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Abstract 

In engineering applications, optimal parameter design is crucial. While Slime Mould 
Algorithm (SMA) excels in parameter discovery under constrained conditions, it faces 
challenges in achieving global convergence and avoiding local opsecttimal traps 
in complex tasks. This paper introduces an enhanced variant of SMA, termed CCHSMA, 
which integrates a Chaotic Local Search (CLS) mechanism to improve initial population 
diversity and combines Covariance Matrix Adaptation (CMA) and Harris Hawks Optimi-
zation (HHO) strategies to enhance global search efficiency. CCHSMA aims to improve 
search quality and reduce the likelihood of getting trapped in local optima. We evalu-
ated CCHSMA’s effectiveness by benchmarking it against the standard SMA and its 
variants using 30 CEC2017 test functions, and compared its performance with seven 
notable meta-heuristic algorithms and ten advanced swarm intelligence variants. The 
experimental results demonstrate that CCHSMA outperforms the other algorithms 
tested on the benchmark functions. To further validate its practical utility, CCHSMA’s 
performance was also benchmarked against leading algorithms in real-world engineer-
ing applications. This paper uses detailed statistical methods, including the Wilcoxon 
signed-rank test and the Friedman test, to validate the comparative results. Our find-
ings show that CCHSMA outperforms other algorithms in solving complex engineering 
optimization problems such as tension/compression spring design, pressure vessel 
design, and three-bar truss design, proving to be a robust tool for complex engineer-
ing optimization. Its enhanced initial population diversity and improved global search 
efficiency are essential for effectively addressing diverse engineering challenges.

Keywords: Slime mould algorithm, Engineering design, Swarm intelligence, 
Covariance matrix adaptation

Introduction
In practical applications, the efficacy of project design significantly influences con-
struction and operational costs. As project scales expand, achieving high-quality, cost-
efficient designs becomes increasingly vital. The design process involves formulating 
complex mathematical models with objectives, constraints, and various characteristics 
like discontinuity, nonlinearity, and nonconvexity. Researchers have explored diverse 
methods to address these challenges, each with unique strengths and limitations.

In mathematical modeling, Pucker et  al. applied the SIMP method to geotechnical 
engineering, demonstrating topology optimization’s potential and validating it through 
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real-world cases [1]. Hsu et  al. optimized the fuzzy proportional-difference control-
ler using generalized fuzzy rules, proving its robustness and versatility in engineering 
design through variable monotonicity analysis [2]. Herskovits et al. proposed numerical 
models for simultaneous analysis and design optimization and multidisciplinary design 
optimization, employing the feasible arc-in-point algorithm to reduce computational 
effort [3]. Sanchis et  al. improved the normalized normal constraint method with an 
enhanced utopian hyperplane formulation, facilitating better Pareto boundary solution 
distribution in mechanical and structural design optimization [4].

In model automation, Esche et al. advanced chemical engineering models to automate 
simulation and optimization workflows [5]. Li et al. leveraged cloud-based resources to 
decompose engineering optimization into interconnected sub-tasks, enhancing optimi-
zation, virtualization, and computational efficiency [6].

Swarm intelligence algorithms are the core of this paper. Due to their computational 
efficiency and convergence to the optimal solution, they are very popular in many opti-
mization fields such as networking [7, 8], image segmentation [9], the Internet of Things 
[10–12], economic emission [13, 14] and engineering design [15–17]. In engineering 
optimization problem, Kashani et al. reviewed various swarm intelligence algorithms in 
structural engineering, providing benchmarking insights and comparing optimization 
techniques [18]. Singh et al. examined various aspects of engineering problems, includ-
ing constraints, objectives, and variables, to facilitate problem-solving [19]. Nasir et al. 
detailed water cycle algorithms and their applications across engineering fields [20]. 
Abualigah et al. categorized meta-heuristic optimization methods into basic, improved, 
and hybrid categories, reviewing their applications in engineering design [21].

Swarm intelligence algorithms, mimicking natural organisms’ behavior, include 
Slime Mould Algorithm (SMA) [22, 23], Particle Swarm Optimization (PSO) [24], 
Salp Swarm Algorithm (SSA) [25], Bat Algorithm (BA) [26], Rime Optimization Algo-
rithm (RIME) [27], Artificial Bee Colony (ABC) [28], Firefly Algorithm (FA) [29], Col-
ony Predation Algorithm (CPA) [30], Differential Evolution (DE) [31], Harris Hawks 
Optimization (HHO) [32], Weighted Mean Of Vectors (INFO) [33], Grey Wolf Opti-
mizer (GWO) [34], Polar Lights Optimization (PLO) [35], Hunger Games Search 
(HGS) [36], Runge Kutta Optimizer (RUN) [37], Liver Cancer Algorithm (LCA) [38], 
Artemisinin Optimization (AO) [39], Fata Morgana Algorithm (FATA) [40], Parrot 
Optimizer (PO) [41], Educational Competition Optimizer (ECO) [42], and Thermal 
Exchange Optimization (TEO) [43], and improved algorithms like Gaussian Bare-
bone Harris Hawks Optimization (GBHHO) [44], Augmented Lagrange Constrained 
Particle Swarm Optimization (ALCPSO) [45], Simultaneous Sensor Calibration and 
Deformation Estimation (SCADE) [46], Enhanced Grasshopper Optimization Algo-
rithm (EGOA) [47]. In practical applications, Sesok et al. optimized pile placement in 
mesh foundations using simulated annealing, demonstrating resource efficiency [48]. 
Akay et  al. applied the ABC algorithm to various engineering problems, comparing 
it with other improved swarm intelligence algorithms [49]. Wang et  al. introduced 
the gravitational search strategy-assisted ride optimization algorithm for engineering 
design [50]. Zhang et al. validated the improved sparrow searching whale optimiza-
tion algorithm in engineering problems [51]. Arora et al. proposed the modified but-
terfly optimization algorithm for mechanical optimization [52]. Cheng et al. enhanced 
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numerical search capabilities in structural algorithms with the fuzzy adaptive teach-
ing–learning-based optimization algorithm [53]. Ye et  al. combined hybrid optimi-
zation with data mining in the sequential approximate optimization method for 
improved resource utilization [54]. Galvan et al. developed the predictive parameter 
pareto genetic algorithm for multi-objective optimization in magneto-fluidic thermal 
transport systems [55]. Amir et al. utilized a sand cat swarm optimization algorithm 
to determine the direction and speed of motion through defined adaptive strategies, 
thereby achieving promising results in engineering optimization problems [56]. Yang 
et al. used arithmetic optimization algorithm to combine two strategies, opposition-
based learning and the spiral modelling, in order to improve the global search and 
speed up the clustering of solutions at a later stage, and experiments showed that the 
algorithm performs well in engineering problems [57]. Hijjawi et al. combined cuckoo 
search algorithm operators to enhance their search capability, the algorithm called 
AOACS, and applied it to engineering design problems [58]. Hussien et al. optimized 
the beluga whale optimization using gaussian local mutation and transition factor 
strategies, demonstrating good performance in engineering design problems [59]. 
Zhang et al. improved the honey badger algorithm using seven mathematical spirals 
with polar diameters and polar angles. It demonstrated better convergence perfor-
mance while solving engineering design problems [60]. Sait et  al. combined swarm 
intelligence algorithm with artificial neural networks have achieved more effective 
results in practical engineering problems [61].

