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Abstract

GIS application hosts are becoming more and more complicated. Theses hosts’
management is becoming more time consuming and less reliabale decreases with
the increase in complexity of GIS applications. The resource management of GIS
applications is becoming increasingly important in order to deliver to the user the
desired Quality of Service. Map systems often serve dynamic web workloads and
involve multiple CPU- and I/O-intensive tiers, which makes it challenging to meet the
response time targets of map requests while using the resources efficiently. This
paper proposes a virtualized web map service system, v-TerraFly, and its autonomic
resource management in order to address this challenge. Virtualization facilitates the
deployment of web map services and improves their resource utilization through
encapsulation and consolidation. Autonomic resource management allows resources
to be automatically provisioned to a map service and its internal tiers on demand.
Specifically, this paper proposes new techniques to predict the demand of map
workloads online and optimize resource allocations considering both response time
and data freshness as the QoS target. The proposed v-TerraFly system is prototyped
on TerraFly, a production web map service, and evaluated using real TerraFly
workloads. The results show that v-TerraFly can accurately predict the workload
demands: 18.91% more accurate; and efficiently allocate resources to meet the QoS
target: improves the QoS by 26.19% and saves resource usages by 20.83% compared
to traditional peak-load-based resource allocation.
Introduction
With the exponential growth of the World Wide Web, there are more domains open

to Geographic Information System (GIS) applications. Internet can provide informa-

tion to a multitude of users, making GIS available to a wider range of public users than

ever before. Web-based map services are the most important application of modern

GIS systems. For example, Google Maps has more than 350 million users. There is also

a rapidly growing number of geo-enabled applications which consume web map ser-

vices on traditional computing platforms as well as the emerging mobile devices.

Virtual machines (VM) are powerful platforms for hosting web map service systems.

VMs support flexible resource allocation to both meet web map services system

demands and share resources with other applications. Virtualization is also enabling

technology for the emerging cloud computing paradigm, which further allows highly
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scalable and cost-effective web map services hosting leveraging its elastic resource

availability and pay-as-you-go economic model [1].

However, due to the highly complex and dynamic nature of web map service systems,

it is challenging to efficiently host them using virtualized resources. First, typical web

map services have to serve dynamically changing workloads, which makes it difficult to

host map services on shared resources without compromising performance or wasting

resources. Second, a web map service often consists of several tiers which have different

intensive resource needs and result in dynamic internal resource contention. Third, for

a typical web map service, both response time for requests and the freshness of the

returned data are critical factors of the Quality of Service (QoS) required by users.

To address the above challenges, this paper presents v-TerraFly, an autonomic re-

source management approach for virtualized map service systems, which can automat-

ically optimize the QoS (considering both response time and data freshness) while

minimizing the resource cost [2-4]. First, v-TerraFly can accurately predict the work-

load demands of a web map service online based on a novel two-way forecasting algo-

rithm that considers both historical hourly patterns and daily patterns. Second, based

on the predicted workload, v-TerraFly can automatically estimate the resource demands

of its various tiers based on performance profiles created using machine learning tech-

niques. Third, v-TerraFly employs a new QoS model that captures the balance between

response time and data freshness and uses this model to automatically optimize the re-

source allocation of a web map service system [5].

This proposed v-TerraFly system is realized on Hyper-V virtual machine envi-

ronments and evaluated by experiments using real workloads collected from the pro-

duction TerraFly system. The results show that the proposed two-level workload

prediction method is outperforms traditional exponential smoothing prediction by

18.91%, and the system improves the QoS by 26.19% compared to traditional statically

node allocation. In the meantime, it saves resource usages by 20.83% compared to trad-

itional peak-load-based resource allocation.

In summary, this paper’s main contributions are: (1) created a VM-based map service

system, v-TerraFly, which virtualizes all tiers of a typical web map service and supports

dynamic resource allocations to the different tiers; (2) proposed a novel autonomic re-

source management approach for virtualized map services, which automatically allo-

cates resources to different tiers of the service and optimizes the allocations based on

the performance and data freshness tradeoff; (3) evaluated v-TerraFly using real work-

loads collected from production web map service system, which shows substantial im-

provement on QoS and resource efficiency.

The rest of this paper is organized as follows: Section Background presents the background

and motivations; Sections v-TerraFly describes the architecture of v-TerraFly; Section Auto-

nomic Resource Management in v-TerraFly explains the autonomic resource management

of v-TerraFly; Section Evaluation presents an experimental evaluation; Section Related work

examines related work; and Section Conclusions and future work concludes the paper.

