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Abstract

The ability to detect and process anomalies for Big Data in real-time is a difficult task.
The volume and velocity of the data within many systems makes it difficult for typical
algorithms to scale and retain their real-time characteristics. The pervasiveness of data
combined with the problem that many existing algorithms only consider the content of
the data source; e.g. a sensor reading itself without concern for its context, leaves room
for potential improvement. The proposed work defines a contextual anomaly detection
framework. It is composed of two distinct steps: content detection and context
detection. The content detector is used to determine anomalies in real-time, while
possibly, and likely, identifying false positives. The context detector is used to prune the
output of the content detector, identifying those anomalies which are considered both
content and contextually anomalous. The context detector utilizes the concept of
profiles, which are groups of similarly grouped data points generated by a multivariate
clustering algorithm. The research has been evaluated against two real-world sensor
datasets provided by a local company in Brampton, Canada. Additionally, the
framework has been evaluated against the open-source Dodgers dataset, available at
the UCI machine learning repository, and against the R statistical toolbox.

Keywords: Big data analytics; Contextual anomaly detection; Predictive modelling;
Multivariate clustering; Streaming sensors

Introduction
Anomalies are abnormal events or patterns that do not conform to expected events or
patterns [1]. Identifying anomalies is important in a broad set of disciplines; including,
medical diagnosis, insurance and identity fraud, network intrusion, and programming
defects. Anomalies are generally categorized into three types: point, or content anoma-
lies; context anomalies, and collective anomalies. Point anomalies occur for data points
that are considered abnormal when viewed against the whole dataset. Context anoma-
lies are data points that are considered abnormal when viewed against meta-information
associated with the data points. Finally, collective anomalies are data points which are
considered anomalies when viewed with other data points, against the rest of the dataset.
Algorithms to detect anomalies generally fall into three types: unsupervised, super-

vised, and semi-supervised [1]. These techniques range from training the detection
algorithm using completely unlabelled data, to having a pre-formed dataset with entries
labelled normal or abnormal, and to those that rely only partially on external input. A

© 2015 Hayes and Capretz; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto: mcapretz@uwo.ca
http://creativecommons.org/licenses/by/4.0


Hayes and Capretz Journal of Big Data  (2015) 2:2 Page 2 of 22

common output of these techniques is a trained categorical classifier which receives a new
data entry as the input, and outputs a hypothesis for the data points abnormality. One
problem with standard anomaly detection approaches is that there is little concern for the
context of the data content. For example, a sensor readingmay determine that a particular
electrical box is consuming an abnormally high amount of energy. However, when viewed
in context with the location of the sensor, current weather conditions, and time of year,
it is well within normal bounds. These types of anomalies are commonly found in fields
with spatial, sequential, or temporal attributes that can be associated with the sensor [1].
One interesting, and growing, field where anomaly detection is prevalent is in Big Data,

and in particular, sensor data. Sensor data that is streamed from sources such as electrical
outlets, water pipes, telecommunications, Web logs, and many other areas, generally fol-
lows the template of large amounts of data that is input very frequently. For example, in
Web logs, anomaly detection can be used to identify abnormal behavior, such as identify
fraud. In many of these areas one difficulty is coping with the velocity and volume of the
data while still providing real-time support for detection of anomalies. Further, future pre-
diction, energy usage reduction strategies, and anomaly detection are popular sources of
new technological developments, many aimed at creating intelligent buildings. Intelligent
builds are those that can manage, optimize, and reduce their own energy consumption,
based on Big sensor Data [2].
There is also much discussion on the types of algorithms applied to anomaly detec-

tion; some consider that there is a paradigm shift in the types of algorithms used: from
computationally expensive algorithms to computationally inexpensive algorithms [3]. The
inexpensive algorithms may have much higher training accuracy error; that is, the error
accumulated per record when training. However, when normalized over the entire, large,
dataset, the higher training accuracy error converges to a lesser prediction error. Predic-
tion error is defined as the error accumulated when predicting new values from a trained
predictor [4]. The prediction error for the inexpensive algorithm is within similar ranges
as those found with the computationally more expensive algorithm, yet occurring over a
much smaller time frame. A motivation of this work is to then take this notion and shift it
to incorporate these computationally expensive algorithms which still generally perform
better.
Contextual anomaly detection seeks to find relationships within datasets where varia-

tions in external behavioural attributes well describe anomalous results in the data. For
example, viewing data in the context of time, or in the context of time-related concepts
such as seasons, weekdays and weekends, workdays and time-off, can reveal anomalous
behaviour directly correlated with such context. This is distinct from content anoma-
lies which can be defined as abnormal instances in data with respect to the implicit data
alone. An example of a content anomaly is an abnormal spike in user logins on a website,
independent from external reasons. An example for contextual anomalies can be found
in a use-case such as power consumption likely has context-based, time-related relation-
ships: it makes sense to posit that the power consumption of an office building is much
higher during midday, during a work day, compared to at night, during a weekend. One
aspect of this work is to explore, and show the work is successfully applied, for these more
obvious relationships while also remaining expandable to learning and revealing complex
contextually anomalous behaviours.
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Some related works have focused on anomaly detection in data with spatial relation-
ships [5], while others propose methods to define outliers based on relational class
attributes [6]. A prevalent issue in these works is their scalability to large amounts of data.
In most cases the algorithms have increased their complexity to overcome more naive
methods, but in doing so have limited their application scope to offline detection. This
problem is compounded as Big Data requirements are found not only in giant corpora-
tions such as Amazon or Google, but in more and more small companies that require
storage, retrieval, and querying over very large scale systems. Additionally, where an algo-
rithm may have excelled in its serial elision, it is now necessary to view the algorithm in
parallel; using concepts such as divide and conquer, or MapReduce [7]. Many common
anomaly detection algorithms such as k-nearest neighbour, single class support vector
machines, and outlier-based cluster analysis are designed for single machines [8].
The research in this paper will describe a technique to detect contextually anomalous