Since the SMA was proposed, researchers in various fields have carried out relevant 
studies and made relevant progress. Mostafa et al. confirmed the extraction of photo-
voltaic cell parameters by using a SMA [62]. Gurses et al. compared four different algo-
rithms including SMA and proposed the improved HSMA-SA for optimal value search 
for optimization problems [63]. In the field of wireless communications, Li et al. have 
proposed a novel binary slime mold optimization algorithm for the spectrum allocation 
model to address the spectrum allocation schemes [64]. AlRassas et al. augmented the 
time-series model prediction with an improved ANFIS-SMAOLB as a means of predict-
ing oil production [65]. Agarwal et  al. proposed SMOA to shortest collision free path 
for robots to reduce the cost of time and money [66]. Pawani et al. proposed a compre-
hensive learning wavelet-mutated SMA for finding the optimal solution to the cogenera-
tion scheduling problem with nonlinear and discontinuous constraints [67]. Peng et al. 
proposed the PDM-TSMA method to enhance the process of node localization within 
wireless sensor networks [68].

However, SMA faces challenges such as prolonged search duration and diminished 
search ability over time, including difficulty in escaping local optima. To address these 
limitations, this paper introduces the Chaotic Covariance Harris Slime Mould Algo-
rithm (CCHSMA), designed to improve convergence speed and optimal solution iden-
tification. CCHSMA integrates the Chaotic Local Search (CLS), Covariance Matrix 
Adaptation (CMA) [69] and Harris Hawks Optimization (HHO) mechanisms. CLS 
enhances the quality of the initial population, CMA employs covariance computation 
with controlled step size, and HHO strengthens the mid-search process, synergistically 
enhancing SMA’s performance.

The key contributions of this paper are as follows:
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• Development of CCHSMA, an advanced version of the SMA, demonstrating 
enhanced search efficiency, local search capabilities, and the ability to avoid local 
optima.

• Performance evaluation of CCHSMA against leading swarm intelligence algorithms 
using the IEEE CEC2017 benchmarks, showcasing its superior efficacy.

• Application of CCHSMA in engineering design optimization, effectively translating 
real-world constraints into mathematical models, with successful implementation in 
the Tension/Compression Spring Design (TCSD), Pressure Vessel Design (PVD), and 
Three-Bar Truss Design (TBTD).

The experimental results validate CCHSMA’s effectiveness in engineering optimi-
zation, highlighting its reliability and applicability. This paper is structured as follows: 
Section "Background—SMA" introduces the fundamentals of SMA. Section "Proposed 
–CCHSMA method" elaborates on the CLS, CMA, and HHO mechanisms, explaining 
the framework’s structure and rationale. Section "Experiment design and results" com-
pares CCHSMA with other prominent algorithms. Section "Engineering problems" dis-
cusses CCHSMA’s application in engineering design challenges. Section "Conclusions" 
concludes with a summary of findings and prospects for future research.

Background of the SMA
The SMA is modeled on the foraging behavior of slime moulds, particularly their com-
plex movement patterns. This algorithm draws a analogy between slime mould foraging 
dynamics and optimization processes. During foraging, both the spatial distribution and 
the quantity of food significantly influence the slime mould’s path. The distribution is 
influenced not only by proximity but also by the quantity of food, with greater abun-
dance exerting a stronger pull on the slime mould, effectively increasing its ’weight’ in 
the decision-making process.

Slime moulds autonomously determine their actions by evaluating the food’s quantity 
and density. If highly concentrated food sources are far from the slime mould, their influ-
ence on its behavior diminishes. Three key processes encapsulate slime mould behavior, 
providing a basis for mathematical modeling of their foraging patterns.

Approaching food

The slime mould selects its foraging path by analyzing pheromones, leading to varied 
weighting in its decision-making process. This behavior is mathematically represented 
as follows:

where X(t) represents the current position generated by the slime mould at iteration 
t , Xb is the current population optimum, XA and XB represents two randomly selected 
solutions, and W  denotes the weights influencing the foraging direction, r is a random 
value generated by a random function.

(1)X(t + 1) =

{

Xb(t)+ vb · (W · XA (t)− XB (t)) r < p
vc · X(t) r ≥ p
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The probability p is determined by Eq. (2):

where i ranges from 1 to n , S(i) denotes the fitness value of X , and bF  is the best fitness 
value observed.

The equation of vb is defined in Eqs. (3) and (4).

where max_t indicates the maximum number of iterations, and t represents the current 
number of iterations.

The value of vb operates within the range [−a, a] and gradually converges to 0 as the 
number of iterations increases. Similarly, the variable vc , defined in Eqs.  (5) and (6), 
oscillates between [−b, b] and eventually converges to 0.

Wrapping food

This section models the slime mould’s behavior in response to varying food qualities, 
introducing different levels of food quality as depicted in Eq. (7):

here, LB and UB represent the search space’s lower and upper bounds, respectively. The 
variables rand and r are random values within the range [0,1], and z is set to 0.03.