Background
Web map services

As a promising new application of GIS, web map service exhibits its excellence in serv-

ing online map requests responsively and delivering geographical information precisely
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over the Internet [6]. A typical web map service, such as Google maps, Bing maps, and

Yahoo maps [7], are usually built upon several major tiers (Figure 1). A Preprocessor

preloads images and geographic features from raw data repository and splits them into

grid format, known as image tiles, to facilitate the Processor quickly locating and fetch-

ing data. Then a tile Processor retrieves and integrates all tiles needed in a customer’s

query. As its upper tier, a generic map interface accesses this imagery by geo-location,

and a client app (or browser) to show the map to end-users.

In this paper, we use TerraFly as a case study of a web map system [1]. TerraFly

serves worldwide web map requests, providing users with customized aerial photog-

raphy, satellite imagery and various overlays, such as street names, roads, restaurants,

services and demographic data. Following the typical architecture described above,

TerraFly contains two major tiers (Figure 1): the Image Loader Tier preprocesses the

raw imagery data from repository; the Image Reader Tier processes image tiles and re-

trieves queried images [8]. These tiers are further described in Section v-TerraFly.

Traditionally, web map services are hosted on dedicated physical servers with suffi-

cient hardware resources to satisfy their expected peak workloads in order to provide

responsive web services to the users. However, this becomes inefficient for real-world

situations where the workloads are intrinsically dynamic in terms of their busty arrival

patterns and ever changing unit processing costs [9]. Consequently, peak-load-based re-

source provision often leads to underutilization of resources for normal state workloads

and causes substantial overhead.

Using VMs to host multi-tier web map services can effectively address this limitation

because virtualized resources, including CPU, memory, and I/O, are decoupled from

their physical infrastructures and can be flexibly allocated to different tiers of the web

map system [10]. This approach allows the resource capacity of each tier to elastically

grow and shrink to serve its dynamic. In this way, different tiers transparently share the

consolidated resources with each other and/or other applications with strong isolation.

Such benefits are important to the efficiency of web map service hosting in both typical

data centers and emerging cloud systems. On one hand, users need to pay for only the

resources their services actually consume. On the other hand, resource providers only
Figure 1 Web-enabled map service.
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need to allocate resources as required by the services while saving valuable resources

for hosting other applications [11].

Virtualization also offers a new paradigm for web map service deployments. Modern

web map services are sophisticated systems, where their installation and configuration

require substantial domain knowledge and experience as well as considerable efforts

from the administrators. VM-based web map service hosting allows carefully installed

software to be distributed as simply as copying the data that represents the VMs. In

addition, this approach allows web map services to be quickly replicated and distrib-

uted for performance and reliability improvements.
Research design and methodology
v-TerraFly Architecture

To enable the autonomic resource management in TerraFly, we leverage VM tech-

niques to virtualize this multi-tier system, denoted as v-TerraFly. The two critical re-

source intensive tiers of TerraFly, the image Loader and Reader Tiers, are deployed on

the VMs instead of physical servers.

Figure 2 shows the architecture of this v-TerraFly. The users interact with the appli-

cation tier which handles most of the business logic and provides advanced application

services, such as universal mapping and application specific mapping (e.g. real estate,

water management), by sending the mapping queries including position and resolution

requirements to the tiers below. Then the image Reader Tier is invoked to compute

and locate associated map tiles from indexed imagery database according to the re-

quests from the application. To maintain data freshness, the organized imagery data-

base is updated by the Loader Tier periodically at the same time. Loader contiguously

extracts the incoming raw map data from the raw imagery repository, preprocesses and

organizes the raw data to destination projection, and then converts the data into the

destination file type, and finally updates the data into the organized imagery database.

Due to the structure of the mapping service system, these two tiers of v-TerraFly

exhibit distinct resource usage behaviors in the production environment. On one

hand, the Reader Tier may experience different number of concurrent users during

different periods of a day, which results in highly dynamic workloads with varying

intensity against the Loader. On the other hand, the Loader does not have as
Imagery Loader Tier

Imagery Reader Tier

Raw Imagery Data

Organized Imagery 
Data

VMVM

VM VM VM VM VM VM
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Figure 2 v-TerraFly system.
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stringent performance requirement as the Roader does but still needs reserved re-

source to guarantee data freshness. Therefore, it is beneficial to host these two tiers

together on virtualized cluster nodes to multiplex the common computing resources

so that the total resource capacity can be better utilized among different tiers. For

example, more VMs are allocated to the Reader Tier during daytime when peak-load

of user requests is expected to happen but the loading process is less active; but

shifting more VMs to the Loader over night to allow data updates accumulated in

daytime.