values in streaming sensor systems. This research is based on the notion that anomalies
have dimensional and contextual locality. That is, the dimensional locality will identify
those abnormalities which are found to be structurally different based on the sensor read-
ing. Contextually, however, the sensors may introduce new information which diminishes
or enhances the abnormality of the anomaly. Further, the technique will use a two-part
detection scheme to ensure that point anomalies are detected in real-time and then eval-
uated using contextual clustering. The latter evaluation will be performed based on sensor
profiles which are defined by identifying sensors that are used in similar contexts. The
primary goal of this technique is to provide a scalable way to detect, classify, and inter-
pret anomalies in sensor-based systems. This ensures that real-time anomaly detection
can occur. The proposed approach is novel in its application to very large scale systems,
and in particular, its use of contextual information to reduce the rate of false positives.
Further, we posit that our work can be extended by defining a third step based on the
semantic locality of the data, providing a further reduction in the number of anomalies
which are false positive.
The following sections of the paper are organized as follows: the “Background and lit-

erature review” section will describe related works in the field of anomaly detection in
streaming sensor systems. The “Research design and methodology” section will outline
the approach taken by the proposed research. The framework will be applied on three
datasets in the “Results and discussion” section. Finally, the “Conclusions” section will
describe concluding thoughts and ideas for future work in this area.

Background and literature review
Anomaly detection is involved in a variety of applications, across many disciplines. As
such, terminology and background will be introduced to facilitate understanding for the
rest of the paper. Anomaly detection algorithms can be categorized as point detection,
collective detection, or context-aware detection algorithms [1]. Contextual detection is
the root of the work presented in this paper and so will be the focus on much of the
related works. Contextual anomalies exist where the dataset includes a combination of
behavioural and contextual attributes. These terms are also defined as environmental and
indicator attributes, as introduced by Song et al. [9]. Behavioural attributes are attributes
such as the sensor reading itself. Contextual attributes take on one of four forms, defined
in Table 1.
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Table 1 Definitions for types of contextual attributes

Term Definition

Spatial The records in the dataset include features which identify locational information for the record. For
example, a sensor reading may have spatial attributes for the city, province, and country the sensor
is located in; it could also include finer-grained information about the sensors location within a
building, such as floor, room, and building number.

Graphs The records are related to other records as per some graph structure. The graph structure then
defines a spatial neighbourhood whereby these relationships can be considered as contextual
indicators.

Sequential The records can be considered as a sequence within one another. That is, there is meaning in
defining a set of records that are positioned one after another. For example, this is extremely
prevalent in time-series data whereby the records are timestamped and can thus be positioned
relative to each other based on time readings.

Profile The records can be clustered within profiles that may not have explicit temporal or spatial
contextualities. This is common in anomaly detection systems where, for example, a company
defines profiles for their users; should a new record violate the existing user profile, that record is
declared anomalous.

Contextual anomaly applications are normally handled in one of two ways. First, the
context anomaly problem is transformed into a point anomaly problem. That is, the appli-
cation attempts to apply separate point anomaly detection techniques to the same dataset,
within different contexts. In this approach, it is necessary to define the contexts of normal
and anomalous records apriori, which is not always possible within many applications.
This is true for the Big sensor Data use case, where it is difficult to define the entire set of
known anomalous records. The second approach to handling contextual anomaly appli-
cations is to utilize the existing structure within the records to detect anomalies using all
the data concurrently. This is especially useful when the context of the data cannot be
broken into discrete categories, or when new records cannot easily be placed within one
of the given contexts. The second approach generally requires a higher computational
complexity than the first approach as the underlying algebra in calculating a contextual
anomaly is computationally expensive.
Many previous anomaly detection algorithms in the sensoring domain focus on using

the sequential information of the reading to predict a possible value and then comparing
this value to the actual reading. Hill and Minsker [10] propose a data-driven modelling
approach to identify point anomalies in such a way. In their work they propose several
one-step ahead predictors; i.e. based on a sliding window of previous data, predict the
new output and compare it to the actual output. Hill and Minsker [10] note that their
work does not easily integrate several sensor streams to help detect anomalies. This is
in contrast to the work outlined in this paper where the proposed technique includes a
contextual detection step that includes historical information for several streams of data,
and their context. In an earlier work, Hill et al. [11] proposed an approach to use several
streams of data by employing a real-time Bayesian anomaly detector. The Bayesian detec-
tor algorithm can be used for single sensor streams, or multiple sensor streams. However,
their approach relies strictly on the sequential sensor data without including context.
Focusing an algorithm purely on detection point anomalies in the sensoring domain has
some drawbacks. First, it is likely to miss important relationships between similar sensors
within the network as point anomaly detectors work on the global view of the data. Sec-
ond, it is likely to generate a false positive anomaly when context such as the time of day,
time of year, or type of location is missing. For example, hydro sensor readings in the win-
ter may fluctuate outside the acceptable anomaly identification range, but this could be
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due to varying external temperatures influencing how a building manages their heating
and ventilation.
Little work has been performed in providing context-aware anomaly detection algo-

rithms. Srivastava and Srivastava [12], proposed an approach to bias anomaly detectors
using functional and contextual constraints. Their work providesmeaningful anomalies in
the same way as a post-processing algorithm would, however, their approach requires an
expensive dimensionality reduction step to flatten the semantically relevant data with the
content data. Mahapatra et al. [13] propose a contextual anomaly detection framework
for use in text data. Their work focuses on exploiting the semantic nature and relation-
ships of words, with case studies specifically addressing tags and topic keywords. They
had some promising results, including a reduction in the number of false positives iden-
tified without using contextual information. Their approach was able to use well-defined
semantic similarity algorithms specifically for identifying relationships between words.
This is in contrast to the work proposed in this paper as we are concerned with contextual
information such as spatio-temporal relationships between sensors. Similar to the work
proposed in this paper is their use of contextual detection as a post-processing step. This
allows the algorithm to be compared and optimized at two distinct steps: point anomaly
detection, and contextual anomaly detection.
A different approach for contextual detection is that work of AlEroud et al. [14],

