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Abstract

We have entered the big data age. Knowledge extraction frommassive data is becoming
more and more urgent. MapReduce provides a feasible framework for programming
machine learning algorithms in Map and Reduce functions. The relatively simple
programming interface has helped to solve machine learning algorithms’ scalability
problems. However, this framework suffers from an obvious weakness: it does not
support iterations. This makes it difficult for algorithms requiring iterations to fully
explore the efficiency of MapReduce. In this paper, we propose to apply Meta-learning
programmed with MapReduce to avoid parallelizing machine learning algorithms
while also improving their scalability to big datasets. The experiments conducted on
Hadoop’s fully distributed mode on Amazon EC2 demonstrate that our algorithm
Meta-MapReduce (MMR) reduces the training computational complexity significantly
when the number of computing nodes increases while obtaining smaller error rates
than those on a single node. The comparison of MMR with the contemporary
parallelized AdaBoost algorithm, AdaBoost.PL, shows that MMR obtains lower error rates.

Keywords: Hadoop; MapReduce; Meta-learning; Big data; Parallel computing;
Adaboost

Introduction
We have been rapidly moving from the Terabytes to the Petabytes age as a result of the
explosion of data. The potential value and insights which could be derived from massive
data sets have attracted tremendous interest in a wide range of business and scientific
applications [1–3]. It is becoming more and more important to organize and utilize the
massive amounts of data currently being generated. However, when it comes to massive
data, it is difficult for current data mining algorithms to build classification models with
serial algorithm running on single machines, not to mention accurate models. Therefore,
the need for efficient and effective models of parallel computing is apparent.
Fortunately, with the help of theMapReduce [3–6] infrastructure, researchers now have

a simple programming interface for parallel scaling up of many data mining algorithms on
larger data sets. It was shown [7] that algorithms which fit the Statistical Query model [8]
can be written in a certain “summation form”. They illustrated 10 different algorithms that
can be easily parallelized on multi-core computers applying the MapReduce paradigm.
An industrial example of implementing MapReduce comes from Google. In 2009,

Google proposed PLANET: a framework for large-scale tree learning using a MapReduce
cluster [9]. Their intention in building PLANET was to develop a scalable tree learner
which could achieve comparable accuracy performance as the traditional in-memory
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algorithms and also be able to deal with bigger datasets. PLANET is used to construct
scalable classification and regression trees, as well as ensembles of these models. It real-
izes parallelization by dividing tree learning into many distributed computations, each
implemented with MapReduce.
Although MapReduce handles large scale computation, it doesn’t support iteration.

Since there are no loop steps available in Hadoop, in order to implement loops, an exter-
nal driver is needed to repeatedly submit MapReduce jobs. Since each MapReduce job
works independently, in order to reuse data between MapReduce jobs, the results gen-
erated by a former MapReduce job are written to the Hadoop Distributed File System
(HDFS) and the next MapReduce job which needs this information as inputs reads these
messages fromHDFS. Obviously, this operation doesn’t have the benefits that the caching
system can bring for the in-memory computation. Moreover, owing to data replication,
disk I/O, and serialization, the approach for creating loops inside the original version of
Hadoop causes huge overheads. The time spent in this process may sometimes occupy a
major part in the total execution time.
The inefficient creation of loops is a critical weakness of Hadoop. For instance, boost-

ing and genetic algorithms naturally fit into an iterative style and thus cannot be exactly
expressed with MapReduce. Realizing these algorithms’ parallelization requires special
techniques [10, 11]. However, even if the computations can be modeled by MapReduce
when there are iterations in a machine learning algorithm, the execution overheads are
substantial [12, 13] as was explained before.
Currently, there are some approaches [14–19] which deal with the problem of lacking

iterations in MapReduce. However, they either require substantial change of the original
MapReduce framework or need designing new systems.
In contrast,we overcome this difficulty by applying the concept ofMeta-learning. Meta-

learning [20] is loosely defined as learning from information generated by learner(s) and
it is applied to coalesce the results of multiple learners to improve accuracy. One of the
advantages of meta-learning is that individual classifiers can be treated as black boxes
and in order to achieve a final system, little or no modifications are required on the
base classifiers [21]. The structure of meta-learning makes it easily adapted to distributed
learning.
The method we propose in this paper is much simpler in that it eliminates the neces-

sity of considering new models and the complexity of implementing them. Moreover, our
approach requires a one time configuration and unlimited times of repetitive usage, which
is much more advantageous than approaches which have to alter their design for different
algorithms.
In this paper, we harness the power of meta-learning to avoid modifying individual

machine learning algorithms with MapReduce. Hence, algorithms which require itera-
tions in their model can be more easily parallelized utilizing the meta-learning schema
than by altering their own internal algorithms directly with MapReduce. Although we
focuse on an individual machine learning algorithm: Adaboost in this paper, the idea and
our system can be easily extended to other algorithms.
This paper is organized as follows: section “Literature review” introduces work that

has previously been proposed for solving the iterations problem in Hadoop MapReduce;
section “Background" provides background knowledge about MapReduce and Hadoop;
section “Framework" presents the meta-learning framework and our proposed algorithm:
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Meta-MapReduce (MMR); section “Results and discussion" demonstrates the perfor-
mance of MMR in terms of error rates and speedup; section “Conclusion" concludes the
paper.