Finding food

The variable W  , representing food concentration, indicates that higher values corre-
spond to higher food concentrations, thus attracting the slime moulds more effectively. 
The weight W  evolves with each iteration of the algorithm, adapting the attractiveness of 
the food. The formula for W  is:

(2)p = tanh
∣

∣S(i)− bF
∣

∣

(3)vb = [−a, a]

(4)a = arctanh

(

−

(

t

max_t

)

+ 1

)

(5)vc = [−b, b]

(6)b = 1−

(

t

max_t

)

(7)X∗
=







rand · (UB− LB)+ LB rand < z
Xb(t)+ vb · (W · XA(t)− XB(t)) r < p

vc · X(t) r ≥ p

(8)W (SmellIndex (i)) =







1+ r1 · log
�

bF−S(i)
bF−wF

+ 1

�

condition

1− r1 · log
�

bF−S(i)
bF−wF

+ 1

�

other

(9)SmellIndex = sort(S)
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In Eqs. (8) and (9), SmellIndex represents a sorted array of fitness values derived from 
sorting S . bF  and wF  denote the best and worst fitness values, respectively. The variable 
r1 is a random value within [0,1], and condition refers to the first half of the sequence 
values in S(i).

Proposed SMA method
This section elaborates on optimizing the SMA to enhance its performance and 
generalizability.

Chaotic Local Search (CLS) mechanism

Effective initialization is a crucial aspect of optimization algorithms. Chaotic map-
ping, known for its unpredictability and non-repetitiveness, is a widely used method. 
It generates random numbers between 0 and 1, facilitating the exploration of diverse 
regions within the search space and accelerating convergence toward optimal solutions. 
We employ logistic mapping as a classic example of chaotic initialization, as defined in 
Eq. (10).

here, µ is the most important parameter, set to 4. t denotes the number of iterations, 
with X(t) as the current solution and X(t + 1) as the initialized result. Function test 
results indicate that the CLS mechanism’s initialization significantly enhances experi-
mental efficiency. However, due to reduced search capability in later stages, it necessi-
tates the integration with other mechanisms, such as CMA, detailed subsequently.

Covariance Matrix Adaptation (CMA)

Covariance measures the correlation between two variables, and the covariance matrix 
represents these correlations across multiple dimensions of a multidimensional random 
variable, as shown in Eqs. (11) and (12):

here, cij representes the covariance (mixed central moment) between the ith and jth com-
ponents of the n-dimensional variable 

−→
X = (X1,X2, ...,Xn)

Mutation targeting is facilitated by modifying the covariance matrix of the mutation 
distribution, increasing the probability of reproducing effective mutation steps. The 
rate of change is adjusted based on the number of strategy parameters. This adaptive 
mechanism operates independently of any specific coordinate system. CMA constructs 
a mutation distribution with exponentially decreasing weights for selected mutations, 
leveraging past generations’ selections to inform the direction and step size of new 
mutations. The distribution’s overall variance and shape should be adjusted on differ-
ent timescales. This approach mitigates the issue commonly encountered in swarm 

(10)(t + 1) = µX(t)(1− X(t))t = 1, · · · , n− 1

(11)C =







c11 c12 ... c1n
c21 c22 ... c2n
... ... ... ...
cn1 cn2 ... cnn







(12)cij = Cov
(

Xi,Xj

)

= E
{

[Xi − E (Xi)]
[

Xj − E
(

Xj

)]}

, i, j = 1, 2, ..., n
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intelligence algorithms, where optimal solutions may be located near suboptimal 
individuals.

The role of CMA in the algorithm can be delineated in three distinct steps:

1. The algorithm begins by generating random initial solutions, forming an overall pop-
ulation through a normal distribution centered around these solutions, as described 
by Eq. (13):

where Xi represents the ith individual in the population, with i takes a range of inte-
gers from 1 to the population size (popsize). t denotes the current number of itera-
tions, and m represents the center of mass of the population. σ is the step size. N 
is the multinomial normal distribution, and C is the n × n covariance matrix of the 
population, where n is the problem’s dimensionality.

2. This step involves selecting a portion of the optimal solutions for future populations, 
based on the weighted average operation determined in Eqs. (14) and (15):

where µ is the number of selected parent populations, less than popsize, and wi 
are the positive weights calculated from the previous generation, which sum to 1. 
m(t + 1) becomes the center of mass for the next generation.

3. Determining the step size σ(t) is crucial, as described in Eq. (16):

Relevant parameters are detailed in Eq. (17) to Eq. (21):

here, µeff is variance effective selection mass, with 1≤ µeff ≤ µ , and the evolutionary 
path Pc(t) is given by:

(13)Xi(t + 1) ∼ m(t)+ σ(t) · N (0,C(t)), i = 1, 2, . . . ,popsize

(14)m (t + 1) =

µ
∑

i= 1

ωi · Xi (t + 1)

(15)
µ
∑

i= 1

wi = 1, w1 ≥ w2 ≥ · · · ≥ wµ > 0

(16)σ(t + 1) = σ(t)exp

(

cσ

dσ

(

Pσ (t + 1)

EN (0, I)
− 1

))

(17)µeff =

(

µ
∑

i= 1

w2
i

)−1

(18)cσ =
µeff + 2

n+ µeff + 5
, dσ = 1+ 2max



0,

�

µeff − 1

n+ 1
− 1



+ cσ
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Among them:

Exponential smoothing is employed for the construction of the evolutionary path and 
p
(0)
c = 0 , leading to:

Finally, the covariance matrix is updated as follows:

The update process offers two options: one based on relative expectations within the 
parent generation, and the other based on expectations between successive generations.

Harris Hawks Optimization (HHO)

HHO is inspired by the cooperative hunting behavior of Harris Hawks in nature. It simu-
lates their search and capture strategies, dynamically adapting to different environments. 
In the algorithm, the optimal solution represents the prey, with the iterative process of 
HHO mirroring the hawks’ pursuit and capture strategies. HHO comprises two main 
phases: exploration and exploitation. The exploration phase involves two strategies for 
locating prey, while the exploitation phase uses four strategies for collaborative capture.