Virtualization in TerraFly also improves the flexibility in terms of the system reliabil-

ity and scalability. VM is the computing resource in both Loader and Reader Tiers.

With the load balance in both tiers, the work load of each VM is the same; therefore,

the VMs in the same tier are considered identical. Since the computing resources can

be partitioned through VM nodes, the network bandwidth, which is always a bottleneck

in the original system, can now be well balanced among VMs. Furthermore, by pairing

every two VMs as complementary Reader nodes, it is able to provide more reliable ser-

vice under unexpected system failure by simply replacing the failed VM with its corre-

sponding back-upped VM [12,13].

Motivating examples

In this section, we demonstrate both the necessity and benefits of resource consolida-

tion in a map service system.

For web map services, the performance of Reader Tier and Loader Tier are both im-

portant. Better Reader Tier performance provides shorter page response time; better

Loader Tier performance provides faster loading of new map data. But both tiers are

resource-intensive and they will compete with each other on resource allocation. The

goal is to balance the two tiers to achieve best quality of service when we have limited

resources.

The workloads of web map service can be highly dynamic over time. Based on the

analysis on the web service logs of TerraFly, it is observed that there were millions of

web requests received on the Reader server over the year of 2012, i.e., more than 450

visits per second on average. However, this workload varies significantly on hourly

basis. Figure 3 shows a typical one-day TerraFly workload trace. It shows that the re-

quest rate drops to 150 (visits per second) in the morning (around 9:00 am) while rising

quickly up to 900 (visits per second) in the afternoon. It would be more efficient to

turn off some Reader VMs at times.

Assuming the variation in workload which follows such a time-related pattern is pre-

dictable, by virtualizing the Reader Tier of TerraFly we can easily save resources when

the workload intensity is low by simply turning off some Reader VMs, and as the work-

load intensity increases, we can bring back them online to process the additional requests.

To further quantify the resource savings, we replay this one-day trace using two de-

ployment schemes for the Reader Tier: the static scheme deploys the Reader tier on the

fixed number of computing nodes throughout the entire experiment (2, 4, 6, 8 and 10

nodes respectively); the dynamic schema only assigns sufficient nodes needed by the

workload in every hour. The response time is used as the performance metric and the

desired QoS target is set to (0.7 s). Figure 4 compares the average response time in

every hour using different schemes. We use node-hour as the cost unit in terms of
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computing resource. By measuring the number Ni of active nodes used in the ith hour,

the total amount of the resource during certain time period T (hours) can be computed

as
XT
i

Ni.

Figure 4 compared the measured response times in every hour using different deploy-

ments as well as the total resource costs needed in one day. As we can see among the

static deployment configurations, only the 10-node configuration can always meet

the desired target, however at the cost of the highest total resource amount (240

node-hour); others suffer different levels of QoS violation as the workload changes

dynamically.

In contrast, the dynamic deployment scheme is able to track the QoS target all the time

with only 148 node-hour, saving about 23% of the resources compared to the static 8-node

configuration which cannot satisfy the QoS target, and saving 38% of the resources com-

pared to the static 10-node configuration which can satisfy the QoS target. Its resource

utilization is as efficient as the 6-node configuration but delivers much better performance.
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The above example shows strong evidence of the importance of map service

virtualization and its online resource management. Currently, our traditional TerraFly

system is deployed on the 8 physical Reader Tier nodes and 2 Loader Tier nodes. It

works well for supporting up to 800 concurrent users, and about 6GB fresh data can be

load each hour by the 2 Loader nodes (Refer to 4.3 Resource Model); but the system

scalability is limited due to its fixed physical capacity. It cannot shift resources between

Reader and Loader Tiers even when one tier has idle resource and another has insuffi-

cient resources. The inability of shifting resources between tiers results the waste of

resources.

However, there are several challenges to dynamic resource management of a virtua-

lized web map service. First, the dynamics in the realistic workload causes the demand

of CPU consumption change over time; second, resources also need to be dynamically

allocated between the Reader Tier to optimize response time and the Loader Tier to

keep the data fresh.

These challenges can be well addressed by an autonomic VM-based resource man-

agement solution which can flexibly partition shared resources and allocate resource

on-demand for dynamic workload in order to guarantee performance and improve re-

source utilization.

Autonomic resource management in v-TerraFly
General approach

Figure 5 illustrates the framework of our proposed autonomic resource management

system for v-TerraFly, which consists of three key modules. Please see the notes in

Table 1 Parameter description. In this paper, we focus on the resource management for

both Reader and Loader Tiers, since they are the most resource intensive tiers in v-

TerraFly.

