities having similar interests
can aid both sociologists and target marketers [26]. Günnemann et al. [27] have
applied subspace clustering on social network graphs for community detection.

– In radio astronomy, clusters of galaxies can help cosmologists trace the mass
distribution of the universe and further understand the origin of universe theories
[28].

– Another important area of subspace clustering is web text mining through
document clustering. There are billions of digital documents available today and
each document is a collection of many words or phrases, making it a
high-dimensional application domain. Document clustering is very important these
days for the efficient indexing, storage and retrieval of digital content. Documents
can group together differently under different sets of words. An iterative subspace
clustering algorithm for text mining has been proposed by Li et al. [29].

In all of the applications discussed above, meaningful knowledge is hidden in the under-
lying subspaces of the data, which can only be explored through the subspace clustering
techniques. The number of dimensions participating in a particular subspace S defines its
cardinality denoted by |S|. If |S1| < |S2|, it means that S1 is a lower dimensional or lower
subspace and S2 is a higher dimensional or higher subspace.
There are two main flavours of subspace clustering available in the literature: top down

and bottom up. In top down approaches, the user defines the number of clusters and the
number of relevant subspaces [30, 31]. It is not possible to automatically find all possible
clusters in all the subspaces using this method.
The other paradigm for subspace clustering is the bottom-up hierarchical method

based on the Apriori principle [32] and has the capability of reporting all hidden clus-
ters in their relevant subspaces [33–35]. The Apriori principle is based on the downward
closure property of the dense regions. According to Apriori principle, the projections
of the close points in higher dimensional subspaces are also close to each other. This

Kaur and Datta Journal of Big Data (2015) 2:17 Page 4 of 24

knowledge helps to prune the non-dense neighbourhoods of the data points in the
lower dimensional subspaces as they will never lead to the dense neighbourhoods in the
higher dimensional subspaces. Thus, only the dense set of points (clusters) starting from
the 1-dimensional subspaces, are chosen as candidates to be combined together iter-
atively for computing the higher dimensional clusters. As in Fig. 1, the 1-dimensional
clusters from subspaces ({1}, {3} and {4}) are combined to find the clusters in the
2-dimensional subspaces ({1, 3}, {3, 4} and {1, 4}) and then finally in the 3-dimensional
space {1, 3, 4}. However, many combinations of the lower dimensional clusters might not
result in the higher dimensional clusters during the step-by-step bottom-up clustering
process. Although these algorithms look promising for finding all possible subspace clus-
ters, they fail to scale beyond few tens of dimensions due to the exponential search space
[5, 12, 36]. Also, the speed as well as the quality of clustering is of major concern for the
high dimensional data clustering [4].
There are two main reasons for the inefficiency in the current bottom-up subspace

clustering algorithms: detection of redundant trivial clusters and an excessive number of
database scans. Revisiting Apriori principle, if C is a cluster in a d-dimensional space then
it is also redundantly present in all of the 2d − 1 projections. And if this cluster C does
not exists in any of the (d+1)-dimensional higher subspaces, then it is called a maximal
subspace cluster. Ideally, the non-maximal clusters should not be generated because they
are trivial but most of the algorithms implicitly or explicitly compute them. The second
problem arises during the iterative bottom-up process of combining lower dimensional
candidate clusters. Multiple database scans (O(|DB|2)) are required for determining the
occupancy of each and every data point while merging these candidate clusters where,
|DB| is the size of the dataset. Though sophisticated indexing structures have been used
for these look-ups, still it remains one of the main inefficiencies in the subspace clustering
algorithms so far.
In this paper, we present a novel subspace clustering algorithm that aims to remove both

of these inefficiencies and has a high degree of parallelism. Our algorithm SUBSCALE

Fig. 1 Bottom-up clustering. Typical iterative bottom up generation of clusters based on the Apriori-principle.
Dense points in 1-dimensional subspace are combined to compute two-dimensional clusters which are then
combined to compute three dimensional clusters and so on

Kaur and Datta Journal of Big Data (2015) 2:17 Page 5 of 24

creates a possibility to walk through the exponential search space of the Big data and
thus, directly compute the maximal subspace clusters. We propose a new idea of assign-
ing signatures to the 1-dimensional clusters such that their collisions will help to identify
the maximal subspace clusters without generating any intermediate trivial clusters. SUB-
SCALE algorithm requires only k database scans to process a k-dimensional dataset and
is far more scalable with the dimensions as compared to the existing state-of-the-art algo-
rithms. We have experimented with upto 6144 dimensional datasets and the results are
promising.
This paper is an extended version of the work published in the ICDM 2014 workshop

proceedings [37]. The SUBSCALE algorithm has been reworked to accommodate the
scalability irrespective of the main memory constraint, which was still a bottleneck in the
previously published version. In this paper, we have experimented with the higher dimen-
sional datasets and analyzed in detail its performance as well as the factors influencing
the quality of clusters. We also discuss various issues governing the optimal values of the
input parameters and the flexibility available in the SUBSCALE algorithm to adapt these
parameters accordingly.
This paper is organized as follows. The current literature related to our approach

is discussed in the next Section Background and literature review. We discuss SUB-
SCALE algorithm in detail in the Section Research design and methodology and then
in the Section Results and discussion, we analyse its performance. Finally, the paper is
summarized in the Conclusions Section.

Background and literature review
The traditional clustering algorithms use the whole data space to find full-dimensional
clusters. DBSCAN [9] is a well known full-dimensional clustering algorithm and accord-
ing to it, a point is dense if it has τ or more points in its ε-neighborhood and a cluster is
defined as a set of such dense points. However, the curse of dimensionality implies that
the data loses its contrast in the higher-dimensional space [10, 11]. Therefore, these full-
dimensional clustering algorithms are not able to detect any meaningful clusters with the
increase in dimensionality of the data.
Another technique to deal with the high dimensionality is to reduce the number

of dimensions by removing the irrelevant (or less relevant) dimensions, e.g. Principal
Component Analysis (PCA) transforms the original high dimensional space into a low
dimensional space [38]. Since PCA preserves the original variance of the full-dimensional
data during this transformation, therefore, if no cluster structure was detected in the
original dimensions, no new clusters in the transformed dimensions will be found. The
transformed dimensions lack the intuitivemeaning as it is difficult to interpret the clusters
found in the new dimensions in relation to the original data space. Also, dimensionality
reduction is not always possible [33].
The significance of the local relevance among the data with respect to the subset of

dimensions, has lead to the advent of subspace clustering algorithms [12, 39]. We have
identified the following desirable properties which should be satisfied by a subspace
clustering algorithm for a k-dimensional dataset of n points:

1. Since different points group together differently with respect to the different sets of
attributes, a subspace clustering algorithm should find all possible clusters in which

Kaur and Datta Journal of Big Data (2015) 2:17 Page 6 of 24

a point participates, e.g. if a cluster C1 in subspace {1, 3, 4} contains points
{P3,P6,P7,P8} and another cluster C2 in subspace {1, 3, 6} contains points
{P1,P3,P4,P6}, both of the clusters C1 and C2 should be detected. Note that, both
points P3 and P6 are participating together in two different clusters in different
subspaces.