Exploration phase

The exploration phase in HHO employs equal probabilities for each search strategy, 
making them probabilistically equivalent for exploring different regions. The simulation 
incorporates the parameter q . The governing equations for this phase are as follows:

(19)
Pc(t + 1) = (1− c1) · Pc(t)

+

√

cc · (2− cc) · µeff

[

m(t + 1)−m(t)

σ (t)

]

(20)cc =
4 + µeff /n

n+ 4 + 2µeff /n

(21)c1 =
2

(n+ 1.3)2 + µeff

(22)p(t+1)
c = (1− cc)p

(t)
c +

√

cc(2− cc)µeff
m(t+1) −m(t)

σ (t)

(23)

C(t + 1) =
(

1− c1 − cµ
)

· C(t)+ c1 · Pc(t + 1)

·(Pc(t + 1))T + cµ

·

µ
∑

i= 1

ωi ·
(Xi(t + 1)−m(t))

σ (t)
·

(

(Xi(t + 1)−m(t))

σ (t)

)T

(24)cµ = min

(

1− c1, aµ
µeff − 2+ 1/µeff

(n+ 2)2 + αµ µeff/2

)

withαµ = 2

(25)X(t + 1) =

{

Xrand(t)− r1|Xrand(t)− 2r2X(t)| q ≥ 0.5

(Xbest(t)− Xmean(t))− r3(LB+ r4(UB− LB)) q < 0.5
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When q ⩾ 0.5 the Harris Hawk searches randomly, when q < 0.5, it bases its search on 
the results from the previous generation. The iteration number is denoted by t , where 
X(t) represents the population at the current iteration, and Xrand(t) is the randomly 
selected location of the Harris Hawk in the tth iteration. The term |·| represents the abso-
lute value. Xbest(t) is the best solution found up to the current iteration. The parameters 
q, r1, r2, r3 , and r4 are random values within the range [0,1] . Xmean(t) is the average posi-
tion of the current population, calculated as shown in Eq. (26).

Exploitation phase

In the HHO algorithm, once the Harris Hawk narrows down the prey’s location, it 
employs four capture strategies: soft besiege, hard besiege, soft besiege with progressive 
rapid dives, and hard besiege with progressive rapid dives, adjusting the approach based 
on the prey’s state.

The prey’s condition is characterized by two parameters: escape energy (E) and escape 
probability (r). The prey’s ability to escape is determined by |E|; if |E|≥ 0.5, it has suffi-
cient energy to escape, whereas |E|< 0.5 indicates a lack of energy. The escape probability 
is indicated by r, ranging from [0, 1] , with r ≥ 0.5 suggesting a failed escape and r < 0.5 
indicating a successful escape. E is calculated as:

where E0 is a random number within [−1, 1] , and E decays over iterations, reflecting the 
prey’s weakening.

1. Soft besiege (r ≥ 0.5 and |E|≥ 0.5):

Employing this strategy when the prey has enough energy but fails to escape, as shown 
in Eqs. (28) and (29):

where �X(t) is the difference between the hunter’s and prey’s positions, and J is a ran-
dom number in [0, 2], indicating the prey’s random motion intensity and varying 
between iterations.

2. Hard besiege (r ≥ 0.5 and |E|< 0.5):

When the prey is exhausted, the hard besiege strategy is used, as per Eq. (30):

(26)Xmean(t) =
1

N

N
∑

i= 1

Xi(t)

(27)E = 2E0

(

1−
t

max_t

)

(28)X(t + 1) = �X(t)− E|JXbest(t)− X(t)|

(29)�X(t) = Xbest(t)− X(t)

(30)X(t + 1) = Xbest(t)− E|�X(t)|
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where E is calculated by Eq. (27) and ΔX (t) is calculated by Eq. (29).

3. Soft besiege with progressive rapid dives (r < 0.5 and |E|≥ 0.5):

Utilized when the prey is energetic and likely to escape. This strategy involves a combi-
nation of soft besiege and rapid dives, described in Eq. (31) to Eq. (34).

where F is the fitness function, D denotes the problem’s dimension, and S is a random 
vector bounded between 0 and 1. LF represents the Levy flight function, with µ and ν as 
random values between [0, 1] , and β is typically set to 1.5.

4. Hard besiege with progressive rapid dives (r < 0.5 and |E|< 0.5):

Applied when prey has low energy but is cunning, the strategy follows Eq. (35) to 
Eq. (37):

where Xmean(t) represents the average position of the Harris Hawk in the current itera-
tion, as calculated from Eq. (26).

Improved SMA framework components

The CCHSMA framework integrates various strategies, and its overall flowchart 
is depicted in Fig.  1. During the initialization phase, the population range is con-
strained. Recognizing the impact of initial results on the algorithm’s search effi-
ciency, a chaotic mechanism is applied to the initial population. This approach 
ensures a uniform distribution across the entire space, significantly enhancing 
search efficiency.

(31)Y = Xbest(t)− E|JXbest(t)− X(t)|

(32)Z = Y + S × LF(D)

(33)X(t + 1) =

{

Y if F(Y ) < F(X(t))
Z if F(Z) < F(X(t))

(34)LF(x) = 0.01×
µ× σ

|ν|
1
ρ

, σ =







Ŵ(1+ β)× sin
�

πβ
2

�

Ŵ

�

1+β
2

�

× β × 2

�

β−1
2

�







1
ρ

(35)Y ′
= Xbest(t)− E|JXbest(t)− Xmean(t)|

(36)Z′
= Y ′

+ S × LF(D)

(37)X(t + 1) =

{

Y ′ if F
(

Y Y ′
)

< F(X(t))

Z′ if F
(

Z′
)

< F(X(t))
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In the early stages, the SMA demonstrates efficient search capabilities, making it 
well-suited for iterative search and adaptation. However, as the search progresses 
into middle and late stages, SMA’s efficiency declines. To address this, the CMA 
and HHO mechanisms are introduced to enhance exploration and exploitation. The 
experimental integration of SMA with CMA and HHO proves effective, improving 
the population’s search capabilities and broadening the search scope. Additionally, it 
refines step size and search direction more systematically.

