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Abstract

Community structure is thought to be one of the main organizing principles in most

complex networks. Big data and complex networks represent an area which

researchers are analyzing worldwide. Of special interest are groups of vertices within

which connections are dense. In this paper we begin with discussing community

dynamics and exploring complex network structural parameters. We put forward

structural and functional models for analyzing complex networks under situations of

perturbations. We introduce modified adjacency and modified Laplacian matrices. We

further introduce network or degree centrality (weighted Laplacian centrality) based on

modified Laplacian, weighted micro-community centrality. We discuss its robustness

and importance for micro-community detection for social and technological complex

networks with overlapping communities. We also introduce ’k-clique sub-community’

overlapping community detection based on degree and weighted micro-community

centrality. The proposed algorithms use optimal partition of k-clique sub-community

for modularity optimization. We establish relationship between degree centrality and

modularity. This proposed method with modified adjacency matrix helps us solve

NP-hard problem.

Keywords: Community; Big data; Complex network; Laplacian; Centrality; Robustness;

Modularity

Introduction

The last decade has witnessed the birth of a new field of interest and research in the study

of complex networks, i.e. networks whose structure is irregular, complex and dynami-

cally evolving in time, with the main focus moving from the analysis of small networks

to that of systems with thousands or millions of nodes, and with a renewed attention

to the properties of networks of dynamical units. Networks are all around us, and we

are ourselves, as individuals, the units of a network of social relationships of different

kinds and, as biological systems, the delicate result of a network of biochemical reactions.

Networks can be tangible objects in the Euclidean space, such as electric power grids,

the Internet, highways or subway systems, and neural networks. Or they can be entities

defined in an abstract space, such as networks of acquaintances or collaborations between

individuals [1].
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The network construction from general, real-world data presents several unexpected

challenges owing to the data domains themselves, e.g., information extraction and

pre-processing, and to the data structures used for knowledge representation and stor-

age. The increased availability of large-scale, real-world sociographic data has ushered

in a new era of research and development in social network analysis. The quan-

tity of content-based data created every day by traditional and social media, sensors,

and mobile devices provides great opportunities and unique challenges for the auto-

matic analysis, prediction, and summarization in the era of what has been dubbed

“Big Data” [2].

Centrality is one of the most studied concepts in social network analysis to char-

acterize social power and structural influence [3]. When studying faults and fault

propagation in physical networks, complex networks such as smart grid, communica-

tion, highway, traffic networks, centrality plays a somewhat different role than in social

networks [4].

In this paper we discuss structural and functional analysis of complex technological

and social networks. First we discuss various existing structural analysis parameters.

Major contribution of this work ismodified relationship between adjacency and Laplacian

matrix. We use this modified relationship to define new degree centrality and newmodu-

larity. Using these new degree centrality and new modularity we are able to detect micro

level overlapping community structures. We introduce network or degree centrality

(weighted Laplacian centrality) based onmodified Laplacian, weightedmicro-community

centrality and discuss its robustness and importance for micro-community detection for

social and technological complex networks with overlapping communities. We also intro-

duce ‘k-clique sub-community’ overlapping community detection based on degree and

weighted micro-community centrality. These newmatrices and algorithms are helpful for

identifying hidden level vulnerabilities. First we review various complex network struc-

tural parameters. We further put forward new community detection based on network

or degree centrality. In the related work section, we review and discuss existing com-

munity detection methods and algorithms. The our approach section discusses about

community dynamics, research approach and complex network structural parameters.

The Methodology section discusses analysis of unweighted, weighted networks (func-

tional analysis), where we introduce modified relationship between adjacency, degree and

Laplacian matrices. Using this we define weighted Laplacian centrality, weighted micro-

community centrality and related algorithms.We also discuss and introduce algorithm for

k-clique sub-community and optimal partition of k -clique sub-community for weighted

modularity optimization and overlapping community detection. In the “Results and dis-

cussion” section, we analyse real world complex networks and carry out comparison of

different community detection algorithms. Lastly we discuss computational complex-

ity of our proposed algorithms and conclude the paper with major findings and future

works.

Background and literature review

Community detection is a fundamental component of network analysis for sensor systems

and is an enabling technology for higher level analytical applications such as behav-

ior analysis, prediction, and identity and pattern-of-life analysis [2]. In both commercial

industry and academia, significant progress has been made on problems related to the
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analysis of community structure; however, traditional work in social networks has focused

on static situations (i.e., classical social network analysis) or dynamics in a large-scale

sense (e.g., disease propagation) [2].

Communities are of interest for a number of reasons. They have intrinsic interest

because they may correspond to functional units within a networked system [5]. The

aim of community detection in graphs is to identify the modules and, possibly, their

hierarchical organization, by only using the information encoded in the graph topology.

Community detection is important for other reasons, too. Identifying modules and their

boundaries allows for a classification of vertices, according to their structural position in

the modules. So, vertices with a central position in their clusters, i.e. sharing a large num-

ber of edges with the other group partners, may have an important function of control

and stability within the group; vertices lying at the boundaries between modules play an

important role of mediation and lead the relationships and exchanges between different

communities [6]. Fortunato [6] discussed various crucial issues of community detection

like the significance of clustering and its application to real networks. This paper trig-

gered a big activity in the field, and many new methods have been proposed in the

last years.

With the aim at explaining and comprehending common principles and properties

in real networks, three general network models have been intensely researched: ran-

dom network [7], small-world network [8] and scale-free network [9], though these

models cannot interpret all phenomena observed in real networks. Random network

has binomial or Poisson degree distribution [10], so random network is rather robust

since it is a homogeneous network where majority of vertices almost have the same

number of edges to be connected. However, real networks do not show random distri-

bution and properties. Small-world is a network between a lattice and random networks.

Small-world network has smaller average path length like a random network but larger

clustering coefficient like a lattice network. Rather unexpectedly, the degree distribu-

tion of small-world network is mathematically explained by binomial distribution that

is same as random network. Besides, most of real networks have the degree distribu-

tion that is power law [11] rather than Poisson distribution and these networks are called

as scale-free network which is sensitive to intentional removal of vertices but robust

against randomly removing vertices because the power law distribution shows it is a

heterogeneous network where a larger number of vertices have larger edges to be con-

nected and these vertices are called as hubs that play important role in connectivity of

networks [12].