As a workload executes on the VMs, the Workload Sensor monitors the actual work-

load at current time step, noted as w(t). The Workload Predictor then forecasts the fu-

ture workload w(t + 1) for the next time step based on a prediction model. Based on

the predicted workload, the Reader profile and Loader profile which are trained offline

are used to estimate their resource demands for time t + 1, denoted by rR(t + 1) and

rL(t + 1) respectively. The estimated resource demands are then used by the Resource

Allocator to make the actual allocations by assigning appropriate number of VMs to

the Reader Tier and Loader Tier. Together, these modules form a closed-loop which

runs continuously (e.g., every hour), for v-TerraFly’s resource control and optimization.
Workload 
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Figure 5 Autonomic resource management system for v-TerraFly.



Table 1 Parameter description

Parameter Description

w(t) Workload at time t

rR(t) Reader VM CPU resource need at time t

rL(t) Loader VM CPU resource need at time t

wDes
h Horizontal double exponential smoothing prediction

wDes
d Vertical double exponential smoothing prediction

w′ Two-level double exponential smoothing
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In the rest of this section, we describe the key components of this autonomic system in

details.

Workload prediction

In order to accurately and timely predict the workload on v-TerraFly, we propose new

forecasting techniques to discover and exploit patterns in user visiting behaviors such

as those observed in Figure 3. Specifically, we propose a new two-level time series pre-

diction approach to build a prediction model based on the historical workload mea-

surements, i.e., the request rate observed from the Reader Tier of v-TerraFly. Based on

such a model, the workload predictor in v-TerraFly is able to estimate the workload in-

tensity for the next time period.

Time series analysis techniques are widely applied in economic data analysis to pro-

vide statistical prediction and therefore guide business decisions. A variety of time

series prediction methods are available such as the Moving Averages, Linear Regression

and Exponential Smoothing [14-16]. In this paper, the TerraFly workload prediction

based on the double exponential smoothing (DES) method [17] which is suitable for

discrete data sequence with repeated changing patterns.

DES is a smoothing-based forecasting method that can be applied to time series data,

a sequence of observations with equally spaced intervals, expressed as {Y(0), Y(1),..,

Y(t)}. Then in DES, the estimate for the t + 1 time intervals can be computed as:

YDes t þ 1ð Þ ¼ 2S′ tð Þ−S″ tð Þ þ α

1−α

� �
S′ tð Þ−S″ tð Þ� �

S′ tð Þ ¼ αY tð Þ þ 1−αð ÞS′ t−1ð Þ

S″ tð Þ ¼ αS′ tð Þ þ 1−αð ÞS″ t−1ð Þ

The equation shows a linear combination of smoothing based statistics associated

with a smoothing weight α. The first two components reflect the variation of mean of

the overall data while the third tracks the trend of the data. S’ is denoted as the singly-

smoothed series which smoothed the next measure by assigning a exponentially de-

creased smoothing weight to the data of the series and computing the weighted average

of the observed series. More intuitively, the most recent data is of more importance to

the current estimates, i.e., the weight assigned to the data k periods old is (1 − α)k,

therefore the closer to 1 of the value of α, less smoothing effect but greater weight to

the recent changes. S″ is denoted as the doubly-smoothed series computed by
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recursively applying the same exponential smoothing operation to the singly-smoothed

series S’ using the same smoothing weight.

In order to perform the time-series-based forecast in v-TerraFly, the workload can be

represented as a sequence of intensity measurements that come from a continuing time

series at time intervals T, denoted as {… w(t-2 T), w(t-T), w(t)}. More specifically, the

workload measurement can be either the average request rate or the number of concur-

rent client sessions observed in every hour; the time interval T can be either one hour

or one day (24 hour).

We propose a new two-level double exponential smoothing forecasting model to cap-

ture both the daily pattern and hourly pattern of v-TerraFly workload as follows.

w′ t þ 1ð Þ ¼ μhw
Des
h t þ 1ð Þ þ μdw

Des
d t þ 1ð Þ ð1Þ

where wDes
h is the horizontal double exponential smoothing prediction based on the

hourly pattern in the workload, and wDes
d is the vertical double exponential smoothing

prediction based on the daily pattern of the workload.

wDes
h tð Þ ¼ 2S′ t−1ð Þ−S″ t−1ð Þ þ αh

1−αh

� �
S′ t−1ð Þ−S″ t−1ð Þ� � ð2Þ

wDes
d tð Þ ¼ 2S′ t−24ð Þ−S″ t−24ð Þ þ αd

1−αd

� �
S′ t−24ð Þ−S″ t−24ð Þ� � ð3Þ

More specifically, wDes
h tð Þ, called horizontal prediction, is predicted based on { w(t − 3),

w(t − 2),w(t − 1)} from a hourly series; while wDes
d tð Þ , vertical prediction, is based on the

observation series { w(t − 48),w(t − 24),w(t)} that are extracted vertically at the same

hours but from continuing days, i.e., a 24-hour vertical time span. The associated μ

factors which are set between 0 to 1 are used to balance the importance between

three components.