Experiment design and results
This section evaluates the performance of the CCHSMA method through experimental 
analysis. The benchmark functions from IEEE CEC2017 (referenced in Table  1) are uti-
lized to compare CCHSMA’s performance against six SMA variants, seven fundamental 
metaheuristics, and six advanced swarm intelligence algorithms. Additionally, the algo-
rithm’s practical application is tested on engineering design problems. The experiments 
were conducted on a system with the following specifications: Windows OS, 16 GB RAM, 
Intel(R) Core (TM) i5-10500 CPU at 3.10 GHz, using MATLAB R2019b.

Section "Validation of the effectiveness of different mechanisms" examines the effects of 
various mechanisms on the SMA algorithm. Section "Qualitative analysis of the improved 
algorithm" demonstrates the qualitative analysis of CCHSMA. Section "Comparison with 
original swarm intelligence algorithms" focuses on validating CCHSMA’s superior global 
search capability and its effectiveness in avoiding local optima, through comparisons with 
seven basic algorithms. Section “Comparison with swarm intelligence algorithm variants" 
extends this comparative analysis to include six other advanced improved algorithms, 

Fig. 1 Flowchart of CCHSMA
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offering a comprehensive assessment of CCHSMA’s performance in diverse scenarios. Sec-
tion "Comparative analysis of algorithms" verifies the robustness of the algorithm in differ-
ent dimensions with different number of iterations.

Validation of the effectiveness of different mechanisms

In this study, a thorough comparison is conducted between the original SMA and its 
variants, including the CCHSMA, using IEEE CEC2017 benchmark functions at a 
30-dimensional setting.

The variants examined are CMAHHOSMA, CLSHHOSMA, CLSCMASMA, 
CLSSMA, CMASMA, and HHOSMA. Each variant features a unique integration of 
mechanisms: CMAHHOSMA combines CMA and HHO without chaotic initialization, 
CLSCMASMA merges CLS and CMA excluding HHO, and CLSHHOSMA integrates 
CLS with HHO improvements. CLSSMA, CMASMA, and HHOSMA each apply dis-
tinct strategies to enhance SMA.

Table 1 30 Functions of IEEE CEC2017

ID Function equation Type Optimum

F1 Shifted and Rotated Bent Cigar Function Unimodal 100

F2 Shifted and Rotated Sum of Different Power Function Unimodal 200

F3 Shifted and Rotated Zakharov Function Unimodal 300

F4 Shifted and Rotated Rosenbrock’s Function Multimodal 400

F5 Shifted and Rotated Rastrigin’s Function Multimodal 500

F6 Shifted and Rotated Expanded Scaffer’s F6 Function Multimodal 600

F7 Shifted and Rotated LunacekBi_Rastrigin Function Multimodal 700

F8 Shifted and Rotated Non-Continuous Rastrigin’s Function Multimodal 800

F9 Shifted and Rotated Levy Function Multimodal 900

F10 Shifted and Rotated Schwefel’s Function Multimodal 1000

F11 Hybrid Function 1 (N = 3) Hybrid 1100

F12 Hybrid Function 2 (N = 3) Hybrid 1200

F13 Hybrid Function 3 (N = 3) Hybrid 1300

F14 Hybrid Function 4 (N = 4) Hybrid 1400

F15 Hybrid Function 5 (N = 4) Hybrid 1500

F16 Hybrid Function 6 (N = 4) Hybrid 1600

F17 Hybrid Function 7 (N = 5) Hybrid 1700

F18 Hybrid Function 8 (N = 5) Hybrid 1800

F19 Hybrid Function 9 (N = 5) Hybrid 1900

F20 Hybrid Function 10 (N = 6) Hybrid 2000

F21 Composition Function 1 (N = 3) Composition 2100

F22 Composition Function 2 (N = 3) Composition 2200

F23 Composition Function 3 (N = 4) Composition 2300

F24 Composition Function 4 (N = 4) Composition 2400

F25 Composition Function 5 (N = 5) Composition 2500

F26 Composition Function 6 (N = 5) Composition 2600

F27 Composition Function 7 (N = 6) Composition 2700

F28 Composition Function 8 (N = 6) Composition 2800

F29 Composition Function 9 (N = 3) Composition 2900

F30 Composition Function 10 (N = 3) Composition 3000
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All algorithms and their variants are tested with a consistent population size of 30 and 
a maximum of 300,000 function evaluations (MaxFEs). Performance is measured by the 
mean (Avg.) and standard deviation (Std.) of optimal solutions, with Avg assessing global 
and local search capabilities, and Std evaluating robustness.

The IEEE CEC2017 functions are selected for testing CCHSMA, with additional sta-
tistical comparisons using Friedman’s test. This analysis provides algorithm rankings 
based on their average performance across various functions. The results, along with a 
visual representation in Table 2 and Fig. 2, underscore CCHSMA’s superiority over other 
algorithms.

Notably, when CLS is used independently with SMA (e.g., in F4), it shows effective 
initialization but struggles to escape local optima in later stages. In contrast, CMASMA 
demonstrates stronger convergence later in the search process despite a less effective ini-
tialization phase compared to CLSSMA.

The addition of the enhanced HHO strategy is beneficial when CMA underperforms, 
as seen in F16, where the combination of various strategies leads to improved results. 
Similarly, in F15, CCHSMA maintains robust exploration even when other algorithms 
reach a convergence point. In F30, CCHSMA effectively utilizes the CLS mechanism for 
superior initialization, enhancing efficiency and reducing runtime.

The integration of the three mechanisms in CCHSMA effectively harnesses their indi-
vidual strengths, resulting in a synergistic effect that surpasses the sum of their sepa-
rate impacts. As indicated in Table 3, CCHSMA ranks first among its six variants and 
the original SMA, excelling in global search capability, robustness, and avoiding local 
optima. Therefore, CCHSMA emerges as the preferred and enhanced algorithm for 
optimization tasks.

Qualitative analysis of the improved algorithm

To elucidate the fundamental characteristics of the CCHSMA, this section undertakes 
a qualitative analysis of the algorithm with a focus on three dimensions: search trajec-
tory, average fitness, and population equilibrium. In the provided Fig. 3, the first column 
presents the three-dimensional functional graphs of the respective functions, indicating 
their general topographical features. The second column illustrates the spatiotemporal 
distribution of the search process, representing the spatial distribution of the population 
throughout the global search. The third column captures the evolution of the individu-
als’ positions along the first dimension within the range of [−100, 100]. The fourth col-
umn quantifies the collective fitness level of the population.