2. The subspace clustering algorithm should give only non-redundant information i.e.
if all the points in a cluster C1 are also present in a cluster C2 and the subspace in
which C1 exists is a subset of the subspace in which the cluster C2 exists, then the
cluster C1 should not be included in the result, as the cluster C1 does not give any
additional information and is a trivial cluster. A strong conformity to this criterion
would be that such redundant lower dimensional clusters are not generated at all,
as their generation and pruning later on, leads to the higher computational cost. In
other words, the subspace clustering algorithm should output only the maximal
subspace clusters. As discussed earlier, a cluster is in a maximal subspace if there is
no other cluster which conveys the same grouping information between the points
as already given by this cluster.

There are two main approaches in the literature to deal with subspace clustering: top
down and bottom up. Top down approaches like PROCLUS [30] and FINDIT [31] use
projected clustering for high-dimensional data. An initial approximation of the number
of the clusters and the relevant subspaces are given by the user. An objective function is
chosen to iteratively regenerate the optimal quality clusters. Each data point is allocated
to at most one cluster and the clusters are disjoint. Thus, these algorithms fail to detect all
maximal clusters and do not conform to the 2nd criterion of desirable properties described
above. Neither do these algorithms satisfy the 1st criterion, as only a user defined number
of clusters is detected.
The bottom up approach is based on the downward closure property of the Apriori

principle which was originally used for frequent item-set mining [32]. According to this
principle, if a set of points from a k-dimensional space when projected onto a lower (k−1)
dimensional subspace is not dense, then this set cannot be dense in the k-dimensional
space. Thus, it is important to process only the dense set of points from the lower dimen-
sional spaces (starting from 1-dimensional) in a bottom upmanner to compute the higher
dimensional subspace clusters (Fig. 1). These algorithms can find all possible clusters in
all the subspaces but they fail to scale with the dimensions [33–35, 40, 41].
Agrawal et al. [33] were the first to introduce the grid-density based approach in their

famous CLIQUE algorithm to find the subspace clusters in the data. Each single dimen-
sion of the data space is partitioned into equal-sized ξ units using a fixed size grid. A unit
is considered dense if the number of points in it exceeds the density support threshold,
τ . The candidate k-dimensional units are determined by joining all (k − 1)-dimensional
dense units which share the first (k − 2) dimensions. MAFIA [42] and ENCLUS [40] pro-
posed modifications over CLIQUE by using adaptive grid as well as more quality criteria
for qualifying clusters. However, in all of these grid based approaches, the generation of
(k−1) dimensional units before k-dimensional units, leads to inefficiency as lots of redun-
dant clusters are generated along the way. These approaches satisfy the 1st criterion of the
desired subspace clustering algorithm and can find all of the arbitrary shaped clusters,
but they fail to satisfy the 2nd criterion as they still generate many trivial clusters. Also,

Kaur and Datta Journal of Big Data (2015) 2:17 Page 7 of 24

their efficiency highly depends on the granularity and the positioning of the grid. Their
scalability with respect to the higher dimensions is a common issue.
Similar to the previous bottom-up clustering approaches, SUBCLU [34] computes the

higher dimensional clusters using the lower-dimensional clusters, iteratively starting with
1-dimensional clusters. The only difference is that it applies full-dimensional clustering
algorithm DBSCAN to each subspace while computing the clusters. SUBCLU too gener-
ates all lower-dimensional trivial clusters and fails to satisfy the 2nd criterion of the desired
subspace clustering algorithm. Kriegel et al. proposed FIRES [35] which first computes 1-
dimensional histograms called base clusters using any chosen clustering technique. These
base clusters are then merged based on the number of the intersecting points to find the
maximal subspace cluster approximations, but this algorithm requires multiple database
scans.
Assent et al. proposed INSCY [41] for subspace clustering which is an extension of

SUBCLU. They use a special index structure called a SCY-tree which can be traversed
in the depth first order to generate high dimensional clusters. Their algorithm compares
each data point of the base cluster and enumerates them in order to merge the base clus-
ters for generating the higher-dimensional clusters. The search for the maximal subspace
clusters in INSCY is quite exhaustive as they implicitly generate all intermediate trivial
clusters during the bottom up clustering process and hence, INSCY too can not strongly
conform to the 2nd criterion of the desired subspace clustering algorithm. The complexity
of INSCY is O(2k|DB|2), where k is the dimensionality of the maximal subspace cluster
and |DB| denotes the size of the dataset.
The need for enumerating points inO(2k) subspaces using the multi-dimensional index

structure introduces computational cost as well as inefficiency. All of these subspace
clustering algorithms discussed so far require multiple database scans.
In the next Section, we propose SUBSCALE algorithm which is much more scalable

with the size and dimensions of the data. It does not require multiple database scans
and do not generate trivial clusters during the process. It directly computes the maximal
subspace clusters from 1-dimensional dense points and is highly parallelizable.

Research design andmethodology
In this section, we discuss SUBSCALE algorithm in detail, starting with the definitions
and theoretical foundations.
Continuing with the monotonicity of the Apriori principle, a set of dense points in an k-

dimensional space S is dense in all the lower dimensional projections of this space [33]. In
other words, if we have the dense sets of points in each of the 1-dimensional projections
of the attribute-set of a given data, then the sufficiently common points among these
1-dimensional sets will lead us to the dense points in the higher dimensional subspaces.
Based on this premise, we develop our algorithm to efficiently find the maximal clusters

in all possible subspaces of a high-dimensional dataset. Table 1 contains the notations
which will be used throughout this paper. For the ease of readability, we use the term ‘1-D’
to represent any 1-dimensional point or group of points.

Definitions and problem

We assume DB = {P1,P2, . . . ,Pn}, is a database of n points in a k-dimensional space,
where each point is a k-dimensional vector, s.t. Pi =

{
P1i ,P2i , . . . ,Pki

}
. A subspace S is a

Kaur and Datta Journal of Big Data (2015) 2:17 Page 8 of 24

Table 1 Notations used in this paper

Notation Meaning

DB The database of points

|T | The cardinality of a set T

n The total number of points, n = |DB|
D The set of attributes, D = {d1, d2, . . . , dk}
k The total number of dimensions, k = |D|
di The ith dimension, di ∈ D

Pi The ith point, Pi ∈ DB

S A subspace, S ⊂ D

PSi The ith point projected on a subspace S

NS The neighbourhood of a point in a subspace S

dist() The distance function to find neighbourhood

C A cluster

CS A core set of density connected points within ε distance

U A dense unit, |U | = τ + 1

1-D One dimensional

H Signature of a dense unit

L Large Integer

K A set of random large integers, |K| = n

hTable A hash table

subset of the original attribute-set D, such that, anm-dimensional subspace is denoted as
S = {d1, d2, . . . , dm} where, di ∈ D and 1 ≤ m ≤ k. A subspace S′ is the projection of a
higher-dimensional subspace S, if S′ ⊂ S. The dimensionality of a subspace refers to the
total number of dimensions participating to build this subspace.
In this paper, we adopt the definition of density from DBSCAN [9] which is based

on two user defined parameters ε and τ , such that, a point is dense if it has at least
τ points within ε distance. Formally, let the neighbourhood NS(Pi) of a point Pi in a
particular subspace S be a set of all the points Pj such that dist(PSi ,PSj) < ε, Pi �= Pj.
dist() is a similarity function based on the distance between the values of the points.
A point Pi is dense in a subspace S, if

∣∣NS(Pi)
∣∣ ≥ τ i.e. it has at least τ neigh-

bours within ε distance. These dense points can be easily connected to form a subspace
cluster.