Since each level of DES operation is associated with a smoothing weights, we denote

the weights in horizontal and vertical predictions as αh and αd respectively. Then the

proposed two-level DES model can be considered as a function of αh and αd, given ob-

served workload series. Therefore the workload model is trained continuously online as

soon as the new measurement is observed by optimizing both αh and αd to minimize

the weighted sum of squared errors between the prediction and the actual observa-

tion. Once the model is updated, it applies to the system immediately for the next

prediction.

Performance profiling

Performance profiles relate the workload of the Reader and Loader Tiers to their re-

source demands according to the desired performance. Taking the predicted work-

load w(t + 1) as the input, these profiles are used by the Resource Allocator to

allocate resources to the Reader and Loader Tiers dynamically in order to achieve the

desired QoS.

For the Reader Tier, since the workload consists of online web requests, the intensity

of the workload is specified by request rate w(t) as discussed in Section Workload pre-

diction. The relevant performance metric is the average response time RT(t) of the
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requests completed during each control period (e.g., one hour). It can be considered as

a function of the workload and the number of VM nodes rR(t) allocated to Reader Tier.

Thus,

RT tð Þ ¼ ∅ w tð Þ; rR tð Þð Þ ð4Þ

The strategy to build this mapping is offline profiling. Given a specific workload w,

we map the number of nodes n allocated to the Reader Tier to the performance RT by

iterating over the allocation space and collecting corresponding performance measure-

ments under each allocation candidate. Then we repeat the above step under different

workloads by varying the number of the concurrent users in v-TerraFly. Figure 6

illustrates the mapping results by using two to ten Reader nodes to serve a work-

load with 40 to 240 concurrent users. Such a mapping provides the least number

of VM nodes needed for a given workload to meet a specific QoS target. For ex-

ample, if desired response time is set to 0.7 second, then the minimal number of

VMs needed is two for a workload with about 40 users and 10 when there are

more than 230 concurrent users.

In order to reduce the time required for performance profiling, we collected only a

subset of the Reader configurations under a subset of the workload intensities, and use

linear regression to build the Reader Tier entire performance profile. As shown in

Figure 7, we got the profile mode and the R square is 0.9131.

We profiled both the CPU and I/O resource usages of the Reader Tier, as shown in

Figure 7. The results show that both the CPU and I/O demands follow the exact same

pattern as the workload varies, which validates the use of identical VM nodes as the re-

source allocation unit of the Reader Tier.

For the Loader Tier, since the workload mainly consists of batch jobs which loads

raw data into organized repository, the workload intensity is given by the concurrency

level, i.e., the average throughput achieved every control period. Allocating more VMs

to the Loader Tier allows it to obtain higher throughout and finish the loading process

sooner. We use offline profiling to create a model for Loader that represents the rela-

tionship between the throughput (I/O) and the number of VM nodes for the Loader

Tier. We use different amount of map Loader nodes to load a given imagery dataset
0

0.2

0.4

0.6

0.8

1

1.2

1.4

40 60 80 100 120 140 160 180 200 220 240

P
ag

e 
R

es
p

o
n

se
 T

im
e 

(s
ec

o
n

d
s)

Workload (concurrent user )

2 nodes

4 nodes

6 nodes

8 nodes

10 nodes

Figure 6 Reader tier profiling (Response Time).



y = 2.4631x + 154.06
0

2

4

6

8

10

12

0

100

200

300

400

500

600

700

800

20 60 100 140 180 220 260

I/O
 C

o
st

 (
M

B
/S

)

C
P

U
 C

o
st

   
(%

)

Workload (concurrent user)

CPU
I/O
Linear (CPU)
Linear (I/O)

R² = 0.9131

Figure 7 Reader tier profiling (CPU Cost).

Lu et al. Journal of Big Data 2014, 1:4 Page 11 of 19
http://www.journalofbigdata.com/content/1/1/4
and monitor the throughput. We then use linear regression to learn the entire model

based on the training data. As shown in Figure 8, the throughput of Loader Tier is al-

most linear with respect to the number of Loader VMs. Using linear regression, the R

square is only 0.9996.