Literature review
Pregel [14] is a concept similar to MapReduce. The difference is that it provides a natural
API for distributed programming framework aimed at graph algorithms. It also supports
iterative computations over the graph. This is an attribute which MapReduce lacks. In
Pregel computations, supersteps, a sequence of iterations is adopted. With supersteps, a
vertex can receive information from the previous iteration and also send information to
other vertices that will be received at a next superstep. However, Pregel focuses on graph
mining algorithms, while we are interested in more general applications.
As a modified version of Hadoop’s MapReduce, HaLoop was presented in [15] to offer

support to iterative programs which is absent in the original MapReduce framework.
It was mentioned that iterative computations were needed for Page Rank [22], recur-
sive relational queries [23], clustering such as k-means, neural network analysis, social
network analysis and so on. When doing these analyses, many iterations are necessary
until some convergence or abort conditions are met. It was also mentioned that manually
implementing iterative programs by multiple MapReduce jobs utilizing a driver program
can be problematic. Therefore, [15] proposes to automatically run a series of MapReduce
jobs in loops by adding a loop control module to the Hadoop master node. However,
HaLoop only supports specific computation patterns.
Twister [16] is also an enhanced version of MapReduce which supports iterative

MapReduce computations. In the original MapRedcue, in order to realize iterations a set
of Map and Reduce tasks are called. To communicate between each round of a MapRe-
duce job, a lot of loading and accessing activities are repetitively required. This causes
considerable performance overheads for many iterative applications. In Twister, to reduce
these overheads and achieve iterative computation, a publish/subscribe messaging infras-
tructure is proposed for communication and data transfers. Moreover, there are long
running map/reduce tasks with distributed memory caches. Basically, it is a stream-based
MapReduce framework. However, this streaming architecture between map and reduce
tasks suffers from failures. Besides, long runningmap/reduce tasks with distributedmem-
ory caches is not a good scalable approach for each node in the cluster having limited
memory resources.
As a scalable machine learning system,VowpalWabbit (VW) [17] is implemented with

the All Reduce function (which originates in MPI) in Hadoop for the sake of accurate
prediction and short training time in an easy programming style. By eliminating re-
scheduling between iterations and communicating through network connections directly,
fast iterations are optimized. Moreover, the map and reduce tasks are sped up via a cache
aware data format and a binary aggregation tree respectively.
Resilient Distributed Datasets (RDDs) [18] is a distributed memory abstraction

intended for in-memory computations on large clusters. It is implemented in the sys-
tem Spark [24]. RDDs addresses the problem of data reuse of intermediate results among
multiple computations, which cannot be handled efficiently by current proposed cluster
computing frameworks such asMapReduce andDryad [25]. The advantage of RDDs com-
pared to Pregel and HaLoop is that an abstraction is proposed for more general use such
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as the application of running ad-hoc queries across several datasets which are loaded into
memory. RDDs also absorb the merits from other frameworks. These include in-memory
storage of specific data, control of data partitions to reduce communications and recovery
from failures efficiently. However, the optimization of RDDs is specialized for in-memory
computation only.
Iterative MapReduce [19] is an extension of the MapReduce programming paradigm,

which claims to be the most advanced framework for supporting iterative computations.
In Spark, the programmer has to make systems level decisions to recognize what data to
cache in the distributed main memory. However, sometimes the programmer may lose
track of performance-related parameters in large public clusters where these parame-
ters keep changing. To tackle this problem which happens in Spark, Iterative MapReduce
applies the ideas from database systems to eliminate the low-level systems considerations
via the abstraction brought by the relational model. Furthermore, it also provides a way
for DBMS-driven optimization.

Background
Hadoop

Large scale data has brought both benefits and challenges to the field of machine learning.
One of the benefits is that we can extract lots of useful information by analyzing such big
data. Extracting knowledge from massive data sets has attracted tremendous interest in
the data mining community. In the field of natural language processing, it was concluded
[26] that more data leads to better accuracy. That means, no matter how sophisticated
the algorithm is, a relatively simple algorithm will beat the complicated algorithm with
more data. One practical example is recommending movies or music based on past
preferences [27].
One of the challenges of large scale computing is that storing and analyzing massive

data is becoming more and more difficult. Although the storage capacities of hard drives
have increased greatly over the years, the speeds of reading and writing data have not kept
up the pace. Reading all the data from a single drive takes a long time and writing is even
slower. Reading from multiple disks at once may reduce the total time needed, but this
solution causes two problems.
The first one is hardware failure. Once many pieces of hardware are used, the proba-

bility that one of them will fail is fairly high. To overcome this disadvantage, redundant
copies of the data are kept, in case of data loss. This is how Hadoop’s file system: Hadoop
Distributed File System (HDFS) works. The second problem is how to combine data from
different disks. Although various distributed systems have provided ways to combine data
frommultiples sources, it is very challenging to combine them correctly. TheMapReduce
framework provides a programming model that transforms the disk reads and writes into
computations over sets of keys and values.
Hadoop is an open source Java implementation of Google’sMapReduce algorithm along

with an infrastructure to support distribution over multiple machines. This includes its
own filesystem HDFS (based on the Google File System) which is specifically tailored
for dealing with large files. MapReduce was first invented by engineers at Google as an
abstraction to tackle the challenges brought about by large input data [3]. There are many
algorithms that can be expressed in MapReduce: from image analysis, to graph-based
problems, to machine learning algorithms.
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In sum, Hadoop provides a reliable shared storage and analysis systems. The storage
is provided by HDFS and the analysis by MapReduce. Although there are other parts of
Hadoop, HDFS and MapReduce are its kernel components.