In the visual representations, functions F1 and F4 demonstrate greater smoothness. As 
shown in column b, these functions quickly converge towards the vicinity of the optimal 
solution after initialization, facilitating further exploration. After several iterations, as 
shown in column c, these functions gradually converge to a specific value for a focused 
search, ultimately reaching the optimal solution upon completing the iterative process.

Conversely, the search patterns for multimodal functions such as F6 and F10 are nota-
bly more complex. After initialization, the search trajectory exhibits continuous muta-
tions and extensive exploration of potential solutions in various directions, avoiding 
entrapment in local minima. This dynamic is more clearly observed in column b.
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Comparison with original swarm intelligence algorithms

This section presents a detailed comparison of CCHSMA with well-known meta-heuris-
tic algorithms, including SSA, BA, PSO, ABC, FA, DE, and HHO.

A comprehensive analysis of Table 4 and Fig. 4 indicates that CCHSMA outperforms 
its counterparts across most functions. It excels in initialization, achieving favorable 
positions from the start. For example, in function F30, the CLS mechanism significantly 
enhances initialization. The figure reveals that algorithms like PSO and BA are highly 
dependent on their initialization results, which strongly impact their final performance. 
During the middle exploration phase, as illustrated by F18, while other algorithms may 
demonstrate slower convergence, CCHSMA’s integration of the HHO mechanism 
ensures rapid and efficient global search due to its advanced exploratory capabilities. 

Fig. 2 Convergence curves on CEC2017

Table 3 Friedman test of CCHSMA, CLSHHOSMA, CLSCMASMA, CMAHHOSMA, HHOSMA, CMASMA, 
CLSSMA and SMA on CEC2017 benchmark functions

CCHSMA CLSHHOSMA CLSCMASMA CMAHHOSMA HHOSMA CMASMA CLSSMA SMA

AVG 2.2333 4.3 5.6 2.3667 3 3.1666 5.2333 3.3667

RANK 1 6 8 2 3 4 7 5
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Additionally, its use of segmented population classification further extends its scope and 
versatility.

The impact of the CMA mechanism on SMA is evident in function F12, where it 
improves the control over the search’s depth and breadth. This enhancement leads 
to more reliable step generation and optimizes the algorithm’s global search capabili-
ties. The careful modulation of the influence from the parent generation ensures opti-
mal utilization of the evolutionary path’s length, resulting in significant performance 
improvements.

Post-evaluation, Table  5 illustrates the rank averages and final standings, with 
CCHSMA consistently securing the top position. As highlighted in Table 5, CCHSMA 
not only outperforms other leading population-based intelligence algorithms but also 
consistently ranks at the top across all functions. It achieves top-tier scores in nearly all 
fundamental tests for each function, demonstrating its exceptional overall performance 
and superiority in diverse optimization scenarios.

Comparison with swarm intelligence algorithm variants

This section focuses on comparing the CCHSMA with advanced swarm intelligence 
optimization algorithm variants, namely OMGSCA [70], RDWOA [71], EOBLSSA [72], 
GBHHO [44], GOTLBO [73], ALCPSO [45].

An analysis of the results in Table  6 and Fig.  5, particularly for function F1, reveals 
significant insights. While GOTLBO shows promising early-stage results and fast 

Fig. 3 a Illustration of functions, b Two-dimensional location distribution of CCHSMA, c Trajectory of 
CCHSMA in the first dimension, d Average fitness of CCHSMA
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convergence, its performance declines over time, eventually reaching a stagnation point. 
In contrast, CCHSMA exhibits consistent convergence speed and stable progression 
throughout the iterations. Notably, in the later stages, CCHSMA avoids stagnation and 
engages effectively in local exploration, ultimately surpassing GOTLBO’s performance.

Further examination of functions F3 and F12 highlights CCHSMA’s sustained local 
exploration, even when other algorithms stabilize in later iterations. This persistent 
exploration allows CCHSMA to achieve optimal results by the end of the iteration pro-
cess. This capability is particularly valuable for swarm intelligence algorithms in over-
coming local optima. On the functions F1, F3, F4, F8, and F21, the CCHSMA algorithm 
has demonstrated its exceptional capability in local exploration and optimal solu-
tion identification, particularly as the algorithms approach the final stages of iterative 
convergence.

Fig. 4 Convergence curves of CCHSMA and other MAs on CEC2017

Table 5 Friedman test of CCHSMA, SSA, PSO, BA, FA, DE, ABC and HHO on CEC2017 benchmark 
functions

CCHSMA SSA BA PSO ABC FA DE HHO

AVG 2.0333 3.9633 5.65 5.85 3.0683 7.24 3.565 4.63

RANK 1 4 6 7 2 8 3 5
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The comparative performance of these algorithms, including CCHSMA, is summa-
rized in Table 7. In this comparison, CCHSMA achieves an average Friedman test result 
of 2.61333, ranking it highest overall. Although Fig. 5 shows that certain functions, like 
F18, may perform better with other algorithms, the overall results in Table  7 demon-
strate CCHSMA’s superior robustness and versatility. This robustness makes CCHSMA 
more adaptable to a variety of scenarios. In conclusion, CCHSMA not only improves the 
convergence capabilities of the original SMA but also broadens its application in tack-
ling local convergence challenges. Throughout all functions, CCHSMA consistently out-
performs its counterparts, including both basic algorithms and other advanced swarm 
intelligence options.

Fig. 5 Iteration curves of CCHSMA and other improved algorithms on CEC2017

Table 7 Friedman test of CCHSMA, OMGSCA, RDWOA, GBHHO, EOBLSSA, GOTLBO and ALCPSO on 
CEC2017 benchmark functions

CCHSMA OMGSCA RDWOA GBHHO EOBLSSA GOTLBO ALCPSO

AVG 2.61333 4.91 4.79333 3.63667 4.84 2.94667 4.26

RANK 1 7 5 3 6 2 4
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Comparative analysis of algorithms

In order to further demonstrate the robustness of the algorithms, we conducted addi-
tional comparative experiments, expanding the set of comparison algorithms from Sec-
tion "Comparison with swarm intelligence algorithm variants" to include new algorithms 
such as XMACO [74], LXMWOA [75], SCBA [76], and QCSCA [77] for reference and 
comparison. These experiments were conducted using the IEEE CEC2017 test suite and 
were performed across 30, 50, and 100 dimensions at 300,000, 500,000, and 1,000,000 
function evaluations, respectively. This expanded comparison aimed to analyze the 
strengths and weaknesses of each algorithm in different dimensional settings.