QoS model

In this section, we propose a novel QoS model to consider both the responsiveness in

serving user mapping requests and the quality of returning geographic information. In

a virtualized web mapping system, both Reader and Loader VMs are usually co-hosted

in a cluster/data center and compete for the common physical resources, while the

former guarantees acceptable response time and the latter keeps the imagery data up to

date. Since the performances from both tiers are critical, we need to well balance the

importance between them especially when the total resource capacity is constrained.

Therefore, a new QoS model is defined to represent the overall system performance at

measuring time period t.

QoS tð Þ ¼ r tð Þ � f tð Þ ð5Þ

where r(t) and f(t) are the performance metrics for the Reader and Loader Tier

respectively.
0

5

10

15

20

25

30

35

40

45

100 200 300 400 500 600 700 800 900 1000

Th
ro

ug
hp

ut
   

(G
B

/H
ou

r)

CPU Cost (%)

Throughput

Linear Model

R² = 0.9996y = 0.0389x + 0.94

Figure 8 Loader tier CPU usage profiling.



Lu et al. Journal of Big Data 2014, 1:4 Page 12 of 19
http://www.journalofbigdata.com/content/1/1/4
The former QoS component r(t) is called the normalized response time, which mea-

sures the quality of web mapping services at time t and can be calculated as following:

r tð Þ ¼ RTref

.
RT tð Þ ð6Þ

where RTref is the desired average response time at Reader Tier and RT(t) is the actual

performance measurement at time t. The higher of the value, the quicker the user re-

quests served at Reader Tier.

The latter QoS component f(t) is called the cumulative data freshness which mea-

sures the quality of data-loading process at Loader Tier at time t. It is calculated recur-

sively based on the previous data freshness value and the current data incremental rate,

expressed as following:

f tð Þ ¼ 1−ρð Þ � f t−1ð Þ þ ΔD tð Þ=Dref ð7Þ

where ρ is the decaying factor (predefined in the range of 0 to 1) indicating the data

quality loss in terms of freshness during the past time period; Dref is the desired

amount of fresh data per time period, ΔD(t) is the actual amount of data loaded during

time period t. Initially phase t = 0, f(0) = ΔD(0)/Dref.

For instance, assuming we need to maintain Dref = 300GB amount of fresh data in re-

pository every control period and the data freshness value at previous time period was f

(t − 1) = 0.9 will be reduced to 0.864 at current time t given a decaying factor of 4.0%.

If there is 15GB data loaded during current time period, then the incremental rate is

0.05 and therefore the freshness value f(t) = 0.864 + 0.05 = 0.914. Intuitively, we can say

the current data quality is 91.4% fresh. Note that it is evident that the data freshness

can be adjusted by controlling data incremental rate via resource management at

Loader Tier.

By maximizing the QoS as computed above, the v-TerraFly resource management

system automatically optimize the response time and data freshness simultaneously,

which are both important to the map service received by users.

Results and discussion
Setup

This section evaluates the proposed virtual web map service system and its autonomic

resource management using the v-TerraFly prototype and real traces collected from the

TerraFly production system. As a typical web application, TerraFly usually provides a

variety of web services via IIS (Internet Information Services) to serve online web re-

quests. The test bed is set up on two Dell PowerEdge 2970 servers, each with two six-

core 2.4GHz AMD Opteron CPUs, 32GB of RAM, and one 1 TB 7.2 RPM SAS disk.

Windows Server 2008 and Hyper-V are installed to provide the virtualization environ-

ment for v-TerraFly. The resource management system for v-TerraFly is hosted on the

hypervisor’s management VM. All guest VMs including both Reader and Loader Tier of

TerraFly are installed Windows Server 2008 Data Center as the OS. Each Reader and

Loader VM is configured with one core CPU, 2G memory, and 64 GB disk. The re-

source allocation is done by starting or stopping VMs via Hyper-V PowerShell Script.
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Workload prediction

We first evaluate the accuracy of our proposed two-level DES workload prediction al-

gorithm by comparing it to two one-level DES approaches based on hourly pattern only

(Horizontal) and daily pattern only (Vertical) respectively, as well as history average

statistics (History Average). The evaluation is performed using a real one-month

workload trace of the November 2012 extracted from the production TerraFly sys-

tem’s logs. To conduct the experiment more efficiently, the real trace is replayed

with a 60-fold speedup, i.e., using one minute in the experiment to simulate one

hour in real world. The prediction and updates of the workload models (smoothing

weights αh and αd, refer to Eqs. 2 and 3) are performed every minute to adapt to

the dynamics.