Centrality measures the relative importance of a node or a link in terms of the net-

work efficiency and utilization of the network resources. Koschutzki et al. [13] discusses

centrality indices based on degree considering distances and neighborhoods as well as

shortest paths. Koschutzki et al. presented some of the more influential, ‘classic’ central-

ity indices but he did not strive for completeness and provide a catalog of basic centrality

indices with some of their main applications.

Borgatti [14] claimed that centrality measures can be regarded as generating expected

values for certain kinds of node outcomes (such as speed and frequency of reception)

given implicit models of how traffic flows. Borgatti regarded the formulas for central-

ity concepts like betweenness and closeness as generating the expected values under

specific unstated flow models of certain kinds of node participation in network flows.
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As such, they do not actually measure node participation at all but rather indicate the

expected participation if things flow in the assumed way. One contribution of Borgatti’s

paper is to make explicit what the assumptions behind each measure are, and then

to test each measures deconstruction via simulation. Node-centric measures are more

convenient for computation and interpretation, hence more common than edge-centric

measures.

The problem of community detection requires the partition of a network into com-

munities of densely connected nodes, with the nodes belonging to different com-

munities being only sparsely connected. Precise formulations of this optimization

problem are known to be computationally intractable. Several algorithms have there-

fore been proposed to find reasonably good partitions in a reasonably fast way [15].

One of the proposed algorithms is by Greedy sketch method for modularity Q opti-

mization [16]. It is an agglomerative hierarchical clustering method, where groups

of vertices are successively joined to form larger communities such that modular-

ity increases after the merging. Greedy optimization method attempts to optimize

the “modularity” of a partition of the network. The optimization is performed in

two steps. First, the method looks for “small” communities by optimizing modular-

ity locally. Second, it aggregates nodes belonging to the same community and builds

a new network whose nodes are the communities. These steps are repeated itera-

tively until a maximum of modularity is attained and a hierarchy of communities is

produced.

By assumption, high values of modularity Q indicate good partitions. So, the parti-

tion corresponding to its maximum value on a given graph should be the best or at least

a very good one. This is the main motivation for modularity maximization, by far the

most popular class of methods to detect communities in graphs. An exhaustive opti-

mization of Q is impossible, due to the huge number of ways in which it is possible to

partition a graph, even when the latter is small. Besides, the true maximum is out of

reach, as it has been recently proved that modularity optimization is an NP-complete

problem [17], so it is probably impossible to find the solution in a time growing poly-

nomially with the size of the graph. However, there are currently several algorithms

able to find fairly good approximations of the modularity maximum in a reasonable

time [6].

Integer linear programming algorithms solve the modularity maximization problem for

small graphs [16, 18]. Brandes et al. [18] have given an integer linear programming formu-

lation for modularity clustering and established that the formal problem is – in the worst

case – NP-hard.

Gregori et al. [19] presented a novel, parallel k-clique community detection

method, based on an innovative technique which enables connected components

of a network to be obtained from those of its subnetworks. The novel method

has an unbounded, userconfigurable, and input-independent maximum degree of

parallelism, and hence is able to make full use of computational resources. Chen

et al. [20] introduce two novel fine-tuned community detection algorithms that

iteratively attempt to improve the community quality measurements by splitting and

merging the given network community structure but they did not consider opti-

mal number of clusters or subnetwork or concept of modularity for community

detection.
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Considering the importance of the community detection problem this work aim to

identify hidden layer micro-community, overlapping communities and related functional

dynamics by using concept of modified adjacency and modified Laplacian matrices.

Research design andmethodology

Research design

Many social networks exhibit community structure. Communities are groups of nodes

that have high connectivity within a group and low connectivity across groups. Commu-

nities roughly correspond to organizations and groups in real social networks. Figure 1

shows our community detection research process. We will apply our developed algorithm

for large-scale big data networks. This algorithm will explore or extract different com-

munity structures which will represent properties of real networks such as random, small

world and scale-free network.

Figure 2 shows research methodology which holds true for any type of network. Here,

the aim of network analysis is to study how the performance of networks is affected by

the removal of vertices and edges, to compare the structure of different networks, and to

analyse how the change of structure affects the vulnerability of networks.

Complex network structural parameters

Structural parameters are the tools of Complex Network Analysis which are of useful to

understand salient properties of complex systems. Some of the important local and global

structural parameters are discussed below

Node degree distributions, correlations and assortativity The degree (or connectiv-

ity) ki of a node i is the number of edges incident with the node. It is defined in terms of

the adjacency matrix A as given by kini =
∑

Aij. For directed network total degree is sum

of in-degree of node and out-degree of node given with Eqs. 1 to 3.

kini =
∑

j∈N
Aij (1)

kouti =
∑

j∈N
Aji (2)

ki = kini + kouti (3)

The degree distribution, usually denoted by P(k), is the probability that a vertex chosen

uniformly at random has degree k, or equivalently, the fraction of vertices in the network

with degree k. Inmany real networks it has been found that the degree distribution follows

Fig. 1 Research process
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Fig. 2 Research methodology

a power-law, i.e. P(k)∼k−α , where α is the scaling coefficient, it is typically between 1 and

3 [21]. A large number of real networks are correlated in the sense that the probability

that a node of degree k is connected to another node of degree, say k
′
depends on k. The

degree correlations are formally characterized by P(k
′ |k). Some networks (including the

Internet and the World Wide Web) have degree distributions in the form of a power law:

that is, the probability that a node has degree k is given as P(k)∼k−α [22]. Assortativity is

the correlation between the degrees of connected nodes. Positive assortativity indicates

that high-degree nodes tend to connect to each other.

Shortest path lengths or characteristics path length Average path length is the dis-

tance between two vertices is defined as the number of edges along the shortest path

connecting them. Many complex networks, despite their often-large size, have a relatively

short average path length between any two vertices.

Let the community network be represented as a graph Gn = {V ,E} with N nodes,

V = {vi} is the set of vertices and E the set of edges. Denote by d(vi, vj) = dij the shortest

path lengths (shortest distance) connecting two nodes i and j in the community network.

The average path length l is given by,

l =
1

N(N − 1)

∑

i,j

dij (4)

The community network is divided into two subcommunities, Gc1 representing the

subcommunity 1, and Gc2 representing the subcommunity 2. Then the interdependent

structural efficiency X(Gc1 ∩ Gc2) of the community network can be defined as follows

[23]:

X
(

Gc1 ∩ Gc2

)

=
1

Nc1 .Nc2

∑

i∈Gc1
j∈Gc2

1

dij
(5)

whereNc1 is the number of resource nodes in the subcommunity 1, andNc2 is the number

of nodes in the subcommunity 2.