Definition 1 (Density-Reachability [9]).
If a point Pj is in the neighbourhood of a dense point Pi then, Pj is said to be directly-
density-reachable from point Pi. The direct density reachability is not symmetric if both
points are not dense. Two points Pi,Pj are said to be density-reachable from each other,
if there is a chain of directly-density-reachable points between them, i.e., ∀Pr ,Pr+1 ∈
{Pi,P1, . . . ,Pm,Pj}, Pr+1 is directly density reachable from Pr.

Definition 2 (Density-Connected [9]).
Two points Pi,Pj are said to be density-connected with each other, if there is a point Pr
such that both Pi and Pj are density-reachable from Pr. Both density reachability and
connectivity is defined with respect to same ε and τ parameters.

Kaur and Datta Journal of Big Data (2015) 2:17 Page 9 of 24

Definition 3 (Maximal Subspace Cluster).
Referring to the previous definitions, a subspace cluster, C = (P, S) is a group of dense
points P in a subspace S, such that ∀Pi,Pj ∈ P, Pi and Pj are density connected with each
other in the subspace S with respect to ε and τ and there is no other point Pr ∈ P, such that
Pr is density-reachable from some Pq /∈ P in the subspace S. A cluster Ci = (P, S) is called
amaximal subspace cluster if there is no other cluster Cj = (P, S′) such that S′ ⊃ S.

Themaximality of a particular subspace is always relative to a cluster. A subspace which
is maximal for a certain group of pointsmight not bemaximal for another group of points.
It is to note that some of the related literature treat the maximality of the clusters in terms
of the inclusion of all possible density-connected points (in a given subspace) into one
cluster. We call it an inclusive property of clustering algorithm. Our ‘maximal subspace
clusters’ are both inclusive (with respect to the points in a given subspace) and maximal
(with respect to the lower dimensional projections). Next, we present the underlying idea
behind our approach.

Basic idea

We observe in Fig. 2 that the two-dimensional Cluster5 is an intersection of its 1-D pro-
jections of points in Cluster1 and Cluster2. Also, we note that the projections of the
points {P7,P8,P9,P10} on d2-axis form a 1-D cluster (Cluster3), but there is no 1-D clus-
ter in the dimension d1 which has the same points in it, which justify the absence of a
two-dimensional cluster containing these points in the subspace {d1, d2}.
Given an m-dimensional cluster C = (P, S) where, S = {d1, d2, . . . dm}, the projections

of the points in P are dense points in each of the single dimension, {d1}, {d2}, . . . , {dm}.
It implies that if a point is not dense in a 1-dimensional space then it will not participate
in the cluster formation in the higher subspaces containing that dimension. Thus, we can
combine the 1-D dense points in m different dimensions to find the density-connected

Fig. 2 Projections of dense points. Basic idea behind SUBSCALE. The projections of the points {P7, P8, P9, P10}
on d2-axis form a 1-D cluster (Cluster3), but no 1-D cluster in dimension d1 having the same points as Cluster3,
thus, absence of corresponding 2-dimensional cluster containing these points in the subspace {d1, d2}

Kaur and Datta Journal of Big Data (2015) 2:17 Page 10 of 24

sets of points in the maximal subspace S. Recall that a point is dense if it has at least τ

neighbours in ε neighbourhood with respect to a distance function dist(). We choose L1
metric as the distance function to find the dense points in 1-dimensional subspaces.

Observation 1. If at least τ + 1 density-connected points from a dimension di also exist
as density-connected points in the single dimensions dj, . . . , dr, then these points will form
a set of dense points in the maximal subspace, S = {di, dj, . . . dr}.

Following Definition 3, each point in a subspace cluster will belong to the neighbour-
hood of at least one dense point. Therefore, the smallest possible projection of a cluster
from the higher dimensional subspace is of cardinality τ + 1 and let us call it a dense
unit, U . If Udi

1 and Udj
2 are two 1-D dense units from the single-dimensions di and dj

respectively, we say that these are the same dense units if they contain the same points
i.e. Udi

1 = Udj
2 , if ∀Pi

[
Pi ∈ Udi

1 ↔ Pi ∈ Udj
2

]
.

Observation 2. Following the observation 1, if the same dense unit U exists across m
single dimensions, then U exists in a maximal subspace spanned by these m dimensions.

In order to check if two dense units are same, we propose a novel idea of assigning
signatures to each of these 1-D dense units. The rationale behind this is to avoid compar-
ing the individual points among all dense units in order to decide whether they contain
exactly same points or not. We can hash the signatures of these 1-D dense units from all k
dimensions and the resulting collisions will lead us to the maximal subspace dense units
(Observation 2). Our proposal for assigning signatures to the dense units is inspired by
the work in number theory by Erdös and Lehner [43] which we explain in detail below.

Assigning signatures

If L ≥ 1 is a positive integer, then a set {a1, a2, . . . , aδ} is called its partition, such that
L = ∑δ

i=1 ai for some δ ≥ 1 and ai > 0 is called a summand. Also, let pδ(L) be the total
number of such partitions, when each partition has at most δ summands.
Erdös and Lehner studied these integer partitions by probabilistic methods and gave an

asymptotic formula for δ = o(L
1
3),

pδ(L) ∼
(L−1
δ−1

)
δ!

(1)

Observation 3. Assume K be a set of random large integers, δ � |K | � pδ(L). Let U1
and U2 be the two sets of integers drawn from K s.t. |U1| = |U2| = δ and δ = o(L

1
3). Let us

denote the sums of the integers in these two sets as sum(U1) and sum(U2) respectively. We
observe that if sum(U1) = sum(U2) = L, then U1 and U2 are same with an extremely high
probability, if L is very large.

Proof. From Eq. 1, for a very large positive integer L, if we take relatively very small
partition size δ, then the number of unique fixed-sized partitions will be astronomically
large. And the probability of getting a particular partition set of size δ is:

(L−1
δ−1

)
δ!

/

(
L
δ

)
= (L − 1)! δ! (L − δ)!

(δ − 1)! (L − δ)! δ! L!
= 1

L(δ − 1)!
(2)

Kaur and Datta Journal of Big Data (2015) 2:17 Page 11 of 24

It means the probability of randomly choosing the same partition again is extremely low.
And this probability can be made very small by choosing a large value of L and relatively
very small δ. Since L is the sum of the labels of δ points in a dense unit U , L can be made
very large if we choose very large integers as the individual labels. Thus, with δ = τ + 1,
the two dense units U1 and U2 will contain the same points with very high probability, if
sum(U1) = sum(U2), provided this sum is very large.