MapReduce

MapReduce simplifies many of the difficulties encountered in parallelizing data man-
agement operations across a cluster of individual machines, thus becoming a simple
model for distributed computing. Applying MapReduce, many complexities, such as
data partition, tasks scheduling across many machines, machine failures handling, and
inter-machine communications are reduced.
Promoted by these properties, many technology companies apply MapReduce frame-

works on their compute clusters to analyze and manage data. In some sense, MapReduce
has become an industry standard and the software Hadoop as an open source implemen-
tation of MapReduce can be run on Amazon EC2 [28]. At the same time, the company
Cloudera [29] offers software and services to simplify Hadoop’s deployment. Several uni-
versities have been granted access to Hadoop clusters by Google, IBM and Yahoo! to
advance cluster computing research.
However, MapReduce’s application to machine learning tasks is poorly recognized

despite of its growing popularity. It is natural to ask the question of whether the
MapReduce-capable compute infrastructure could be useful in the development of
parallelized data mining tasks given the wide and growing availabilities of such
infrastructures.

MapReduce framework

As a programming model to process big data, there are two phases included in the
MapReduce programs: the Map phase and the Reduce phase [30]. Programmers are
required to program their computations into Map and Reduce functions. Each of these
functions has key-value pairs at their inputs and outputs. The input is application-specific
while the output is a set of

〈
key, value

〉
pairs, which are produced by the Map function.

The key and value pairs are expressed as follows:

[
(k1, v1), · · · , (kn, vn)

]
: ∀i = 1 · · · n : (ki ∈ K , vi ∈ V ) (1)

Here ki represents the key for the ith input and vi denotes the value associated with the ith
input. K is the key domain and V is the domain of values. Using the Map function, these
key-value pairs of the input are split into subsets and distributed to different nodes in the
cluster for processing. The processed intermediate results are key-value pairs. Therefore,
the map function can be obtained as

Map : K × V → (L × W )∗ (2)

(k, v) �−→ [(l1, x1) , · · · , (l1, xr)] (3)

Here L and W are key and value domains again, which represent the intermediate key-
value pair results.In the map process, each single key-value input pairs: (k, v) is mapped
into many key-value pairs: [ (l1, x1), . . . , (l1, xr)] with the same key, but different values.
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These key-value pairs are the inputs for the reduce functions. The reduce phase is defined
as

Reduce : L × W ∗ → W ∗ (4)

(l, [ y1, · · · , ysl] ) �−→[w1, · · · ,wml] (5)

The first step in the reduce function is to group all intermediate results with the same
key together. The reason to perform this aggregation is that although the input key-value
pairs have different key values, they may generate the intermediate results with the same
key values. Therefore, there is a need to sort these results and put them together for
processing. This process is achieved when (L×W )∗ is processed to generate L×W ∗. And
these are the inputs for the reduce functions. The Reduce process can be parallelized like
the Map process. And the result is that all the intermediate results with the same keys:
L × W ∗ are mapped into a new result list:W ∗.
In sum, the whole MapReduce process can be expressed as

MapReduce : (K × V )∗ → (L × W )∗ (6)

As was mentioned before, to realize parallelization many map and reduce functions are
performed simultaneously on various individual machines (or nodes in the context of
cluster) with each of them processing just a subset of the original dataset.

MapReduce workflow

In order to do cloud computing, the original data is di-vided into the desired number
of subsets (each subset has a fixed-size) for the MapReduce jobs to proceed. And these
subsets are sent to the distributed file system HDFS so that each node in the cloud can
access a subset of the data and do the Map and Reduce tasks. Basically, one map task
processes one data subset.
Since the intermediate results output by the map tasks are to be handled by the reduce

task, these results are stored in each individual machines’ local disk instead of HDFS. To
perform fault tolerance, another machine is automatically started by Hadoop to perform
the map task again, if one of the machines which runs the map functions fails before it
produces the intermediate results.
The number of reduce tasks is not determined by the size of the input, but specified

by the user. If there is more than one reduce task, the outputs from the map tasks are
divided into pieces to feed into the reduce functions. Although there are many keys in a
map tasks’ output, the piece sent to the reduce task contains only one key and its values.
As each reduce task will have the inputs from multiple map tasks, this data flow between
map tasks and reduce tasks is called “the shuffle”.
Figure 1 depicts the work flow of a generalized MapReduce job. To execute such a job

the following preparation information is need: the input data, the MapReduce program
and the configuration information. As we have discussed before, there are two types of
tasks involved in a MapReduce job: the map tasks and the reduce tasks. To control the
job execution process, a jobtracker and some tasktrackers are configured. The tasks are
scheduled by the job tracker to run on tasktrackers. And the tasktrackers report to the
jobtracker about the situations of the tasks running. By doing this, if some tasks fail, the
jobtracker would know it and reschedule new tasks.
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Fig. 1 Work flow of MapReduce framework

A simple word count example

In order to illustrate the work flow of MapReduce and the procedure of how the〈
key, value

〉
pairs are processed, here we show a simple word count program which count

the number of consonant and vowel letters in the string “MACHINELEARNING”. This
example is shown in Fig. 2. In the first step, each letter is assigned a unique identification
number picked from 1 to 15. This identification number is the “key” and the letter itself is
the “value”. Therefore, the input has fifteen

〈
key, value

〉
pairs. Then these pairs are split into

three partitions and each partition is processed by a mapper to generate the intermediate〈
key, value

〉
pairs. Here, the key is either “consonant” or “vowel” and the value is still the

letter itself. The next very important step is that these intermediate
〈
key, value

〉
pairs are

sorted and merged so that the values which belong to the same key are grouped together
to form two categories: consonant and vowel. In the final step, the reducer calculates the
number of consonant and vowel letters and output the results.