When two nodes are not connected at all, or become disconnected due to attacks, their

shortest path length dij becomes infinite, and then 1
dij

is zero. If X
(

Gc1 ∩ Gc2

)

is large, it

is indicated that the network is well connected and has high efficiency [24].



Chopade and Zhan Journal of Big Data  (2015) 2:11 Page 7 of 28

Local and global clustering coefficient If the nearest neighbours of a node are also

directly connected to each other they form a cluster. The clustering coefficient quanti-

fies the number of connections that exist between the nearest neighbours of a node as

a proportion of the maximum number of possible connections [8]. Interactions between

neighbouring nodes can also be quantified by counting the occurrence of small motifs

of interconnected nodes [25]. The distribution of different motif classes in a network

provides information about the types of local interactions that the network can support

[26].

The local clustering coefficient (Cliques): For the modular network cliques (or similar

measures) identify interesting sub-components of the network. This metric can help to

identify functionally related genes/proteins in the network. The local clustering coeffi-

cient, CCi, of a vertex i is the ratio between the actual number of edges that exist between

the vertex and its neighbors and the maximum number of possible edges between these

neighbors. The CCi of the network is defined as:

CCi(local) =
mi

ki(ki − 1)/2
(6)

Here CCi is the local clustering coefficient,mi is the number of edges that exist between

the neighbors of vertex i and ki is the number of neighbors for vertex i. The denomina-

tor ki(ki − 1)/2 is the maximum possible number of edges that can exist between the

neighbors of vertex i.

The global clustering coefficient CC is the ratio of the number of triangles in a network

versus the number of paths of length 2. This ratio is typically high in social networks,

whose generative processes tend to close triangles. In contrast, the clustering coefficient

is close to 0 for random graphs.

The global clustering coefficient, CC of the network is defined as:

CC(global) =
1

N

∑

i∈V
CCi =

1

N

∑

i∈V

mi

ki(ki − 1)/2
(7)

N represents the number of vertices or the number of nodes in the network. A gen-

eral problem of network measures, such as the clustering coefficient, is whether sampling

or perturbations change the values of these measures. Network measures are frequently

used for the classification of different networks [27] or of topological changes (addition

or deletion of nodes or edges) within the same network.

Network centrality and robustness The structure of many networks is governed by

latent communities or clusters. For example, in a social network, people which are part

of the same latent community are more likely to be friends and therefore be connected in

the network. Very often it is useful to learn these latent communities in order to better

understand the structural composition of a network. The challenge is then to figure out

how to use the available network data to find these latent communities. Social networks

have the added complexity that very often the users belong to multiple communities, so

there is considerable overlap in the communities. For example, in Fig. 3, we show a social

network where there are three overlapping communities: people from work, family, and

college. This type of overlapping community structure is very common in social networks,

so finding the community structure is more complex than simply partitioning the network

into disjoint communities.
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Fig. 3 A social network with overlapping communities

Centrality measures are used in network science to rank the relative importance of ver-

tices and edges in a graph. Within graph theory and network analysis, there are various

measures of the centrality of a vertex or an edge. Centrality indices are quantifications of

the fact that some nodes/edges are more central or more important in a network than

others [28]. Our algorithm uses the network centrality known as degree centrality to find

overlapping community structure.

Degree centrality The simplest centrality for a vertex is its node degree, i.e., the total

number of edges incident upon a node. This centrality represents the connectivity of a

node to the rest of the network and reflects the immediate chance for a node to exert

its influences to the rest of the network or to be exposed to whatever is flowing through

the network, such as disturbances, shared information, power or traffic flows, or even a

virus. For a graph with Gn = {V ,E}, where V represents the set of vertices and E the

set of edges, given its Laplacian L the degree centrality of a vertex or node is defined

as [28],

CD
i =

Di

2nE
=

Lii

2nE
(8)

Where 2nE is used as a normalization factor. In order to make better comparisons

between graphs of different sizes the degree is standardized by dividing by 2nE , the

maximum possible degree of any node.

Robustness refers either to the structural integrity of the network following deletion

of nodes or edges or to the effects of perturbations on local or global network states.

As shown in example network in Fig. 4 node 8 is most central but not robust. Network

robustness and centrality plays vital role under circumstances of perturbations [28, 29].

Modularity The modularity is the fraction of edges that fall within communities, minus

the expected value of the same quantity if edges fall at randomwithout regard for commu-

nity structure [30]. Several optimization methods attempt to optimize the “ modularity”

of a partition of the network [30]. Many complex networks consist of a number of mod-

ules. Each module contains several densely interconnected nodes, and there are relatively

few connections between nodes in different modules. Hubs can therefore be described
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Fig. 4 Example network for indentifying network robustness and centrality. (Central, but not robust or

powerful)

in terms of their roles in this community structure [22]. Provincial hubs are connected

mainly to nodes in their own modules, whereas connector hubs are connected to nodes

in other modules as shown in Fig. 5 [22].

Network density or cost Network or Connection density is the actual number of edges

in the graph as a proportion of the total number of possible edges and is the simplest

estimator of the physical cost, for example, the energy or other resource requirements, of

a network.

We use above discussed complex network structural parameters for supervised com-

munity detection. Research methodology and algorithms are discussed in next section.

Methodology

As briefly discussed in the Related Work section, our research process and methodology

consists of structural and functional analysis. To account for structural analysis we already

discussed various complex network structural parameters in the Our Approach section.