From Table  8, it is evident that CCHSMA consistently ranks at the top across all 
dimensions and function evaluation counts, demonstrating its robustness. Figure 6 illus-
trates that CCHSMA performs well throughout the entire process in the F1 test func-
tion. While some algorithms, such as GOTLBO, achieve faster convergence initially, 
CCHSMA excels in the final stages, overtaking others. Additionally, we can observe that 
with an increasing number of iterations, some algorithms demonstrate a strong ability to 
catch up. For instance, OMGSCA, which ranked 11th at 300,000 iterations, escapes local 
optima and rises to 4th place at 500,000 iterations, highlighting its capability to improve 
with extended iterations. Figure  7 shows that CCHSMA excels particularly in achiev-
ing convergence, with its advantages becoming more apparent as the iteration count 
increases. Similarly, OMGSCA’s performance improves with more iterations.

Engineering problems
In engineering, achieving accuracy and cost-effectiveness often begins with developing a 
precise mathematical model of the product. This section applies the CCHSMA to solve 
three engineering design problems: TCSD, PVD, and TBTD. These simulations incor-
porate a variety of constraints, including maximum-minimum, equation, boundary, and 
others, to find the optimal solution that meets the specified requirements, ensuring the 
practicality of the results. CCHSMA is compared against other advanced meta-heuristic 
algorithms like SCADE, ALCPSO, BA, GWO, EGOA, ISSWOA [51], FDA [78], EWOA 
[79], IGWO [80], HHO-PS [81], hHHO-SCA [82], QL-ADIFA [83], ASOINU [84], and 
MSFWA [85].

Tension/Compression Spring Design (TCSD)

The objective in spring design encompasses meeting criteria for structure, performance, 
strength, and axial stability. The goal is to create springs that withstand significant work-
ing loads while maintaining their integrity under specified operational conditions, par-
ticularly in high-pressure scenarios. Adapting the design to accommodate different 
materials and wire diameters is crucial for handling various force levels. In the TCSD 
problem, the primary objective is to minimize the weight of the spring.

The design parameters include the spring diameter ( d ), center diameter ( D ), number 
of active coils ( n ), pitch ( p ), and height ( H ). The challenge lies in minimizing the spring 
weight while ensuring its functional efficacy. This involves optimizing a set of variables 
related to these parameters:

(38)Consider �y = [y1y2y3] = [dDn]
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The mathematical formulation of TCSD is as follows.

(39)Minimize f
(

�y
)

= (y3 + 2)y2y
2
1

(40)Subject to h1
(

�y
)

= 1−
y32y3

71785y41
≤ 0

(41)h2
(

�y
)

=
4y22 − y1y2

12566
(

y2y
3
1 − y41

) +
1

5180y21
≤ 0

(42)h3
(

�y
)

= 1−
140.45y1

y32y3
≤ 0

(43)h4
(

�y
)

=
y1 + y2

1.5
− 1 ≤ 0

(44)Variable range 0.05 ≤ y1 ≤ 2.00, 0.25 ≤ y2 ≤ 1.30, 2.00 ≤ y3 ≤ 15.0

Fig. 6 Convergence curves for function evaluation of each algorithm for different dimensions with different 
number of iterations on the F1 function
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Equation  (38) to Eq.  (44) capture the complex interplay between the objective func-
tion, constraints, and variables in the TCSD problem. A comprehensive analysis and 
ranking within the same experimental framework were conducted.

Table  9 showcases the superior performance of CCHSMA in resolving the TCSD 
challenge. The optimal solution obtained by CCHSMA is 0.012665233, with the 

Fig. 7 Convergence curves for function evaluation of each algorithm for different dimensions with different 
number of iterations on the F18 function

Table 9 Comparison results of the TCSD problem

Algorithm Optimal values for variables Optimum weight

d D n

CCHSMA 0.051689061 0.35671773 11.28896601 0.012665233

SCADE 0.053032594 0.38962372 9.60674636 0.012718668

ALCPSO 0.052007453 0.36442584 10.8509697 0.012667072

BA 0.05 0.38295864 14.4467757 0.012774504

GWO 0.051395166 0.34968823 11.7134024 0.012666913

EGOA 0.052075875 0.36609499 10.7596637 0.012667945

IGWO (Li et al.,2021) 0.05159 0.354337 11.4301 0.012700

ISSWOA (Zhang et al.,2023) 0.0517 0.3577 11.2315 0.01266526

FDA (Karami et al.,2021) 0.0517364 0.357859 11.222356 0.012665276

EWOA (Tu et al., 2021a) 0.051961 0.363306 10.91296 0.012667

HHO-PS (Krishna et al.,2021) 0.051682 0.356552 11.29867 0.012665
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optimal parameters being 0.051689061 for diameter ( d ), 0.35671773 for center diam-
eter ( D ), and 11.28896601 for the number of active coils ( n ). These results highlight 
CCHSMA’s exceptional global search capabilities in complex optimization scenarios, 
such as the TCSD problem.

Pressure Vessel Design (PVD)

Pressure vessels are critical in both industrial production and daily life. In their design 
phase, factors like material performance, force characteristics, and structural connec-
tions are considered to optimize costs, enhance quality, and minimize maintenance 
expenses. The goal is to minimize the total cost of cylindrical pressure vessel compo-
nents. The key variables affecting cost include shell thickness ( S ), head thickness ( H  ), 
inner radius ( R ), and cross-sectional reduction range of the header ( CH).

The mathematical model for the Pressure Vessel Design (PVD) problem is expressed 
as follows:

The restrictions are as follows:

The variables are restricted to:

Using a similar analytical approach as in previous problems, this study compares 
the enhanced CCHSMA with other notable meta-heuristic algorithms. After rigor-
ous testing for reliability, the results, presented in Table 10, demonstrate CCHSMA’s 
superior performance in solving the PVD problem.