Hadoop Distributed File System (HDFS)

As we have seen in the work flow of MapReduce, the user’s MapReduce program first
needs to be copied to the nodes in the cluster in order to perform computations. Here the
action of copy is to move the user’s program to the HDFS so that every node in the cluster
can access it. In addition to this, every split data subset is also stored in HDFS. Thus, the
HDFS manages the storage across a cluster, and also provides fault tolerance. Preventing
the data loss caused by possible node failure is a very challenging task. Therefore, the
programming of HDFS is more complex than that of regular disk filesystems.
An HDFS cluster works following the master and slave model. The master is called the

namenode while the slave is called the data node. The filesystem’s namespace is managed
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Fig. 2 A word count example with MapReduce

by the namenode. The filesystem’s tree and themetadata for all the files and directories are
maintained in it. This information is stored in the form of two files: the namespace image
and the edit log. The datanodes are the ones that do the real jobs: they store and retrieve
blocks when they are required to do so by clients or the namenode. They also need to
transfer back the information of the lists of blocks they are storing into the name nodes
periodically. The reason is that the namenode doesn’t store block locations persistently
and the information is reconstructed from the datanodes. Figure 3 illustrates the case
when the block replication is three and two files “/user/aaron/foo”&“/user/aaron/bar” are
divided into pieces.
By communicating with the namenode and the data-nodes a client can access the

filesystem representing the user. The user code doesn’t need to know the details of
the namenode and datanode as a filesystem interface similar to a portable operating
system interface (POSIX) is presented to the user by the client. The data flow for a
file read is demonstrated in Fig. 4. When the client wants to read a file in step 1, it
opens an instance of DistributedFileSystem which will communicate with the namen-
ode to obtain the locations for the blocks of files in step 2. The namenode provides the
addresses for all datanodes which hold replications of the blocks. These addresses are
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Fig. 3 Information stored in namenode and datanodes

then sorted according to their distance to the client and the closest datanode’s address
is chosen. In step 3, the client reads the data block through the FSDataInputStream
which is returned by the DistributedFileSystem. In step 4, it reads the first data block
from the closest datanode. After finishing reading the block in step 4, the datanode
is closed and it continues to read the next block which also comes from the closest
datanode in step 5. This continues for a number of cycles until the client has fin-
ished reading all the blocks it needs. In the final step: step 6, the FSDataInputStream is
closed.
In the namenode and datanodes style, there is a risk for namenode failure. Once the

namenode fails there would be no information available to retrieve the files from blocks
on the datanodes and all files on the filesystem would also be lost. In order to han-
dle potential namenode failures, Hadoop provides two choices. The first one consists of
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Fig. 4 Client reads data from datanodes through HDFS
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allowing the namenode to write its persistent state to multiple filesystems. Usually, this
is accomplished by writing to both the local disk and a remote NFS mount. The second
option is to run a secondary namenode which keeps a copy of the merged namespace
image to be used in case of namenode failure.

Research design andmethodology
In this section, we first take the AdaBoost.M1 algorithm as an example to explain why
it is inefficient for the original MapReduce configuration in Hadoop to do iterations for
machine learning algorithms. Then we review the Meta-learning algorithm and propose
our framework MMR which is implemented with the programming model of MapRe-
duce on Hadoop. As will be introduced in the following section, the process of building
and testing the base classifiers of meta-learning can be executed in parallel, which makes
meta-learning easily adaptable to distributed computation.

Problems with MapReduce for Iterations

The AdaBoost algorithm generates a set of hypotheses and they are combined
through weighted majority voting of the classes predicted by the individual hypothe-
ses. To generate the hypotheses by training a weak classifier, instances drawn from
an iteratively updated distribution of the training data are used. This distribu-
tion is updated so that instances misclassified by the previous hypothesis are more
likely to be included in the training data of the next classifier. Consequently, con-
secutive hypotheses’ training data are organized toward increasingly hard-to-classify
instances. AdaBoost.M1 was designed to extend AdaBoost from handling the origi-
nal two classes case to the multiple classes case. The detailed algorithm is shown in
Algorithm 1.

Algorithm 1 ADABOOST.M1 Algorithm
1: Input: Sequence of m examples

{
(x1, y1), . . . , (xm, ym)

}
with labels yi ∈ Y =

{1, . . . ,K}; Base learner B; Number of iterations T
2: Initialize the weight for all examples so that D1(i) = 1/m
3: for t = 1 · · ·T do
4: Select a training data subset St , drawn from the distribution Dt
5: Call the base learner B, train B with St
6: Generate a hypothesis ht : X → Y
7: Calculate the error of this hypothesis ht : εt = ∑

i:ht(xi) �=yi Dt(i)
8: If εt > 1/2, then set T = t − 1 and abort loop
9: Set βt = εt/(1 − εt)

10: Update distribution Dt : D(t+1)(i) = Dt(i)
Zt

×
⎧⎨
⎩βt , if ht(xi) = yi
1, otherwise

11: Where Zt is a normalization constant
12: end for
13: Output: the final hypothesis:hfin(x) = argmax

y∈Y
∑

t:ht(x)=y log
1
βt
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In order to implement this algorithm using MapReduce, for T iterations T MapReduce
jobs need to be submitted by the a driver program. This driver program also needs to
determine for each iteration t whether this abortion condition εt > 1/2 is met. In this
case, the number of MapReduce jobs is smaller than T.
There are many problems with this implementation. First, the training data sent to each

MapReduce job is dependent on each other as each taining data subset St is drawn from
the distribution Dt (Algorithm 1, line 4) and this distribution is updated based on the
results of the previous MapReduce job. This means these MapReduce jobs cannot be exe-
cuted in parallel as they have to wait for the distributionDt from the previousMapReduce
job.
Second, every time a MapReduce job starts it needs to read data from the HDFS where

the previous MapReduce job has stored the distribution Dt which will help select the
training subset St . After this MapReduce job finishes, it again writes its results into the
HDFS. For T iterations, the communication overhead is substaintial as data are re-loaded,
re-saved and re-processed for T times. Consequently, a lot of CPU resources, network
bandwidth and I/O are wasted. For smaller datasets, it becomes a major factor which
reduces the performances.
Third, as we mentioned before, a driver program is required for each MapReduce

job to check the termination condition: εt > 1/2. This driver progam is an extra
MapReduce job and causes overheads as extra tasks need to be scheduled, extra data
need to read and save to HDFS, extra networks resources are demanded to move these
data.