Analysis of unweighted network (structural analysis)

A network can be defined as an object composed of elements and interactions or connec-

tions between these elements. A graph, Gn(V ,E), made up of node set, V , and link set,
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Fig. 5 Supervised community detection process [22]

E, is a natural means to model networks mathematically. Consider a graph with N nodes

andm links or edges. The line-node incidence matrix of the network, is anm×N , matrix

M where the lth edge is connected between nodes i and j if and only if

M :











Mli = 1

Mlj = −1

Mlk = 0, with k 6= i or j

(9)

The Laplacian matrix L of the network [31], with size N × N , can be obtained as

L = MTM (10)

Then

Lij :











−1, if there exists link i − j, for j 6= i

k with k = −
∑

j 6=i Lij, for j = i

0 otherwise

(11)

with i, j = 1, 2, · · · , N . Moreover, L is positive-semidefinite, real symmetric and the

elements of every row (or column) add to zero. Alternatively:

L = D − A (12)

A normalized Laplacian is stated as

−
L = D− 1

2 LD− 1
2 (13)
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where D = diag(L) is the diagonal degree matrix of the network, matrix D be defined as

Dij =
{

D(i) for i = j

0 otherwise
(14)

and A is the N × N adjacency matrix. The adjacency matrix can be written as

Aij :

{

1 if there is an edge from vertex i to vertex j ,

0 if there is no edge from vertex i to vertex j .
(15)

Here Aij = k if there are k parallel edges from i to j. Moreover, Di ≥ 0, Dii = number of

edges connected to node i. Note that the diagonal elements of the Laplacian are assumed

to be positive.

Eigenvalues ofmatrices in a graph, especially the adjacencymatrix, the Laplacianmatrix

and the normalized Laplacian matrix reflect structural properties about the graph. For

instance, adjacency matrix is useful for counting paths of certain length in a graph, num-

ber of spanning trees and connected components can be determined from the Laplacian,

and the normalized Laplacian enables recognition of connected components and bipartite

structures [32].

Analysis of weighted networks (functional analysis)

For a purely topological representation of a simple graph (with no parallel or self loops),

the graph-theoretic matrices satisfy the following properties.

• The adjacency matrix A is real, symmetric, and zero on the diagonal, with entries

being either 0 or 1. Since the trace is zero, then some of the eigenvalues must be

positive and others must be negative, and hence this matrix is not sign-definite. It is

obtained from the Laplacian matrix after zeroing its diagonal elements.

• The Laplacian matrix L is real symmetric and the sum of each row is zero. The

diagonal elements are nonnegative, and the off-diagonal elements are nonpositive,

either 0 or -1.

• The degree matrix D is a matrix with diagonal elements equalling either 0 or 1.

If parallel links are allowed between nodes, then nonzero entries can have integer values

higher than 1 but of the same sign. If self loops are allowed, the adjacency matrix can have

nonnegative integer diagonal elements. In any case, the matrices are related by Eq. 12,

L = D − A.

Here we lift the restriction that the elements be binary or integers, thus leading to

definitions of the pseudo-adjacency, pseudo-Laplacian, and pseudo-degree matrices.

We will use the above guidelines to define pseudo-adjacency, pseudo-Laplacian, and

pseudo-degree matrices for the weighted networks. The value of weights considered as

power flow in smart grid network, signal or data flow in communication or data networks,

information flow in social networks, money flow or transactions in financial networks,

traffic flow in internet networks, money, weapons, drugs transactions in terrorists net-

work etc. These matrices are required to maintain the basic structure and property of

their graph-theoretic counterparts. In particular:

• The pseudo-adjacency matrix Ã is real, symmetric, and zero on the diagonal, with

nonnegative entries. Since the trace is zero, then some of the eigenvalues must

positive and others must be negative, and hence this matrix is not sign-definite.
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• The pseudo-Laplacian matrix L̃ is real symmetric and the sum of each row is zero. The

diagonal elements are nonnegative, and the off-diagonal elements are nonpositive.

• The pseudo-degree matrix D̃ is diagonal with nonnegative diagonal elements. The

sum of the diagonal elements is twice the total susceptance of all the lines in the

system.

Similarly we require that

L̃ = D̃ − Ã (16)

Note however that entries need not be integers or -1, 1, 0.

A normalized Laplacian is

−
L = D− 1

2 LD− 1
2 (17)

−
L = I − D− 1

2AD− 1
2 , (18)

where I is anN×N identity matrix (with ones on the diagonal, other elements being zero).

Normalized Laplacian in matrix form is written as

−
Lij :















1, if i = j,

− 1√
kikj

if ij ∈ E,

0 otherwise

(19)

The Laplacian L of a directed network is defined as LD

LD = D
− 1

2
O AD

− 1
2

I , (20)

where Do is the diagonal matrix of out-degrees (or row sum of A) and DI is the diagonal

matrix of in-degrees (or column sum of A).

For a directed weighted networks Eq. 20 is written as

L̃D = D̃
− 1

2
O ÃD̃

− 1
2

I , (21)

where Ã is weighted adjacency matrix of directed networks, D̃O is the weighted diago-

nal matrix of out-degrees (or row sum of Ã) and D̃I is the weighted diagonal matrix of

in-degrees (or column sum of Ã).

For incorporating functional analysis in order to consider flow or functional dynamics

in the network we proposed modified relationship between adjacency and Laplacian of a

graph given by Eq. 16.

This modified relationship turns modularity maximization into a spectral graph par-

titioning problem using the modified Laplacian matrix. A nice feature of the modified

Laplacian is that, for graphs which are not too small, it can be approximated (up to con-

stant factors) by the transition matrix Ãx, obtained by normalizing Ã such that the sum of

the elements of each row equals one.

Weighted laplacian centrality Using modified relationship obtained in Eq. 16 we then

obtained modified network or degree centrality as given by Eq. 22.,

(CD
i )F =

(L̃)ii

2nE
(22)

Using Eq. 22 we will get centrality of the functional network. We used this functional

degree centrality to determine robustness of the network.
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Definition 1. (Micro-Community). The micro-community is a small dense group or a

sub-graph or isolated node that consists of one or more connected dense network or pairs

with certain energy.

Network energy is defined as: the sum of the absolute values of the real components of

the eigenvalues,

ne(Gn) =
N

∑

i=1

|λi| (23)

For a network Gn(V ,E), the local micro-community µc

µc = c(l1) = (Vl1 ,El1 , nel1) (24)

where Vl1 vertices of sub or dense network, El1 edges of sub or dense network and nel1 is

the energy of local sub or dense network.

The micro-community clusters µcc are given by

µcc = {c(l1), c(l2), c(l3), .......c(ln)} (25)

For a given community network, to partition it into a certain number of smaller sub-

communities or number of subsets, called clusters.

Weighted micro-community or sub-community centrality Smaller sub-communities

are givenmore weight than larger ones, whichmakes this measure appropriate for charac-

terizing network motifs. The sub-community centrality can be obtained mathematically

from the spectra of the weighted adjacency matrix of the network. The sub-community

centrality of a node is a weighted sum of closed walks of different lengths in the net-

work starting and ending at the node. This function returns a vector of sub-community

centralities for each node of the network [33, 34].