We randomly generate a set K of n large integers and use a one-to-one mapping
M : DB
→ K to assign a unique label to each point in the database. The signa-
ture H of a dense unit U is given by the sum of the labels of the points in it. Thus,
relying on observation 3, we can match these 1-D signatures across different dimen-
sions without checking for the individual points contained in these dense units, e.g.,
if Ud1

1 ,Ud2
2 , . . .Udm

m are m dense units in m different single dimensions, with their
points already mapped to the large integers, we can hash their signature-sums to
a hashtable. If all the sums collide then these dense units are same (with very high
probability) and exist in the subspace {d1, d2, . . . , dm}. Thus, the final collisions after
hashing all dense units in all dimensions generate dense units in the relevant maximal
subspaces. We can combine these dense units to get final clusters in their respective
subspaces.
We ran a few numerical experiments to validate observation 3 and the results are shown

in Fig. 3. A trial consists of randomly drawing a set of 4 labels from a given range of
integers, e.g., while using 6-digit integers as labels, we have a range between 100,000 and
999,999 to choose from. All labels in a given set in a given trial uses the same integer
range. Each time we fill a set with random integers, we store its sum in a common hash
table (separate for each integer range). A collision occurs when the sum of a randomly
drawn set is found to be same as an already existing sum in the hash table. We note that
the number of collisions is indeed very small when large integers are used as labels, e.g,

Fig. 3 Numerical experiments for probability of collisions. A trial includes drawing a label set of 4 random
integers with the same number of digits e.g., {333, 444, 555, 666} is a sample set where no. of digits is 3. The
probability of drawing same set of integers reduces drastically with the use of larger integers as labels in the
set, e.g., ≈ 10 collisions for 100 million trials when the label is a 12-digit integer

Kaur and Datta Journal of Big Data (2015) 2:17 Page 12 of 24

there are about 10 collisions (a negligible number) for 100 million trials when the label is
a 12-digit integer.
Also, we observed the probability of collisions by experimenting with different cardinal-

ities of such partition sets drawn at random from a given integer range. We note in Fig. 4
that the probability of collisions decreases further with the higher values of set sizes. The
gap between the number of collisions widens for the larger integer ranges.

Interleaved dense units

Although matching 1-D dense units across 1-dimensional subspaces is a promising
approach to directly compute the maximal subspace clusters, it is however difficult to
identify these 1-D dense units. The reason is that 1-dimensional subspaces may contain
interleaved projections of more than one cluster from the higher-dimensional spaces,
e.g., in Fig. 2, Cluster1 contains projections from both Cluster5 and Cluster6. The only
way to find all possible dense units from Cluster1 is to generate all possible

(|Cluster1|
τ+1

)
combinations where,

()
denotes a standard combinatorial expression.

Let CS be a core-set of such interleaved 1-D dense points such that, each point in this
core set is within ε distance of each other such that, |CS| > τ where | | denotes cardinality
of a set. A core-set of the points in a subspace S can be denoted as CSS with S as the
superscript. In our algorithm, we first find these core-sets in each dimension and then
generate all combinations of size τ + 1 as potential dense units.
As can be seen from Fig. 2, many such combinations in the d1 dimension will not

result in dense units in the subspace {d1, d2}. Moreover, it is possible that none of the
combinations will convert to any higher dimensional dense unit. The construction of 1-
dimensional dense units is the most expensive part of our algorithm, as the number of
combinations of τ + 1 points can be very high depending on ε as the value of ε will deter-
mine the size of the core-sets in each dimension. However, one clear advantage of our
approach is that this is the only time we need to scan the dataset in the entire algorithm.

SUBSCALE algorithm

As discussed before, we aim to extract the subspace clusters by finding the dense units in
the relevant subspaces of the given dataset by using L1 metric as the distance measure.

Fig. 4 Experiments with Erdos Lemma. Numerical experiments for probability of collisions with respect to
the number of random integers drawn at a time. |Set| denotes the cardinality of the set drawn. The number
of trials for each fixed integer-set is 1000000

Kaur and Datta Journal of Big Data (2015) 2:17 Page 13 of 24

We assume a fixed size of τ + 1 for the dense unit U which is the smallest possible clus-
ter of dense points. If |CS| is the number of dense points in a 1-D core-set CS then, we
can obtain

(|CS|
τ+1

)
dense units from one such CS. If we map the data points contained in

each dense unit to large integers and compute their sum then each such sum will create
a unique signature. From observation 3, if two such signatures match then their corre-
sponding dense units contain the same points with a very high probability. In SUBSCALE
algorithm, we first find these 1-D dense units in each dimension and then hash their sig-
natures to a common hash table (Fig. 5). Table 1 contains the notations which will be used
throughout this algorithm.
We now explain our algorithm for generating maximal subspace clusters in high-

dimensional data.

Step 1: Consider a set, K of very large, unique and random positive integers
{K1,K2, . . . ,Kn}. We define M as a one-to-one mapping function,M : DB → K .
Each point Pi ∈ DB is assigned a unique random integer Ki from the set K.

Step 2: In each dimension j, we have projections of n-points, Pj1,P
j
2, . . . ,P

j
n. We create

all possible dense units containing τ + 1 points that are within an ε distance.
Instead of the actual points, a dense unit U will now contain the mapped keys
i.e. {K1,K2, . . . ,Kτ+1}.

Step 3: Then, we create a hash table hTable, as follows. In each dimension j, for every
dense unit U j

a we calculate the sum of its elements called signature,Hj
a and

hash this signature in hTable. Using observation 3, ifHj
a collides with another

signatureHk
b then the dense unit U j

a exists in subspace {j, k} with extremely high
probability. After repeating this process in all single dimensions, each entry of
this hash table will contain a dense unit in the maximal subspace as we can store
the colliding dimensions against each signatureHi ∈ hTable.

Step 4: We now have dense units in all possible maximal subspaces. We process them
to create density-reachable sets and hence, maximal clusters. We use DBSCAN
in each found subspace for the clustering process and the value of ε and τ can
be adapted differently as per the dimensionality of the subspace to deal with the
curse of dimensionality.

Fig. 5 Collisions among signatures. Signatures from different dimensions collide to identify the relevant
subspaces for the corresponding dense units behind these signatures. di is the ith dimension andHi

x is the
signature of dense unit, U i

x in ith dimension

Kaur and Datta Journal of Big Data (2015) 2:17 Page 14 of 24

The pseudo code is given in Algorithm 1 (FindDenseUnits) and Algorithm 2 (SUB-
SCALE) below.