Meta-learning Algorithm

Every learning algorithm is subject to inductive bias [31]. This means that every algorithm
will search for a solution in a specific way which may or may not be appropriate for the
problem at hand. In the No Free Lunch (NFL) theorems [32], it was stated that there is no
universally best algorithm for a broad problem domain. Therefore, it is beneficial to build
a framework to integrate different learning algorithms to be used in diverse situations.
Here we present the structure of meta-learning.
Meta-learning is usually referred to as a two level learning process. The classifiers

in the first level are called base classifiers and the classifier in the second level is
the meta-learner. This meta-learner is a machine learning algorithm which learns the
relationships between the predictions of the base classifiers and the true class. One
advantage of this schema is that adding or deleting the base classifiers can be per-
formed relatively easily since no communications are required between them in the first
level.
Three meta-learning strategies: combiner, arbiter and hybrid are proposed in [33] to

combine the predictions generated by the first level base learners. Here we are focusing
on the combiner strategy. For this strategy, depending on how we generate the meta-level
training data, there are three schemes as follows:

• Class-attribute-combiner:a meta-level training instance includes the training features,
the predictions by each of the base classifiers and the true class for test instance;

• Binary-class-combiner: for this rule, the meta-level instance consists of all the base
classifiers’ predictions for all the classes and the true class for the test instance;
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• Class-combiner: it is similar to the binary-class-combiner except that this rule only
contains the predictions for the predicted class from all the base classifiers and the
true class.

In the case of three base classifiers, we represent the predictions of these classifiers on a
training instance X as {P1(X),P2(X),P3(X)}, the attribute vector for X is 〈x1, x2, · · · , xn〉 if
the number of attributes is n, the number of classes ism, the true class forX is expressed as
lable(X). Then themeta-level training instance forX can be expressed as: (7) for the class-
attribute-combiner, (8) for the binary-class-combiner and (9) for the class-combiner.

Mt = {P1(X),P2(X),P3(X), x1, x2, · · · , xn, label(X)} (7)

Mt = {P11(X), · · · ,P1m(X),P21(X), · · · ,P2m(X),P31(X), · · · ,P3m(X), label(X)} (8)

Mt = {P1(X),P2(X),P3(X), label(X)} (9)

In the methodology we will propose in section Meta-MapReduce (MMR), the third rule:
the class-combiner rule is applied. This combiner rule is not only employed in the train-
ing process but also in the testing process to generate the meta-level test data based on
the new test instance. The procedure for meta-learning applying the combiner rule is
described as follows: for a dataset S = {

(yn, xn), n = 1, · · · ,N}
with yn as the nth class and

xn as the nth feature values for instance n. Then for J-fold cross validation, this dataset
is randomly split into J data subsets: S1, · · · , Sj, · · · , SJ . For the jth fold, the test dataset is
denoted as Sj and the training dataset is expressed as S−j = S−Sj. Then each of the train-
ing datasets is again split randomly into two almost equal folds. For instance, S−j is split
into Tj1,Tj2. We assume that there are L level-0 base learners.
Therefore, for the jth round of cross validation, in the training process, first Tj1 is used

to train each of the base learners to generate L models: Mj11, · · · ,Mj1l, · · · ,Mj1L. Then,
Tj2 is applied to test each of the generated models to generate the predictions. These
predictions are used to form the first part of the meta-level training data. The second part
of these data is produced by generating the base models on Tj2 and testing the models on
Tj1. If there are G instances in S−j and the prediction generated by modelMj1L is denoted
as ZLg for instance xg , then the generated meta-level training data can be expressed as

SCV = {
(Z1g , · · · ,ZLg , yg), g = 1, . . . ,G

}
(10)

This meta-level training data is the combination of the first and second parts’ predic-
tions. Based on these data, the level-1 model is generated as M̃. The last step in the
training process is to train all the base learners on S−j to generate the final level-0 models:
M1, · · · ,Ml, · · · ,ML. The whole training process is also shown in Fig. 4.
In the test process, to generate the meta-level test data, Sj is used to test

the level-0 base models M1, · · · ,Ml, · · · ,ML generated in the training process. For
instance, for the instance xtest in Sj, the meta-level test instance can be obtained as
(Z1, · · · ,Zl, · · · ,ZL)). All the meta-level test data are feed into the meta-level model
M̃ to generate the predictions for these test data. We also present the pseudo code
for the meta-learning training algorithm for the jth cross validation training process in
Algorithm 2.
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Algorithm 2Meta-learning Algorithm For Training Process
1: Input: Training dataset: S−j; Meta learning algorithms: Cm; Base learning algorithms:

{C1,C2, · · · ,CL}
2: E = ∅

3: Scv = ∅

4: Tj1,Tj2 = SplitData(S−j, 2)
5: for l = 1 · · · L do
6: Mj1l = Cl(Tj1)

7: Mj2l = Cl(Tj2)