who apply contextual anomaly detection to uncover zero-day cyber attacks. Their work
involves two distinct steps, similar to the modules described in this paper: contextual
misuse module, and an anomaly detection technique. There are other minor modules,
such as data pre-processing, and profile sampling. The first major component, contex-
tual misuse, utilizes a conditional entropy-based technique to identify those records that
are relevant to specific, useful, contexts. The second component, anomaly detection, uses
a 1-nearest neighbour approach to identify anomalies based on some distance measure.
This component is evaluated over the records individually to determine whether connec-
tions between records indicate anomalous values. The work presented by AlEroud et al.
[14] is similar to the work presented in this paper in that the detection is composed of
two distinct modules. However, the content component of their work involves calculating
difficult distance measures that are not always easily definable. For example, when faced
with many features that each have different data types or domains, it is difficult to cal-
culate suitable distance metrics as finding a common method to aggregate the features
is also difficult. Another drawback is that each module is normally evaluated for all new
incoming values. While the authors do say that the first component aims to reduce the
dimensionality required for the second component, they go on to mention that both the
contextual component and anomaly detection component are calculated individually to
evaluate the anomaly detection prowess of the approach.
Miller et al. [15] discuss anomaly detection in the domain of attributed graphs. Their

work allows for contextual data to be included within a graph structure. One interesting
result is that considering additional metadata forced the algorithm to explore parts of the
graph that were previously less emphasized. A drawback of Miller et al.’s [15] work is that
their full algorithm is difficult for use in real-time analytics. To compensate, they provide
an estimation of their algorithm for use in real-time analytics, however the estimation
is not explored in detail and so it is difficult to determine its usefulness in the real-time
detection domain.
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Other work has been done in computationally more expensive algorithms, such as sup-
port vector machines (SVMs) and neural networks. In general, these algorithms require
a large amount of training time, and little testing time. In most cases this is acceptable
as models can be trained in an offline manner, and then evaluated in real-time. One dis-
advantage to using these classification-based algorithms is that many require accurate
labels for normal classes within the training data [8]. This is difficult in scenarios such
as environmental sensor networks where there is little to no labelling for each sensor
value. Shilton et al. [16] propose a SVM approach to multiclass classification and anomaly
detection in wireless sensor networks. Their work requires data to have known classes
to be classified into, and then those data points which cannot be classified are consid-
ered anomalous. One issue that the authors present is the difficulty in setting one of the
algorithm’s parameters. To reduce the effect of the computational complexity of these
algorithms, Lee et al. [17] have proposed work to detect anomalies by leveraging Hadoop.
Hadoop is an open-source software framework that supports applications to run on dis-
tributed machines. Their work is preliminary in nature and mostly addresses concerns
and discussion related to anomaly detection in Big Data. Another online anomaly detec-
tion algorithm has been proposed by Xie et al. [18]. Their work uses a histogram-based
approach to detect anomalies within hierarchical wireless sensor networks. A drawback
to their approach is their lack of consideration for multivariate data. That is, their work
focuses strictly on developing histograms for the data content but not the context of the
data.
Another component of the work presented in this paper is deploying a modular, hier-

archical, framework to ensure the algorithm can cope with the velocity and volume of
Big Data. Other work by Kittler et al. [19] present a system architecture to detect anoma-
lies in the machine perception domain. In particular, they propose a set of definitions
and taxonomies to clearly define the roles and boundaries within their anomaly detec-
tion architecture. Their work is underlined with a Bayesian probabilistic predictor which
is enhanced by concepts such as outlier, noise, distribution drift, novelty detection and
rare events. These concepts are used to extend their application to other domains that
consider similar concepts. This approach is in distinct contrast to the work proposed by
this paper. Concretely, Kittler et al. [19] present context as more analagous to semantics
in that the additional information they add is similar to domain ontologies rather than
contextual information inherently associated within the data.

Research design andmethodology
The work proposed in this paper describes a framework consisting of two distinct com-
ponents: the content anomaly detector and the contextual anomaly detector. The work is
described as a framework as it provides an extendible and modular approach to anomaly
detection, not requiring specific implementations for each module: the content and con-
text detectors in particular. The rest of this paper will propose one possible solution for
the modules, which works particularly well for the streaming sensor use-case.
The primary reason for creating a separation of concerns between content and con-

text is in the interest of scalability for large amounts of data. The content-based detector
will be capable of processing every new piece of data being sent to a central repository
as it will use an algorithm with a fast testing time. In contrast to this, the context-based
detector will be used in two situations: to help determine if the anomaly detected by the
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content detector is a false positive, and to randomly ensure that the sensor is not pro-
ducing wholly anomalous results. The latter reason being that a sensor may be acting
non-anomalous within its own history of values, but not when viewed with sensors with
similar context. Sub-section “Contextual anomaly detection” will also outline the tech-
nique to train the sensor profiles, thus determining which sensors are contextually similar.
We define here a sensor profile as a contextually aware representation of the sensor as
a subset of its attributes. Comparing an incoming sensor value with the corresponding
sensor profile consists of comparing the incoming value with an average of all the sensor
values composing the corresponding sensor profile. This creates two levels of abstraction
for the contextual detector. First, since similar sensors are combined into sensor profiles, a
level of context is created at a sensor attribute level. Second, the contextual detection uses
a correlation matrix of the attributes for the sensors to further apply context to incoming
values for comparison. The use of clustering is also used for two purposes. First, clustering
helps reduce the population size by creating sub-tasks that run against the computation-
ally expensive contextually anomaly detection function. Second, clustering provides early
insight into the context of the new sensor value. Again, this early context picture is fur-
ther enhanced when the contextual detector is applied. A pictorial representation of the
sensor profile concept is illustrated in Figure 1.
Algorithm 1 illustrates the process of the technique from a component-level. The

UnivariateGaussianPredictor function evaluates the sensor against historical
values taken from the same sensor. The function will calculate a prediction based on
the previous values and compare that prediction against the actual result. This algo-
rithm corresponds with the diagram shown in Figure 2. The GetSensorProfile

function will request the other sensors that are contextually similar to the sensor being