Algorithm 1 FindDenseUnits: Find dense units with their signature sums
Require: Dimension j, A set K of n unique random and large integers
1: Sort P1,P2, . . . ,Pn, s.t. ∀Px,Py ∈ DB, Pjx ≤ Pjy
2: for i = 1 to n − 1 do
3: CS ← M(Pi)

//M : Pi
→ Ki,M is a mapping function
4: numNeighbours ← 1
5: next ← i + 1
6: while next ≤ n and Pjnext − Pji < ε do
7: AppendM(Pnext) to CS
8: Increment numNeighbours
9: Increment next

10: end while
11: if numNeighbours > τ then

12: Find all combinations of dense units, U from the core-set CS (
(|CS|

τ + 1

)
)

13: end if
14: for all dense unit U found in the previous step do
15: Add entry {sum(U),U} to DU // DU is the data structure to store dense units

along with their corresponding signatures in a given dimension
16: end for
17: end for
18: return DU

// Each entry in DU is a pair {sum,U}

In the next Section, we evaluate and discuss the performance of our proposed subspace
clustering algorithm.

Results and discussion
We implemented SUBSCALE algorithm and experimented with various datasets upto
6144 dimensions (Table 2). Also, we compared the results from our algorithm with the
other relevant state-of-the-art algorithms. The details of the experimental setup, code
and datasets are given in the Methods Section. We fixed the value of τ = 3 unless stated
otherwise and experimented with different values of ε for each dataset, starting with the
lowest possible value. The minimum cluster size (minSize) is set to 4.

Execution time and quality

The effect of changing ε values on runtime for 5 and 50 dimensional datasets of same size
is shown in Fig. 6. The larger ε values result in bigger neighborhoods and generate large
number of combinations, therefore, the execution time is higher.
One of the most commonly usedmethods to assess the quality of the clustering result in

the related literature is F1 measure [44]. The open source framework by Müller et al. [45]
was used to assess the F1 quality measure of our results. According to F1 measure, the

Kaur and Datta Journal of Big Data (2015) 2:17 Page 15 of 24

Algorithm 2 SUBSCALE: Find maximal subspace clusters
Require: DB of n × k points; Set K of n unique, random and large integers
1: Hashtable hTable ← {}

// An entry hx in hTable is {sum,U , S}.
2: for j = 1 to k do
3: DU ← FindDenseUnits(j)

// Get candidate dense units in dimension j.
4: for all du = {sum,U} ∈ DU do
5: if some key of hashtable hTable.hx == sum then
6: Append dimension j to subspace hx.S
7: else
8: Add new entry {sum,U , j} to the hTable
9: end if

10: end for
11: end for
12: for all set of entries {hx, hy, . . . } ∈ hTable do
13: if hx.S = hy.S = . . . then
14: Add entry {S, hx.U ∪ hy.U ∪ . . . } to Clusters

// Clusters contain maximal dense units in the relevant subspaces
15: end if
16: end for
17: Run DBSCAN on each entry of Clusters
18: return Clusters

// Clusters is resulting set of maximal subspace clusters

clustering algorithm should cover as many points as possible from the hidden clusters and
as fewer as possible of those points which are not in the hidden clusters. F1 is computed
as the harmonic mean of recall and precision. The recall value accounts for the coverage
of points in the hidden clusters by the found clusters. The precision value measures the
coverage of points in found clusters from other clusters. A high recall and precision value
means high F1 and thus, better quality [44].

Table 2 Data Sets used for evaluation

Data Size Dimensionality

D05 1595 5

D10 1595 10

D15 1598 15

D20 1595 20

D25 1595 25

D50 1596 50

S1500 1595 20

S2500 2658 20

S3500 3722 20

S4500 4785 20

S5500 5848 20

madelon 4400 500

pedestrian 3661 6144

Kaur and Datta Journal of Big Data (2015) 2:17 Page 16 of 24

Fig. 6 Effect of ε on runtime. The large value of ε results in bigger neighbourhood of points and hence,
larger number of possible combinations. SUBSCALE execution time increases with bigger ε value. Two
datasets of same size (1595) but of different dimensions (5 and 50) were evaluated

Figure 7 shows the change in F1 values for 20-dimensional datasets of varying sizes with
respect to ε. We notice that the quality of clusters deteriorates beyond a certain threshold
of ε for each data set because clusters can get artificially large due to the larger ε values.
Thus, a larger value of ε is not always necessary to get better quality clusters.
We evaluated SUBSCALE algorithm against INSCY which is one of the most recent

subspace clustering algorithm. As shown in Fig. 8, SUBSCALE gave much better run-
time performance for similar quality of clusters (F1 = 0.9), particularly for the higher
dimensional datasets.
Figure 9 shows the effect of increasing the dimensionality of the data on the runtime for

SUBSCALE versus other subspace clustering algorithms (INSCY, SUBCLU and CLIQUE
available on Open source framework [45]), keeping the data size fixed (Dataset used: D05,
D10, D15, D20, D25). We noticed that the performance of CLIQUE algorithm is worst in
terms of scalability with respect to the number of dimensions. For CLIQUE implementa-
tion, the density threshold of 0.003 and gridSize of 3 was used. Same values of ε = 0.001
and τ = 3 were used for SUBSCALE, INSCY and SUBCLU algorithms. SUBCLU did
not give meaningful clusters because even single points appeared as clusters in the result
and a smallest cluster should have at least τ + 1 points. And the CLIQUE algorithm did

Fig. 7 Effect of ε on clustering quality (F1 measure). Dimensionality of datasets used is 20 and size varies. The
clustering quality scales down for higher ε . Thus, higher ε value is not always required for quality clusters

Kaur and Datta Journal of Big Data (2015) 2:17 Page 17 of 24

Fig. 8 Runtime comparison for similar quality of clusters in different datasets. For the same quality of
clustering results (F1 = 0.9), SUBSCALE performed much better for the execution time than INSCY

not execute for more than 15 dimensions. We observe that SUBSCALE clearly performs
better than the rest of the algorithmswith the increase in number of dimensions. Figure 10
shows the runtime comparison of our algorithm with INSCY and SUBCLU for the fixed
number of dimensions (= 20) and increasing the size of the data (Dataset used: S1500,
S2500, S3500, S4500, S5500).We did not include CLIQUE in Fig. 10 as it crashed for more
than 15 dimensional data. We can see that the runtime for SUBSCALE is less than INSCY
for the same data. Although the execution time for SUBCLU algorithm seems to be the
lowest in both Figs. 9 and 10 but the clustering results were not meaningful as mentioned
before.
The 4400 × 500 madelon dataset available at UCI repository [46] has ∼ 2500 possible

subspaces. We ran SUBSCALE on this dataset to find all possible subspace clusters and
Fig. 11 shows the runtime performance with respect to ε values. The different values of ε
ranging from 1.0×10−5 to 1.0×10−6 were used.We tried to run INSCY by allocating upto
12GB RAM but it failed to run for this high dimensional dataset for any of the ε value.