8: end for
9: S1cv = {

Mj11(xi),Mj12(xi), · · · ,Mj1L(xi), yi
}

10: S2cv = {
Mj21(xk),Mj22(xk), · · · ,Mj2L(xk), yk

}
11: Scv = ∪2

i=1Sicv
12: M̃ = Cm(Scv)
13: {M1,M2, · · · ,ML} = {

C1(S−j),C2(S−j), · · · ,CL(S−j)
}

14: E = ({M1,M2, · · · ,ML} , M̃)

15: Output: Ensemble E

Meta-MapReduce (MMR)

The in-memory meta-learning presented in section Meta-learning Algorithm and the
distributed meta-learning which we are going to provide in this section differ as follows.
In in-memory meta-learning, the last step in the training process is to generate the final
base classifiers by training all the base classifiers on the same whole training data. In
contrast, the distributed meta-learning has training and validation datasets. Since each
training data is very big and split across a set of computing nodes, there is no way that the
final base classifiers can be trained on the whole training datasets. In the end, each com-
puting node retains their own base classifiers obtained through training on their share of
training data.
Our MMR algorithm includes three stages: Training, Validation and Test. For the base

learning algorithms, we used the same machine learning algorithm. The number of base
learning algorithms is equal to that of the mappers. We applied map functions without
reduce functions as the map functions already generates the base classifiers we need in
the training process and no further procedures are required.
It is also possible to use different base learning algorithms. But in order to compare

our results with the parallel Adaboost algorithm: AdaBoost.PL in [10], we used the same
base learning algorithm. MMR and AdaBoost.PL is very similar at the beginning of the
training process in that they both split the original data into multiple partitions and train
each part on different computing node with the AdaBoost.M1 algorithm with the same
base learner. The difference is that: MMR uses the validation dataset to get the predic-
tions from these base classifiers and then use these predictions to train a meta-learner
algorithm; Adaboost.PL sorts the hypotheses generated from all the iterations from each
computing node and then by merging them together a final classifier is generated.
MMR Training: in the training process, a number of base classifiers are trained on

the training data. This task requires a number of mappers. The pseudo code is given in
Algorithm 3 and the detailed procedure is described as follows.
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Algorithm 3MMR Training
1: Input: The training sets of M mappers (D1

n1 ,D
2
n2 , · · · ,DM

nM ); The selected base
learning algorithm:BL

2: form = 1 · · ·M do
3: Bm ← BL.build(Dm

nm)

4: Output(m,Bm) //output key and value pairs
5: end for
6: Output: The trained base classifiers (B1,B2, · · · ,BM)

LetDm
nm = {(

xm1 , y
m
1

)
,
(
xm2 , y

m
2

)
, · · · , (xmnm , ymnm)}

be the training data assigned to themth
mapper where m ∈ {1, · · · ,M} and nm is the number of instances in the mth mapper’s
training data. The map function trains the base classifier on their respective split data
sets (line 3). Each base classifier is built in parallel on idle computing nodes selected by
the system. The trained model is then written to the output path (line 4). Finally, all the
trained base models are collected and stored in the output file (i.e., the HDFS) (line 6).
MMR Validation: in the validation process, the meta-level training data is obtained and

the meta-learner is trained based on these data. The pseudo code is shown in Algorithm 4
and the steps are described as follows:

Algorithm 4MMR Validation
1: Input: The validation sets of P mappers (D1

k1 ,D
2
k2 , · · · ,DP

kP ) ;The base classifiers
(B1, · · · ,BM); The meta-learner:h

2: for p = 1 · · ·P do
3: PD ∈ ∅

4: for Bm = B1 · · ·BM do
5: PDm ← Bm.classify(Dp

kp)

6: PD = PD ∪ PDm

7: end for
8: MIp ← (PD ∪ l(Dp

kp))

9: Output(l(Dp
kp),MIp) // output key and value pairs

10: end for//end of map functions
11: MI ∈ ∅

12: for p = 1 · · ·P do
13: MI = MI ∪ MIp

14: end for
15: for nc = 1 · · ·NC do
16: hnc ← h.build(filternc(MI))
17: end for
18: Output: The trained meta-classifiers

{
h1, · · · , hNC}

• Generate meta-level training data: the validation data is split across P mappers. Each
mapper will execute the process of testing all the base classifiers (line 4). Instead of
generating the predicted labels, the predicted probabilities PDm for each of the
classes from all the base classifiers are collected and put together (line 6). Then, the
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meta-level training instancesMIp are made up by all the base classifiers’ prediction
distributions PD (as attributes) and true labels of the validation data l(Dp

kp) (as labels)
(line 8). The next step is that each map function outputs the

〈
key, value

〉
pairs〈

l(Dp
kp),MIp

〉
. Here,the key is the true labels of the validation data: l(Dp

kp) while value
is the meta-instancesMIp(line 9). At this point, the map tasks are finished and the
total meta-instances MI are organized together from all the outputs of the mappers
(line 13).

• Train meta-learner: let the total number of classes be NC. For each class, new
meta-instances: filternc(MI) are generated by selecting the prediction probabilities
corresponding to this class from MI (as attributes) and setting the class label to be 1
if it belongs to this class, or 0 if not. The meta-classifier is then trained on these new
instances and the trained model for each class is set as hnc (line 16). As a result, each
class will have its own built meta-classifier. The number of meta-classifiers equals to
the number of classes. In the end, all the trained meta-classifiers are sorted together
according to the classes and saved (line 18).

MMR Test: in the test process, the meta-level test data are generated and the meta-
classifiers (h1, · · · , hNC) are tested. The pseudo code is shown in Algorithm 5.