Figure 1 Sensor Profile. Definition of a sensor profile with respect to anomalies, and groups of similar
sensors. Each point represents a sensor reading; circles indicate groups of sensors, that is, sensor profiles.
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Figure 2 Algorithm Overview. High-level overview of the algorithm showing the three different modules
and how they interact with one another. Additionally shows the input and output for each module.

evaluated. MultivariateGaussianPredictor then compares the sensor value
with a mean value from the sensors found in the sensor profile. Again, based on the
result of this evaluation, the anomaly can be rejected as being anomalous or con-
firmed as being both a content and context-based anomaly. Another important note
is the IsRandomContextCheck function which is part of the if-statement. This will
determine whether a random, perhaps non-anomalous, sensor value be sent to the
context-based detector. The reason for this is primarily to check whether the sensor is
behaving anomalous with respect to the sensor profile.

Algorithm 1: Contextual Anomaly Detection

input : SensorValue
output: Anomaly

content ← UnivariateGaussianPredictor(SensorValue)

if IsAnomalous (content) ‖ IsRandomContextCheck (content) then
profile ← GetSensorProfile (SensorValue); context ←
MultivariateGaussianPredictor (SensorValue, profile);
if IsAnomalous (context) then

return Anomaly=true;
end if
else

return Anomaly=false;
end if

end if
else

return Anomaly=false;
end if

Content anomaly detection

Content anomaly detection, or point anomaly detection, has been well explored in
literature. In particular, the proposed content anomaly detection technique will use a
univariate Gaussian predictor to determine point anomalies. Univariate Gaussian
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predictors build a historical model of the data, and then predict and compare new val-
ues based on the model. The predictor will be univariate in that it will only consider the
historical sensor readings to adjust the parameters of the model. There will be no con-
sideration for the contextual meta-information associated with the sensor readings. This
ensures that the predictor can classify new values quickly while sacrificing some accuracy.
Speed is the most important characteristic for the point detector as it needs to evaluate a
high velocity and volume of data in real-time. The accuracy shortcoming will be handled
by the contextual anomaly detector.
The univariate Gaussian predictor relies on defining two parameters during the training

of the algorithm,μ and σ 2. Equation (1) and Equation (2) show how these two parameters
are set, wherem is the number of training values, and x(i) is the sensor reading for training
value i. An anomaly is detected when p(x) < ε, where ε is a threshold value set during
implementation.

μ = 1
m

m∑
i=1

x(i) (1)

σ 2 = 1
m

m∑
i=1

(
x(i) − μ

)2
(2)

p(x̄) =
n∏

j=1

1√
2πσ

exp−
(
x̄j − μj

)2
2σ 2

= 1√
2πσ

exp− (x̄ − μ)2

2σ 2 (∵ n = 1)

(3)

Contextual anomaly detection

The contextual anomaly detector is based on two concepts: defining the sensor profiles
and assigning each sensor to one of the sensor profiles, and evaluating the current sensor
value (declared anomalous by the content anomaly detector) against the sensor profile’s
average expected value. The sensor profiles are defined using a multivariate clustering
algorithm; the algorithm is multivariate to include the sensors multidimensional contex-
tual metadata which may include location, building, ownership company, time of year,
time of day, and weather phenomena. The clustering algorithm will place each sensor
within a sensor profile and then assign that profile group to the sensor.When a sensor has
been declared anomalous by the content anomaly detector, the context anomaly detector
will determine the average expected value of the sensor group. Then, in a similar way as
in Equation 3, the context anomaly detector will determine whether the sensor value falls
within the acceptable prediction interval.
The k-means clustering algorithm will iterate through the following steps:

1. Randomly initiate K random clusters
2. Partition the dataset into the K random clusters, based on Equation 4; placing

items into each cluster based on the smallest distance to the cluster
3. Re-calculate the centroids for each cluster
4. Repeat Step 2 until Step 3 does not modify cluster centroids
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min
s

k∑
i=1

∑
xj

||xj − μi||2 (4)

Once the clusters have been formed using k-means clustering, we define a Gaussian
predictor for the subset of sensors which belong to each sensor profile. Then, each sensor
profile has a specific Gaussian predictor which can be used to determine if a new sensor
value is anomalous for that particular sensor profile family. Equations 5, 6, and 7 define
the mean, sigma, and prediction function for the Gaussian predictor, where μ ∈ R

n,
� ∈ R

nxn. � refers to the covariance matrix of the features used to define the Gaussian
predictor. Also, |�| refers to calculating the determinant of the covariance matrix. The
new sensor values that are passed from the content anomaly detector are evaluated with
respect to Equation 7. The value, p(x) is compared against some threshold, ε, and is
flagged as anomalous if it is less than ε.

μ = 1
m

m∑
i=1

x(i) (5)

� = 1
m

m∑
i=1

(
x(i) − μ

) (
x(i) − μ

)T
(6)

p(x̄) = 1
(2π)(

n
2 )|�|

( 1
2
) exp

(
−1
2
(x̄ − μ)T�−1(x̄ − μ)

)
(7)

To summarize, the context anomaly detection algorithm proceeds as follows:

1. Offline: generate k clusters for each sensor profile
2. Offline: generate k Gaussian classifiers for each sensor profile
3. Online: evaluate corresponding Gaussian classifier when receiving a value by the

content detector

Complexity and parameter discussion

The contextual detection algorithm works on multiple dimensions of the dataset, and
thus has a higher computational complexity in comparison to the content detector. To
cope with higher computational complexity, the proposed framework utilizes paralleliza-
tion and data reduction in an important way. The anomaly detection evaluation uses the
notion of data reduction by only evaluating the computationally more expensive contex-
tual anomaly detector on a very small subset of the data. The modularity of the content
detector and the context detector allows the proposed research to be implemented in a
large distributed environment. The content detectors can independently process infor-
mation in parallel on distributed machines and only need to share findings to the context
detector when an anomaly is detected. Then, the framework can horizontally scale by
adding additional machines to indepdently process new data.
Another important aspect of the proposed algorithms is the selection of some of the

parameters. For example, selection of the k in the k-means clustering algorithm will
have a large impact on the accuracy of the Gaussian predictors. The problem of param-
eter selection is well-known in data mining but a work entitled k-means++ by Arthur
and Vassilvitskii [20] attempts to overcome this issue, specifically for k-means clustering.
Therefore, the implementation of this work will utilize the k-means++ algorithm in place
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of the classic k-means algorithm. This does not change the sets of equations listed earlier
in this section.