Fig. 9 Runtime comparison for fixed data size=1595. Parameters for CLIQUE: τ = 0.003, gridSize = 3.
Parameters for SUBSCALE, INSCY and SUBCLU (similar values): ε = 0.001, τ = 3,minSize = 4. CLIQUE crashed
after 10 dimensions. SUBCLU didn’t give meaningful clusters. Dataset used: D05, D10, D15, D20, D25

Kaur and Datta Journal of Big Data (2015) 2:17 Page 18 of 24

Fig. 10 Runtime comparison for fixed dimensionality=20. Same parameters as in Fig. 8 were used. CLIQUE
could not run for this dimensionality. SUBCLU didn’t give meaningful clusters. Dataset used: S1500, S2500,
S3500, S4500, S5500

Scalability

The performance of our algorithm depends heavily on the number of dense units gener-
ated in each dimension. And the number of these dense units depends upon the size of the
data, chosen value of ε and the underlying data distribution. A larger ε value increases the
range of the neighbourhood of a point and is likely to produce bigger core-sets and thus,
dense units. As we do not have prior information about the underlying data distribution,
a single dimension can have any number of dense units. Thus, for a scalable solution to
subspace clustering through SUBSCALE, the system must be able to store and process
large number of collisions of the dense units.
In order to identify collisions among dense units across multiple dimensions, we need

the collision space (hTable) big enough to hold these dense units in the working memory
of the system. But with the limited memory availability, this is not always possible. If numj

is the number of total dense units in a dimension j, then a k dimensional dataset may have
NUM = ∑k

j=1 numj dense units in total. The signature technique used in SUBSCALE
algorithm has a huge benefit that we can split NUM to the granularity of k.

Fig. 11 No of found subspaces/clusters vs runtime (madelon dataset). Different epsilon values ranging from
1.0E − 5 to 1.0E − 6 were used. The number of clusters as well as subspaces in which these clusters are
found, increases with the increase in ε value. Other parameters used: τ = 3,minSize = 4

Kaur and Datta Journal of Big Data (2015) 2:17 Page 19 of 24

As each dense unit contains τ + 1 points and we are assigning large integers to these
points from the key database K to generate signatures H, the value of any signature thus
generated would approximately lie between the range R =

(
(τ + 1) × min(K), (τ + 1) ×

max(K)
)
, where min(K) is the smallest key being used and max(K) is the largest key

being used. The detection of maximal dense units involves matching of the same signa-
ture across multiple dimensions using a hash table. Thus, the hash table should be able
to retain all signatures in the range R. But we can split this range into multiple chunks
so that each chunk can be processed independently using a much smaller hash table.
If sp is the split factor, we can divide this range R into sp parts and thus, into sp hash
tables where each hTable holds at the most R

sp entries for these dense units. But since
the keys are being generated randomly from a fixed range of digits, the actual entries
will be very less. In a 14-digit integer space, we have 9 × 1013 keys to choose from (9
ways to choose the most significant digit and 10 ways each for the rest of the 13 dig-
its). The number of actual keys being used will be equal to the number of points in the
dataset |DB|.
In Fig. 12, we illustrate this with a range of 4-digit integers from 1000 to 9999. Let

|DB| = 500 and so we need 500 random keys from 9000 available integer keys. If τ = 3
then, some of these 500 keys will form dense core-sets. Let us assume that 1/5th of these
keys are in a core-set in some 1-dimensional space, then we would need a hash table big
enough to store≈ 4million entries i.e.

(100
4

)
. If we choose the split factor of 3 then we have

3 hash tables where each hashtable can store approx 1 million of entries. Typically, Java
mostly uses 8 bytes for a long key, so 32 bytes for a signature with τ = 3 and additional
bytes to store the colliding dimensions (say 40 bytes per entry for an average subspace
dimensionality of 10), are required.
We ran SUBSCALE algorithm onmadelon dataset [46] using different values of sp rang-

ing from 1 to 500 and Fig. 13 shows its effect on the runtime performance for two different

Fig. 12 Illustration of hTable splitting. For τ = 3, Split factor sp = 3, minimum large-key valuemin(K) = 1088
and maximum large-key valuemax(K) = 9912, approximate range of expected signature sums is
(1088 × (τ + 1) , 9912 × (τ + 1)). Each signature sum is derived from a dense unit of fixed size = τ + 1

Kaur and Datta Journal of Big Data (2015) 2:17 Page 20 of 24

Fig. 13 Runtime vs split factor (madelon dataset). The execution time is almost proportional to the split factor
after an initial threshold

values of ε. The darker line is for larger value of ε and hence, higher runtime. But for both
of the ε values, the execution time is almost proportional to the split factor after an initial
threshold.
The size of hTablei can be adjusted to handle large databases of points by choosing

an appropriate split factor sp. Instead of generating all dense units in all dimensions
sp times, if we sort the keys of density-connected points, we can stop the computation
of dense units when no more signature sums less than the upperlimit of hTablei are
possible.
We successfully ran modified SUBSCALE algorithm for 3661 × 6144 pedestrian

dataset [47, 48] (see Methods Section for details of this data). We designed two sets
of experiments: a. ε = 0.000001, sp = 4000; b. ε = 0.000002, sp = 6000. Also,
τ = 3 was used for both sets of experiments. We ran the first set on an Intel Core i7-
2600 desktop computer with 14GB of allocated RAM for processing and it took ≈336
hrs to finish. About 48 million subspaces containing clusters were discovered out of
26144 search space. For the second set of experiment, since we doubled the ε value and
larger number of dense units were expected from higher ε value, we increased the split
factor sp to 6000. Instead of using just one computer, we distributed the 6000 hash
computations among 64 computers. Each computer received between 50 to 1000 hash
computations and 7GB RAM was allocated for each computation on each computer.
The computer systems were running either 64-bit Windows or Linux operating system.
Again, ≈ 48 million subspaces having clusters were found and the computation time
was 783 hours in total for all the computers. But the execution time on each computer
varied from minimum 4 to maximum 76 hours. However, the run time can be reduced
further by increasing the split factor sp and distributing the computations to more
CPUs.
We encountered memory overflow problems when handling a large number of result

subspace clusters and that was due to the increasing size of Clusters data structure used
in Algorithm 2. We found a solution by distributing the dense points of each identi-
fied maximal subspace from the hash table to a relevant file on the secondary storage.
The relevance is determined by the cardinality of the found subspace. If a set of points
are found in a maximal subspace of cardinality m, we can store these dense points in a

Kaur and Datta Journal of Big Data (2015) 2:17 Page 21 of 24

file named ’m.dat’ along with their relevant subspaces. It will also facilitate running any
full-dimensional algorithm like DBSCAN on each of these files as its parameters can be
set according to different dimensionality.

Determining the input parameters

An unsupervised clustering algorithm has no prior knowledge of the density distribution
for the underlying data. Even though the choice of density measures (ε, τ and minSize)
is very important for the quality of subspace clusters, finding their optimal values is a
challenging task.
SUBSCALE initially requires both τ and ε to find 1-D dense points. Once we iden-

tify the dense points in the maximal subspaces through SUBSCALE, we can then run
DBSCAN for the identified subspaces by setting the τ , ε andminSize parameters accord-
ing to each subspace. We should mention that finding clusters from these subspaces by
running DBSCAN or any other density based clustering algorithmwill take relatively very
less time. During our experiments, the time taken by DBSCAN on an average comprises
less than 5 % of the total execution time for the evaluation datasets given in Table 2. The
reason is that each of the identified maximal subspace by SUBSCALE has already been
pruned for only those points which have very high probabilities of forming clusters in
these subspaces.
In our experiments, we started with the smallest possible ε-distance between any two

1-D projections of points in the given dataset. Considering the curse of dimensionality,
the points become farther in high dimensional subspaces, so the user may intend to find
clusters with larger ε values than that used by SUBSCALE for 1-D subspaces. Most of the
subspace clustering algoritms use heuristics to adjust these parameters in higher dimen-
sional subspaces. Some authors [49, 50] have suggested the methods to adapt ε and τ

parameters for the high dimensional subspaces. However, we would argue that the choice
of these density parameters is highly subjective to the individual data set as well as the
user requirements.