Algorithm 5MMR Test
1: Input: The test sets of Q mappers (D1

j1 ,D
2
j2 , · · · ,D

Q
jQ); The base classifiers (B1, · · · ,BM);The

trained meta-classifiers (h1, · · · , hNC)

2: for q = 1 · · ·Q do
3: PD∗ ∈ ∅

4: for Bm = B1 · · ·BM do
5: (PD∗)m ← Bm.classify(Dq

jq )
6: PD∗ = PD∗ ∪ (PD∗)m
7: end for
8: (MI∗)q ← (PD∗ ∪ l(Dq

jq ))

9: Output(l(Dq
jq ), (MI∗)q) // output key and value pairs

10: end for//end of map functions
11: MI∗ ∈ ∅

12: for q = 1 · · ·Q do
13: MI∗ = MI∗ ∪ (MI∗)q
14: end for
15: for i = 1 · · ·T do//T is the number ofMI∗
16: for nc = 1 · · ·NC do
17: probnc ← hnc.classify(filternc(MI∗[ i] ))
18: sum = sum + probnc
19: end for
20: for nc = 1 · · ·NC do
21: probnc ← probnc/sum
22: end for
23: li ← l(max(prob1, · · · , probNC))

24: end for
25: Output: predicted labels (l1, · · · , lT )

The following explains the processes:

• meta-level test data: this part is similar to the part of generating meta-level training
data in the validation process. The only difference is that the input data are the test
data. This part is shown through lines 2-14.
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• Test (h1, · · · , hNC): for each instanceMI∗[ i] in the meta-instancesMI∗, the
probability probnc for each class is obtained by classifying the corresponding
meta-classifier hnc on a new meta-instance filternc (MI∗[ i] ) (line 17). This instance is
generated the same way as filter(MI) in the validation process. The probabilities for
all classes are then summed (line 18) and normalized (line 21). The predicted label li

is found by seeking the class ID of the calculated normalized highest probabilities
(line 23). Finally, the predicted labels for all the test instances are returned (line 25).

Results and discussion
In this section, we compare the error rates of our PML algorithm with the meta-learning
method on one single node to figure out if there would be an impact on the accuracy
performance when we increase the number of computing nodes. We also compare our
algorithm’s performance with the parallel Adaboost algorithm proposed in [10]. The
comparison is worthwhile as this parallel Adaboost algorithm directly makes Adaboost
scalable using MapReduce with complicated procedures which we will introduce in the
following sub-section. Finally, to demonstrate the efficiency of this MapReduce frame-
work: PML, we also show the speedup [34] performance when we increase the number of
computer nodes.

Experiment Settings

The experiments are deployed on Amazon EC2 [28] with the instance type: m1.small.
Each instance’s configuration is as follows: 1.7 GHz 2006 Intel Xeon processor, 1.7 GB
memory, 160 GB storage. We employed 20 instances and each of them is configured with
a maximum of 2 map tasks and 1 reduce task (we don’t have reduce tasks for PML) for
task trackers.
For the accuracy experiments, we used 11 real-world data sets with different disk sizes.

For the speed up performance, we applied 2 synthetic datasets and 4 real-world datasets.
The details of the data sets can be found in Table 1. These data sets can be downloaded
from the UCI repository [35] and other resources. The first 8 datasets are the same as in
[10]. Datasets S1 and S2 are synthetic datasets which we generated applying the RDG1
data generator in WEKA [36] data mining tool with default parameter settings.

Table 1 Datasets used in our experiments

Data No. of instances No. of attributes Size on disk

yeast 892 8 34 KB

wineRed 1599 12 84 KB

wineWhite 4898 12 263 KB

pendigits 7494 16 360 KB

spambase 4601 57 687 KB

musk 6598 167 4.2 MB

telescope 19020 11 1.4 MB

kdd 148517 42 21.2 MB

isolet 7797 618 30.7 MB

org 2059 9731 38.4 MB

census 299285 42 129 MB

S1 100000 400 210 MB

S2 200000 400 420 MB
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Performance Results

We applied stratified sampling on each of the datasets in order to form training, validation
and test partitions assuring that the number of instances for each of them, respectively,
are 36/50, 9/50 and 5/50 of the original data and the classes are uniformly distributed.
The accuracy results we obtained are 10-fold cross validation results. In the experiments,
the number of mappers in the training process is determined by the number of splits
of the training data. To evenly distribute the classes, the training data is split equally
among the mappers using the stratification technique. The base learning algorithm we
used is Adaboost with decision stumps (decision trees with only one non-leaf node) as
weak learners. This configuration is the same as that of the Adaboost.PL algorithm. The
meta-learner we applied is Linear Regression.

• Accuracy Performance: The error rates of PML when the number of computing
nodes changes from 1 to 20 are shown in Table 2. It can be seen from this table that
compared to the one mapper case our PML algorithm has lower or equivalent error
rates in 9 out of 11 datasets. Although the error rates increased in datasets “yeast”
and “musk”, the behavior of yeast is mainly due to the fact that it has the smallest data
size. When the data is split among different mappers, the more mappers there are,
the smaller the partition each mapper has, which leads to inaccurate base models.
This eventually produces higher error rates in the final ensemble model.