Results and discussion
The preliminary evaluation of this work was primarily done in conjunction with Power-
smiths, a company specializing in providing sensor equipment to businesses to help build
a sustainable future [21]. Figure 3 illustrates a general sensor streaming application. To
do this, Powersmiths uses sensor data that is pulled from the electrical, water, and gas
systems within the business. This data is pushed to a cloud-based data storage solution
where some analysis is completed and pushed back to the consumer. Currently, customers
may have tens to hundreds of sensors, each with the ability to produce sensor data on the
order of a few seconds, to several minutes.
The evaluation of the proposed technique was done using their existing system. Prelim-

inary studies were not done in real-time but rather trained in batch over their historical
data and validated using a test dataset. To test the implementation offline, while emulat-
ing a real-time environment, several pseudo data streams were created and pushed to the
detector at regular intervals mirroring the real world case. The following sub-sections will
detail the implementation of the technique, and the results. The evaluation of the pro-
posed work will also be shown on the open-source Dodgers dataset, available from the
UCI Machine Learning repository [22,23].

Powersmiths and the Datasets

Powersmiths collects a wide-range of data; including: sensor streams (as byte arrays)
with temporal information, sensor spatial information, consumer profile information
(i.e. name, location, etc), and multi-media including videos, images, and audio. For the
purposes of anomaly detection, Powersmiths has provided a subset of their data which
includes electricity sensor streams and temperature sensor streams, and their related
temporal and spatial context. A table of the electrical data is shown in Table 2, for each
time input, there are corresponding values for each of the four sensors (labelled Sensor

Figure 3 Big Sensor Data Case Study. Introduction to the case study used for evaluation purposes. The
illustration diagrams out the relationship between the end-users and the raw sensor information.
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Table 2 Dataset and feature domains

Feature Domain

Time DD/MM/YYYY HH:MM

Sensor 1 0.00 - 100.00

Sensor 1 Location [a-zA-Z0-9]

Sensor 2 0.00 - 100.00

Sensor 2 Location [a-zA-Z0-9]

Sensor 3 0.00 - 100.00

Sensor 3 Location [a-zA-Z0-9]

Sensor 4 0.00 - 100.00

Sensor 4 Location [a-zA-Z0-9]

Day of the Week 0 - 7

Time of Day 0,1,2

1...Sensor 4) and the physical location of the sensor (labelled Sensor 1 Location...Sensor
4 Location). For the purposes of expanding the contextual information for the sensors,
the Time feature has been discretized into two new features: Day of the Week and Time of
Day. Time of Day is discretized into three values: 0 representing readings occurring out-
side normal, 9-5, office hours; 1 representing values occurring during morning, 9-1, office
hours; and 2 representing values occurring during afternoon, 2-5, office hours. These fea-
tures are shown below the break in Table 2. One can consider the values for Day of the
Week, Time of Day, and the set of locations as contextual information for the sensors;
while the content itself is simply the sensor reading at the given time.
The given Powersmiths dataset for the electrical dataset includes 101,384 tuples; where

85% were used for training, and 15% were used for testing. As mentioned earlier, the
testing dataset has been modified to simulate a real-world streaming environment from
multiple sensors. This was done by using the time stamp and individual sensors to pro-
duce four test datasets (one for each sensor). The simulation environment processes
concurrent sensors streaming data in every 10ms. The authors acknowledge that a static
write frequency is the optimal case and does not wholly represent a real-world simula-
tion; however, the results can still show how the proposed research responds in such an
environment. The second dataset, for temperature streaming sensor readings, consists
of 26,943 readings. Again, for testing and evaluation purposes this dataset was split into
85% for training, and 15% for evaluation. The dataset consists of five sensors; their meta-
information is shown in Table 3. The dataset consists of five sensors that are recording
temperature readings, in degrees Celsius. The sensors are again distributed across the
building’s main office; both recording values of rooms themselves, as well as latent tem-
peratures of the walls. Like dataset 1, there is additional contextual information that can
be extracted from the Time attribute, as shown in Table 4.
The implementation for the framework was completed using a virtualized sensor

stream. That is, the application was built around an old view of the Big Sensor Data
dataset, and not done over the real, live, data. To ensure the data was still tested as
though it was real-time, a virtualized sensor stream was created. This was accomplished
by extracting the different sensors from the entire dataset into their own individual
datasets. The queue would then be incrementally evaluated and removed. A code listing
for this process can be found in Listing 1. Another important implementation detail is the
determination in the number of sensor profiles to create during the contextual detection
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Table 3 Sensor dataset 2: temperature

Location Sensor location Associated Unit

Main Head Office Forge Hallway Celsius

Main Head Office Forge Room Celsius

Main Head Office IT Closet Celsius

Main Head Office South Wall Celsius

Main Head Office North Wall Celsius

process. Determining the number of profiles was done as a pre-processing step, itera-
tively increasing the number of sensor profiles until the accuracy was no longer improved.
Empirically this was determined to be three clusters for the Powersmiths datasets. Log-
ically this also made sense as Powersmiths provides three types of sensoring to their
clients.