Definition 2. (Micro-Community Centrality).

For a graph, Gn(V ,E), let v1,v1,.....vN be an orthogonal basis of RN composed by eigen-

vectors of weighted adjacency matrix Ã associated to the eigenvalues λ1,λ2,.....λN . Let v
i
j

denote the ith component of vj. For all i ∈ V , the sub-community centrality is expressed

as [33],

(

CS
i

)

F
=

n
∑

i=1

(

vij

)2
eλj (26)

For all methods and approaches discussed above Micro-Community Centrality (MCC)

network robustness algorithm is developed. Overall process of MCC is described in

Algorithm 1. For any given large-scale community network Gn. First it identifies

type of network i.e. Directed Unweighted (DU), Directed Weighted (DW), Undirected

Unweighted (UU), Undirected Weighted (UW). As per the type of network then it calcu-

lates all required statistical parameters from adjacencyA, Laplacian L and degreematrices

D and similarly for weighted matrices i.e. Ã, L̃, and D̃ etc. Then it calculates network

energy, micro-community and micro-community clusters. With these parameters it then

calculate weighted Laplacian centrality and weighted micro-community centrality. Using

algebraic connectivity it check for robustness of the network i.e. whether network is

strongly connected or weakly connected.
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Algorithm 1 : Micro-community centrality and network robustness

Input: Gn the initial network (Dataset)

Returns:Micro-Community Centrality, Algebraic Connectivity

1: Identify type of network

2: Directed Unweighted (DU), Directed Weighted (DW),

3: Undirected Unweighted (UU), Undirected Weighted (UW)

4: As per the type of network

5: Compute

6: Adjacency matrix Aij,

7: In, Out Node Degree Di and Degree DistributionP(k),

8: Avg. Degree Distribution,

9: Degree matrixD,

10: L ← D − A, and L̃ ← D̃ − Ã

11: LD ← D
− 1

2
O AD

− 1
2

I , and L̃D = D̃
− 1

2
O ÃD̃

− 1
2

I ,

12: λ2(L), Avg. path length l, Shortest path length dij,

13: Local clustering coefficient CCi(local),

14: Global clustering coefficient CC(global),

15: Network Energy ne(Gn),Micro-community µc,Micro-community clusters µcc

16: Weighted Laplacian centrality
(

CD
i

)

F
= (L̃)ii

2nE

17: Weighted Micro-Community Centrality
(

CS
i

)

F

18: arranged v1,v1,.....vN by the descending order of their

19: micro-community centrality CS
1 ,C

S
2 , , ...C

S
N .

20: Check for the Network Robustness

21: EV=sort (L,′ descend′);

22: N = length(Gn)

23: eps=0.01;

24: if (N >= 2)&&(abs(EV (N)) < eps)

25: Algebraic Connectivity = EV (N − 1);

26: return;

27: else

28: Algebraic Connectivity = −1;

29: return;

30: end

31: return;

K-clique sub-community: degree and weighted micro-community centrality based

overlapping community algorithm Most real networks typically contain parts in which

the nodes (units) are more highly connected to each other than to the rest of the net-

work. The sets of such nodes are usually called clusters, communities, cohesive groups, or

modules [35]. Most real networks are characterized by well defined statistics of overlap-

ping and nested communities. Such a statement can be demonstrated by the numerous

communities each of us belongs to, including those related to our scientific activities or

personal life (family, work, college) and so on [35], as illustrated in Fig. 3.
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Definition 3. A typical community consists of several complete (fully connected) sub-

communities that tend to sharemany of their nodes. Thus, we define a sub-community, or

more precisely, a k-clique-sub community as a union of all k-cliques (complete subgraphs

of size k) that can be reached from each other through a series of adjacent k-cliques (where

adjacency means sharing k − 1 nodes).

Proposed algorithms (Algorithm 2 and 3) firstly extracts all complete weighted sub-

communities of the network that are not parts of larger complete sub-communities. A

maximal clique is a clique that is not a subset of any other clique in a community network

[36]. These maximal complete subgraphs are simply called cliques, and the difference

between k-cliques and cliques is that k-cliques can be subsets of larger complete sub-

communities. Once the cliques are located, the clique-clique overlap matrix is prepared

[37]. In this symmetric matrix each row (and column) represents a clique and the matrix

elements are equal to the number of common nodes between the corresponding two

cliques, and the diagonal entries are equal to the size of the clique. The intersection

of two cliques is always a complete sub-communities. The k-clique-communities for a

given value of k are equivalent to such connected clique components in which the neigh-

bouring cliques are linked to each other by at least k − 1 common nodes. Advantage of

this method is that the clique-clique overlap matrix encodes all information necessary to

obtain the communities for any value of k, therefore once the clique-clique overlap matrix

is constructed, the k-clique-communities for all possible values of k can be obtained very

quickly [35]. Algorithm 2 describes the process of finding maximum s-size k-cliques in

the community network. It uses degree sequence for finding largest possible clique size.

Algorithm 2 : Maximum s-Size k-Cliques in the Community Network

Input: Gn the initial network (Dataset)

Returns:Maximum s−size k-cliques

1: Number of nodes N =size(Gn, 1)

2: Find the largest possible clique size via the degree sequence

3: Let {d1, d2, ..., dk} be the degree sequence of a graph.

4: The largest possible clique size of the graph is the

5: maximum value k such that dk >= k − 1

6: degree_sequence = sort(sum(Gn, 2) − 1,’descend’);

7: smax = 0;

8: for i = 1 : length(degree_sequence)

9: if degree_sequence(i) >= i − 1

10: smax = i;

11: else

12: break;

13: end

14: end

15: cliques = cell(0);

16: for s = smax : −1 : 3

17: Gnaux = Gn;

18: for N = 1 : Nbn
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19: X = N ;

20: Y =setdiff(find(Gnaux(N , :) == 1),N);

21: Enlarging X by transferring nodes from Y

22: Z = ttransfer_nodes (X,Y , s,Gnaux);

23: if ~ isempty (Z)

24: for i = size (Z, 1)

25: cliques = [ cliques;{Z(i, :)}] ;
26: end

27: end

28: Gnaux(N , :) = 0;

29: Gnaux(:,N) = 0;

30: end

31: end

For detecting overlapping communities Algorithm 3 is developed. It uses weighted adja-

cency matrix, weighted micro-community centrality and maximum s-size k-cliques in

the community network (With Algorithm 2). First it generates the clique-clique overlap

matrix. Then extracts the k-clique matrix kM from the clique-clique overlap matrix and

k-clique sub-communities cc from the k-clique matrix kM.