Figure 9 compares the online prediction errors of different approaches. Our proposed

two-level prediction method delivers significantly better accuracy in predicting the re-

quest rate of one month workload. Overall, the 90 percentile average error rate of our

two-level method is 10.01% with the lowest standard deviation of 145.3, both much

lower than the other three prediction approaches which are 45.67% (Horizontal),

28.92% (Vertical), and 25.14% (History Average) respectively. These results demonstrate

that our proposed method can effectively exploit both the hourly pattern and daily pat-

tern in the workload and achieve accurate workload prediction.

Resource management of Reader Tier

As discussed in Section Performance profiling, based on the predicted workload, the

v-TerraFly resource management system automatically allocates resources to the Reader

and Loader Tiers in order to optimize the QoS. This section evaluates the resource man-

agement for the Reader Tier alone and demonstrates whether it can achieve the Reader

Tier’s response time target with the least amount of resources.

In the experiment, a real daily workload trace of October 4th 2012 is replayed against

v-TerraFly with a 60-fold speedup. The resource allocator adjusts resources allocation

every 1 minute. The QoS target is set to 0.7 s in response time. Based on the profiling,

the performance model of Reader Tier is R(t) = 2.4631W(t) + 154.06, (as shown in

Figure 7).

Figures 10 and 11 compare the response time and allocations of our dynamic ap-

proach to static 6, 8, 9 and 10-node deployment plans respectively. From the results,
Figure 9 Error and standard deviation of different workload prediction approaches.
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we can see that the online dynamic approach is able to achieve the response time target

all the time throughout the entire experiment. Compared to the 6-node static plan

which achieves 0.634 second in average page response time, the online dynamic plan

improves the performance by 32.18%, i.e., 0.430 second in average response time, but at

the cost of only 5.6% more resource allocation, i.e., 8 additional node-hour. There are

13 data points where its response time exceeds 0.7 second in the 6-node static plan,

which causes as much as 54.17% QoS violation; in contrast, no QoS violation occurs in

the dynamic plan.

Compared to the 8-node static plan, the dynamic plan saves as much as 20.83% of

total resources, i.e., 40 node-hour. Although the static 8-node plan allocates substan-

tially more with surplus resources, it still causes three QoS violations during the experi-

ment. The 9-node static plan meets the QoS target all the time except the 19th hour,

and it costs 29.63% more total resources than the dynamic plan. The 10-node static

plan is the only static plan that meets the QoS target all the time, but it costs 36.67%

more total resources than the dynamic plan.

Overall, it is evident that the online dynamic deployment plan can efficiently allocate

resources to the Reader Tier while at the same time meet the response time target by

flexibly adjusting its VM assignments in an online manner.
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Resource management of both Reader and Loader Tiers

This section evaluates the proposed autonomic resource management approach for

both Reader and Loader Tiers. Based on the QoS model defined in Section QoS model,

the importance of both tiers needs to be balanced in order to optimize an overall QoS

value which not only guarantees the responsiveness of map service but also maintains

the data freshness of returned maps.

In the experiment, we use the same workload trace described in Section Resource

management of Reader Tier, and compare our proposed approach to the traditional

static deployment plan. The traditional method allocates a fixed number of nodes to

Reader Tier to satisfy average response time by past experience and gives rest nodes to

Loader Tier. Specifically, it assigns 7 nodes to the Read Tier and 3 nodes to the Loader

Tier in order to achieve an average response time of 0.9 second and 303.3GB fresh data

per day (average f(t) = 0.809, refer to Eq. 7).

Figures 12 and 13 compare the performance of the proposed dynamic plan to the

traditional static plan in both response time of the Reader Tier and throughput of the

Loader Tier. The static plan achieves an average response time of 0.897 seconds, while

the dynamic plan shows slightly better 0.873 seconds. The latter also achieves higher

average throughput (194.6 thousands requests per day) than the static one (185.1

thousands requests per day).

Although the performance improvement on the Reader Tier is not significant,

Figure 14 shows that the proposed dynamic plan achieves much better overall QoS

(26.19% improvement). The reason behind this substantial improvement is because the

dynamic plan saves resources from the Reader Tier and allocates them to the Loader

Tier, thereby making data loading faster without sacrificing Reader performance. Re-

sources are dynamically balanced between these two tiers as the workload changes,

where the autonomic resource management allocates only the necessary number of

VM nodes to the Reader Tier to satisfy current workload, and reserve the rest to

Loader Tier to load new data.