Listing 1 Code Snippet for Virtualized Sensor Stream

/ / I n s t a n t i a t e Queue
Queue v i r tua lQueue = new L ink edL i s t ( ) ;
. . .
/ / Concu r r en t l y w r i t e new s e n s o r va l u e s
synchronized ( v i r tua lQueue ) {

v i r tua lQueue . add ( sensorVa lue ) ;
}
. . .
/ / Eva lua t e th e top−most queue a g a i n s t
/ / th e r ea l−t ime model
while ( true ) {

i f ( v i r tua lQueue . p o l l ( ) != nul l ) {
S t r i n g v a l [ ] = v i r tua lQueue . remove ( ) ;
boolean isAnomalous =

checkValueWithRealTime (
Double . parseDouble ( v a l [ 1 ] ) ) ;
i f ( isAnomalous ) anomalyArray . add (

v a l u e ) ;
}

}

Dataset 1 implementation and results: HVAC

The preliminary implementation for this work was completed in Java using theWeka [24]
open-source data mining library for building the clusters. There were four sensors
included in the HVAC dataset, all measuring the electricity from power meters located in
different areas within the building. For example, there were sensors for the two research

Table 4 Dataset example

Date Time Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Day Time of Day

03/01/2011 09:00 20.86 22.32 26.69 2.27 1.78 2 0

03/01/2011 10:00 20.32 21.63 26.05 0.88 -2.14 2 0

03/01/2011 11:00 20.11 21.62 25.87 -2.44 -3.24 2 0
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and development areas, existing on two floors. Also, there were sensors for the two
administrative sectors of the building. Information on the location, as well as the sensor
reading time as described in Table 2 were included.
The initial Gaussian anomaly predictor using only content information (i.e. the data

stream itself ) was built using all the sensor values in the training dataset. This predic-
tor is labelled as Univariate Gaussian Predictor in Algorithm 1 and Figure 2.
For the purposes of this proof of concept, the parameters μ and σ 2, from Equation (1)
and Equation (2), were determined iteratively. In further studies the authors would like
to show relative speed-ups and trade-offs in parallelizing this step of the algorithm.
Evaluating the sensor data was done in real-time as the simulator streamed in values.
Given the low computational expense of this step, parallelization may not provide a large
performance increase.
We empirically determined that three clusters were appropriate for building a clustering

model; beyond three the clustering algorithm saw little improvement. The cluster pro-
cess is shown as Build Clusters in Figure 2. After determining the sensor profiles by
clustering, a contextual Gaussian predictor was built for each contextual cluster, or sensor
profile as defined in the “Research design and methodology” section. Algorithm 1 labels
this as Multivariate Gaussian Predictor. Again, for the purposes of this proof
of concept, the arrays of μ and � for each sensor profile were determined iteratively. This
would need to be compared to a parallel elision as future work.
The results of our work can be described in two steps. The first step is in the algorithms

ability to determine the point anomalies in real-time. The second step is to determine
which of these anomalies are contextually anomalous, as well as point anomalous. In

Figure 4 Content Anomaly Detection. The results of the proposed work on the HVAC sensor dataset. Each
black circle represents a sensor reading, the readings are interconnected with dark grey lines. Additionally,
the points highlighted in grey at the top of the image are those which have been identified as anomalous
with respect to their content alone.
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Figure 4 the results of the point anomaly detector are shown. The upper portion of the
figure, shaded in grey, shows those values which were determined to be anomalous. Over
the course of the simulation, 23 of the sensor values were considered to be point anoma-
lies. Concretely, this means that 23 of the values were seen to be anomalous with respect
to the expected value of that particular sensor, using only the sensor value. This means
that less than 0.01% of the values were found to be anomalous, which is reasonable for the
context of sensor streaming in a commercial building.
The second part of the results is determining which of those 23 sensor values are con-

textually anomalous. That is, based on the contextual information of: sensor physical
locations, sensor reading time of day, sensor reading day of the week, and correlations
between other sensors; which values remain anomalous? In Figure 5, a pie graph indi-
cating the number of point anomalies, 23, and the number of contextually insignificant
sensor values, 2. This figure outlines the reduction in the total number of anomalies
detected by removing those that were considered contextually normal. The figure also
illustrates that 9% of the potential point anomalies were cleared by the context detection
process. Concretely, the approach determined that two of the point anomalies should not
be considered as anomalous when including contextual information such as Time of Day,
Day of the Week, and sensor spatial information.
Thus, we can say that the algorithm reduced the number of false-positive anomalies by

2. The other benefit we see here is that the more computationally expensive contextual
detector only needed to evaluate 23 sensor readings, instead of the tens of thousands that
are streamed to the point detector. Therefore, as the detection algorithm scales to more
volumes of data, with higher velocities of data streams, the algorithm will still be able
to evaluate the computationally more expensive contextual detector while still providing
real-time detection.

Dataset 2 implementation and results: temperature

Synonymous to dataset 1, the first component to evaluate is the content detection for the
temperature dataset. In testing the proposed work’s content detection using the test data,
the content detector was able to find 254 anomalies. These anomalies are considered to be
point anomalous. This is strictly larger than the previous dataset results; however, when
taking a closer look at those values labelled as anomalous, the readings are consistent with

Figure 5 Context Detection for Datasets 1 and 2. Comparison between the two datasets for content and
contextual anomalies identified.
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a failed sensor. These results are shown in Figure 6. More discussion on this will occur
after addressing the context detection component.
The second major component to be evaluated is the context detection. To perform con-

text detection, the proposed framework first needs to determine the sensor profiles for
the temperature sensors. For dataset 2, it was determined that two sensor profiles existed
within the dataset; adding more clusters did not increase the effectiveness of the context
detector. Further, the two sensor profiles that were revealed included one group for the
two temperature sensors that record latent temperatures, and three sensors that record
room temperature. Once determining the two sensor profile groups, two multivariate
Gaussian predictors were trained, one for each cluster. The results of the contextual
detector determined that 11 of the 254 point anomalies could be cleared as being non-
anomalous with respect to their context. It was also found that when training the context
detector with one sensor profile, i.e. not including the initial context of the data, there
were no contextual anomalies cleared. Additionally, when removing the Day and Time-
OfDay(TOD) attributes, no contextual anomalies were found. This further shows that the
addition of the context detector has a positive impact of determining anomalous readings.
The results of running the simulation using the contextual detection with the content
detection for both datasets are shown in Figure 5. The figure shows the distribution of
context anomalies found within the content anomalies.
The results for dataset 2 were also promising with anomalous examples shown in

Table 5. The framework efficiently determined content based anomalies in real-time using
the virtualized sensor streaming implementation. Details on the running times for the
components is shown in Table 6.