Algorithm 3 : Overlapping Community Detection

Input: Gn the initial network (Dataset)

Returns: k-clique sub-communities cc, all cliques, k-clique matrix kM

1: Number of nodes N=size(Gn)

2: Compute Weighted micro-community centrality (CS
i )F

3: (CS
i )s =sort(CS

i ,’descend’)

4: Find all maximum s-size k-cliques in the community network using Algorithm 2

5: Generating the clique-clique overlap matrix

6: kM = length(cliques)

7: for c1 = 1: length(cliques)

8: for c2 = c1: length(cliques)

9: if c1 = c2

10: kM(c1, c2) = Number of array elements(cliques{c1});
11: else

12: kM(c1, c2) = Number of array elements(cliques{c1} ∩ cliques{c2}));
13: kM(c2, c1) = kM(c1, c2);

14: end

15: end

16: end

17: Extracting the k-clique matrix kM from the clique-clique overlap matrix

18: Off-diagonal elements <= k − 1 → 0

19: Diagonal elements <= k → 0

20: Extracting components (ork-clique sub-communities cc) fromthe k-clique matrix kM

21: Sub-community cc =[ ] ;

22: for i = 1:length(cliques)
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23: linked_cliques = find (kM(i, :) == 1);

24: new sub-community ccn =[ ] ;

25: for j = 1 : length(linked_cliques)

26: new sub-community ccn = (ccn ∪ cliques{linked_cliques( j)});

27: end

28:: found = false;

29: if ~ isempty (ccn )

30: for j = 1 : length(cc)

31: if all(ismember(ccn, cc{j}))
32: found = true;

33: end

34: end

35: if ~ found

36: cc = [ cc; {ccn}] ;
37: end

38: end

39: end

Modified weighted modularity: optimal partition of k-clique sub-community We

then used weighted adjacency matrix Ã to derive functional modularity of the net-

work. For a simple, undirected graph Gn and a partition C with a given number of

groups or number of communities n, the modularity measure Q(Gn,C) is defined

as [38]:

Q(Gn,C) =
n

∑

i=1

(eii − a2i ) (27)

where the network is fully subdivided into a set of nonoverlapping communities n,

and eij is the proportion of all links that connect nodes in community i with nodes in

community j.

with

eij =
∑

vx∈Ci

∑

vy∈Cj
Aij

2 |E| (28)

where A adjacency matrix which is symmetric and set of edges E. With modified

adjacency matrix Ã, Eq. 28 changes to

eij =
∑

vx∈Ci

∑

vy∈Cj
(Ã)ij

2 |E| (29)

and the proportion of edges with at least one node in the community i is given by

ai =
∑

j

eij (30)

e: The N × N symmetric weighted matrix of the partition C.

eij: The fraction of edges between clusters Ci and Cj.

eii: The fraction of edges in cluster Ci. (i.e. the portion of edges that connect vertices

inside community Ci).

Assuming the network is divided into n communities. Let us define Ci and Cj be the

communities which belong to vertices i and j respectively. Node i belong to community
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Ci, the fraction of edges that fall between community i and community j is defined as:

eij =
1

2m

∑

ij

Aijδ(Ci, i)δ(Cj, j), (31)

where the δ is a function δ(i, j) andm is again the number of edges in the network.

δ(i, j) =
{

1 if i and j are the same community

0 otherwise
(32)

Let Pij be the expected number of edges between i and j.

Pij =
kikj

2m
(33)

where kikj are degrees of vertex i and vertex j.

The actual number of edges falling between a particular pair of vertices i and j is Aij.

The modularity matrix is defined as

Bij = Aij −
kikj

2m
(34)

Alternatively Eq. 34 can be written as

Bij = Aij − Pij (35)

Important property of modularity matrix is that all rows (and columns) of the modular-

ity matrix sum to zero i.e.,

∑

j

Bij =
∑

j

Aij −
∑

j

Pij = ki − ki = 0 (36)

Like Laplacian matrix for any network the vector (1, 1, 1, . . .) is an eigenvector of the

modularity matrix with eigenvalue zero but the eigenvalues of the modularity matrix are

not necessarily all of one sign i.e. matrix has both positive and negative eigenvalues [39].

Modularity measures the non-randomness of a graph partition. Higher values of

the modularity indicate stronger community structures. The modularity maximization

problem is then:

max
P∈�

Q(Gn,C) (37)

Then the MaxModularity can be written

Qmax =
1

2m

∑

ij

[Aij − Pij] δ(Ci,Cj), (38)

Qmax =
1

2m

∑

ij

[Bij] δ(Ci,Cj), (39)

Using weighted adjacency matrix weighted modularity can be written as

QW
max =

1

2m

∑

ij



Ãij −
∼
ki

∼
kj

2m



 δ(Ci,Cj), (40)

where
~

ki and
~

kj are weighted degrees.
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For directed weighted network modularity is given as

→
Q

W

max =
1

2m

∑

ij






Ãij −

∼
kIi

∼
kOj

2m






δ(Ci,Cj), (41)

A measure for the modified modularity is proposed to quantify the overlapping com-

munity structure referred asQW
M (Weightedmodifiedmodularity).With themeasureQW

M ,

the overlapping community structure can be identified by finding an optimal partition

of k-clique sub-community, i.e., the one with the maximum QW
M . The QW

M is based on a

maximal clique view of the original network. A maximal clique is a clique (i.e. a complete

subgraph) which is not a subset of any other clique in a network. The maximal clique

view is according to a reasonable assumption that a maximal clique cannot be shared

by two communities due to that it is highly connective. To find an optimal partition, we

construct a maximal clique network from the original network. We then prove that the

optimization ofQW
M on the original network is equivalent to the optimization of the mod-

ularity on the maximal clique network. Thus the overlapping community structure can be

identified through partitioning the maximal clique network with an efficient modularity

optimization Algorithm [40].