Conclusions
The generation of large and high dimensional data in the recent few years has over-
whelmed the data mining community. In this paper, we have presented a novel approach
to efficiently find quality subspace clusters without expensive database scans or generat-
ing trivial clusters in between. We have validated our idea both theoretically as well as
through the numerical experiments. We have compared SUBSCALE algorithm against
recent subspace clustering algorithms and our proposed algorithm has performed far bet-
ter when it comes to handling high-dimensional datasets. We have experimented with
upto 6144 dimensional data and we can safely claim that it will work for larger datasets too
by adjusting the splitfactor. However, the main cost in our SUBSCALE algorithm is the
computation of the candidate 1-dimensional dense units. In addition to splitting the hash
table computation, SUBSCALE has a high degree of parallelism as there is no dependency
in computing dense units across multiple dimensions. We plan to implement a parallel
version of our algorithm on General Purpose Graphics Processing Units (GPGPU) in the
near future.
Since our algorithm directly generates the maximal dense units, it is possible to imple-

ment a query-driven version of our algorithm relatively easily. Such an algorithm will take

Kaur and Datta Journal of Big Data (2015) 2:17 Page 22 of 24

a set of (query) dimensions and find the clusters in the subspace determined by this set of
dimensions.

Methods
We implemented the SUBSCALE algorithm in Java language on an Intel Core i7-2600
desktop with 64-bit Windows 7 OS and 16GB RAM. The dense points in maximal sub-
spaces were found by SUBSCALE and then for each found subspace containing dense set
of points, we used Python Script to apply DBSCAN algorithm from the scikit library [51].
However, any full-dimensional density-based algorithm can be used instead of DBSCAN.
The open source framework byMüller et al. [45] was used to assess the quality our results
and also to compare these results with the other clustering algorithms available through
the same platform.
The datasets in Table 2 were normalised between 0 and 1 using WEKA [52] and

contained no missing values. The padestrian data set is extracted from the attributed
pedestrian database [47, 48] using the Matlab code given in APiS1.0 [53]. The madelon
data set available at UCI repository [46]. The rest of the data sets are freely available at
the website of authors of the related work [45].
The source code of SUBSCALE algorithm can be downloaded from the Git repository

[54] and its scalable version is available at [55].

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AD contributed for the underlying idea, helped drafting the manuscript and played a pivotal role guiding and
supervising throughout, from initial conception to the final submission of this manuscript. AK developed and
implemented the idea, designed the experiments, analysed the results and wrote the manuscript. Both authors read and
approved the final manuscript.

Authors’ information
AK is currently working toward the PhD degree at the University of Western Australia. Her research interests include data
mining, parallel computing and information security. AD is a Professor at the School of Computer Science and Software
Engineering at the University of Western Australia. His research interests are in parallel and distributed computing,
mobile and wireless computing, bioinformatics, social networks, data mining and software testing.

Acknowledgements
AK was financially supported for her research by the Australian Government through Endeavour Postgraduate Award
(http://www.australiaawards.gov.au/). The authors would like to acknowledge the support provided by the University of
Western Australia. The authors would also like to thank the four anonymous reviewers for their insightful comments that
improved the presentation of the paper considerably.

Received: 27 May 2015 Accepted: 31 July 2015

References
1. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Shermpan PM, Holko

M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) Ncbi geo: archive for functional
genomics data sets-update. Nucleic Acids Res 41(D1):991–995

2. Dewdney PE, Hall PJ, Schilizzi RT, Lazio TJLW (2009) The square kilometre array. Proc IEEE 97(8):1482–1496
3. Fan J, Han F, Liu H (2014) Challenges of big data analysis. National Science Review 1(2):293–314
4. Steinbach M, Ertöz L, Kumar V (2004) The challenges of clustering high dimensional data. In: New directions in

statistical physics. Springer, Berlin Heidelberg. pp 273–309
5. Aggarwal CC, Reddy CK (2013) Data clustering: algorithms and applications. Data Mining Knowledge and Discovery

Series 1st. CRC Press
6. Xu R, Wunsch D II (2005) Survey of clustering algorithms. Neural Netw IEEE Trans on 16(3):645–678
7. Manning CD, Raghavan P, Schütze H (2008) Hierarchical clustering. In: Introduction to information retrieval Vol. 1.

Cambridge university press, New York, USA
8. Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method for very large databases. In:

Proc. of the ACM SIGMOD international conference on management of data, vol. 1. ACM Press, USA. pp 103–114
9. Ester M, Kriegel H, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases

with noise. Int Conf Knowl Discov Data Min 96(34):226–231

http://www.australiaawards.gov.au/

Kaur and Datta Journal of Big Data (2015) 2:17 Page 23 of 24

10. Bellman RE (1961) Adaptive control processes: a guided tour. Princeton University Press, New Jersey
11. Beyer K, Goldstein J (1999) When is nearest neighbor meaningful? Proc 7th Int Conf Database Theory. In: Database

Theory –ICDT’99. Lecture Notes in Computer Science. Springer, Berlin Heidelberg Vol. 1540. pp 217-235
12. Parsons L, Haque E, Liu H (2004) Subspace clustering for high dimensional data: a review. ACM SIGKDD Explor Newsl

6(1):90–105
13. Babu MM (2004) Introduction to microarray data analysis. In: Grant RP (ed). Computational genomics: Theory and

application. Horizon Press, UK. pp 225–249
14. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression

patterns. Proc Natl Acad Sci 95(25):14863–14868
15. Jiang D, Tang C, Zhang A (2004) Cluster analysis for gene expression data: a survey. IEEE Trans Knowl Data Eng

16(11):1370–1386
16. Cheng Y, Church GM (2000) Biclustering of expression data. Proc Int Conf Intell Syst Mol Biol 8:93–103
17. Yoon S, Nardini C, Benini L, De Micheli G (2005) Discovering coherent biclusters from gene expression data using

zero-suppressed binary decision diagrams. IEEE/ACM Trans Comput Biol Bioinforma 2(4):339–353
18. Huttenhower C, Mutungu KT, Indik N, Yang W, Schroeder M, Forman JJ, Troyanskaya OG, Coller HA (2009) Detailing

regulatory networks through large scale data integration. Bioinformatics 25(24):3267–3274
19. Jun J, Chung S, McLeod D (2006) Subspace clustering of microarray data based on domain transformation. In: Data