• Comparison with Adaboost.PL: We also compared the error rates obtained by our
MMR and the parallelized Adaboost algorithm Ada-Boost.PL [10]. The comparison
is based on 8 of the datasets in [10] as we could not find the datasets “swsequence”
and “biogrid” which they also tested. The comparison results are shown in Table 3. It
can be seen that our PML algorithm has the lowest error rates in 7 out 8 datasets.
The reduction of error rates compared to AdaBoost.PL is due to the fact that
meta-learning is an ensemble scheme which improves the performance of base
learners (here the base learner is Adaboost). The reason why we got higher error
rates on the “yeast” dataset is because the dataset’s size is too small to build accurate
base models with large split numbers (number of mappers), which is the same reason
as we have explained in the accuracy performance experiments. As we don’t have the

Table 2 Error rates for different number of nodes

Data
Number of computing nodes

1 5 10 15 20

yeast 0.3071 0.3150 0.3520 0.3565 0.3497

wineRed 0.2351 0.2270 0.2313 0.2332 0.2457

wineWhite 0.2276 0.2274 0.2213 0.2274 0.2274

pendigits 0.0737 0.0693 0.0644 0.0648 0.0625

spambase 0.0680 0.0575 0.0554 0.0575 0.0547

musk 0.0180 0.0270 0.0265 0.0359 0.0380

telescope 0.1608 0.1565 0.1534 0.1507 0.1487

kdd 0.0342 0.0360 0.0300 0.0279 0.0290

isolet 0.1530 0.1367 0.1394 0.1450 0.1535

org 0.1578 0.1457 0.1432 0.1636 0.1690

census 0.0496 0.0492 0.0491 0.0490 0.0482

Lower error rates than those obtained with one node are marked in bold
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Table 3 Error rates comparison between AdaBoost.PL and MMR

Data
10 nodes 20 nodes

AdaBoost.PL MMR AdaBoost.PL MMR

yeast 0.3464 0.3520 0.3375 0.3497

wineRed 0.2464 0.2313 0.2564 0.2457

wineWhite 0.2313 0.2213 0.2309 0.2274

pendigits 0.0699 0.0644 0.0642 0.0625

spambase 0.0576 0.0554 0.0617 0.0547

musk 0.0565 0.0265 0.0612 0.0380

telescope 0.1599 0.1534 0.1595 0.1487

isolet 0.1601 0.1394 0.1661 0.1535

Lower error rates are marked in bold

source code for the AdaBoost.PL algorithm, it is difficult for us to do the statistical
significance test on the performance results.

• Speedup: to demonstrate the effectiveness of the MapReduce framework of MMR,
we tested the speedup [34] performance of the datasets: “kdd”, “isolet”, “org”,
“census”, “S1” and “S2”. We calculate speedup as the ratio of the training time for a
single computing node over that of a number of computing nodes processing in
parallel (we vary this number from 5, 10, 15 to 20). The detailed results of speedup for
different datasets are shown in Table 4. To illustrate the speedup performance of
different datasets, we plot their speedup results in Fig. 5. As can be seen from this
figure, the larger the dataset size, the higher speedup the program achieves. The
reason is that the communication cost between different computing nodes
dominates small datasets, while the computation cost dominates large datasets.

It should be noted that the values of speedup sometimes are higher than the num-
ber of nodes. For instance, for dataset S1, when the number of nodes is 10, the speedup
value is 14.6584. This nonlinear performance can be explained in terms of computational
complexity as follows.
The computation complexity of the AdaBoost algorithm f1 depends on the number of

iterations T, the number of instances N, the number of attributes D. Since we set the base
learner of the AdaBoost algorithm as decision stump, f1 can be expressed as [10]

f1 = �
(
DN

(
logN + T

))
(11)

First sorting of the data attributes has a computationl complexity of �(DNlogN), this
is done before the iteration starts. After the iteration starts, in each iteration the time

Table 4 Speedup results for different computing nodes

Data
Number of computing nodes

5 10 15 20

kdd 5.5277 9.6036 10.8576 11.2606

isolet 2.6697 3.4059 3.5796 3.9684

org 4.0975 6.3585 7.9139 8.7913

census 4.9508 8.4430 11.8850 13.2451

S1 8.3170 14.6584 16.0796 18.1314

S2 4.4755 12.5927 18.0082 18.9423
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Fig. 5 Speedup results for 6 data sets

complexity of the decision stump is �(DN). As there are T iterations, the computa-
tional comlexity for the iterations part is �(DNT). Therefore, the total computational
complexity is �

(
DN(logN + T)

)
.

For the training process of theMMR algorithm, assume the number of computing nodes
isM, the computational complexity f2 is

f2 = �

(
D
N
M

(
log

N
M

+ T
))

(12)

Based on f1 and f2, speedup can be derived as

speedup = f1
f2

= �

(
M

logN + T
log N

M + T

)
(13)

Thus, theoretically it can be inferred that the value of speedup is expected to be larger
than M: the number of computing nodes.
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Conclusion
We proposed a Meta-MapReduce algorithm MMR implemented with MapReduce. This
algorithm tackles the difficulties for supporting iterations in Hadoop. The experimental
results show that the error rates of MMR are smaller than the results of a single node
on 9 out of 11 datasets. The comparison between MMR and the parallelized Adaboost
algorithm AdaBoost.PL shows that PML has lower error rates than AdaBoost.PL on 7 out
of 8 datasets. The speedup performance of MMR proves that MapReduce improves the
computation complexity substantially on big datasets. In summary, our MMR algorithm
has the ability to reduce computational complexity significantly, while producing smaller
error rates.
For the MMR algorithm, since the base learners which process part of the original

datasets work in one single machine sequentially, in the next step, we plan to parallelize
this step and distribute the computation to more computing nodes for the sake of increas-
ing the computational efficiency. Moreover, we used the same algorithm: AdaBoost.M1
for all the computing nodes in this work. We intend to use different algorithms on differ-
ent computing nodes to increase the accuracy further. The reason is that Meta-learning
belongs to the ensemble learning paradigm of machine learning and the more diverse the
base learners are, the higher accuracy could be expected.
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