The proposed overlapping community structure based on optimal partition of k-clique

sub-community is stated as

→
Q

W

Mmax =
1

2m

∑

ij

1

Ci,Cj






Ãij −

∼
kIi

∼
kOj

2m






, (42)

where Ci,Cj are the number of overlapping communities to which node i and node j

belongs. High value of
→
Q

W

Mmax indicates a significant overlapping community structure.

In our implemented Algorithm 4 given below we used Fast Newman Greedy algo-

rithm for modularity optimization [41] with modified functional parameters. In order

to efficiently detect community structure using complex network structural and func-

tional parameters listed above we developed an Algorithm 5 for modified modularity for

overlapping community detection.

Algorithm 4 : Modularity Maximization

1: Gn(V ,E) the initial network

2: repeat

3: Put each node of Gn in its own community

4: Calculate QW from pairs of connected communities

5: while some nodes are moved do

6: for all N node of Gn do

7: place N in its neighboring community including its own

8: whilemaximal QW > 0do

9: select the maximal QW , join the pair of communities with the maximal QW

10: which maximizes the modularity gain QW

11: update the QW matrix

12: end while
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13: end for

14: end while

15: if the new modularity is higher than the initial

16: then

17: Gn = the network between communities of Gn

18: else

19: Terminate

20: end if

21: until QW = 0.

It measures modularity variation for each candidate partition where pair of clusters are

merged. It merges the pair of clusters by maximizing modularity Q using Algorithm 4. So

for each formed clusters it splits community and then updates correspondingQ. For each

sub-community then it measures sub-community energy ne, micro-community central-

ity using overlapping community detection Algorithm 3. Then it selects sub-community

with highest Q and highest ne to find k-cliques sub-community network to form micro-

community clusters µcc. These micro-community cluster formation continues till value

of Q is 0 i.e. leading eigenvalue is zero which means that subgraph is indivisible. Overall

process of modified modularity for overlapping community is described in Algorithm 5.

Algorithm 5Modified modularity for overlapping community detection (MMOC)

Input: Gn the initial network (Dataset)

Returns: Community Clusters cc

1: Identify type of network

2: Directed Unweighted (DU), Directed Weighted (DW),

3: Undirected Unweighted (UU), Undirected Weighted (UW)

4: As per the type of network

5: Compute Community c and Modularity QW

6: Apply overlapping community detection (Algorithm 3)

7: Apply modularity optimization (Algorithm 4)

8: Measure modularity variation QW for each candidate

9: partition where a pair of clusters are merged

10: Compute
→
Q

W

Omax

11: Repeat

12: for each clusters

13:
→
Q

W

Omax ←Merge the pair of clusters maximizing QW

14: Update
→
Q

W

Omax ← Split c

15: if QW = 0

16: (leading eigenvalue is zero, subgraph is indivisible) then

17: break;

18: end if

19: end for

20: return cc
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This modified modularity for overlapping community algorithm has several advan-

tages. First, its steps are intuitive and easy to implement. Moreover, the algorithm

is extremely fast, i.e., network simulations on large-scale ad-hoc modular networks

found that its complexity is linear on typical and sparse data. Experimental evalua-

tion of these algorithms for complex technological networks and social networks are

discussed in next Section result and discussion on analysis of real-world large-scale

complex networks.

Results and discussion

Analysis of real-world large-scale complex networks

In this section we analyze real world large-scale complex network using proposed algo-

rithms discussed above. We used MATLAB version R2015a [42] with Intel, Xeon(R) 2.60

GHz, 256 GB RAM 2 processors, GPU Quadro K6000 and Tesla K20c for running these

algorithms. In a simple random graphGn, degree will have a Poisson distribution, and the

nodes with high degree are likely to be at the intuitive center. Deviations from a Poisson

distribution suggest non-random processes, which is at the heart of current “scale-free”

work on networks. Figure 6 shows degree distribution of directed weighted Facebook

social network with 1899 nodes and 20296 links [43].

Figure 7 shows degree centrality for directed Amazon product co-purchasing network

from March 2, 2003 with 262111 nodes and 1,234,877 links [43]. As shown in this figure

network follows the power law of scale free network.

Centrality measures and power have become common emphasis for world city network

research and frequently serve as tools for describing cities’ position or status in the sys-

tem. We experimented weighted bipartite graph of world city network. Figure 8 shows

the out degree distribution for world city system. Figure 9 shows degree distribution of

directed web graph fromGoogle (Data obtained in 2002) with 916428 nodes and 4333051

links [43]. Node represent web pages and directed edges represent hyperlinks between

them.

Then we experimented with other real-world complex networks including complex

critical infrastructure U.S. WECC power grid with 4941 nodes and 6594 links [44, 45]

Fig. 6 Degree distribution of Facebook social network
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Fig. 7 Degree centrality for directed amazon product co-purchasing network

and other social community, as well as citation networks. For these networks we applied

MMOC and other algorithms (Algorithms 1 to 5 and parameter k = 3). Table 1 shows

analysis for these networks. As seen from the resultsMMOC algorithm playsmajor role in

overlapping community detection in complex networks. We can see relationship of alge-

braic connectivity ac and network energy ne. These values shows how strong or how weak

the overall network is. This MMOC algorithm plays decisive role for directed weighted,

unweighted as well as undirected weighted networks. As seen from results in case of Face-

book network with 1899 nodes. (1899 users that sent or received total of 59,835 online

messages over 20,296 directed ties among these users) MMOC algorithm identifies 512

communities and 353 overlapping communities based on topics, social areas of interests,

Fig. 8 Out degree distribution for world city system
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Fig. 9 Web graph from Google

etc. Similarly for PhD in Computer Science it identifies 189 communities and 4 overlap-

ping communities and for SciMet citation network directed multigraph with 3084 nodes

and 10413 links it identifies 650 overlapping communities. Overlapping community clus-

ters (cc) obtained with MMOC algorithm clearly shows how this algorithm identifies

dense, deeper and hidden community structures. For social community networks also we

can see the same relationship of algebraic connectivity ac and network energy ne.

Comparison of different community detection algorithms

We compared modularity optimization values obtained using MMOC algorithm with

other existing algorithms for real world large-scale big data networks as shown in Table 2.

We plotted values obtained using different modularity optimization algorithms as

shown in Table 2. Figure 10 shows modularity comparison for existing algorithms and

with MMOC algorithm (Algorithms 4 and 5).