Mining and Bioinformatics. Lecture Notes in Computer Science, vol. 4316. Springer, Heidelberg. pp 14–28
20. Eren K, Deveci M, Kktun O, atalyrek mV (2013) A comparative analysis of biclustering algorithms for gene expression

data. Brief Bioinforma 14(3):279–292
21. Basri R, Jacobs DW (2003) Lambertian reflectance and linear subspaces. IEEE Trans Pattern Anal Mach Intell

25(2):218–233
22. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal

Mach Intell 35(11):2765–2781
23. Vidal R (2011) Subspace clustering. IEEE Signal Proc Mag 28(2):52–68
24. Ho J, Yang MH, Lim J, Lee KC, Kriegman D (2003) Clustering appearances of objects under varying illumination

conditions. In: Computer vision and pattern recognition, 2003. Proceedings. 2003 IEEE computer society conference
on, vol. 1. IEEE. pp 1–11

25. Tierney S, Gao J, Guo Y (2014) Subspace clustering for sequential data. In: Computer vision and pattern recognition
(CVPR), 2014 IEEE conference On. IEEE. pp 1019–1026

26. Vidal R, Tron R, Hartley R (2008) Multiframe motion segmentation with missing data using PowerFactorization and
GPCA. Int J Comput Vis 79(1):85–105

27. Günnemann S, Boden B, Seidl T (2012) Finding density-based subspace clusters in graphs with feature vectors. In:
Data mining and knowledge discovery. Springer, US Vol. 25. pp 243–269

28. Jang W, Hendry M (2007) Cluster analysis of massive datasets in astronomy. Stat Comput 17(3):253–262
29. Li T, Ma S, Ogihara M (2004) Document clustering via adaptive subspace iteration. In: Proceedings of the 27th annual

international ACM SIGIR conference on research and development in information retrieval. ACM, USA. pp 218–225
30. Aggarwal CC, Wolf JL, Yu PS, Procopiuc C, Park JS (1999) Fast algorithms for projected clustering. In: Proc. of the ACM

SIGMOD international conference on management of data. ACM, USA. pp 61–72
31. Woo KG, Lee JH, Kim MH, Lee YJ (2004) FINDIT: a fast and intelligent subspace clustering algorithm using dimension

voting. Inf Softw Technol 46(4):255–271
32. Agrawal R, Mannila H, Srikant R, Toivonen H, Verkamo AI (1996) Fast discovery of association rules. Adv Knowl Discov

Data Min 12:307–328
33. Agrawal R, Gehrke J, Gunopulos D (1998) Automatic subspace clustering of high dimensional data for data mining

applications. In: Proc. of the ACM SIGMOD international conference on management of data. pp 94–105
34. Kailing K, Kriegel HP, Kroger P (2004) Density-connected subspace clustering for high-dimensional data. In: SIAM

international conference on data mining. pp 246–256
35. Kriegel H-PH, Kroger P, Renz M, Wurst S (2005) A generic framework for efficient subspace clustering of

high-dimensional data. In: IEEE international conference on data mining. IEEE, Washington, DC, USA. pp 250–257
36. Sim K, Gopalkrishnan V, Zimek A, Cong G (2012) A survey on enhanced subspace clustering. Data Min Knowl Disc

26(2):332–397
37. Kaur A, Datta A (2014) Subscale: fast and scalable subspace clustering for high dimensional data. In: Data mining

workshop (ICDMW), 2014 IEEE international conference on. IEEE. pp 621–628
38. Joliffe IT (2002) Principle component analysis. 2nd edn. Springer, New York
39. Kriegel HP, Kröger P, Zimek A, Oger PKR (2009) Clustering high-dimensional data: a survey on subspace clustering,

pattern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data 3(1):1–58
40. Cheng CH, Fu AW, Zhang Y (1999) Entropy-based subspace clustering for mining numerical data. In: ACM SIGKDD

international conference on knowledge discovery and data mining. ACM, NY, USA. pp 84–93
41. Assent I, Emmanuel M, Seidl T (2008) Inscy: Indexing subspace clusters with in-process-removal of redundancy. In:

Eighth IEEE international conference on data mining. IEEE. pp 719–724
42. Nagesh H, Goil S, Choudhary A (2001) Adaptive grids for clustering massive data sets. Proc 1st SIAM Int Conf Data

Min:pp. 1–17
43. Erdös P, Lehner J (1941) The distribution of the number of summands in the partitions of a positive integer. Duke

Mathematical Journal 8(2):335–345
44. Müller E, Günnemann S, Assent I, Seidl T, Emmanuel M, Stephan G (2009) Evaluating clustering in subspace

projections of high dimensional data. In: International conference on very large data bases. VLDB Endowment, Lyon,
France Vol. 2. pp 1270–1281

45. Müller E, Günnemann S, Assent I, Seidl T, Färber I (2009) Evaluating Clustering in Subspace Projections of High
Dimensional Data. http://dme.rwth-aachen.de/en/OpenSubspace/evaluation. Accessed 08 Aug 2015

46. Bache K, Lichman M (2006) UCI machine learning repository. http://archive.ics.uci.edu/ml. Accessed 08 Aug 2015

http://dme.rwth-aachen.de/en/OpenSubspace/evaluation
http://archive.ics.uci.edu/ml

Kaur and Datta Journal of Big Data (2015) 2:17 Page 24 of 24

47. Geiger A, Lenz P, Stiller C, Urtasun R (2013) Vision meets robotics: The KITTI dataset. Int J Rob Res 32
(11):1231–1237

48. Bileschi SM (2006) Streetscenes: Towards Scene Understanding in Still Images. PhD thesis, Massachusettes Inst Tech
49. Jahirabadkar S, Kulkarni P (2014) Algorithm to determine ε-distance parameter in density based clustering. Expert

Syst Appl 41(6):2939–2946
50. Assent I, Krieger R, Müller E, Seidl T (2007) Dusc: Dimensionality unbiased subspace clustering. In: Seventh IEEE

international conference on data mining (ICDM 2007). IEEE. pp 409–414
51. Pedregosa F, Weiss R, Brucher M (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830
52. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update.

ACM SIGKDD explorations newsletter 11(1):10–18
53. Zhu Jianqing, Liao Shengcai, Lei Zhen, Yi Dong, Li StanZ (2013) Pedestrian attribute classification in surveillance:

database and evaluation. In: ICCV workshop on large-scale video search and mining (LSVSM’13). IEEE, Sydney.
pp 331–338

54. GitHub repository for SUBSCALE algorithm. https://github.com/amkaur/subscale.git. Accessed 08 Aug 2015
55. GitHub repository for scalable SUBSCALE algorithm. https://github.com/amkaur/subscaleplus.git. Accessed 08 Aug

2015

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

https://github.com/amkaur/subscale.git
https://github.com/amkaur/subscaleplus.git

	Abstract
	Keywords

	Introduction
	Motivating examples

	Background and literature review
	Research design and methodology
	Definitions and problem
	Basic idea
	Assigning signatures
	Interleaved dense units

	SUBSCALE algorithm

	Results and discussion
	Execution time and quality
	Scalability
	Determining the input parameters

	Conclusions
	Methods
	Competing interests
	Authors' contributions
	Authors' information
	Acknowledgements
	References