The optimal solution obtained by CCHSMA is 6059.71445, with the variables shell 
thickness ( S ), head thickness ( H  ), inner radius ( R ), and cross-sectional reduction 

(45)Consider �y = [y1y2y3y4] = [SHRCH ]

(46)Objective : f
(

�y
)

min
= 0.6224y1y3y4 + 1.7781y3y

2
1 + 3.1661y4y

2
1 + 19.84y3y

2
1

(47)Subject to g1
(

�y
)

= −y1 + 0.0193y3 ≤ 0,

(48)g2
(

�y
)

= −y3 + 0.00954y3 ≤ 0,

(49)g3
(

�y
)

= −πy4y
2
3 −

4

3
πy33 + 1296000 ≤ 0

(50)g4
(

�y
)

= y4 − 240 ≤ 0,

(51)0 ≤ y1 ≤ 99,

(52)0 ≤ y2 ≤ 99,

(53)10 ≤ y3 ≤ 200,

(54)10 ≤ y4 ≤ 200.
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range of the header ( CH  ) being 0.8125, 0.4375, 42.09844474, and 176.6366069, 
respectively. These results highlight CCHSMA’s robust local convergence capabilities 
in addressing this specific type of engineering problem.

Three‑Bar Truss Design (TBTD)

The TBTD problem is a significant structural optimization challenge in engineering. Its 
primary objective is to minimize the weight of the structure while complying with con-
straints related to stress, deflection, and buckling. A distinctive aspect of this problem is 
that two of the three bars must be of equal length, focusing attention on the lengths of 
these bars, denoted as l1 and l2.

The mathematical formulation for the TBTD problem is as follows:

Objective function:

Subject to:

where:

(55)Consider �y = [y1y2] = [l1 · l2]

(56)f (x) =
(

2
√
2y1 + y2

)

× l

(57)g1
(

y
)

=

√
2y1 + y2

√
2y21 + 2y1y2

P − σ ≤ 0

(58)g2
(

y
)

=
y2

√
2y21 + 2y1y2

P − σ ≤ 0

(59)g3
(

y
)

=
1

√
2y2 + y1

P − σ ≤ 0

(60)0 ≤ yi ≤ 1i = 1, 2

(61)l = 100 cm, P = 2kN
/

cm
2
, σ = 2kN

/

cm
2

Table 10 Results of CCHSMA versus peers in literature for PVD case

Algorithm Optimum variables Optimum cost

S H R CH

CCHSMA 0.8125 0.4375 42.09844474 176.6366069 6059.71445

SCADE 0.859023319 0.438177522 41.9975632 178.4238141 6084.474726

ALCPSO 0.868395826 0.442287022 42.0984456 176.6365958 6059.714335

BA 6.1875 6.1875 10 200 9757.95869

GWO 0.8125 0.4375 42.0977567 176.6471702 6059.845871

EGOA 0.8125 0.4375 42.09844542 176.6365985 6059.714368

hHHO-SCA 0.945909 0.447138 46.8513 125.4684 6393.0927

QL-ADIFA 1 1 51.20 89.0799 8798.52

ASOINU 0.422027 0.884529 45.336788 140.253847 6090.5262
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In the analysis of this design problem, a comparison of various swarm intelligence 
algorithms indicates that the CCHSMA stands out as the most optimal choice, deliver-
ing refined results. As shown in Table 11, the optimal solution achieved by CCHSMA 
is 263.8958434, with the corresponding variable values for l1 and l2 being 0.788675137 
and 0.408248283, respectively. This comparison demonstrates that CCHSMA possesses 
robust local search capabilities, making it highly effective for this specific type of engi-
neering problem.

Conclusions
We introduce a novel variant of the SMA, termed CCHSMA, which exhibits robust 
capabilities for efficient search and controlled step size modulation, significantly improv-
ing its local search proficiency. The integration of the CLS strategy during initialization 
accelerates the identification of well-adapted populations, thereby enhancing search 
efficiency. Furthermore, the incorporation of an enhanced HHO mechanism bolsters 
global search capabilities. Additionally, the CMA mechanism is employed to calculate 
the covariance matrix, controlling step size and search direction, thereby aiding the 
algorithm in avoiding local optima. Results from IEEE CEC2017 benchmark functions 
underscore the robust global optimization potential of CCHSMA.

In engineering design optimization, CCHSMA has been applied to problems like Ten-
sion/Compression Spring Design, Pressure Vessel Design, and Three-Bar Truss Design. 
Mathematical models were developed for these cases, and experimental results dem-
onstrate CCHSMA’s proficiency in designing products with enhanced precision by 
effectively utilizing constraint information. This results in improved product quality, 
enhanced performance, and reduced design cycles. Comparative analyses with other 
advanced algorithms affirm the robustness and effectiveness of CCHSMA, consistently 
achieving superior results across various problem types.

Although current experiments have achieved theoretical optima in some cases, devia-
tions still exist in specific scenarios. The problem of local optimality has only been fur-
ther optimized and not completely resolved, while the capability for global search can 
still be enhanced. Future research will categorize different classes of engineering prob-
lems to explore varied applications and evaluate the impact of distinct mechanisms 
on engineering results. The aim is to further understand and enhance CCHSMA’s 

Table 11 Comparison results of three-bar truss design problem between CCHSMA and other 
approaches

Algorithm Optimal values for variables Optimum cost

y1 y2

CCHSMA 0.788675137 0.408248283 263.8958434

SCADE 0.788390817 0.409099476 263.9005447

ALCPSO 0.633629429 0.815913922 263.8959534

BA 0.212348947 0.128496722 264.0147858

GWO 0.788606921 0.408441535 263.8958741

EGOA 0.788674445 0.40825024 263.8958434

IGWO (Li et al.,2021) 0.78846 0.40884 263.8959000

MSFWA (Han et al., 2020) 0.78867297 0.40825443 263.8958434

FDA (Karami et al.,2021) 0.788662 0.408286 263.8958430
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adaptability and performance across a wide range of engineering challenges. Further-
more, the integration of single-objective swarm intelligence optimization algorithms 
with multi-objective strategies or deep learning frameworks can address a wider range 
of engineering application problems.
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