For example, as showed in Figure 15, from Hour 7 to 10, since the workload on

Reader Tier is less intense, the dynamic plan allocates more resource to the Loader Tier

to allow the new data to be loaded as fast as possible. As a result, the dynamic plan

loads much more new data (473.3GB Per day) at a varying loading rate than the trad-

itional plan (303.3GB Per day), which loads data at a fixed rate. And the QoS value of
Figure 12 Result: response time improvement.
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the dynamic plan (Avg QoS = 1.079, refer to Eq. 5) is 26.20% higher the traditional plan

(Avg QoS = 0.855, refer to Eq. 5).

In summary, our proposed autonomic resource management approach is able to

automatically optimize the tradeoff between service responsiveness and data freshness

by balancing the resource allocations between the Reader and Loader Tiers.

Related work
In the geospatial discipline, web-based map services can significantly reduce the data

volume and required computing resources at the end-user side [18]. To the best of our

knowledge, v-TerraFly is the first to study the virtualization of typical web map services

and propose QoS-driven resource management for a virtualized web map service

through workload forecasting and dynamic resource allocation [19].

Various automatic forecasting algorithms have been studied in the related work [20],

including different kinds of exponential smoothing. The work of Brown [16] and

Gardner [17] led to the use of exponential smoothing in automatic forecasting for ex-

ample, like Stellwagen & Goodrich's research at 1999 [15-17]. Hyndman (2002) devel-

oped a more general class of methods with a uniform approach to calculate the

prediction interval [14,15]. The workload prediction algorithm proposed in this paper
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is based on exponential smoothing, but it is novel in the use of two levels of double ex-

ponential smoothing to capture both hourly pattern and daily pattern in the workload,

which achieves much higher accuracy than traditional exponential smoothing methods.

In particular, Dinda et al. studied prediction-based best-effort real-time service to

support distributed, interactive applications in shared computing environments. Two of

the examples are an earthquake visualization tool and a GIS map display tool, which

were shown to benefit from the service [21]. However, the workload prediction is based

on linear prediction which is often not sufficient for real-world dynamic workloads. In

this paper, we proposed a two-level exponential smoothing algorithm which shows

good prediction accuracy for real TerraFly workloads.

Various types of solutions have been studied in the literature to address the problem

of autonomic VM resource management. Different machine learning algorithms have

been considered to model VM resource usages [22-25]. Although this article focused

on virtualized geo-databases, we believe that our proposed VM resource allocation ap-

proach is generally applicable to the virtual resource management for other types of

Big Data handling applications. The application-specific part of this approach is geo-

database system applications with large numbers of users. Feedback control theory has

also been used to adjust VM resource allocations, which are often based on models

trained to identify the system and build the controller [26-29]. These various solutions

are complementary to this paper’s work which focuses on the management of virtua-

lized web map services. Meanwhile, this paper proposes a unique QoS model to capture

multiple important objectives and a new method to optimize resource allocation across

multiple competing tiers, which has not been studied in the related work and can be

applied to manage other multi-tier applications with similar characteristics.

Conclusions and future work
Web map services become increasingly widely used for various commercial and per-

sonal uses. Virtualization can greatly facilitate the deployment of web map service sys-

tems and substantially improve their resource utilization. To fulfill this potential, the

resource management of a virtualized web map system needs to be able to handle the
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dynamic workloads that the system typically serves and satisfy the often competing de-

mands of the various tiers of the system.

This paper presents a solution, v-TerraFly, to address these challenges. v-TerraFly is

created by virtualizing the various tiers of a typical map service system and allowing re-

sources to be dynamically allocated across the tiers. The resource management is done

by predicting the workload intensity based on historical data and estimating the re-

source needs of the map service’s Reader and Loader Tiers based on their performance

models. A unique QoS metric is then defined to capture the tradeoff between the ser-

vice responsiveness and data freshness, and it is used to optimize the resource alloca-

tion to the Reader and Loader VMs.

Experiments based on real TerraFly workload show that our system can accurately

predict the workload’s resource demands online and automatically allocate the re-

sources accordingly to meet the performance target and save substantial resource cost

compared to peak-load-based resource allocation. It can also automatically optimize

the tradeoff between responsiveness and data freshness by dynamically balancing the

shared resources between the Reader and Loader VMs.

In our future work, we will improve the scale of v-TerraFly, conducting larger experi-

ments and employing live VM migration as an additional mechanism for optimizing re-

source management. We will also explore how to apply the principle of v-TerraFly to

other applications that have similar dynamic and multi-tier characteristics as a web

map service.
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