Figure 6 Content Detection for Dataset 2. The black diamonds represent reading instances. The top and
bottom highlighted portions in grey identify reading instances that were considered anomalous with respect
to their content for the temperature dataset.
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Table 5 Anomalous examples for dataset 2

Sen. 1 Sen. 2 Sen. 3 Sen. 4 Sen. 5 Day TOD

15.12 15.25 18.71 5.35 3.71 7 1

17.42 19.09 24.53 1.05 3.56 3 0

17.22 18.18 23.18 4.08 6.88 1 0

0 0 0 0 -1.26 4 2

0 0 0 0 -1.43 7 0

0 0 0 0 -1.47 7 0

Dataset 3 implementation and results: dodger loop

The final dataset used for evaluation is based on data collected by the Freeway Perfor-
manceMeasurement System (PeMS) in California. The data was collected for theDodgers
Loop in Los Angeles, for times when the Los Angeles Dodgers were playing baseball
games. The initial goal of the data was to predict days when there were Dodgers games,
based on the traffic seen at the Dodgers Loop. The data includes observations over 25
weeks, at 288 time slices per day. In total, there are three attributes, two contextual, one
behavioural, and 50,400 tuples.
Synonymous to the Powersmiths datasets, the first component to evaluate is the content

detection for the Dodgers Loop dataset. In testing the proposed work’s content detection
using the test data, the content detector was able to find 17 anomalies. These anomalies
are considered to be point anomalous. These anomalies were all injected into the dataset
as there were no anomalies found when initially running the algorithm. The authors
attempted to inject values that should be considered anomalies (i.e. abnormally high
amounts of traffic for earlymornings where there was certainly noDodger baseball game).
The second major component to be evaluated is the context detection. To perform

context detection, the proposed framework first needs to determine the profiles for the
Dodger Loop readings. For dataset 3, it was determined that four profiles should exist
within the dataset; adding more clusters did not increase the effectiveness of the context
detector. Once determining the four profile groups, four multivariate Gaussian predictors
were trained, one for each cluster. The results of the contextual detector determined that
1 of the 17 point anomalies could be cleared as being non-anomalous with respect to their
context. It was also found that when training the context detector with one sensor pro-
file, i.e. not including the initial context of the data, there were no contextual anomalies
cleared. Additionally, when removing the Day and TimeOfDay attributes, no contextual
anomalies were found. This further shows that the addition of the context detector has a
positive impact of determining anomalous readings, and is akin to earlier results for the
Powersmiths data. Details on the running times for the components is shown in Table 7.
From the table: the framework can successfully manage to detect anomalies in real-time,
only using an average of 1432ns per content evaluation. Table 8 show the anomalies
identified by the contextual predictor as well as the content predictor.

Table 6 Dataset 2 running time results

Component Time

ReadCSV 1.145 sec

BuildContextModel 2.343 sec

BuildRealtimeModel 0.021 sec

CheckRealTime (average) 933 ns
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Table 7 Dataset 3 running time results

Component Time

ReadCSV 1.145 sec

BuildContextModel 0.063 sec

BuildRealtimeModel 0.011 sec

CheckRealTime (average) 1432 ns

Validation and cross-validation

We present the validation of our work in two ways. First, we discuss our work in compar-
ison with other views on the same datasets we used, as well as other works in the area of
anomaly detection. Second, we discuss our work with respect to Powersmiths use-case,
and specifically related to the apriori knowledge they have provided. First, it is difficult to
compare anomaly detection algorithms as the definition for an anomaly is highly depen-
dent on the use-case. For example, Powersmiths may consider abnormal values within
10% deviation an anomaly, whereas another energy management company considers val-
ues within 8% deviation an anomaly. With this in consideration, we present a major
benefit of our work: a sliding detection threshold. That is, the threshold for an anomaly
to be considered abnormal can be configured dynamically based on the use case. A sec-
ond way in which we validated our work is to compare it with the standard R statistical
toolbox, and specifically the outlier function in the outliers package.
The previous evaluation sections attempted to provide insight into the validity of the

proposed work with respect to real-world data. This section will further compare the
results of the earlier sections to results from the popular R application for statistical com-
puting. Figure 7 shows the results of running the outliers package on dataset 2. The largest
section indicates the highest density statistical probability for dataset 2, while the other
two dense sections indicate lesser populated areas. The anomalies are noted by black
numbers; as seen in Figure 7, there are anomalous values in both sections. A summary of
the comparison between the work presented in this paper and the R outliers package is
shown in Table 9. Concretely, we can conclude that our proposed framework performed
as well as the R outliers package in detecting the anomalies, and is much more scalable,
and applicable to real-time detection.
When given thess datasets, Powersmiths mentioned that there were lengths of time

when various sensors failed at their headquarters. Specifically in the temperature dataset,
where the framework was able to successfully identify these anomalous readings, as
shown below the double-line break in Table 5. This is promising as it validates the
approach for the real-world data, knowing a set of values that were previously considered
anomalous by Powersmiths. The detector additionally determined a set of anomalies that
were not purely based on a totally failed sensor; these are shown above the double-line
in Table 5. One of the difficulties with validating any anomaly detection approach is that
the definition of an anomaly changes depending on the owner of the dataset, and their
view over what should be considered anomalous. Therefore, a first step in validation is
determining that the framework could initially identify all values which were considered
anomalous by the dataset owner: Powersmiths themselves. Another consideration is per-
forming cross-validation, that is, using different subsets of the dataset for training and
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Figure 7 R Results. Graphical representation of the comparison with the R statistical toolbox. Specifically, the
numbered points are those that were identified as anomalous with respect to the context of the sensor
readings.

testing to ensure that the framework still identifies those values as anomalous in different
subsets of the dataset.
Cross-validation was performed for the temperature dataset and found that the anoma-

lous values presented by Powersmiths were again detected. In fact, one of the subsets
for cross-validation included a subset of 15% of the dataset where there were no anoma-
lies identified by Powersmiths. Indeed, the framework did not detect any anomalies for
this subset of the data. To summarize the validation of the framework for the presented
datasets, the approach was four-fold:

• Confirm that the framework is able to identify anomalies with respect to those
identified by Powersmiths, the dataset owner, themselves.