Table 1 Analysis of complex social and technological networks

Networks → PhD’s CS Facebook SciMet U.S. Power Grid

Analysis Parameters ↓
Type of Network Directed Directed Weighted Directed multigraph Undirected

V 1882 1899 3084 4941

E 1740 20296 10399 6594

Avg k 40.913 5.6962 16.6402 260.0526

CCglobal 0.0051 0.1107 0.1703 0.0801

ac 20.2106 115.9189 77.3748 15.0674

ne 34.18 109.3126 96.1957 35.5106

c 189 512 391 35

cc (oc) 4 353 650 307

V : Number of nodes or vertices, E: Number of links or edges, Avg k: Average node degree, CCglobal : Global cluster-
ing coefficient, ac: Algebraic connectivity, ne: Network energy, c: Sub-communities, cc: Overlapping community
clusters (For k-cliques= 3)., PhD’s CS: PhD’s in computer science, directed graph with 1882 nodes and 1740 links.
Facebook: The Facebook-like Social Network originate from an online community for students at University of
California, Irvine. The dataset includes the users that sent or received at least one message (1,899). A total number
of 59,835 online messages were set over 20,296 directed ties among these users. SciMet: SciMet citation network
directedmultigraphwith 3084 nodes and 10413 links.USPowerGrid:US power grid undirected graphwith 4941
nodes and 6594 links (Note: Datasets obtained from iLab Big Data Center, North Carolina A&T State University [43])
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Table 2Modularity comparison

Algorithms→ FN DGA FD MSTAB MMOC

Networks↓ Size↓ Q FN Q DGA Q FD QMSTAB (Q Our method)

PhD’s in CS 1882 0.9610 0.9610 0.9295 0.9601 0.9755

Facebook 1899 0.2717 0.2567 0.3751 0.3742 0.3860

SciMet 3084 0.5469 0.5949 0.6146 0.6146 0.6502

US Power Grid 4941 0.9341 0.9358 0.9347 0.9348 0.9587

FN: Fast Newman based on a greedy agglomerative method. DGA: Modularity optimization based on Danon
greedy agglomerative method. FD: Fast detection of communities using modularity optimization.MSTAB:Mod-
ularity based on stability. MMOC: Modified Modularity for Overlapping Community Detection (Our method).

Modularity maximization achieved with MMOC algorithm helps for detection of

dense, hidden micro level communities. These results clearly indicate the importance of

modularity maximization even though it is NP-complete problem.

Also for overlapping community analysis shown in Table 1, we plotted comparison

based on communities obtained with existing algorithm and overlapping communities

clusters obtained withMMOC algorithm. Figure 11 shows overlapping community detec-

tion analysis for complex technological and social community networks. These values

clearly shows significant difference between base communities and overlapping commu-

nities for both complex technological networks as well as social community networks.

The parameter k affects the constituent of the overlapping regions between communities.

The choice of the parameter k depends on the specific networks. Observed from many

real world networks, the typical value of k is often between 3 and 6 [40].

From these results it showed that community centrality appears to have relation with

vertices that are central in their local communities. The centrality is correlated with

degree, for few overlapping communities they are not perfectly correlated and in par-

ticular some vertices have quite high centrality while having relatively low degree. High

centrality is an indicator of individuals who have more connections than expected within

their neighborhood and hence potentially make a large contribution to the modularity,

rather than simply having a lot of connections.

Computational complexity

The determination of the full set of cliques of a network is widely believed to be non-

polynomial problem. In spite of this, proposed algorithm proves to be very efficient when

Fig. 10 Modularity comparison
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Fig. 11 Overlapping community detection analysis

applied to the graphs of the investigated real systems. Our method consists of five stages,

finding degree sequence, micro-community centrality, finding out the maximal cliques,

constructing the maximal clique network and overlapping community network matrix

and partitioning the maximal clique network based on the modularity maximization and

then finding overlapping communities.

We analyze the computational complexity of MMOC and other algorithms (Algorithms

1 to 5). Finding an exact solution to a partitioning task of this kind is believed to be

an NP-complete problem, making it prohibitively difficult to solve for large-scale net-

works, but a wide variety of heuristic algorithms have been developed that give acceptably

good solutions in many cases. The first algorithm of the modern age of community

detection introduced by Newman and Girvan has a complexity O(N3) on a sparse net-

works and other mentioned existing algorithms for detecting community structures gives

qualitatively similar results. Fast implementation of Newman algorithm (Fast Newman

algorithm) has worst-case running time of O((m + N)N), or O(N2) on sparse network

with N nodes and m edges. Experimental evaluation on the real-world complex techno-

logical and social community networks show that MMOC algorithm achieves the best

performance when compared with other existing methods discussed in Table 2. Efficient

time complexity ofMMOC algorithm and other algorithm isO(N logN)which is scalable

in nature. For MMOC algorithm running time is consumed by maximizing modularity

and forming overlapping community matrix based on sub-community energy. Also in

case of directed weighted networks running time is also consumed by computation of

large eigen values. Our method is very efficient on real world networks. In our future

work we will work for modifying our MMOC algorithm for better run time performance.

Conclusions

In this paper we have discussed community dynamics and reviewed complex network

structural parameters. We highlighted the importance of network centrality or degree

centrality and network robustness for community detection. Centrality is correlated with

degree. We discussed network or degree centrality (weighted Laplacian centrality) based

on modified Laplacian, weighted micro-community centrality. We also discussed and

introduced algorithm for k-clique sub-community and optimal partition of k-clique sub-

community for weighted modularity optimization and overlapping community detection
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based on degree and weighted micro-community centrality. These new matrices and

algorithms are helpful in identifying hidden level vulnerabilities. We analyzed real-world

large-scale complex networks and carried out comparison of different community detec-

tion algorithms. Our results indicated certain relationship between degree centrality and

modularity optimization. Network centrality and robustness will help for supervised com-

munity detection in overlapping communities. Proposed algorithms will be useful for

finding communities of densely connected vertices in network data. Computational com-

plexity of our proposed algorithms is better as compared to other existing algorithms.

Scalable nature of this algorithm is valuable for analyzing more complex large-scale

networks.

It is also an interesting problem about the selection of the parameter k in our method.

We will further investigate how to determine an appropriate k for a given network later.

In our future work we will put forward functional dynamics of complex network by incor-

porating network centrality and weighted clustering coefficient for identifying micro level

communities and their associated relationship.
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