• Validate that the framework is able to identify injected anomalies by the author; these
are values that fall well out of the parameters of one or more of the attributes in the
dataset.

Table 8 Anomalous Examples for dataset 3

Time Day Of Week Cars Per 5 min Time Of Day

2760 3 76 0

3060 3 44 0

2820 4 0 0

0 0 0 0

540 0 -8 0
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Table 9 Results comparison with the R outliers package

Concept Discussion

Running time A major difference between the work presented in this paper and the R outliers package
is in the running time of both algorithms. One of the major design considerations for the
proposed work was the ability to run in real-time. The R outliers package runs in batch
over the entire set of data and runs on the order of minutes to completion, whereas our
work runs on the order of seconds.

Anomalies found The work presented in this paper and R outliers package detected a number of equivalent
anomalies. The huge list of anomalies pertaining to the failed sensors identified apriori
by Powersmiths were found by both detectors. Further, the work presented in this paper
detected all of the anomalies detected by the R outliers package, including those that
were contextually cleared.

• Compare the results with the R statistical toolbox to ensure that the results found by
the framework are consistent with the offline approach of the R statistical toolbox.

• Cross-validate the results of the dataset with other subsets of the dataset. That is, use
different subsets of 15% to compare and confirm that the framework still identifies all
the anomalous values.

Random positive detection: implementation and results

In addition to implementing the framework’s content and context detection, and evalu-
ating three large datasets using each module, we have also explored the random positive
detection module. The first approach we used was implementing a naive random detec-
tion module, which simply randomly passed any value that was flagged to be passed
to the context detector. This approach was used with an implementation-defined ran-
dom value, 0.01%. However, initial results for this approach proved the base rate fallacy:
essentially outlining that our initial assumption for the random detection still being
able to detect the anomalies is false. In other words, following the Bayes theorem,
attempting to detect anomalies using this form of random detection has the following
property:

P(anomaly|rand) = P(rand|anomaly) ∗ P(anomaly)
P(rand)

(8)

From Equation 8, we can see that the probability that we randomly detect an event
that already has a small percentage of occurring is very low. Due to this property, it is
necessary to rethink the approach in determining the random values. Before continuing
our approach for these three datasets, we attempted to determine, offline, whether there
were any values to randomly detect. Concretely, we tested whether there were any con-
textual anomalies that were not passed to the context detector from the content detector.
In running only the context detector over the entire test dataset, the results showed that
there were no context anomalies that were not passed to the content detector. Therefore,
for the three datasets used for the evaluation of this work, none contained anoma-
lies that were normal with respect to their content, but abnormal with respect to their
context.

Conclusions
The work presented in the paper describes a novel framework for anomaly detection
in Big Data. Specifically, the framework utilizes a hierarchical approach to identify
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anomalies in real-time, while also detecting a number of false positives. Then, a con-
textual anomaly detection algorithm is used to prune the anomalies detected by the
content detector, but using the meta-information associated with the data points. To
cope with the velocity and volume of Big Data, the anomaly detection algorithm
relies on a fast, albeit less accurate, point anomaly detection algorithm to find anoma-
lies in real-time from sensor streams. These anomalies can then be processed by a
contextually aware, more computationally expensive, anomaly detection algorithm to
determine whether the anomaly was contextually anomalous. This approach allows the
algorithm to scale to Big Data requirements as the computationally more expensive
algorithm is only needed on a very small set of the data, i.e. the already determined
anomalies.
The evaluation of the framework was also discussed based on the implementation

details provided in this paper. The evaluation of the framework was performed using
three sets of data; one for a set of HVAC electricity sensors, one for a set of temperature
sensors, and a third set for a traffic system in California. The evaluation provided some
conclusions of the work:

• The framework was able to positively detect, in real-time, content based anomalies
for the datasets. Further, the context detector was able to determine some anomalies
that should not be considered anomalous when evaluated with respect to context.

• The framework was able to positively detect anomalies that were determined apriori
by the owner of the datasets. In particular, the framework determined a large set of
anomalous readings which occurred when Powersmiths indicated a massive sensor
failure.

• The framework performed competitively with the R outlier statistical package. The
framework performed in real-time, in comparison with the batch approach provided
by the R application.

One of the major goals of the framework was to remain modular and scalable for future
works. As a result, there are several areas of future work that would be interesting to
explore:

• The datasets considered in the evaluation section are only one type of Big Data: tall
datasets. It is important to consider the other common type of application: wide
datasets. These are attributed by a large number of features, with a smaller number of
records. One of the major benefits of this work is that the hierarchy of content to
contextual detection ensures that a computationally inexpensive algorithm reduces
the number of records evaluated by the contextual detector.

• The framework has been tested in the simulated, virtualized, sensor streaming
environment. Therefore, a logical future work would be to implement the framework
within a working business environment that is streaming live data to the central
repository.

• The framework could also be integrated with decision making systems within a live
environment. The output of the framework is an indication that a sensor is acting
anomalous. This information can be exploited by a decision making algorithm, such
as a complex event processing framework, to coordinate changes within the business
environment.
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• The modularity of the framework allows further components to be added, or
updated, in the framework. This introduces two such avenues of future work: first,
the proposed modules can be modifed and updated with other types of algorithms.
Second, additional modules could be added to the framework itself. For example, a
semantic detection module can be included.
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